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Abstract. Recently, organisations operating in the context of Smart
Cities are spending time and resources in turning large amounts of data,
collected within heterogeneous sources, into actionable insights, using
indicators as powerful tools for meaningful data aggregation and explo-
ration. Data lakes, which follow a schema on read approach, allow for
storing both structured and unstructured data and have been proposed
as flexible repositories for enabling data exploration and analysis over
heterogeneous data sources, regardless their structure. However, indica-
tors are usually computed based on the centralisation of the data storage,
according to a less flexible schema on write approach. Furthermore, do-
main experts, who know data stored within the data lake, are usually
distinct from data analysts, who define indicators, and users, who exploit
indicators to explore data in a personalised way. In this paper, we propose
a semantics-based approach for enabling personalised data lake explo-
ration through the conceptualisation of proper indicators. In particular,
the approach is structured as follows: (i) at the bottom, heterogeneous
data sources within a data lake are enriched with Semantic Models, de-
fined by domain experts using domain ontologies, to provide a semantic
data lake representation; (ii) in the middle, a Multi-Dimensional On-
tology is used by analysts to define indicators and analysis dimensions,
in terms of concepts within semantic models and formulas to aggregate
them; (iii) at the top, Personalised Exploration Graphs are generated
for different categories of users, whose profiles are defined in terms of a
set of constraints that limit the indicators instances on which the users
may rely to explore data. Benefits and limitations of the approach are
discussed through an application in the Smart City domain.
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1 Introduction

Modern organisations are spending time and resources in understanding their
Big Data, collected within heterogeneous sources, attracted by the opportunity



of turning it into actionable insights. A representative example is given by Smart
Cities, whose infrastructures comprise both private and open data, legacy sys-
tems as well as new generation devices to collect city and citizens’ consumption
data, using different data formats, models and storage systems [5]. Data lakes,
which follow a schema on read approach, have been proposed for storing both
structured and unstructured data, regardless its structure. For end-users, data
aggregation according to different analysis dimensions may help to take decisions
in a more efficient manner. To this aim, indicators are powerful tools for mean-
ingful data aggregation and exploration. However, they are usually computed
based on the centralisation of data storage, according to a less flexible schema
on write approach, and their definition in the context of data lakes deserves
more investigation. Moreover, domain experts, who know data stored within the
data lake, are usually distinct from data analysts, who define indicators, and
users, who exploit indicators to explore data in a personalised way [15]. To this
aim, Semantic Web technologies may come to the rescue, given their capability
to enable interoperability over heterogeneous sources and improve data access;
specifically, recent research efforts strove to combine the OBDA paradigm with
data lakes, leading to the so-called semantic data lakes, with the development of
semantic layers apt to uniformly access data lakes content [14]. In this context,
the interest towards exploration techniques for multi-dimensional data (such as
the ones collected within a Smart City), leveraging domain knowledge, is grow-
ing faster and faster [1]. Indeed, the objective is to capture users’ analytical
requirements, subject to a continuous and endless evolution over time.

Focusing on the exploratory aspect, the goal of this paper is to describe a
semantics-based approach to enable personalised data exploration through the
conceptualisation of proper indicators, built on top of a semantic data lake rep-
resentation. In particular, the approach is structured over layers as follows: (i)
at the bottom, heterogeneous data sources within a data lake are enriched with
semantic models, defined by domain experts using domain ontologies; (ii) in
the middle, a multi-dimensional ontology is used by analysts to define indica-
tors and analysis dimensions, in terms of concepts within semantic models and
formulas to aggregate them, in order to extract what we call Smart City Explo-
ration Graph; (iii) at the top, Personalised Exploration Graphs are generated
for different categories of users, whose profiles are defined in terms of a set of
constraints that limit the indicators instances on which the users may rely to
explore data. The novel contribution of this approach mainly concerns the two
upmost layers of the information model introduced above. These layers enable a
progressive (and evolving) extraction of Smart City knowledge from the seman-
tic data lake through the semantic modelling of indicators and the exploitation
of users’ profiles. Furthermore, the three layers enable the clear separation of
roles, namely domain experts, data analysts and end-users.

The paper is organised as follows: in Section 2 a motivating example in the
Smart City domain is provided; the approach overview is explained in Section 3,
while Sections 4-6 describe in details the three layers of the information model;
Section 7 reports personalised exploration scenarios over the semantic data lake;



Section 8 discusses benefits and limitations of our approach; cutting-edge fea-
tures of the approach with respect to the literature are discussed in Section 9;
finally, Section 10 closes the paper.

2 Motivating Example

Different categories of users may be interested in exploring urban data: mo-
bility managers, energy managers, utility and energy providers, building man-
agers and citizens. As a motivating example, let’s consider John, the manager of
three buildings located in different districts of a Smart City. John is interested
in monitoring the electrical energy consumption of the buildings, in order to
plan saving policies and effective renovation interventions for the buildings with
highest consumption. Among buildings administered by John, Building1 and
Building2 are located in District1, whereas Building3 is located in a different
district (District2). In the example, energy consumption of a building is com-
puted by defining an indicator (ECbuilding) obtained as the sum of the electrical
consumption of the stairs (ECstairs) and other common spaces of the building
(such as gardens, ECgardens) and the electrical consumption of building eleva-
tors (ECelevators), that is ECbuilding = ECstairs + ECgardens + ECelevators.
Precisely, the factors in the aforementioned sum are in turn indicators that ag-
gregate data stored within distinct data sources. For example, ECelevators is
extracted from a relational database containing the electricity bills for all the
three buildings. The other two indicators are measured in a different way, using
new generation smart meters to extract a new value and store it within a JSON
file. Given the quantity and heterogeneity of data in this motivating example,
indicators are effective tools to provide John with meaningful aggregation of
data of interest. Moreover, for privacy preservation issues, John should not be
allowed to inspect data at the highest granularity level. He should explore data
at building level (and only for administered buildings).

3 Approach Overview

The three-layered information model proposed in this paper organises knowl-
edge about Smart City data sources through the following phases: (i) semantic
modelling of data lake sources, which defines a Smart City Semantic Data Lake,
(ii) semantic representation of indicators, which define a Smart City Exploration
Graph, and (iii) selection of Personalised Exploration Graphs. Figure 1 shows
the components of the information model, the involved roles, and architectural
modules that implement the three phases.

Starting from the bottom, Smart City heterogeneous data sources (e.g., IoT
devices, sensors, energy providers databases) are conveyed, through proper ELT
(Extract, Load and Transform) processes, into the Data Lake, where raw data is
stored as values of a set of attributes defined in the source. Semantic annotations
of data in a source, based on the concepts of one or more domain ontologies,
define a corresponding Data Source Semantic Model, which is stored in the Smart
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Fig. 1: Approach overview.

City Semantic Data Lake. Here, available data sources are described according
to their meanings, rather than on their raw data attributes. Domain experts
are in charge both to identify suitable domain ontologies and to use them for
defining the Data Source Semantic Models, by adopting methodologies defined
and validated in the literature [15]. A semi-automatic tool, ANNOTATOR, supports
the domain expert in this task.

Semantic Models are the starting point for defining the Smart City Explo-
ration Graph; in fact, by leveraging them, a data analyst can formally define
Smart City indicators and detail their features (e.g., dimensions, computing
formula, unit of measure). Base concepts and relationships required for mod-
elling indicators are defined in a Multi-Dimensional Ontology (MDO). Hence,
the Smart City Exploration Graph contains knowledge about indicators, their
dimensional characterisation and formulas. The semantic description of an in-
dicator is obtained as an aggregation of other indicators (according to the for-
mula) in a recursive way, until the most fine grained concepts are reached, corre-
sponding to concepts in the Data Source Semantic Models. In this way, a set of
mappings is established between concepts in the Smart City Exploration Graph



and concepts in the Semantic Models. An EXPLORATION GRAPH CREATOR tool
supports the data analyst in semantic definition of indicators and creation of
mappings. Analysis Cubes, shown on the left part of Figure 1, provide actual
values of indicators and related dimensions as defined in the Smart City Explo-
ration Graph. Analysis Cubes are created and maintained with the support of an
EXTRACTOR & TRANSFORMER tool. For each indicator, the tool uses both seman-
tic definitions of indicators, mappings towards Semantic Models, and additional
knowledge provided by the data analyst about transformation processes in order
to materialise the cubes. Moreover, indicators (e.g., ECbuilding) and dimension
levels (e.g., District) are mapped to corresponding attributes of the Analysis
Cube schema (i.e., its star schema).

Portions of the Smart City Exploration Graph, the so-called Personalised
Exploration Graphs, are dynamically selected, for different categories of users.
Dynamic selection is based on both the current Smart City Exploration Graph
content and on the users’ profiles, and supports personalised and interactive ex-
ploration of Smart City indicators. The Personalised Exploration Graphs can
be explored by end-users in various ways (e.g., as a interactive graph struc-
ture or by inspecting graph nodes, a node at a time, visualised as a structured
record1) through a GUI, which also enables users to register themselves and
create/update their profile, stored in the users’ profiles database. In particular,
end-users may use proper tools to: (i) learn about indicator descriptions in the
Personalised Exploration Graph (using the PERSONALIZED GRAPH EXPLORATOR);
(ii) select indicators and dimension levels, and see their values in a tabular for-
mat (using the RESULTS VISUALIZER); (iii) register to the platform by creating
a profile (using the USER PROFILE EDITOR).

In the following sections, the key elements of the approach will be detailed
also with reference to the motivating example.

4 Smart City Semantic Data Lake

We represent the Data Lake DL as a set of data sources, namely 〈S1,S2, . . . ,Sn〉.
Each data source Si is in turn composed of a collection of data items, whose
definition is given as follows.

Definition 1 (Data item). A data item Di
j ∈ Si can be formalised as Di

j =

〈Ai
j ,Oi

j〉 where: (i) Ai
j is a set of attributes and (ii) Oi

j is a set holding attribute-

value pairs, with attributes belonging to Ai
j, representing the content of the data

item.

Example 1. In the considered motivating example, a data item Di
j may contain

the electrical energy consumption sensed by a smart meter installed at a spe-
cific building. Coherently, for the data item, candidate attributes for the set Ai

j

would be timestamp, smart meter configuration parameters (e.g., the physical

1 http://vowl.visualdataweb.org/protegevowl.html



position of the meter) and so forth, that is, Ai
j = {Electr Rdng, eMeter ID,-

building ID, . . .}, where eMeter ID denotes the unique ID associated with a
particular electricity meter, building ID denotes the identifier of the building
where the meter is located and Electr Rdng denotes the electrical energy reading
at a specific time on the meter. Given the attributes set Ai

j , a sample of the con-

tent of set Oi
j is: {〈Electr Rdng, 10023.5〉, 〈eMeter ID, RGO16 〉, 〈building ID,

Building001〉, . . .}.

4.1 Data Sources Semantic Models

Once data has been ingested in the Data Lake, domain experts are enabled to
build proper Semantic Models, created during the addition of the data source into
the Data Lake. These models serve as a semantic description of data attributes
and their relationships, allowing data analysts, who might not be familiar with
the data, to understand data meaning. In fact, concepts and relationships used
within each Semantic Model represent the domain expert’s view of the data
source, based upon one or more (external) domain ontologies. In our approach,
data lake sources are semantically annotated in order to define the Smart City
Semantic Data Lake in terms of Semantic Models and their instances. For this
purpose, we rely on techniques and models developed and tested in [15]. In
particular, we design a Semantic Model for each data source Si ∈ DL according
to the following steps: (1) at the beginning, the domain expert considers all
the attributes of the data source Si and then seeks suitable semantic concepts
and relationships amongst the ones available in the domain ontologies; (2) after
that, the domain expert may specialise, if needed, the existing concepts and
relationships in the domain ontologies by adding specific ones; (3) mappings are
defined between concepts and attributes to automatically extract instances (i.e.,
individuals) of the aforementioned concepts from the underlying data sources.

A fragment of Semantic Model for the motivating example is depicted in
Figure 2. The domain ontologies chosen by the domain expert for this Semantic
Model are: GeoNames2, for representing spatial entities, SOSA3 (acronym for
Sensor, Observation, Sample and Actuator) containing concepts apt to describe
sensors and measures produced by them, and Time4, devoted to model temporal
entities.

5 Smart City Exploration Graph

Semantic Models provided by domain experts are leveraged by data analysts to
assure a formal definition of Smart City indicators. Specifically, data analysts
are in charge of designing the aforementioned indicators (jointly with additional
knowledge) by specialising concepts and relationships of a Multi-Dimensional

2 http://www.geonames.org/ (prefix: GEO)
3 http://www.w3.org/ns/sosa (prefix: sosa)
4 http://www.w3.org/2006/time (prefix: time)
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Fig. 2: Semantic Model designed for a data source in the motivating example.

Ontology (MDO, in brief) conceived as a modelling framework to provide a
semantic representation of the indicators which have to be defined.

The semantic definition of indicators, obtained by specialising MDO concepts
and relationships, weaves the Smart City Exploration Graph. In the following,
the description of the MDO, emphasising its semantic areas, is provided, along
with an example of indicator definition, related to the motivating example in
Section 2.

5.1 The Multi-Dimensional Ontology

As shown in Figure 3, the MDO contains baseline concepts and relationships re-
garding indicators and exploration personalisation aspects. Hereafter, the three
conceptual areas of the MDO are described, emphasising the semantic role they
fulfil.

Personalisation concepts. Owing to the wide variety of data that can be
explored, data exploration can be personalised taking into account user’s cat-
egory (e.g., building manager, citizen) and activities performed by users (e.g.,
building monitoring, check air pollution), the former abstracted through the
UserCategory concept, whereas the latter through the Activity concept. An
activity may involve one or more indicators to be observed, compatible with
its purpose (involves relationship). Activities can be performed by users, ac-
cording to their role inside the Smart City context (hasPracticableActivity
relationship).
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Fig. 3: TBox of the Multi-Dimensional Ontology (in the figure, the three semantic
areas are highlighted with different colours).

Dimensions concepts. Indicators can be segmented and calculated according
to several dimensions (hasDimension relationship), which are in turn organised
into levels, modelled through the Level concept. The rollUp semantic rela-
tionship enables a hierarchical organisation of levels, thus ensuring the naviga-
bility from the lowest to the highest aggregation level, resembling the renowned
OLAP roll-up operator. Moreover, Level concept is linked in the MDO to Level-
Definition concept through the hasDefinition relationship, in order to repre-
sent an abstraction for the procedure devoted to calculate level instances starting
from their counterparts in the semantic models.

Indicators concepts. Indicators are designed to aggregate urban data accord-
ing to several perspectives and represent the ultimate target for data exploration,
as their value may give valuable insights to users. In the ontology, indicators can
be modelled as simple or compound, i.e. calculated exploiting other indicators
(through takesDataFrom semantic relationship). Being measurable quantities,
they are endowed with a unit of measure (abstracted through the UnitOfMeasure
concept) and have a calculation formula (Formula concept). For an indicator, it is
also possible to define an aggregation function (AggregationFunction semantic
concept), adopted as standard operation to apply whenever switching from a di-
mensional level to another (through the rollUp semantic relationship). Finally,
indicators may be associated with domains, such as environment, health, en-
ergy and so forth; this is represented inside the ontology through the belongsTo

semantic relationship, connecting Indicator concept with Domain concept.



The design of the MDO (especially for Dimension concepts) has been inspired
by the existing literature concerning OLAP paradigm constructs [6]. Moreover,
for defining the ontology, pivotal concepts from available foundation ontologies
have been exploited to: (i) represent users’ activities (Schema.org ontology5), (ii)
characterise indicators and dimensions as analytical data entities (Data Cube
ontology6) and (iii) model units of measure for indicators (ontology of units of
measures7).

5.2 Semantic definition of indicators through the Multi-Dimensional
Ontology

Given the knowledge structure in the MDO, data analysts are enabled to se-
mantically describe indicators through the specialisation of MDO concepts and
relationships. In the following, an example of semantic definition is provided
(Figure 4), referring to the indicator EC Building in the motivating example.
For clarity purposes, in the figure, specialisation relationships are omitted and
concepts are represented using colours that match the colours of the semantic
areas in Figure 3.

Example 2. According to the motivating example, the EC Building indicator
is compound, as it depends on (i.e., takesValueFrom) three indicators, namely
EC Stairs, EC Gardens and EC Elevators, whose sum contributes to produce
the value for EC Building. Indicators concepts are linked to a SpatialDimension,
suitable for defining their spatial coverage, through the specialisation of Level
concept. In the motivating example, the following levels of spatial dimensions are
considered: City, District, Building and Electrical Meter. Analogously to
what happens for OLAP analysis, rollUp relationships ensure to establish a hier-
archical organisation of levels concepts, assuring the navigability from the lowest
(i.e., Electrical Meter) to the highest (i.e., City) extent of aggregation. Fo-
cusing on Building concept, it is linked to BuildingLevelDefinition concept;
this is exploited to formalise the calculation of Building instances starting from
their conceptual counterpart in semantic models (that is, referring to Figure 2,
instances of SpatialThing concept). Noteworthy, different indicators concepts
may share the same dimensional organisation (that is, EC Building, EC Stairs,
EC Gardens and EC Elevator are all connected to SpatialDimension concept).

Mappings towards Semantic Models and Analysis Cubes. We distin-
guish among two types of mappings, manually defined by data analysts, binding:
(i) a concept in the Smart City Exploration Graph with a concept in a Semantic
Model and (ii) a concept in the Smart City Exploration Graph with an attribute
in a specific Analysis Cube.

5 https://schema.org/ (prefix: schema)
6 https://www.w3.org/TR/vocab-data-cube/ (prefix: qb)
7 http://www.ontology-of-units-of-measure.org/resource/om-2/ (prefix: om)
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Fig. 4: Excerpt of the Smart City Exploration Graph for the description of
ECbuilding in the motivating example.

Specifically, the first kind of mapping is a tuple 〈CEG, CSM , R〉 binding a
concept CEG contained in the Smart City Exploration Graph to a concept CSM

belonging to a Semantic Model, through the relationship R (e.g., equivalence
or subsumption relationship). In this case, data analysts may be supported in
their definition by ad-hoc tools8, which may be equipped with similarity-based
matching algorithms, and ensure the possibility of exporting such mappings in
various formats.

Similarly, mappings between concepts in the Smart City Exploration Graph
and Analysis Cubes are expressed through the tuple 〈CEG, cID, cATTR〉, where
CEG represents a reference to a concept in the Smart City Exploration Graph,
cID is the Analysis Cube unique identifier and cATTR is an attribute contained
in the Analysis Cube schema. These mappings are retained in a dedicated repos-
itory and processed by the EXTRACTOR & TRANSFORMER tool.

6 Personalised Graphs Extraction

In this section, we describe how to extract Personalised Exploration Graphs,
containing a portion of the Smart City Exploration Graph targeted to a specific
end-user. Specifically, the aim of this task is to assure a personalised explo-
ration of Smart City indicators, achieved by considering users’ profiles. In the
following, a formalisation of users’ profiles is given, together with the description

8 for instance, Protégé (https://protege.stanford.edu/) and COMA tool
(https://dbs.uni-leipzig.de/Research/coma.html)



of the stepwise procedure leading to the extraction of Personalised Exploration
Graphs containing the set of indicators to be explored, along with their semantic
characterisation.

6.1 Users’ profiles

The profile of a user p(u) can be abstracted through the tuple 〈IDu, catu, Cl, Il〉,
composed of: the unique identifier associated with the user (IDu), a concept rep-
resenting the category of the user, i.e. his/her role inside the Smart City (catu),
a set of dimensional level concepts constraints (Cl) and a set of dimensional
levels instances (Il). Users’ profile data is stored in a database; all the elements
in p(u) are used during the Personalised Graph extraction process, detailed in
the following section, except from the set Il, exploited at exploration time.

Precisely, the category concept catu is used to retrieve, from the Smart City
Exploration Graph, activities concepts compliant with user’s role (from the mo-
tivating example, BuildingMonitoring is an activity concept available for the
role of John, as he belongs to BuildingAdministrator category), which will
in turn determine the indicators concepts involved in such activity. The set Cl

represent concepts deemed as constraints, applicable to delimit the dimensional
levels to which the user is allowed to access. In this way, data privacy preserva-
tion is enabled, for instance granting building managers to visualise data up to
building level (therefore not at lower levels, such as single electrical meters).

When users register themselves through the GUI, the registration wizard,
starting from the user’s category, prompts to the user proper masks to insert in Cl

concepts references and in Il instances references, which will be in turn validated
by a third-party authority, in order to assure the exploration of indicators only
for the dimensional levels the user has an explicit authorisation and for the
buildings under his competency (e.g., buildings in the motivating example).

6.2 Personalised Graphs derivation procedure

As previously remarked, from the Smart City Exploration Graph, different per-
sonalised graphs can be derived, by considering users’ profiles. The extraction
process can be summarised by these two steps:

1) Activity-based indicators concepts selection, in which, besides the user selects
the activity he/she wants to perform, relying on his/her role, candidate in-
dicators concepts (and related semantic knowledge) involved in the activity
are identified and retrieved from the Smart City Exploration Graph;

2) Level-based dimension pruning, in which concepts specialising the MDO
Level concept, retained in the set Cl, are used to constrain the visibility
of the dimensional organisation levels concepts only to those levels a user is
allowed to access.

In the following, each step will be further described, considering the moti-
vating example and with the support of Figure 5.
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Fig. 5: Stepwise derivation of a Personalised Graph. In the figure, the focus is on
a specific portion of the Smart City Exploration Graph (numbers in the circles
represent the order of extraction steps).

Activity-based indicators concepts selection. Due to the fact that John is a
building administrator, he must select only activity concepts compliant with his
role. Amongst the available ones, he selects from the proposed ones Building-

Monitoring. Such activity involves several indicators and EC Building, as pre-
viously described, is one of them. Being EC Building a compound indicator, the
takesDataFrom relationship connects it to the concepts EC Stairs, EC Gardens

and EC Elevators. Noteworthy, the following dimensional pruning step is iter-
ated over the aforementioned indicators. Overall, for these composing indicators
and for the ancestor one, the related semantic characterisation (dimensional or-
ganisation, formula, aggregation function, domain and so forth) is retrieved from
the Smart City Exploration Graph.

Level-based dimension pruning. Retained in John’s profile data, the set Cl

expresses the dimensional levels (that is, references to concepts specialising MDO
Level concept) to which he may access. Referring to John, the set Cl in his profile
holds the concepts {City, District, Building}. Furthermore, such elements are
linked in a rollUp chain (starting from Building up to City), defining the
dimension levels navigation path.

7 Personalised Graphs Exploration

Exploration within Personalised Graphs can be performed according to differ-
ent perspectives (highlighted in Figure 6), thus enabling the Explorative Search



paradigm [4]: (a) exploration over the indicators involved in the performed activ-
ity, (b) exploration over the indicators dependencies and (c) exploration over the
indicators dimensional organisation. Regardless the type of exploration scenario,
the user selects an indicator node and one or more dimensional levels nodes from
his/her Personalised Exploration Graph. According to this selection, the content
of the set Il ∈ p(u) is exploited to limit the set of visible instances related to the
selected levels concepts. As a result, a query over the Analysis Cube correspond-
ing to the selected indicator is issued, in order to show (e.g., through a tabular
layout) the instances of the indicator and the selected dimensions.

Exploration over the indicators involved in the performed activity. An activity
performed by a user, such as BuildingMonitoring, involves one or more indi-
cators to be inspected (related to energy and water consumption). Nevertheless,
for clarity purposes, we will focus only on the EC Building and its associated
indicators, adhering to the motivating example, which have been considered for
the next two exploration scenarios.

Exploration over the indicators dependencies. In this exploration scenario, John
selects the EC Building indicator and, starting from that, he can delve into other
indicators by traversing the takesDataFrom semantic relationship, connecting a
compound indicator concept with its dependencies (which in turn may be com-
pound or not). In this respect, John can inspect the more specific indicators
EC Stairs, EC Gardens and EC Elevators. For instance, if John’s focus is on
evaluating the electrical consumption of the elevators of the building, he may
select and inspect details about EC Elevators indicator.

Exploration over the indicators dimensional organisation. This exploration sce-
nario exploits the semantic relationships between an indicator and its dimen-
sional organisation (through the hasDimension relationship). In particular, knowl-
edge on dimensional organisation for indicators considers levels concepts (has-
Level relationship). Focusing on EC Building indicator or one of its depen-
dencies, John can position himself over one dimensional level (e.g., Building)
and then he can change the granularity of the aggregation level for the cho-
sen indicator, by exploiting the rollUp semantic relationship, thus switching
to District. Therefore, John could choose to visualise at a higher aggrega-
tion viewpoint (in this case, district) the values of the EC Building indicator;
whenever such rollUp is performed, the aggregation function associated with
the indicator, through the hasAggregationFunction relationship (e.g., “sum”
in the case of EC Building), is applied.

8 Preliminary validation

Advantages on the use of a semantic layer on top of the data lake, composed of
different Semantic Models managed by domain experts who know data stored
within the data lake, have been already investigated in [15], both in terms of flex-
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Fig. 6: Subset of a Personalised Graph on which exploration scenarios are con-
sidered.

ibility, expressiveness and expandability. Following the suggestions given in [15],
possible inconsistencies and heterogeneity across different Semantic Models, al-
ready mitigated due to the adoption of reference domain ontologies, can be
further reduced through the application of similarity-based alignment and rec-
onciliation techniques. The goal of this section is to highlight pros and cons
of the three-layered approach proposed in this paper. In particular, the focus
will be on the preliminary proof that the Smart City Exploration Graph and
Personalised Graphs are effective in supporting different categories of users for
indicator exploration.

To this aim, a prototype implementation of the approach has been created,
focusing on the GUIs designed to accomplish the exploration tasks. Specifically, a
web-based dashboard has been built in order to: (a) let users register themselves
to the exploration platform, specifying elements in p(u) and (b) explore their
Personalised Graphs, generated according to their profile data. In the prototype
implementation, data sources containing energy consumptions in the context of
the Brescia Smart Living project9, including sources considered in the motivat-
ing example, have been collected. A sample of users has been involved, including
citizens without prior knowledge on Smart City indicators, representatives of
Public Administration (in particular, the Municipality of Brescia, Italy), utility
and energy providers. Citizens live in two districts of the city, a modern one
(Sanpolino), where new generation smart meters have been installed, and a dis-

9 https://www.bresciasmartliving.eu/index.php



trict in city downtown, more densely populated and presenting older buildings.
Semantic Models, the Smart City Exploration Graph and Personalised Graphs
extracted for users have been deployed in OWL using the Stardog10 Triplestore.
The involvement of domain experts and data analysts in the definition of Se-
mantic Models and semantic representation of indicators based on the MDO has
been supported through the Protégé graphical editor. Moreover, visualisation
of Personalised Graphs has been achieved by relying upon well-known libraries
apt to provide a graphical representation of semantic graphs. Given the versa-
tility of Stardog module, we used the d3sparql11 library, suitable to represent
dynamic and interactive visualisation starting from data (in this case, the Per-
sonalised Graphs). Once indicators and dimensions concepts are selected by the
user from the Personalised Graph, the inspection of the associated analysis cube
is achieved, in a tabular way, by means of the OpenCube Toolkit12. Scalability
issues concerning the querying of data lake based on the semantic layer have been
already studied in several approaches according to the OBDA paradigm [14] and
are out of the scope of this preliminary evaluation. They will be considered for
future work.

Workload and performance analysis. To demonstrate the effectiveness of
three-layered information model in supporting personalised indicators explo-
ration, we simulated an exploratory search scenario, composed of three tasks
of increasing difficulty, where users were allowed to explore their Personalised
Graphs according to the exploration methods introduced in Section 7. Specif-
ically, the three aforementioned tasks included the exploration of: (i) a simple
indicator, (ii) a compound indicator with a single level of dependencies (like the
EC Building of the motivating example) and (iii) a compound indicator with
more than two nested levels of dependencies. Users attended an initial training
of 30 minutes, in order for them to get acquainted with the GUI and, at the
same time, let them create their profile. For evaluating the performance of our
prototype, participants filled a likert scale NASA TLX questionnaire, a mul-
tidimensional assessment tool that rates perceived workload in order to assess
a task or system. Questionnaires analysis has revealed that, for our proposal,
the “Mental Demand” sub-scale has been rated with the highest score whereas
“Performance” with the lowest. We impute such outcome to the fact that our
proposal increases the success of users while accomplishing data exploration, de-
spite a slight growth of mental and perceptual activity required to understand
how to effectively navigate across personalised graphs.

Usability tests. Usability experiments are being carried on within the Brescia
Smart Living project until the end of 2019. Participants were assigned a task to
be accomplished using the exploration tool, without imposing times-up or any
particular exploration constraint. Specifically, the task was a broad exploratory

10 https://www.stardog.com/
11 https://github.com/ktym/d3sparql
12 http://opencube-toolkit.eu/



search scenario for inspecting indicators in the Personalised Graph concerning
the energy and the environmental domain (compliant with user’s profile). Then,
we asked participants to fill a standard System Usability Scale (SUS) question-
naire, as an instrument to assess software usability. In this kind of questionnaire,
for each statement, respondents can indicate the degree of agreement and dis-
agreement on a five point scale. SUS scores a software in a range between 0 to
100, where 0 indicates the least usability and 100 represents a high usability,
respectively. We averaged over all participants questions and the resulting mean
score amounted to 87.5, which situates our prototype in the 90-95 percentile
range in the curve matching SUS score with the corresponding rank. We also
calculated the time participants spent to carry out their task. Using the pro-
totype, participants accomplished their task in a shorter timer compared to a
plain keyword-based interface. This relieves participants of a detailed knowledge
about indicators definition, being guided in the exploration of indicators by the
semantic relationships in the Personalised Graph.

9 Related Work

In the last decades, Semantic Web technologies have been suggested to effectively
combine data from multiple heterogeneous sources, with the aim of providing a
unified view of data resulting from integration processes. In this respect, in-
depth studies concerning the renowned OBDA (Ontology-Based Data Access)
paradigm have been applied in the field of data lakes, paving the way to the so-
called semantic data lakes [14], wherein heterogeneous data is seamlessly accessed
and queried through a proper semantic layer.

Generally speaking, the role of semantics in data lake approaches is mani-
fold and goes beyond integration issues. For instance, in [3,11] semantic enrich-
ment is exploited to link data with external knowledge bases, also envisaging
probabilistic techniques [13]. Moreover, ontologies and knowledge graphs have
been fostered in literature as a promising solution to offer a comprehensive view
over the underlying data sources, modelling their relationships and dependen-
cies [2,11]. Likewise, in [17] knowledge graphs store data fragments, represented
as different typologies of nodes inside the graph. The tool presented in [14] em-
braces Semantic Web facilities to answer on-demand queries over heterogeneous
data, ensuring high levels of scalability when treating significant data volumes.
Nonetheless, in the former approaches, there is no mention about fostering such
knowledge to achieve a personalised Data Exploration experience, and the focus
is more on assessing the performance of the systems. Furthermore, the separation
of roles and competencies of the actors involved in the aforementioned frame-
works is less evident, with respect to our multi-layer approach. Sharing some
issues with the proposal of this paper, the approach presented in [7] harnesses
thematic views upon the datasources of the data lake, but again personalisation
aspects are treated only at a high level of abstraction, without a fully-fledged
semantic support. Lastly, a semantic data platform has been presented in [15],



adopting a flexible data ingestion pipeline, but exploration aspects have been
slightly neglected.

For what concerns approaches focused on Data Exploration tasks in data
lakes, the starting point for users is almost always a GUI, where they can issue
queries to perform a keyword-based search [3, 8] or where a direct interaction
through ad-hoc visualisation tools can be achieved [9]. Other approaches, in-
stead, focus more on favouring the user in getting acquainted with the explo-
ration interface, taking into account his interaction waiting tolerance [12] or by
implementing proper caching strategies, to ensure high responsiveness levels [16].
The ultimate goal of Data Exploration is also to provide suitable instruments to
obtain actionable insights related to the observed data; in [10], for instance, cur-
rent sensor data is compared against simulated data, computed from previously
stored data, in order to predict future behaviours and trends.

In the majority of these approaches, the focus is more on the visualisation
of data, instead of proposing techniques to detect and attract user’s attention
on data suitable and compliant with user’s exploration interests, also suggesting
effective exploration directions based on user’s profile.

10 Concluding Remarks

In this paper, we described a semantics-based approach to extract Exploration
Graphs for enabling personalised data lake exploration. In particular, the ap-
proach is structured over three layers: (i) at the bottom, heterogeneous data
sources within a data lake are enriched with Semantic Models, defined by do-
main experts using domain ontologies, to provide a semantic data lake repre-
sentation; (ii) in the middle, a Multi-Dimensional Ontology is used to describe
indicators and their analysis dimensions, in terms of concepts within semantic
models and formulas to aggregate them (iii) at the top, Personalised Exploration
Graphs are generated for different categories of users, whose profiles are defined
in terms of a set of constraints that limit the indicators concepts on which the
user may rely to explore data. We presented the approach, discussing its benefits
and limitations through an application in the Smart City domain.

Future efforts will be devoted to provide a full-fledged implementation of the
approach, detailing the experimentation steps and the enabling technologies. In
this respect, scalability issues, deriving from the potential vast amount of anno-
tated data coexisting in the Smart City Semantic Data Lake, deserve a thorough
dissertation and a comparison with other similar approaches (for instance, [14])
that will be under the lens of forthcoming research studies. Likewise, the impact
of Personalised Exploration Graphs evolution (due to modifications in users’
profiles) will be further investigated, focusing on the influence it has on the
exploration tasks.
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