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Abstract

Il cosiddetto “Earth Overshoot Day” (EOD) è avvenuto in anticipo negli ultimi anni. Il
consumo eccessivo di risorse naturali contribuisce direttamente alle emissioni di gas serra
e aggrava il problema del riscaldamento globale. In questo contesto, gli esseri umani
sentono l’urgenza di limitare il cambiamento climatico. Un approccio strategico è la
transizione energetica. Le Comunità Energetiche Rinnovabili (CER) sono fondamentali
perché incorporano i principi di collaborazione, innovazione e difesa che le rendono in-
dispensabili nel panorama energetico globale. Per aiutare l’implementazione pratica delle
CER, è essenziale approfondire il quadro legislativo emanato dall’Unione Europea (UE).
Le Direttive Europee 2018/2001 (RED II) e 2019/944 (IEM) giocano un ruolo cruciale:
queste direttive mirano a creare quadri regolatori di supporto, fornire incentivi finanziari
e incoraggiare la collaborazione per accelerare la transizione.
Il framework virtuale delle CER è stato introdotto in Italia dal Decreto Legge n.162/2019.
In tale quadro, tutta l’elettricità prodotta viene venduta alla rete e quindi acquistata
quando consumata. Il coinvolgimento efficace delle parti interessate è vitale per il suc-
cesso delle CER; tuttavia, favorire una collaborazione significativa può essere difficile.
Un punto distintivo della normativa italiana riguarda il meccanismo di incentivo basato
sull’autoconsumo, che definisce l’autoconsumo come il minimo tra l’energia prodotta e
l’energia consumata in un determinato momento. All’interno del framework virtuale
delle CER, è cruciale gestire l’allocazione congiunta degli incentivi all’autoconsumo e le
decisioni di investimento, data la loro influenza reciproca.
La prima parte di questa tesi è dedicata all’ottimizzazione di tale decisione con una strut-
tura a due livelli. Il livello superiore è giocato da un “policy maker” che definisce la regola
di condivisione dell’incentivo sull’autoconsumo per massimizzare l’autoconsumo. Il liv-
ello inferiore comprende le CER costituite da membri eterogenei (produttori di biogas e
famiglie), che ottimizzano l’investimento in capacità per massimizzare i loro profitti. La
diversità degli agenti consente di studiare quanto ognuno contribuisce all’autoconsumo
e mette in evidenza le interazioni tra i membri. Inoltre, l’esistenza del livello superiore
garantisce una decisione neutrale. Per chiarire l’interazione tra i membri si sviluppano due
modelli di iterazione. La prima versione considera un singolo membro per tipo, e le inter-
azioni avvengono in una singola fase. Questi risultati sono influenzati dalle dimensioni dei
membri e dall’ordine di iterazione, quindi caratterizzano un equilibrio di Nash non puro.
Pertanto, viene sviluppato il secondo modello, dove i due membri sono aggregazioni di
individui più piccoli, le interazioni sono divise in due fasi e i risultati sono un equilibrio di
Nash puro. La ricerca nei mercati dell’energia spesso richiede un approccio che gestisca
in simultanea il rischio e varie fonti di incertezza, che non agiscono indipendentemente.
Queste dipendenze, spesso non lineari, pongono una sfida significativa nella fase di “mod-
elling”. Di conseguenza, le operazioni, le decisioni di investimento e la gestione del rischio
diventano estremamente complesse.
La seconda parte di questa tesi introduce un metodo mirato a modellare efficacemente le
dipendenze lineari, e non, tra più fonti di incertezza, basandosi sulla metodologia avanzata
da Cerqueti et al. (2017a), la quale usa Catene di Markov di ordine k per bootstrappare
e simulare processi stocastici multivariati; inoltre questo metodo è caratterizzato da una
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selezione parsimoniosa dei parametri. L’innovazione distintiva del metodo proposto in
questa tesi è la capacità di gestire diverse frequenze temporali. La qualità del metodo
proposto viene valutata attraverso test statistici.



Extended Abstract

The so-called “Earth Overshoot Day” (EOD) has occurred earlier and earlier in the last
years. This day marks the moment when humanity has exhausted all the natural resources
that Earth can regenerate in a year. For the rest of the year, humans draw down local
resource stocks. The excessive consumption of natural resources directly contributes to
emissions of greenhouse gases, such as carbon dioxide (CO2), methane (CH4), and nitrous
oxide (N2O). This human behaviour, especially burning fossil fuels for energy production,
transportation, and industrial production, exacerbates the problem of global warming,
which, ultimately, contributes to climate change. In this context, humans feel the urge
to limit climate change, because, with no action, the inauspicious consequences will be
not only irreversible but also explosive. One strategic approach adopted to address this
challenge is energy transition. It refers to the shift from conventional energy sources to
renewable energy sources (RES), thereby reducing greenhouse gas emissions and miti-
gating their impact on global warming. This transition does not consist of an abrupt
abandonment of fossil fuels; rather, it requires a gradual and managed shift across all
sectors of the economy. This journey involves technical and infrastructural challenges be-
cause, on one side, it is crucial to prevent unstable power grids, while, on the other side,
it is essential to establish a flexible grid, which guarantees the balance between demand
and supply in a scenario that is partly predictable and partly unplannable due to weather
and climate conditions. Contrary to conventional fuels, RES generate electricity without
emitting greenhouse gases and are virtually inexhaustible. While the need for an energy
transition has gained prominence in recent years, it is notable that certain green tech-
nologies have been used in the last centuries. A brief description of anaerobic digestion
and solar photovoltaic, two technologies that will be used in this thesis, follows. First,
anaerobic digestion is the oldest form of renewable energy technology, with the first plant
that dates back to 1859 in India. Also called biodigestion, it involves the breakdown of
organic matter by microorganisms in the absence of oxygen, producing biogas primarily
composed of methane and carbon dioxide. This process not only efficiently manages or-
ganic waste, but also produces biogas, a valuable source of renewable energy. However,
despite its potential, the adoption of anaerobic digestion greatly varies among countries
due to differing policies and incentives. Germany has embraced it as a key component
of its renewable energy strategy, promoting widespread adoption and investment, while
other countries lag behind, hindered by regulatory barriers and lack of financial support.
Second, solar photovoltaic is more recent: until the end of the 20th century, it played
a marginal role. However, thanks to technological innovations that have made it eco-
nomically competitive concerning fossil fuels, solar photovoltaic is experiencing rocketing
growth.
Renewable Energy Communities (RECs) are fundamental to energy transition for a mul-
titude of reasons. First, they decentralize energy production, allowing communities to
generate their own renewable energy locally, which in turn enhances energy security and
resilience, particularly in times of disruptions or natural disasters. Second, RECs play a
pivotal role in promoting the adoption of clean energy technologies, such as solar, wind,
and hydro-power, thus significantly contributing to the reduction of greenhouse gas emis-
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sions and fighting climate change. Third, beyond environmental benefits, RECs empower
local communities by granting them a stake in their energy production and consumption.
This empowerment leads to economic advantages through job creation, revenue genera-
tion, and local investment opportunities. Fourth, collaborative efforts within RECs foster
social cohesion and community engagement as individuals come together to make decisions
about energy practices, instilling a sense of ownership and responsibility towards sustain-
able actions. Fifth, RECs offer flexibility and adaptability to changing energy needs
and technological advancements, allowing communities to tailor their renewable energy
projects accordingly. Sixth, RECs can advocate for supportive policies at various levels
of governance to facilitate energy transition, influencing decision-makers to implement
measures that promote clean energy adoption and support community-led initiatives. In
essence, RECs embody the principles of empowerment, collaboration, innovation, and
advocacy that make them indispensable agents of change in the global energy landscape.
To help the practical implementation of RECs, it is essential to delve into the legislative
framework enacted by the European Union (EU) to facilitate the energy transition of its
Member States. The European Directives 2018/2001 (RED II) and 2019/944 (IEM) play
a crucial role in shaping the scope of RECs. Directive RED II focuses on promoting re-
newable energy and empowering consumers, facilitating community-owned renewable en-
ergy projects and ensuring fair access to the grid. Meanwhile, Directive IEM emphasizes
the importance of energy self-sufficiency and community engagement in decision-making
processes. Together, these directives aim to create supportive regulatory frameworks,
provide financial incentives, and encourage collaboration among stakeholders to acceler-
ate the transition towards a sustainable and decentralized energy system in Europe.
Italy has implemented European laws. Among the others, Law Decree No.162/2019 intro-
duced the virtual framework of RECs. In such a framework, all the electricity produced by
RECs’ plants is sold to the grid and then purchased back when consumed. The framework
confronts various challenges. Navigating through the complex regulatory environment,
shaped by a multitude of laws and regulations at both national and regional levels, of-
ten leads to bureaucratic hurdles and delays for community initiatives. Furthermore, the
integration of virtual energy sharing within existing energy markets presents challenges re-
garding pricing mechanisms, market rules, and regulatory oversight, necessitating careful
coordination to ensure fair compensation for energy transactions while maintaining mar-
ket stability. Moreover, ensuring data privacy, protection, and cybersecurity is crucial to
fostering trust among participants and safeguarding against potential breaches or misuse
of data. Effective stakeholder engagement, as mandated by Law Decree No. 162/2019,
is vital for RECs success; however, fostering meaningful participation and collaboration
among diverse stakeholders may be challenging within virtual frameworks. A distinctive
point of the Italian regulation is concerned with the incentive mechanism based on self-
consumption, as outlined in Law Decree No. 162/2019, which defines self-consumption
as the minimum between the energy produced and the energy consumed at a given time.
Within the virtual framework of RECs, it is crucial to manage the joint allocation of
self-consumption incentives and investment decisions, due to their mutual influence. The
quantities produced are influenced by the installed capacities. However, these capacities
are installed based on the offered incentive, which affects investment profitability. There-
fore, this interplay must be jointly managed.
The first part of this thesis is devoted to optimizing such a decision. In particular, an opti-
mization problem in a bi-level structure is advanced. The upper level is played by an agent
who mixes the roles of a REC administrator and a policy maker. The agent defines the
self-consumption incentive-sharing rule to maximize energy self-consumption. The lower
level comprises a REC consisting of two types of members, namely biogas producers and
households, that optimally size their investments in capacity plants to maximize their
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profits. This kind of REC characterizes both urban and agricultural contexts because
photovoltaic plants will be the most common technology for urban households, and biodi-
gestors will be a widespread technology in agricultural scenarios. Moreover, the agent
diversity allows for the examination of each member’s contribution to self-consumption
and highlights the interactions among the members. The legislative framework does not
prevent the REC from defining the sharing rule internally. However, the presence of an
upper-level agent, responsible for allocating the incentive, ensures a neutral decision. To
elucidate the interaction among RECs’ members, which is a key aspect of this study, two
iteration models are developed. The first version considers a single member per type,
and interactions occur in a single round. While the results of this model characterize a
Nash equilibrium, they are influenced by the iteration order and the size of the members,
precluding the attainment of a pure Nash equilibrium. Therefore, the definition of the
second model becomes necessary. In this second version, the two members (biogas pro-
ducer and household) are understood as aggregations of smaller individuals. Additionally,
the interactions are divided into two rounds: in the first round, intentions to install are
collected, but actual installations do not occur until confirmed in the subsequent round.
The previous interaction is iterated until an individual confirms the decision made in the
previous round. The results of this second model characterize a pure Nash equilibrium
because they are not influenced by the iteration order.
In the realm of RES technologies, such as photovoltaic systems, understanding the rele-
vance of uncertainty sources - like sales prices, solar radiation, demand levels, and supply
costs - is paramount in operations and investment decisions. Indeed, it is crucial to recog-
nize the interdependence among these stochastic factors: supply costs, weather conditions,
sale prices, and demand levels do not act independently; rather, they are intricately con-
nected. These dependencies, often non-linear, require an approach to manage risk that
simultaneously considers these various sources of uncertainty, posing a significant chal-
lenge in modelling. Consequently, operations, investment decisions, and risk management
become exceedingly complex. Given the interdependencies and complexity of the stochas-
tic processes that are considered in this thesis, the chosen analytical instrument is Markov
chains. Markov chains manage the interdependence of stochastic processes by modelling
systems where future states depend only on the present state and not on the sequence
of events that preceded it (this is the Markov property, which simplifies the analysis and
prediction of complex, non-independent sequences). Furthermore, transition probabilities
between states are implemented to facilitate the understanding of long-term behaviour
and steady-state distributions. Moreover, Markov chains provide a structured approach to
simulate and optimize systems influenced by randomness, enhancing decision-making and
strategic planning in uncertain environments. The simplicity and versatility of Markov
chains make them invaluable tools for capturing and analyzing the dynamics of interde-
pendent stochastic processes.
The second part of this thesis introduces a method aimed at effectively modelling lin-
ear and non-linear dependencies among multiple sources of uncertainty, building upon
the methodology advanced by Cerqueti et al. (2017a). This method revolves around
bootstrapping and simulating multivariate stochastic processes using Markov Chains of
order k. The focus lies in modelling the quadrivariate stochastic process encompassing
natural gas prices, electricity demand (load), electricity prices, and solar radiation. A
distinguishing feature of this method, compared to previous applications, is its ability
to accommodate the varying temporal frequencies of the four components - natural gas
prices exhibit a daily frequency, while the others possess an hourly frequency. This ap-
proach enables the bootstrapping and simulation of the quadrivariate stochastic process
leveraging a parsimonious selection of parameters relative to alternative methods. The
applied method is now briefly described: first, each stochastic process follows an align-
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ment of the historical data downloaded using the “forward filling method” (i.e. missing
dates, such as weekends and holidays, are filled with the last previous available element).
To simplify the simulation steps that follow, non-recurrent dates (such as February 29th
in the leap years) have been excluded from the historical dataset and from the simulation
step. Furthermore, series with an hourly frequency required an additional step to align
every day to 24 hours. This is required because on days of time switches from daylight
saving time to standard time, 25 values are encountered (therefore, the 2 : 00 am price is
cut), while only 23 are met with the switch in the opposite sense (therefore, 2 : 00 am price
is duplicated). Second, detrendization and deseasonalization are applied to the adjusted
series to remove the trend and daily, weekly, and yearly seasonalities. Detrendization is
applied to the logarithms of the adjusted series to avoid negative values in the simulation
step. Solar radiation does not face detrendization because it is considered stationary in
the analyzed period; the adjusted series is transformed into daily logarithms before the
deseasonalization and given its deterministic cycle, its deseasonalization process removes
only the yearly seasonality. After these procedures, load and electricity prices are trans-
formed from hourly to daily to be aligned with the gas prices and the solar radiation.
Third, the series of quadruplets of daily residuals face the cluster analysis using “Ward
clustering” to obtain the pairing series of states. Fourth, based on the series of states, the
transition probability matrix is estimated to fit a Markov Chain of order 2. Fifth, once the
residuals are bootstrapped, trend and seasonalities are added back, the exponentiation
removes the logarithm and the simulated series of gas prices, load, electricity prices, and
radiation are obtained. The quality of the method is assessed through statistical tests
that evaluate the similarity between the distributions of statistics calculated on scenarios
and historical data.



Chapter 1

Literature Review

This chapter offers a comprehensive literature review and meticulous examination of
research studies and practical applications of RECs and Markov Chain Bootstrapping
(MCB).

1.1 Renewable Energy Communities

RECs are a novelty over the last few years. “RECs are a legal entity: which, in accor-
dance with the applicable national law, is based on open and voluntary participation, is
autonomous, and is effectively controlled by shareholders or members that are located
in the proximity of the renewable energy projects that are owned and developed by that
legal entity; the shareholders or members of which are natural persons, SMEs or local
authorities, including municipalities; the primary purpose of which is to provide envi-
ronmental, economic or social community benefits for its shareholders or members or for
the local areas where it operates, rather than financial profits”1. The literature is still
scattered.
Some authors have studied governance models of RECs. Lowitzsch et al. (2020) tests
67 best-practice cases of consumer co-ownership from 18 countries: the authors define
renewable energy clusters to take into consideration the complementarity of different en-
ergy sources, flexibility, inter-connectivity of actors, and bi-directionality of energy flows.
They also discuss the regulatory frameworks, explore the policy implications under the
European Clean Energy Package, and argue that renewable energy clusters and RECs
are socio-technical mirrors of the same concept; thus, both are necessary for the energy
transition. However, they lack empirical data and case studies that illustrate the practical
implementation of consumer co-ownership discussed. Inês F.G. Reis et al. (2021) provides
a comprehensive view of the emergent and prevailing business models applied to RECs
across Europe. It offers valuable insights about key issues and emerging trends in the
field but does not deeply investigate each business model’s specifics.
Other authors have focused their attention on the role and relevance of consumers.
Gjorgievski et al. (2021) enhances how social arrangements and technical designs im-
pact RECs providing a holistic perspective on RECs’ multifaceted nature. However, the
authors limit their work to a theoretical discussion and avoid empirical analysis that
would substantiate their discussion. Pons-Seres de Brauwer and Cohen (2020) quantifies
citizens’ potential in financing and participating in RECs across Europe and provides a
contribution to decentralized energy systems discussions but, it does not analyze finan-
cial mechanisms or investment frameworks related to citizen-financed renewable energy
projects. Li et al. (2022) analyzes the current heating price models, which do not sup-

1DIRECTIVE (EU) 2018/2001 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of
11 December 2018 on the promotion of the use of energy from renewable sources
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port the reverse heat supply from prosumers2 to the central district heating system. The
authors optimize heat prosumers’ economic performance offering practical solutions to
enhance the efficiency of water tank thermal energy storage but, they focus only on heat
prosumers, lacking a broader view that integrates different technologies.
Other contributions have focused on how current distribution network pricing can be
changed to enable the transition to a smart grid in a low-carbon economy (Faerber et al.,
2018), on electricity flows and the related costs (Fina et al., 2022), and on photovoltaic
cells material properties (Zhang et al., 2022). These works provide valuable contributions
but lack discussions on implications beyond their focus, leaving space for further com-
parative analysis. Sousa et al. (2023) proposes an optimization model to support REC
investment decisions in RES plants and operational electricity sharing management. In
particular, it discusses that incremental investments in RES plants are justified if the
marginal realized price exceeds the levelized cost of electricity. Additionally, the results
demonstrate that within a REC the optimal investment is higher than in individual self-
consumption configurations. However, the authors do not consider policies, which are
crucial for RECs’ implementation.
Furthermore, Pera et al. (2022) describes the circular bioeconomy model of a plant cur-
rently working in South Italy. This plant applies the dry anaerobic digestion and the
subsequent digestate composting process to the organic fraction of municipal solid waste.
The system is powered by photovoltaic energy generated by the photovoltaic plant on the
roof. Although this approach offers valuable insights into circular bioeconomy strategies,
its focus on the plant currently working in South Italy limits the generalization to other
contexts. Also Zhang et al. (2021) includes biogas: the authors propose to use biogas
digesting thermodynamics to compensate for the fluctuating outputs of other RES like
hydro, wind or solar. Authors apply multi-energy management strategies, and offer holis-
tic solutions, to integrate energy systems in sustainable biogas-dominated hubs but, the
technology focus on biogas-related plants is very specific and does not comprehend other
RES.
The interactions and strategic decisions within RECs can be studied with the game theory,
which helps to understand the incentives and behaviours of REC members and contributes
to more resilient energy systems. Lilliu et al. (2023) proposes a market design to discour-
age energy production curtailment, minimize congestion, promote self-consumption, and
ensure a common strategy among selfish prosumers while considering the formation of
coalitions. Then, Lilliu and Reforgiato Recupero (2024) proposes a cooperative game
theory approach for incentive systems in arbitrary-size coalitions, analyzes the proposed
mechanism for large coalitions and creates a new incentive mechanism with new selling
functions that optimize peak shaving. Similarly, Gomes and Vale (2024) develops a cost-
less renewable energy distribution model of electricity among members’ buildings, based
on cooperative game theory. This model implements the Shapley value to distribute elec-
tricity according to each member’s contribution, which receives the energy without costs.
Moreover, Maldet et al. (2022) discusses the evolving trends in local electricity market
design, emphasizing the regulatory barriers and the role of grid tariffs, which are crucial
considerations in implementing game-theoretic solutions for renewable energy integration
at the community level.
Finally, Gallego-Castillo et al. (2021) provides a regional analysis of optimal self-consumption
under the Spanish new legal framework, while Di Silvestre et al. (2021) reviews existing le-
gal frameworks and discusses the regulation about self-consumption but limits its analysis

2EU legislation does not have a definition of “prosumers” but rather uses the term “self-consumption
(-generators)”: Article 2 of Directive 2018/2001 defines a “renewables self-consumer” as a “final customer
who generates renewable electricity for its consumption, and who may store or sell self-generated re-
newable electricity, provided that, for a non-household renewables self-consumer, those activities do not
constitute its primary commercial or professional activity”.
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to the interaction between the REC and the grid. Both these papers limit their analysis
to a single context (Spain or Italy legislative frameworks) and consequently hinder the
relevance of the analysis to broader international discussions on RECs.

1.2 Markov chain bootstrapping

An important extension of the RECs model, presented in the first part of the thesis, will
regard its development in a stochastic context. To develop such a model, the treatment
of the stochasticity of variables and their interdependencies is crucial. Indeed, the gen-
eration of multivariate scenarios is pivotal to extend the work of this thesis. The chosen
methodology to generate multivariate scenarios is based on resampling techniques that
apply Markov Chain Theory. Therefore, a comprehensive literature review on MCB fol-
lows.
There are various strands of literature on resampling procedures based on Markov Chain
theory. In general, contributions can be distinguished between those concerned with
Markov processes that are not necessarily Markov Chains and those related to Markov
Chains (discrete-time Markov processes with finite states).
The first strand of literature includes the so-called “block bootstrap method”, where con-
secutive observations of a set of stationary data are divided into blocks of equal length;
some blocks are then joined to generate bootstrap samples. This method first appeared
in Hall (1985) and was born to solve the problem of dependence disruption. Hall (1985)
is trailblazing in the field of resampling methods, providing foundational insight into the
theory and the application of resampling techniques. However, being the first one he does
not address certain complexities. Indeed, it has been developed in many variants: the
non-overlapping block bootstrap (Carlstein, 1986), the blocks-of-blocks bootstrap (Politis
and Romano, 1992), the stationary bootstrap (Politis and Romano, 1994), and the ta-
pered block bootstrap (Paparoditis and Politis, 2001a, 2002b). These methods reach the
goal of avoiding dependence disruption only partially since they still face the loss of de-
pendency among blocks. An interesting extension of this literature includes the approach
of Hounyo et al. (2017), where the blocks-of-blocks bootstrap (Politis and Romano, 1992)
is linked with the wild bootstrap in a new method, called “wild block-of-blocks bootstrap”,
advanced to successfully handle both the dependence and heterogeneity of the squared
pre-averaged returns. Furthermore, Hounyo et al. (2017) offers a comprehensive method-
ological framework to deal with the market micro-structure noise, which is a significant
issue in financial econometrics. However, the complexity of the proposed method limits
its applicability to specialized agents in the field.
The second strand of literature includes contributions related to Markov Chains. The pa-
pers face the problem of maintaining the original data dependency. The “sieve (Markov)
bootstrap method” was first advanced by Bühlmann (1997): it fits Markovian models to
data series and resamples randomly from the residuals. The author further developed
this method and proposed a novel approach: the “variable length Markov Chain sieve
bootstrap method” (Bühlmann, 2002). The authors deal with categorical times series
that have changing dependencies but, the practical implementation, without appropriate
software tools, is challenging. Rajarshi (1990) and Horowitz (2003) estimate a Markov
process transition density function through kernel probability estimates. The idea of
kernels has been further developed by Paparoditis and Politis (2001b) and Paparoditis
and Politis (2002a) with the so-called “local bootstrap method”: they assume that sim-
ilar trajectories will tend to show similar transition probabilities, even though common
empirical observations contradict this hypothesis (the existence of structural breaks in
the historical series is sufficient to demonstrate the underlying inconsistency of this hy-
pothesis, Bauwens et al. (2015)). Furthermore, Anatolyev and Vasnev (2002) proposes
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the “Markov Chain bootstrap method”, which is based on a finite state discrete Markov
Chain: states are formed by uniformly distributing the values in some percentiles, with-
out being further grouped, and an arbitrary number of time lags bound the relevant path
length. This method deals with auto-regressive processes within the bootstrap frame-
work and addresses a common problem in time series analysis. Another approach called
“regenerative (Markov Chain) block bootstrap” was first developed by Athreya and Fuh
(1992) and Datta and McCormick (1993), and further extended by Bertail and Clémençon
(2006) and Bertail and Clémençon (2007). This method uses an atom (a chosen recur-
ring state) and observed cycles, or blocks (consecutive observations between departure
from and return to the atom), and the bootstrap proceeds by sampling at random from
the observed cycles. The method closes the gap between Markov Chain bootstrapping
procedures and block bootstrapping because the cutting points are data-driven and not
randomly chosen anymore. Unfortunately, the regenerative block bootstrap is heavily
dependent on the identification of the atom, which is unknown. In the same strand of
literature, it is worth mentioning Cerqueti et al. (2017b), where the authors apply Markov
Chain theory to bootstrap continuous processes. The authors discretize the support of
the process and suggest Markov Chains of order k to model the evolution of the time
series. This approach results in a too-big transition probability matrix, even for small
k. Therefore, they propose a methodology to reduce the number of rows by clustering
similar ones using Mixed Integer Linear Programming. They partition the state space of
a continuous-valued process into a finite number of intervals and use the contiguity con-
straint developed in Cerqueti et al. (2015). The explosion of the number of alternative
partitions is addressed with a Tabu Search algorithm. Their result is an aggregated tran-
sition probability matrix that does not affect the bootstrapping procedure because the
typical features of the original series are maintained in the resampled ones, thus confirm-
ing the good consistency properties of their method. Despite offering a practical approach
to reduce the computational complexity of MCB, the methodology is computationally in-
tensive and the adaptation to different datasets and scenarios raises practical challenges.
A third strand of literature collects the contributions on the estimation of the Markov
Chain order, or memory. A certain number of papers (Merhav et al., 1989; Finesso, 1992;
Kieffer, 1993; Liu and Narayan, 1994; Csiszár and Shields, 2000; Csiszár, 2002; Peres and
Shields, 2005; Chambaz et al., 2009) face the order estimation problem by assuming that
all states at all time lags, up to the estimated order, are relevant. The work Cerqueti et al.
(2017a) advances a method to estimate the order of a Markov Chain and to identify its
relevant states. The resampled series obtained by applying this method share the struc-
tural features of the original series and show a controlled diversification. In the context of
categorical series representing paths in a network, Petrović and Scholtes (2022) advances
a multi-order modelling framework based on a Bayesian learning technique. The method
is robust to partial knowledge of the underlying constraints; moreover, it is more correct
in estimating the Markov order of paths and less prone to overfitting it than a competing
method based on the likelihood ratio test. However, the method is specific to path-based
graph analysis and does not have direct applicability to other types of data.
The fourth strand of literature includes works related to information theory and data
compression that focus on both the relevant states and the order of a Markov Chain.
Among these works, an important method advanced in Bühlmann and Wyner (1999) is
the “Variable Length Markov Chain”. It is characterized by a variable order that depends
on the state that occurred at past time lags. In particular, starting from time lag 1, states
are distinguished if they contribute to differentiate future evolution, otherwise, they are
grouped. This method identifies a Markov model whose memory changes according to the
trajectory followed by the process. Cerqueti et al. (2017a) is strongly related to Bühlmann
and Wyner (1999), given that both works aim at reducing the state space of a Markov
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Chain as much as possible. However, Cerqueti et al. (2017a) allows for a non-hierarchical
selection of the relevant time lags, that is, the relevance of farther time lags is not condi-
tioned to depend on that of the closer ones.

This thesis contributes to the existing literature in two ways. First, given the absence
of technical and economic analysis related to interaction dynamics among REC mem-
bers, incentive distribution mechanisms and integration of legislative frameworks, this
work provides a new perspective on RECs by analyzing the interaction among heteroge-
neous REC members through competitive games, by finding the optimal sharing rule of
the incentive that maximizes self-consumption, and by integrating the Italian legislative
framework in the mathematical model. Second, the literature does not consider the differ-
ent time frequencies and interdependencies of stochastic processes in energy markets and
focuses mainly on homogeneous time-scale stochastic processes and linear dependencies.
Therefore, the model proposed in Chapter 3 builds a transition probability matrix and fits
a Markov chain starting by four stochastic processes with heterogeneous time frequencies
and with strong interdependencies among them.
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Chapter 2

Efficient Incentive Policies of

Renewable Energy Communities

2.1 Introduction

Climate change poses significant global risks that, without a decrease in greenhouse gas
emissions, will have impacts, not only irreversible but with further escalation. To fight
it, energy transition is necessary and decarbonization is the key driver. In this context,
a virtuous example of how people can actively contribute to the energy transition and
combat climate change is represented by Renewable Energy Communities (RECs). A
REC is a legal entity which is based on the open and voluntary participation of members
that are in the proximity of renewable energy projects; members have full control of the
legal entity and their purpose is to promote self-production and self-consumption of elec-
tricity1. Thus, through RECs, it is possible to reduce CO2 emissions, energy waste, and
costs related to energy consumption.
Concerning the European legislative framework for RECs, the EU has issued the “Clean
energy for all Europeans package”. It is a set of directives that aims at reaching car-
bon neutrality (net-zero emissions) by 2050. Among the other directives, EU Directive
2018/2001 (RED II), and EU Directive 2019/944 are worth mentioning. The former
sets binding renewable energy targets for 2030 and lays down financial support rules on
self-consumption and RES-based electricity production. The latter sets new rules for the
active participation of consumers and sets common guidelines for the internal market of
electricity.
Italy has integrated the European Directives with Law Decree 162/2019 (enacted into
Law 08/2020), which authorized the creation of RECs and collective self-consumption
schemes. The most relevant issue related to Italian regulation on RECs is the choice
between adopting a virtual or physical framework. As shown in Figure 2.1, in the virtual
framework, all the electricity produced by REC plants is sold to the grid and then pur-
chased back when consumed. In the physical framework, the REC members consume the
electricity produced and sell to the grid only the residual electricity. In Italy, the virtual
framework is applied.
The Ministry of the Environment and Energy Security, with Decree 162/20192 (updated
with Decree 414/2023), introduced the definition of self-consumption and the incentive

1DIRECTIVE (EU) 2018/2001 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of
11 December 2018 on the promotion of the use of energy from renewable sources

2Law Decree 30 December 2019, n. 162 “Disposizioni urgenti in materia di proroga di termini legisla-
tive, di organizzazione delle pubbliche amministrazioni, nonchè di innovazione technological”, art 42-bis
introduces also two major constraints to enter a REC: first plants must be powered by renewable sources
with a total power not exceeding 200 KW; second, the withdrawal points and the injection points must be
located on low voltage electric networks at the same medium voltage/low voltage transformer substation.
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Figure 2.1: Difference between physical (a) and virtual (b) REC frameworks.

on self-consumption (from now on referred to as “incentive”). Self-consumption is de-
fined as the minimum between the consumption and production of electricity by the REC
members, for every hour t3. Mathematically speaking it can be written as:

self-consumptiont = min(total loadt, total productiont).

Self-consumption is multiplied for the incentive4 and generates revenues that effectively
decrease the bills of REC members. Before proceeding with the discussion, the follow-
ing mechanism must be specified: typically, individuals consume energy by purchasing
it from the market paying the price set by their supplier. If they install a RES-based
plant, the energy produced is sold on the market at a price that is usually lower than the
purchase cost. However, this situation can be improved if one is a REC member, as an
additional source of revenue is obtained through the incentive. In addition, given that
among members there can be consumers (i.e. individuals who do not have a plant, do
not produce electricity but only consume it) RECs answer to the demand for solutions
for “energy poverty” because consumers will enjoy the incentive by being REC members.
While there is a regulatory framework in place and recognized benefits associated with
RECs, the practical implementation of these measures presents hurdles, such as the op-
timal sizing of plant capacities and how RECs members can share the incentive. First,
the optimal sizing of capacities to install is an issue that must be addressed to avoid
over-investments. Second, the incentive brings forward the issue of how REC members
will interact and allocate it among themselves. The solutions proposed in this thesis aim
to find the optimal size of capacity installations and the optimal sharing rule of the in-
centive that maximizes self-consumption to have a stable and well-managed REC. Due
to their mutual influence, the incentive allocation and the investment decisions require
joint management. Therefore, the model is structured as a bi-level problem, where, at the
upper level, there is a policy maker (or an administrator), while, at the lower level, there
are RECs characterized by heterogeneous agents (households and biogas producers). The
upper level defines the sharing rule of the incentive that maximizes the self-consumption
of RECs at the lower level. At the lower level, RECs size their investment in RES plants to

3Law Decree 30 December 2019, n. 162 “Disposizioni urgenti in materia di proroga di termini legislativi,
di organizzazione delle pubbliche amministrazioni, nonchè di innovazione technological”, art 42-bis.

4Established in 100 e/MWh for collective self-consumption schemes and in 110 e/MWh for RECs by
Ministry of the Environment and Energy Security Decree of 16 September 2020, “Individuazione della
tariffa incentivante per la remunerazione degli impianti a fonti rinnovabili inseriti nelle configurazioni
sperimentali di autoconsumo collettivo e comunità energetiche rinnovabili, in attuazione dell’articolo
42-bis, comma 9, del decreto-legge n. 162/2019, convertito dalla legge n. 8/2020.”
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maximize their profits, taking into consideration the sharing rule and the self-consumption
generated. The legislative framework does not prevent the REC from defining the sharing
rule internally. However, the introduction of the upper level as the external entity that
sets the sharing rule is necessary to avoid conflicts among REC members and to ensure
an effective REC life.
Most of the literature discussed in Chapter 1 is theoretical, focuses on photovoltaic plants
only, implements one-level problems, and limits the analyses to RECs’ external influences.
Through the research efforts of this thesis, the objective is to address existing gaps in the
literature and contribute to its advancement. First, following current knowledge, there ex-
ists a gap in technical and economic analyses regarding interaction dynamics among REC
members and incentive distribution mechanisms. The management of this interaction is
crucial to allow a correct and effective REC life. Consequently, a bi-level problem is set,
where, the entity at the upper level (it can be a central authority, a policy-maker, or an
administrator) defines the sharing rule of the incentive that maximizes self-consumption
of the REC at the lower level. The introduction of the upper level as the external individ-
ual who defines the sharing rule is necessary to avoid conflicts among REC members and
to ensure an effective REC life. Second, according to the literature studied in Chapter 1,
except for Gallego-Castillo et al. (2021) and Di Silvestre et al. (2021), many models are
abstracted from legal constraints, incentive policies, and current regulatory frameworks.
Therefore, the present thesis proposes a model which includes the relevant features of
the virtual framework for RECs (referring to the Italian regulatory framework). Third,
despite the capillary presence of farms and agriculture-related activities, literature related
to biogas and biodigestor dynamics is still scattered. Thus, the present work focuses on
RECs with heterogeneous members to integrate the urban context (photovoltaic house-
holds) with the agricultural one (farms with biogas digestors). This work wants to collect
the opportunity of joining in the same REC two different technologies, the photovoltaic
plant and the biodigestors. The ownership of photovoltaic plants, whether households,
enterprises or farmers, is irrelevant for the purposes of this work. However, from an em-
pirical point of view, the household sector relevance is substantial: in Italy it has grown
from 756, 799 plants in 2020 to 1, 355, 687 plants in 2023 (capacity has more than dou-
bled, from 3, 458 MW in 2020 to 7, 032 MW in 2023) while the photovoltaic from the
agricultural sector has increased from 38, 115 plants (2, 497 MW installed) in 2020 to
45, 560 plants (2, 877 MW installed) in 20235. Fourth, to avoid over-investments, sizing
capacities problem is taken into consideration.
The outline of this chapter is as follows: in Section 2.2 the problem and the bi-level model
structure are described, in Section 2.3 the sensitivity analysis and results discussions are
presented. Finally, Section 2.4 illustrates the conclusions.

2.2 Model

The model is concerned with a bi-level optimization problem. The upper level (which can
be a central authority, a policy maker, or an administrator) decides the sharing rule of
the incentive that maximizes the self-consumption of the REC at the lower level. At the
lower level, there is a REC with heterogeneous members. REC members maximize their
profit function by optimally sizing the installation of RES plant capacities.
Let us proceed to introduce some notation. First, the 24-hour of a day are indexed by
t ∈ T , with t = {1, . . . , T̄}. At the lower level, heterogeneous agents characterize each
REC, so different letters to identify them are introduced: agents are biogas producers,
who are labelled with the letter b, and households, who are labelled with the letter h.

5Data are available at GSE in “Photovoltaic - Statistical Report 2020” and “Photovoltaic - Statistical
Report 2023”.
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A different number of agents can form the REC, therefore, it is necessary to introduce
the index i ∈ I, with i = {1, . . . , Ī}, to identify the different biogas producers, and index
j ∈ J ,with j = {1, . . . , J̄}, to identify the different households.
Each agent maximizes his profit, which is labelled with Ã. Consequently, Ãbi is the profit
of the i-th biogas producer, and Ãhj is the profit function of the j-th household. Profits
are influenced by many factors, among them the installed capacities and the consequent
produced quantities are worth mentioning. Given that agents can install different types of
RES plants, it is necessary to introduce labels for each kind of technology: in this problem,
biogas producers install a biodigestor, labelled with the letter g, and a gas-to-electricity
turbine, labelled with the letter e, while households install a photovoltaic plant, labelled
with the initials pv.
Furthermore, capacities to install are labelled with capital Q, while production quanti-
ties are labelled with small q. Therefore, installed capacities of the i-th biogas producer
are defined as Qg

i and Qe
i , for the biodigestor and gas-to-electricity turbine, respectively.

Qpv
j identifies the photovoltaic plant of the j-th household. Consequently, the quantities

produced by each plant are qgt,i, q
e
t,i, and qpvt,j for the biodigestor, the turbine, and the pho-

tovoltaic plant, respectively, at each hour t ∈ T . Finally, load is labelled with the letter
d: dbt,i and dht,j are the load of the i-th biogas producer and the j-th household, with t ∈ T .
In this section is extremely important to introduce three key concepts: the self-consumption
that the upper level aims to maximize, the sharing rule that the upper level defines to
share the incentive among REC members, and the two model versions at the lower level.

First, self-consumption is defined as the minimum between the electricity produced
and consumed by REC members. Self-consumption is denoted as qREC

t because it is
computed for every hour t, with t ∈ T . Mathematically speaking, self-consumption
depends on the quantity of electricity produced, which, itself depends on the capacities
installed by REC members. Therefore, its mathematical definition is the following:

qREC
t (qet,i, q

pv
t,j) = min

{

∑

i∈I

dbt,i +
∑

j∈J

dht,j ,
∑

i∈I

qet,i +
∑

j∈J

qpvt,j

}

, t ∈ T , (2.1)

with
qet,i ≤ Qe

i ,

qpvt,j ≤ Qpv
j µ

pv
t ,

where the first term sums the electricity loads of all biogas producers and households,
while the second term sums the electricity productions of all biogas producers and house-
holds participating in the REC, and productions are constrained by the installed capaci-
ties.6 In this equation the quantity of biogas qgt,i does not appear because self-consumption
considers the production, and demand, of electricity. The production of electricity qet,i
influences the production of biogas, as is shown later. According to national regulation,
each REC benefits from an incentive prizing self-consumption within the community. In
particular, in Italy, the "virtual" framework is applied (as anticipated in Figure 2.1): each
member sells all the energy self-generated to the market and purchases, from the grid,

6This is a nonlinear condition but it can be linearized. In particular, x = min{a, b} can be rewritten
as:

a−M(1− u) ≤ x ≤ a

b−Mu ≤ x ≤ b

uM > b− a

(1− u)M > a− b

u ∈ {0, 1}

where M is a sufficiently large constant.
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the electricity to satisfy his load. Consequently, self-consumption occurs only virtually,
it is recorded through smart meters punctually distributed on the grid, accounted for by
the central authority and finally compensated through the incentive. This incentive must
be distributed among the members and here comes into play the sharing rule.

Second, as a consequence of the virtual framework, the administrator (upper level)
defines a sharing rule to distribute the incentive among REC members and to maximize
self-consumption qREC

t . The sharing rule is labelled with ¶ and is defined by the upper
level to avoid conflicts among RECs members and ensure an effective REC life.

Third, at the lower level, in each REC, self-consumption allows to highlight the inter-
action among REC members because it considers the produced quantities and the loads of
all agents. However, this interaction presents challenges that lead to the development of
two versions. In the first version, agents are sufficiently large, they have great negotiation
power and consequently, depending on who acts first, the final outcomes change in terms
of optimized profits, installed capacities and generated self-consumption. This version
is explained in Section 2.2.2 “Incremental commitment hypothesis”. In particular, the
results of this version are influenced by the iteration order. Therefore, a second version
of the model characterizing the lower level has become necessary. In this second version,
there are still two types of players but they are not aggregated in two large entities, i.e.
each agent is considered as numerous individual entities. Let us provide an example. Sup-
pose that in the first version there is 1 biogas producer whose load is equal to x MWh,
while in the second version, there are n biogas producers whose individual load is y MWh,
with x > y. Consequently, in the second version, n = x

y
biogas producers are needed to

reach the load level of the single biogas producer in the first version.
Furthermore, the two models differ because in the first version, each agent can either
confirm or increase his previously stated capacity, he can not withdraw from it and the
interaction is depicted in one round. In the second version, more rounds are introduced:
the interaction in the first round works as in the previous version, while, in the second
round, negative capacities are allowed to represent the possibility of rethinking the pre-
vious choice. Further details on these interactions are provided in Section 2.2.2 Rethink
hypothesis (pure Nash equilibrium).
Figures 2.2 and 2.3 represent the structure of the two models implemented: the first
model, characterized by only one agent per member (i.e. one biogas producer and one
household) is shown in Figure 2.2, while the second model characterized by multiple
agents per each type of member is shown in Figure 2.3.

2.2.1 Upper level - Policy maker

The main objective of the policymaker is to maximize the self-consumption of RECs,
qREC
t , with t ∈ T , acting on the sharing rule ¶ of incentive z.

To maximize self-consumption, the policymaker promotes the installation of renewable re-
sources plants and the participation of neighbourhoods to RECs by prizing self-consumption
with an incentive z. This incentive is then allocated to each REC member through the
sharing rule ¶. The policymaker will choose the ¶ that maximizes self-consumption. The
role of the policymaker is essential for the efficient functioning of RECs since his neu-
trality towards the involved parties makes him impartial, enabling him to make decisions
objectively. The optimization is defined as in the following:

max
¶

T
∑

t=1

qREC
t (qet,i, q

pv
t,j) (2.2a)

s.t.

0 ≤ ¶ ≤ 1 (2.2b)
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Figure 2.2: Structure of the bilevel problem in the Incremental commitment hypothesis
model.

Figure 2.3: Structure of the bilevel problem in the Rethink hypothesis (pure Nash
equilibrium) model.

where Constraint (2.2b) fixes the sharing rule ¶ between 0 and 1 (i.e. how much incentive
is given to each member).

2.2.2 Lower level - Renewable Energy Community

At time zero and within the same REC, biogas and household must size their power
generation plants to maximize their profits, which are influenced by the energy community
regulation and by the sharing rule ¶ on incentive.
In particular, in a given REC the i-th biogas producer must decide the capacity of a
gas-to-power turbine, Qe

i (in MW), and the j-th household must size the capacity of a
photovoltaic plant, Qpv

j (also in MW). Figure 2.4 shows how the sharing rule interacts
with the capacity decision of both members, in a simplified framework where profit is
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linear with respect to the installed capacities. For ease of notation, the indexes i and j
related to agents are momentarily dropped, and the capacities are identified as Qe and
Qpv. For clarity, in this example, the generation is assumed equal to the corresponding
capacity installed, therefore qpvt = Qpv and qet = Qe.
Letting d the energy load of the community, the possible values of capacity installed (Qpv

and Qe) are distinguished in two intervals, a and b.
In each panel of Figure 2.4 (left for the household, right for the biogas producer), it is
supposed that only the corresponding member installs some generation capacity (while
the other installs nothing) so that he only can satisfy the load of the community.
Given the regulation, as long as Q(·) ≤ d (interval a), with (·) = e, pv, the community
cashes in both the self-consumption incentive and the revenues of selling the energy to
the market. As soon as Q(·) > d (interval b), the incentive stops and the extra capacity
(beyond d) only generates revenues from the sale to the market. So, three main outcomes
can be identified:

i. member x has positive marginal profit whatever is ¶, so the optimal capacity size
Qx is bounded by the budget or technical constraints, whatever binds first;

ii. member x has positive marginal profit as long as Qx ≤ d. In this case, losing the
incentive for the generation resulting from the extra capacity installed over d changes
the sign of the marginal profit from positive to negative. Optimal investment occurs
at Qx = d;

iii. member x has negative marginal profit whatever is ¶, so it is optimal to him to
install no capacity;

In the spirit of the EU directive, an outcome of type ii. can be taken as the benchmark,
since it represents a solution where self-generation is sized to match load. In this way,
self-consumption is maximized efficiently, i.e. avoiding any over-investment.
However, the actual solution of this optimization problem is going to be more complicated

Figure 2.4: Profit for a household and biogas as a function of the capacity installed and
depending on the sign of the marginal profit occurring in the intervals a = [0, d) and
b = [d,∞).

than what is represented in Figure 2.4 for several reasons.
First of all, the members of the energy community are free to install their generation
capacity, so their joint capacity must be compared with the joint load of the community.
This freedom may cause over-investments in capacities.
Second, different values of ¶ have an impact on the optimal capacity decision, so these
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decision variables interact. The analysis of how adjustments in the optimal capacity
decision respond to variations in the values of ¶ must be carried out.
Finally, in these settings, the biogas producers can compare, on an hourly basis, if selling
the biogas as biogas on the gas market is more profitable than directing it to the gas-to-
power turbine (i.e. to meet the electricity load of the energy community). See Section
2.2.2 for a more comprehensive explanation. So, this model encompasses both initial
investment and everyday management decisions given the market prices of both electricity
and gas.

Incremental commitment hypothesis

In this framework, 1 biogas producer and 1 household are considered. Given a REC, the
biogas producer must size a biodigestor plant (Qg) and a gas-to-electricity turbine (Qe)
to maximize his profits (Ãb), while the household must size a photovoltaic plant (Qpv) to
maximize his profits (Ãh). Each profit is influenced by the capacities, productions, and
load of the agent and the capacities, productions, and load of the other agent (through
self-consumption qREC

t ), and the sharing rule ¶.
The interaction among players is now explained. Each player acts knowing the decision
of the previous player. For example, suppose that a REC whose members have no plants
is being built, and suppose that the biogas producer acts first (thus, the capacity of the
household is set to zero). The biogas producer maximizes his profit. Then, it is the
household turn. The household knows the biogas capacities and maximizes his profit,
accordingly. After household maximization, the biogas is aware of household decision
and can increase or confirm his previous decision. This iteration stops when both agents
confirm their choices. In the following paragraphs, the mathematical formulations of
biogas producer and household optimization problems are presented.

Biogas producer Given a REC, let us start with the biogas producer problem: he
aims to maximize his profit Ãb. Revenues are earned from three possible sources:

• the sale of biogas qgt (m3) at the market price pgt (e/m3),

• the sale of electricity on the market by converting biogas through the gas-to-power
turbine qet (MWh) at the spot market price pme

t (e/MWh),

• and the share ¶ (%) of incentive z (e/MWh) obtained on shared electricity qREC
t

(MWh).

Costs comprehend bills and investment costs. Bills are represented by the purchase of
electricity to satisfy load dbt . This electricity is purchased at the market price pme

t in-
creased by k (e), which takes into account the retailer profit margin7. Investment costs
include fixed costs Cg (i.e., to pay for licenses and authorizations, e), and variable costs
pqg (e/m3) and pqe (e/MW), which are the unit costs for a cubic meter of anaerobic
biodigestor and an MW of a gas-to-power turbine, respectively. These unit costs are mul-
tiplied by the installed capacities of the biogas digestor Qg (m3) and turbine Qe (MW).
Investment costs are multiplied by the parameter a which represents the depreciation rate
over the time horizon of operations (i.e. each cost is depreciated over the entire lifespan
of the plant, with the unit of time being the operational time horizon). This optimization
is constrained by technical and economic constraints. Constraint 2.3b sets the physical
condition where the production of electricity can not exceed the installed turbine capacity.
Furthermore, for simplicity, the generation of electricity from the turbine (if installed) is

7It is assumed that the electricity price to buy back the electricity from the market differs from the
selling price by a constant k, which is not proportional to the price itself, pme

t .
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assumed equal to the capacity installed in each time interval t ∈ T .
Constraint 2.3c defines the quantity sold of biogas as the residual biogas, that is what
remains after a portion of it is converted into electricity. In this model, the transformation
from biogas (in m3) to electricity (in MWh) is performed using the parameter me, which
measures the amount of MWh of electricity produced by a cubic meter of biomethane
(MWh/m3). Similarly, the quantity of electricity (measured in MWh) generated by the
turbine can be converted into m3 by multiplying it by 1

me . These two constraints describe
the choice that the biogas producer has to make between producing biogas or transform-
ing it into electricity. This choice is taken by confronting the prices on the spot market

of biogas (expressed in e/MWh),
p
g
t

me , with the electricity price pme
t (e/MWh). The

choice is represented with the indicator functions 1: namely, if pme
t ≥

p
g
t

me , then it is more
convenient to transform biogas into electricity and sell it on the market; otherwise, the
transformation is not convenient and the biogas producer sells biogas directly on the spot
market.
Constraint 2.3d sets the economic constraint where the investment costs must be covered
by the personal budget of the biogas producer, Bb.
Last, Constraint 2.3e explains the influence of household on biogas choices because self-
consumption is impacted by the production and load of the household. This equation
has key relevance in the model because it is used to represent the interaction among the
heterogeneous agents.
The mathematical definition is the following:

maxÃb
Qe,Qg ,q

g
t ,q

e
t

=
T̄
∑

t=1

(

pgt q
g
t + pme

t qet + z¶qREC
t − (pme

t + k)dbt

)

− a (Cg + pqgQg + pqeQe)

(2.3a)

s.t.

0 ≤ qet = Qe · 1{pme
t >p

g
tm

e} ≤ Qe ∀t (2.3b)

0 ≤ qgt =

(

Qg −
qet
me

)

· 1{pme
t ≤p

g
tm

e} ∀t (2.3c)

0 ≤ Cg + pqgQg + pqeQe ≤ Bb (2.3d)

qREC
t = (qet + qpvt ) · 1{qet+q

pv
t ≤dbt+dht }

+ (dbt + dht ) · 1{qet+q
pv
t >dbt+dht }

(2.3e)

Household Given a REC, the household maximizes his profits Ãh. Revenues are gen-
erated from selling photovoltaic electricity qpvt (MWh) at the spot market price pme

t

(e/MWh), and from the residual share 1− ¶ of the incentive z (e) on self-consumption
qREC
t (MWh). Costs take into account bills and investments. Bills are related to the elec-

tricity purchased to cover the load dht (MWh) at the price applied by the retailer (pme
t +k,

in e/MWh). The investment in the PV plant is the product between the unitary cost of
a PV plant ppv (e/MW) and the installed capacity Qpv (MW). The investment cost is
then multiplied by the parameter b, which is the PV plant depreciation rate over the time
horizon of operations (i.e. each cost is depreciated over the entire lifespan of the plant,
with the unit of time being the operational time horizon).
This optimization is subject to two constraints. Constraint 2.4b dictates that the in-
vestment cost cannot exceed the individual budget Bh (e). Constraint 2.4c defines the
quantity of electricity produced qpvt as the product between the capacity installed Qpv

and the parameter µpvt (%), which measures the efficiency of the PV plant taking into
account the geographic position of the plant.8 Furthermore, constraint 2.4c sets the quan-

8For example, in northern Italian regions, the global solar radiation is different, and on average lower,
than the solar radiation of the southern regions.
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tity of PV electricity produced lower than the maximum capacity installed. Given that
Constraint 2.4d describes the self-consumption as before, the mathematical formulation
is the following:

maxÃh
Q

pv
r ,q

pv
t

=

T̄
∑

t=1

(

pme
t µpvt Q

pv + z(1− ¶)qREC
t − (pme

t + k)dht

)

− bppvQpv
r (2.4a)

s.t.

0 ≤ ppvQpv
j ≤ Bh (2.4b)

qpvt = µpvt Q
pv ≤ Qpv ∀t (2.4c)

qREC
t = (qet + qpvt ) · 1{qet+q

pv
t ≤dbt+dht }

+ (dbt + dht ) · 1{qet+q
pv
t >dbt+dht }

(2.4d)

Derivatives analysis

Let us proceed to analyze the derivatives of biogas and household profits with respect to
the installed capacities. This analysis is limited to the derivatives of the first version from
Section “Incremental commitment hypothesis” but the same approach holds for the second
one that will be explained in Section “Rethink hypothesis (pure Nash equilibrium)”.

Biogas producer derivatives To analyze the choice of the biogas producer between
installing only the biodigestor or installing the turbine, the market prices of biogas and
electricity must be compared. In particular, two cases are introduced:

case 1 :
pgt
me

< pme
t −→ qet = Qe and qgt = Qg −

Qe
r

me
,

case 2 :
pgt
me

> pme
t −→ qet = 0 and qgt = Qg

r .

The biogas price pgt is expressed in m3 and is transformed into MWh by dividing it by
the coefficient me, which computes how many MWh are produced by a m3 of biomethane
(MWh/m3). This conversion allows the comparison with the electricity market price pme

t .
In case 1, if the price of the biogas pgt , expressed in e/MWh, is lower than the electricity
market price, then it is convenient to transform the biogas into electricity. Therefore, the
biogas producer in a given REC, at each time t, produces all possible qet and qgt is only
residual. Thus, qet = Qe for every t ∈ T . The biogas profit function, of a given energy
community r, becomes:

maxÃb
Qe

r,Q
g
r ,q

g
t ,q

e
t

=

T
∑

t=1

(

pgt

(

Qg −
Qe

r

me

)

+ pme
t Qe + z¶qREC

t − (pme
t + k)dbt

)

− a (Cg + pqgQg + pqeQe) .

Now, it is necessary to distinguish between the two possible values that qREC
t can assume.

If the REC load is lower than the electricity production, then qREC
t = dbt + dht . The

objective function becomes:

case 1.1 maxÃb
Qe

r,Q
g
r ,q

g
t ,q

e
t

=
T̄
∑

t=1

(

pgt

(

Qg −
Qe

r

me

)

+ pme
t Qe + z¶

(

dbt + dht

)

− (pme
t + k)dbt

)

+

− a (Cg + pqgQg + pqeQe
r) , (2.5)

and the derivatives concerning the installed capacities are the following:

∂Ãb

∂Qe
r

= −
pgt
me

+ pme
t − apqe ∀t, (2.6)

∂Ãb

∂Qg
r
= pgt − apqg ∀t.
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Otherwise, if the load is greater than the electricity production, then it is possible to
assume qet = Qe and qREC

t = Qe + µpvt Q
pv, where µpvt Q

pv = qpvt . The objective function
becomes:

case 1.2 maxÃb
Qe

r,Q
g
r ,q

g
t ,q

e
t

=

T̄
∑

t=1

(

pgt

(

Qg
r −

Qe
r

me

)

+ pme
t Qe + z¶ (qet + µpvt Q

pv)− (pme
t + k)dbt

)

+

− a (Cg + pqgQg + pqeQe) , (2.7)

and the derivatives are:

∂Ãb

∂Qe
r

= −
pgt
me

+ pme
t + z¶ − apqe ∀t, (2.8)

∂Ãb

∂Qg
r
= pgt − apqg ∀t.

In case 2, if the price of the biogas (in e/MWh) is greater than the electricity market price,
then it is more convenient to sell the biogas rather than transforming it into electricity.
Therefore, qet = 0 and qgt = Qg. The biogas profit function, for a given energy community
r, becomes:

maxÃb
Qe

r,Q
g
r ,q

g
t ,q

e
t

=
T̄
∑

t=1

(

pgtQ
g + z¶qREC

t − (pme
t + k)dbt

)

− a (Cg + pqgQg + pqeQe
r) .

Now, let us distinguish between the two possible values that qREC
t can assume.

If the overall load is lower than the electricity production, qREC
t = dbt +d

h
t . The objective

function is:

case 2.1 maxÃb
Qe

r,Q
g
r ,q

g
t ,q

e
t

=
T̄
∑

t=1

(

pgtQ
g + z¶

(

dbt + dht

)

− (pme
t + k)dbt

)

+

− a (Cg + pqgQg + pqeQe
r) ,

and the derivatives are the following:

∂Ãb

∂Qe
r

= −apqe,

∂Ãb

∂Qg
r
= pgt − apqg ∀t.

If instead, the load is greater than the electricity production, qREC
t = Qe + µpvt Q

pv. The
objective function is:

case 2.2 maxÃb
Qe

r,Q
g
r ,q

g
t ,q

e
t

=

T̄
∑

t=1

(

pgtQ
g + z¶ (qet + µpvt Q

pv)− (pme
t + k)dbt

)

+

− a (Cg + pqgQg + pqeQe
r) ,

and the derivatives are:

∂Ãb

∂Qe
r

= −apqe,

∂Ãb

∂Qg
r
= pgt − apqg ∀t.

Now, let us explain in more detail the mechanisms that define the three possible results
anticipated in Figure 2.4. There can be three different outcomes according to the value of
the derivatives. If the biogas producer installs a quantity greater than the demand, then
one must look at the right side of the graph, in the area labelled with b. Here, equations
(2.5) and (2.6) hold. Otherwise, if the biogas producer installs a quantity lower than the
demand, one is in the area labelled with a and the Equations (2.7) and (2.8) hold.
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Household derivatives Since the household has only one technology (the photovoltaic
plant), the comparison of different prices is not necessary and the analysis is limited to
the two possible values of qREC

t .
If the overall load is lower than the electricity production, qREC

t = dbt + dht and the
derivative is:

∂Ãh

∂Qpv
r

= pme
t µpvt − bppv ∀t. (2.9)

If instead, the load is greater than the electricity production, qREC
t = Qe + µpvt Q

pv and
the derivative is:

∂Ãh

∂Qpv
r

= pme
t µpvt + z(1− ¶)µpvt − bppv ∀t. (2.10)

By looking at Figure 2.4, the approach for the household is the same: by looking at area
a of the graph, then Equation (2.9) holds; otherwise, in area b, Equation (2.10) holds.

Rethink hypothesis (pure Nash equilibrium)

This version is characterized by two main differences with respect to the version explained
in Section 2.2.2 “Incremental commitment hypothesis”. First, one biogas producer and
one household are not considered anymore but a group of biogas producers and a group
of households are taken into account. Each agent within a group is smaller than the
single agents studied before (i.e. lower budget and lower load). In this way, there is a
differentiation from the model in Section 2.2.2 because by iterating over smaller agents,
the iteration order and the size of each agent do not influence the results anymore. Fur-
thermore, the order of agent interviews is alternated: following each biogas producer, an
individual household is interviewed, and so forth.
Second, the iteration is split into two rounds to respect the process of REC creation that
is effectively implemented in Italy. In the first round, biogas producers and households are
asked about their willingness to enter the REC, their interest in installation, and the po-
tential quantity they intend to install. In the first round, there is only an intent collection
and the actual installation does not take place. The first round ends when a predefined
threshold is satisfied. The threshold can be chosen among a handful of alternatives: for
example, the first round is complete when the REC load is covered by the REC member’s
plant production. Once the first round is completed, the second round starts. At the
beginning of the second round, each agent is aware of all the choices taken in the first
round. Given the information set, each agent can confirm or change his previous choice.
For simplicity, the agent order is assumed equal in both rounds (i.e. if you were the first
one in the first round, you are the first one in the second round too, and so on). If an
agent changes his previous decision, the following agent has an information set updated
with the updated choice. If all agents change their decision taken in the previous round,
the second round ends and the third one begins. This process repeats until an agent
confirms his choice from the previous round because no further iterations are required,
given that the optimization problem is the same for the following agents. Once the round
ends, the effective installations occur.
The description of the mathematical model follows but, before that, it is necessary to in-
troduce some notation to ease the explanation. First, in this version a plurality of agents
is considered, therefore, the indexes i ∈ I and j ∈ J are applied to identify the differ-
ent biogas producers and households, respectively. Second, the label pre is introduced
to identify the capacities and the quantities decided by the previous agents. Third, the
numbers 1 and 2 are used to distinguish the rounds where the choices were taken. The
mathematical explanation of the optimization problems in the two rounds by describing
only the equations and constraints that differ from the model defined previously in Section
2.2.2 “Incremental commitment hypothesis” follows.
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Round 1 Each agent is asked to state his willingness to enter the REC, his intention
to install and the capacity he is willing to install. In this round, there is no effective
installation because choices must be first confirmed in the following round.
The first round is completed when the load threshold is achieved, i.e. the production of
electricity from the REC plants is sufficient to cover the load of REC members.
The iteration alternates one agent per type: suppose that one biogas producer acts first,
then the second agent will be an household, while the third one will be a biogas producer
again, and so forth.

Biogas Each biogas producer maximizes his profits by taking into account what has
been decided by agents (both biogas and households) before him.
Profits are labelled with Ãbi to identify the i-th biogas producer in a given REC. The profit
function structure is the same as previously defined in Problem (2.3).
Now, the notation that differentiates the quantities and the capacities chosen by the pre-
vious agents from the quantities and the capacities chosen by the i-th agent is introduced.
The biodigestor and gas-to-electricity turbine capacities chosen in round 1, by the previ-
ous agents up to the i-th one (excluded), are labelled as Qg1.pre

i , and Qe1.pre
i , respectively.

Indeed, Qg1.pre
i =

∑i−1
c=1Q

g1
c and Qe1.pre

i =
∑i−1

c=1Q
e1
c where all the capacities chosen by

i − 1 agents are considered (see Constraints (2.11b) and (2.11c), respectively). The i-th
one is excluded from this notation because his choices are depicted by Qg1

i and by Qe1
i ,

respectively.
Similarly, the quantities of biogas and of electricity, respectively, sold on the spot mar-
ket by agents before the i-th one in round 1 are labelled as qg1.pret,i and qe1.pret,i . These
quantities are the sum of the quantities produced (and sold) by i − 1 agents, namely:
qg1.pret,i =

∑i−1
c=1 q

g1
t,c (see Constraint (2.11d), and qe1.pret,i =

∑i−1
c=1 q

e1
t,c (see Constraint (2.11e).

The quantities of biogas and electricity produced by the i-th biogas producer are labelled
with qg1t,i and qe1t,i, respectively.

Likewise, qREC1.pre
t,i is the self-consumption from previous agents up to the i-th one

excluded, in the first round (as defined in Constraint (2.11i), and qREC1
t,i is the self-

consumption of the i-th agent in round 1 (its definition holds as in Section 2.2.2).

Furthermore, the load of previous agents is represented by db1.pret,i (see Constraint (2.11f)

while the load of the i-th agent is labelled with db1t,i. Other constraints work as explained
in Section 2.2.2 “Incremental commitment hypothesis”. The mathematical formulation,
with Ξ = Qg1

i , Q
e1
i , q

g1
t,i , q

e1
t,i and with only the constraints that differ from Problem (2.3),
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is the following:

maxÃb
Ξ

=

T̄
∑

t=1

(

pgt

(

qg1.pret,i + qg1t,i

)

+ pme
t

(

qe1.pret,i + qe1t,i

)

+ z¶
(

qREC1.pre
t,i + qREC1

t,i

)

+

− (pme
t + k)

(

db1.pret,i + db1t,i

)

)

− a
(

Cg + pqg
(

Qg1.pre
i +Qg1

i

)

+ pqe
(

Qe1.pre
i +Qe1

i

))

(2.11a)

s.t.

Qg1.pre
i =

i−1
∑

c=1

Qg1
c ∀i (2.11b)

Qe1.pre
i =

i−1
∑

c=1

Qe1
c ∀i (2.11c)

qg1.pret,i =

i−1
∑

c=1

qg1t,i ∀i, t (2.11d)

qe1.pret,i =
i−1
∑

c=1

qe1t,c ∀i, t (2.11e)

db1.pret,i =
i−1
∑

c=1

db1t,c ∀i, t (2.11f)

x =
i−1
∑

c=1

qe1.pret,c +

j−1
∑

c=1

qpv1.pret,c ∀i, j, t (2.11g)

y =

i−1
∑

c=1

db1.pret,c +

j−1
∑

c=1

dh1.pret,c ∀i, j, t (2.11h)

qREC1.pre
t,i = x · 1{x≤y} + y · 1{x>y} (2.11i)

v = qe1t,i + qpv1t,j ∀i, j, t (2.11j)

w = db1t,i + dh1t,j ∀i, j, t (2.11k)

qREC1
t,i = v · 1{v≤w} + w · 1{v>w} (2.11l)

In Constraint (2.11i) the influence of household choices is evident: self-consumption is
influenced not only by the loads and productions of other biogas producers but also by
the loads and productions of households. This is the key factor that is used to represent
the interaction among heterogeneous agents.

Household After the biogas optimization, it is the household’s turn to optimize his
profits given what has been decided by previous agents (both biogas producers and house-
holds). The household takes into consideration the installation of only one technology,
the photovoltaic, and his profits, labelled with Ãhj , are defined as in Problem (2.4).

Similarly to the biogas producer problem, the variables Qpv.pre
j and qpv1.pret,j are the ca-

pacity of PV plant installed and the quantity of electricity sold on the spot market,
respectively, up to the j-th agent excluded, in the first round (as defined in Constraints
(2.12b and (2.12c, respectively). Consequently Qpv1

j and qpv1t,j are the capacity and the
quantity sold, respectively, of the j-th agent in round 1.
Variables qREC1.pre

t,j , qREC1
t,j and the loads, dh1t,j and dh1.pret,j , work as in Problem (2.11) but

index i is replaced by j, and b is replaced by h, to represent the households. The math-
ematical formulation, with only constraints that differ from Problem (2.4) are stated, is
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the following:

maxÃh

Q
pv1
j ,q

pv1
t,j

=
T̄
∑

t=1

(

pme
t

(

qpv1.pret,j + qpv1t,j

)

+ z(1− ¶)
(

qREC1.pre
t,j + qREC1

t,j

)

+

− (pme
t + k)

(

dh1.pret,j + dh1t,j

)

)

− b
(

ppv
(

Qpv1.pre
j +Qpv1

j

))

(2.12a)

s.t.

Qpv1.pre
j =

j−1
∑

c=1

Qpv1
c ∀j (2.12b)

qpv1.pret,j =

j−1
∑

c=1

qpv1t,c ∀j, t (2.12c)

Round 2 At the beginning of the second round, each agent possesses full knowledge
of the decisions made by all agents in the first round. Within this context, each agent,
equipped with the information set, has the opportunity to either validate or revise his
previous choice. If an agent opts to alter his prior decision, the round advances, and the
information set available to the subsequent agent is adjusted to reflect the latest choice.
The second round completes when an agent confirms his initial decision from the first
round, as no further iterations are needed, given the invariability of the optimization
problem for ensuing agents. It is worth noting that the iteration may extend beyond the
second round because if all agents change their previous choice, the second round ends and
a third one begins, and so forth. However, for the sake of simplicity, this analysis confines
itself to the second round, as any subsequent rounds would adhere to the same structural
framework. Upon completion of the decision-making process, effective installations ensue.
The problem’s structure is coherent with the explanations in Problem (2.11) and (2.12)
but some adjustments are necessary. First, the number 2 identifies the capacities and
quantities related to the second round. Second, the quantities labelled with pre are
influenced by the iterations that occurred in the first round and by the choices taken in
the second round before the current agent.

Biogas This description is limited to constraints that differ from Problem (2.11). In
Constraint (2.13b) the value of Qe2.pre

i is defined as the sum between all the capacities

chosen in round one (
∑Ī

i=1Q
e1
i ) and all the capacities confirmed in the iterations of the

second round, up to the i-th biogas producer excluded (
∑i−1

c=1Q
e2.pre
c ). The same holds

for Qg2.pre
i as explained in Constraint (2.13c).

Furthermore, Qe2
i and Qg2

i are influenced by the quantities defined in Problem (2.11).

This relationship is explained in Constraints (2.13g) and (2.13h) because Qe1
i and Qg1

i are

the lower bounds of Qe2
i and Qg2

i , respectively (i.e. agent i can not divest more than the
optimal quantity chosen before). The same holds for the quantity produced qe2t,i which is

constrained by −qe1t,i, as the lower physical limit to respect what was stated before, and

by Qe2
i as the physical upper limit.

The mathematical formulation is the following:
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maxÃb

Qe2
i ,Q

g2
i ,qe2t,i,q

g2
t,i

=

T̄
∑

t=1

(

pgt

(

qg2.pret,i + qg2t,i

)

+ pme
t

(

qe2.pret,i + qe2t,i

)

+ z¶
(

qREC2.pre
t,i + qREC2

t,i

)

+

− (pme
t + k) db2t

)

− a
(

Cg + pqg
(

Qg2.pre
i +Qg2

i

)

+ pqe
(

Qe2.pre
i +Qe2

i

))

(2.13a)

s.t.

Qe2.pre
i =

Ī
∑

i=1

Qe1
i +

i−1
∑

c=1

Qe2.pre
c (2.13b)

Qg2.pre
i =

Ī
∑

i=1

Qg1
i +

i−1
∑

c=1

Qg2.pre
c (2.13c)

qe2.pret,i =
Ī

∑

i=1

qe1i +
i−1
∑

c=1

qe2.pret,c ∀t (2.13d)

qg2.pret,i =
Ī

∑

i=1

qg1i +
i−1
∑

c=1

qg2.pret,c ∀t (2.13e)

db2t =
Ī

∑

i=1

db1i (2.13f)

−Qe1
i ≤ Qe2

i ≤ Qg2
i m

e ∀i (2.13g)

−Qg1
i ≤ Qg2

i ∀i (2.13h)

− qe1t,i ≤ qe2t,i = Qe2
i 1pme

t >p
g
tm

e ≤ Qe2
i ∀t, i (2.13i)

qg2t,i =
(

Qg2
i − qe2t,i/m

e
)

1pme
t ≤p

g
tm

e ∀t, i (2.13j)

Household The following description is limited to constraints that differ from Problem
(2.12). In constraint (2.14b) the value of Qpv2.pre

j is defined as the sum between all the

capacities chosen in round one (
∑J̄

j=1Q
pv1
j ) and the capacities confirmed in previous iter-

ations in this round (
∑j−1

c=1Q
pv2
c ). Furthermore, as explained in (2.14e), Qpv2

j is strongly

related to the quantity Qpv1
j defined in Round 1 in Problem (2.12) because Qpv1

j is the

lower bound of Qpv2
j . Indeed, agent j cannot divest more than the optimal quantity stated

before. The same holds for the quantity produced qpv2t,j which is constrained by −qpv1t,j ,

to respect what was stated before, and by Qpv2
j as the physical upper limit. Other con-

straints work as before in Problem (2.12). The mathematical formulation is the following:
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maxÃh

Q
pv2
j ,q

pv2
t,j

=
T̄
∑

t=1

(

pme
t

(

qpv2.pret,j + qpv2t,j

)

+ z(1− ¶)
(

qREC2.pre
t,j + qREC2

t,j

)

− (pme
t + k) dh2t

)

+

− b
(

ppv
(

Qpv2.pre
j +Qpv2

j

))

(2.14a)

s.t.

Qpv2.pre
j =

J̄
∑

j=1

Qpv1
j +

j−1
∑

c=1

Qpv2
c (2.14b)

qpv2.pret,j =
J̄
∑

j=1

qpv1t,j +

j−1
∑

c=1

qpv2t,c ∀t, j (2.14c)

dh2t,j =

j−1
∑

J

dh1t,j ∀t (2.14d)

−Qpv1
j ≤ Qpv2

j ∀j (2.14e)

− qpv1t,j ≤ qpv2t,j = Qpv2
j µpvt ≤ Qpv2

j ∀t, j (2.14f)

2.3 Application and results

2.3.1 Application

The two versions of the model, “Incremental commitment hypothesis” and “Rethink hy-
pothesis (pure Nash equilibrium)” are applied separately. Furthermore, each problem is
run with different iteration orders. First, the “Incremental commitment hypothesis” with
the biogas producer acting first is executed. Then, the iteration is repeated but with the
household starting first. In “Rethink hypothesis (pure Nash equilibrium)” the iteration
order alternates the two kinds of agents: for example, if the first one is a biogas producer,
then the second one will be a household, and so forth; vice versa, if the first one is a
household, then the second one will be a biogas producer, and so forth.
In both versions, the optimization is performed on 24 hours (T = 24) because this time
frame aligns with the natural daily cycles of processes, making it highly relevant to real-
world scenarios. By concentrating on a single day, the challenges faced within this time
frame are directly addressed, such as energy usage patterns, load and solar radiation cy-
cle. Moreover, a 24-hour horizon ensures that the solutions generated are both feasible
and realistic. Daily optimization also enhances efficiency by making the optimization of
a REC life more manageable while still capturing the essential dynamics of the system.
To apply the first version, explained in Section “Incremental commitment hypothesis”, 1
REC composed of 1 household and 1 biogas producer is considered. In this version, the
household load is set equal to 0.04 MWh. This value is then distributed over the 24 hours
by multiplying it for the following load pattern: the electricity load is set equal to 10%
from midnight to 5:00 am (i.e., load related to home appliances), 70% from 5:00 am to
7:00 am (i.e. people start to get up), 100% from 7:00 am to 9:00 pm (i.e., normal living to
take into account households, elderly people, smart workers and use of electricity to cook
for lunches and dinners), 80% from 9:00 pm to 11:00 pm (i.e. TVs, lights, computers,
washing machines) and 20% from 11:00 pm to midnight (i.e. only few people are still
awake, home appliances). Biogas load is set to 0.05 MWh and is assumed constant over
the 24 hours.
For the second version, explained in Section “Rethink hypothesis (pure Nash equilibrium)”,
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the individual household electricity load is set equal to 0.008 MWh and an individual bio-
gas electricity load is assumed equal to 0.01 MWh. The individual household load is
distributed over 24 hours with the same pattern explained above. Furthermore, in this
model, the threshold chosen to close the first round is load: the first round is complete
when the REC load is covered by REC members’ plant production.
Table 2.1 lists all parameters used in both versions and their values: in particular the
turbine, biodigestor and fixed installation costs are already discounted by a rate of 6%
over a lifetime of 15 years, while the price of the photovoltaic plant is discounted by a
rate of 8% over 20 years lifetime.
Figures 2.5 and 2.6 collect the parameters that range over the time horizon of 24 hours.
In Figure 2.5 the price of electricity (Me/MWh)9, the solar radiation of an average day
in Italy (that is the photovoltaic efficiency, in %), and the biogas price on the spot market
(Me/m3)10 are represented. Figure 2.6 shows the average loads of households and biogas
producers for both versions of the model.

Table 2.1: This table lists the parameters, their values, the unit of measure, their definition
and source. This list is common to both versions of the model, any differences between
the two versions are highlighted.

Parameter Unit of measure Value Definition and source

T hours 24 Optimization time horizon
z e/KWh 0.110 Incentive on self-consumption if member of a REC11

ppv Me/MW 0.7 Price of photovoltaic plant
Bh Me 0.30 Household budget
Bh

j Me 0.05 Individual household budget

pqe Me/MW 0.685 Price of the gas-to-electricity turbine
pqg Me/m3 13.699 Price of the biodigestor
Cg Me 0.001 Fixed installation cost
Bb Me 0.36 Biogas producer budget
Bb

i Me 0.13 Individual biogas producer budget
me MWh/m3 0.01055 Ratio that converts cubic metres into MW12

2.3.2 “Incremental commitment hypothesis” results

The results of the first version of the model are presented: the discussion is divided into
two parts to distinguish the two iteration orders: when “Biogas producer acts first” and
when “Household acts first”. Table 2.2 lists the sensitivity analyses common to both
iterations.

Biogas producer acts first Let us start by analyzing the impact of ¶ on the decisions
of biogas producer and household (see Figure 2.7). For ¶ ≤ 0.5, the biogas producer
receives an incentive that is not sufficient to make Qe convenient and he installs only

9Gestore del Mercato Elettrico (GME), https://www.mercatoelettrico.org/It/download/

DatiStorici.aspx, day-ahead market single national price (PUN, Prezzo Unico Nazionale)
10Gestore del Mercato Elettrico (GME), https://www.mercatoelettrico.org/It/download/

DatiStoriciGas.aspx, Single National Price established in the Virtual Exchange Point (PSV, Punto di
Scambio Virtuale)

11Ministry of the Environment and Energy Security Decree of 16 September 2020, “Individuazione della
tariffa incentivante per la remunerazione degli impianti a fonti rinnovabili inseriti nelle configurazioni
sperimentali di autoconsumo collettivo e comunità energetiche rinnovabili, in attuazione dell’articolo
42-bis, comma 9, del decreto-legge n. 162/2019, convertito dalla legge n. 8/2020.”

12The conversion chart is available at https://learnmetrics.com/m3-gas-to-kwh/.
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Figure 2.5: Plots, over 24 hours, of electricity prices pme
t (in e/MWh), solar radiation

efficiency µpvt (in %), and biogas prices pgt (in e/m3).

Figure 2.6: Plots of household (blue) and biogas (orange) loads in Incremental commit-
ment hypothesis (panel (a)) and in Rethink hypothesis (pure Nash equilibrium) (panel
(b)).

Parameter Reference value

z 0.055− 0.1705 0.110 e/KWh
pqg 6.8493− 21.2329 13.698630 Me/m3

pqe 0.3425− 1.0616 0.684932 Me/MW
ppv 0.35− 1.085 0.7 Me/MW

Table 2.2: This table summarizes the sensitivity analysis carried out on the results in the
“Incremental commitment hypothesis”.

Qg. At the same time, when ¶ ≤ 0.3 the household installs Qpv without spending all
his budget (the investment cost is 0.18Me while the available budget is 0.30Me). He
does not spend all his budget because with Qpv = 0.257143 he produces more than
the demand level for 12 hours (from 04:00 am to 04:00 pm) but, during the other 12
hours (from midnight to 04:00 am and from 04:00 pm to midnight) the production is
lower than or equal to the demand. Therefore, further expenses in Qpv would not be
compensated by the revenues, obtained from selling the electricity, because the incentive
is received on the quantity up to the demand level for half of the day (12 hours over
24). When ¶ ∈ [0.4, 0.5] the household decreases the PV installation because he obtains
a lower share of incentive. However, the level of installation is still higher than the
demand but he produces more than the demand level only for 10 hours per day, improving
his position with respect to the previous situation. Indeed, the household is forced to
install Qpv to gain the incentive because the biogas producer does not install Qe. When
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¶ = 0.6 the situation changes. The biogas producer finds the installation of Qe convenient.
Given that the budget constraint is active (i.e. he is spending all his budget for Qg)
there is a substitution effect: the biogas producer has to decrease Qg to have money
available for Qe. However, he does not install the maximum Qe because the incentive
is still high enough for the household to install Qpv. The investment in Qe is coherent
with self-consumption: the production from the turbine (assumed to be set equal to
the capacity installed, i.e. the plant works at maximum capacity every hour) exactly
covers the demand of REC members. This is the first proof that the method allows
to avoid over-investments. At this level of ¶ the profit functions show a non-monotonic
trend. In particular, the biogas producer has a fall because the huge investment in Qe

and the consequent revenues, together with the incentive, do not compensate for the
lower revenues from biogas sales. Conversely, the household has a peak because the lower
investment costs, together with the incentive, compensate for the lower revenues from
selling electricity. With ¶ ≥ 0.7 it is convenient for the biogas producer to install the
maximum possible Qe capacity. Therefore, Qg is maintained to allow a sufficient level
of Qe that maximizes self-consumption. Consequently, the household does not find the
installation of Qpv convenient and it falls to zero. For any level of ¶, household’s profits are
always negative. However, he installs the photovoltaic plant because the revenues from
selling electricity and the incentive generated from self-consumption allow the household
to partially counterbalance the installation costs. Furthermore, the household installation
favours the generation of the self-consumption incentive, which is gained by both agents.

Figure 2.7: Qe (in MW), Qg (in m3 and MW), Qpv (in MW), qREC
t (in MWh), Ãb (in

Me), and Ãh (in Me), for different values of ¶ when the biogas producer acts first in
“Incremental commitment hypothesis”.

The sensitivity analysis of the intricate relationships among variables by analyzing the
sensitivity analysis on some key parameters, in particular the installation costs of the
technologies and the incentive, follows.

Sensitivity analysis on incentive, z Figure 2.8 collects the results for different values of
z. As a general comment, all graphs follow a rational trend but, three exceptions are
worth mentioning. First, with z = 0.055 and ¶ = 0.9 the self-consumption falls to zero
(labelled as point 1.). This is due to two reasons: the household does not install Qpv

because, with a so high ¶, the installation is not convenient anymore; and the biogas
producer receives a too low z which makes Qe not convenient, therefore he installs only
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Qg. Second, with z = 0.17 and with ¶ = 0.3 the household profit has a peak (labelled
as point 2.) due to the non-investment in Qpv (i.e. no installation costs), while Qe

is maximized causing a maximization in self-consumption levels. As a consequence, as
before, the lower installation costs, together with the incentive, exceed the lost revenues.
Third, the falls in biogas profits (labelled as point 3.) are coherent with the different
moments where Qe occurs (and the simultaneous decrease of Qg). Qe generates revenues
that, together with the incentive, do not compensate for the losses from selling biogas.

Figure 2.8: Sensitivity analysis on Qg (in m3), Qe (in MW), Qpv (in MW), qREC
t (in

MWh), Ãb (in Me), and Ãh (in Me), for different values of z (and ¶) when the biogas
producer acts first in “Incremental commitment hypothesis”.

Sensitivity analysis on biodigestor installation cost, pqg Figure 2.9 shows the sensitivity
analysis on pqg. It highlights the strong relationship and the consequent substitution
effect between Qg and Qe. In particular, when pqg ≥ 19.863 and ¶ ≥ 0.7, (labelled as
point 1.) the biogas producer installs enough Qg to install Qe: the biogas producer finds
convenient Qg, despite the high pqg, because it is compensated by the revenues obtained
from selling electricity and by the incentive. Furthermore, with pqg ≥ 18.4932 and ¶ = 0.5



38

there is a peak in Ãh (labelled as point 2.). This is due to the incentive and null installation
costs that compensate for the lost revenues from selling electricity.

Figure 2.9: Sensitivity analysis on Qg (in m3), Qe (in MW), Qpv (in MW), qREC
t (in

MWh), Ãb (in Me), and Ãh (in Me), for different values of pqg (and ¶) when the biogas
producer acts first in “Incremental commitment hypothesis”.

Sensitivity analysis on turbine installation cost, pqe Figure 2.10 shows the impact of pqe

on Qg, Qe, Qpv, self-consumption and both profit functions. As a general comment, as
pqe increases, higher levels of ¶ are required to make Qe convenient. Consequently, Qg

and Qpv decrease accordingly. Qe has a major impact on self-consumption. In particular,
when pqe = 0.3425 and ¶ = 0.3 there is a non-monotonic trend in self-consumption
(labelled as point 1.). This non-monotonic trend is due to the maximized Qe, with the
consequent non-installation of Qpv. However, Qe does not produce for all 24 hours: up
to 06:00 am and at 11:00 pm the biogas producer finds more convenient the production
and sale of biogas. This time frame coincides with low demand levels that impact on self-
consumption computation. Conversely, from 06:00 am to 11:00 pm the biogas producer
finds it convenient to transform biogas into electricity, which accrues to self-consumption
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and results in a total lower level. In this context, the biogas producer faces a drop in his
profits because the investment in Qe and the following revenues from selling electricity,
together with the incentive, do not compensate for the lower revenues from selling biogas.
Conversely, the household has a peak in its profits because, as before, the lower investment
costs, together with the incentive, exceed the lost revenues. Furthermore, as pqe increases,
higher values of delta postpone the shift in biogas producer profits but do not eliminate
it (labelled as point 2.).

Figure 2.10: Sensitivity analysis on Qg (in m3), Qe (in MW), Qpv (in MW), qREC
t (in

MWh), Ãb (in Me), and Ãh (in Me), for different values of pqe (and ¶) when the biogas
producer acts first in “Incremental commitment hypothesis”.

Sensitivity analysis on photovoltaic installation cost, ppv Figure 2.11 collects the impacts
of ppv for every value of ¶. First, when ppv ≤ 0.63 Qpv is convenient for every ¶(labelled as
point 1.). Coherently, Qe = 0 (only Qg is installed) and self-consumption reaches interme-
diate levels. However, when ppv > 0.63 a distinction is necessary: for ¶ ≤ 0.5 (labelled as
point 2.) Qpv is convenient (Qe is not convenient and is not installed) but self-consumption
decreases, causing a decrease in household profits; for ¶ > 0.5 (labelled as point 3.) Qpv
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is not convenient anymore (it is not installed) and Qg decreases for the substitution effect
with Qe, which is installed and maximizes self-consumption. Consequently, household
profits increase slightly but they decrease due to the small ¶. Coherently with Qg and
Qe, biogas profits are not harmed when ppv ≤ 0.63 ∀ ¶ or when ppv > 0.63 (for ¶ ≤ 0.5).
However, when Qe occurs, there is a shift in biogas profits because the investment and
the lost revenues from biogas are not covered by electricity revenues and incentive.

Figure 2.11: Sensitivity analysis on Qg (in m3), Qe (in MW), Qpv (in MW), qREC
t (in

MWh), Ãb (in Me), and Ãh (in Me), for different values of ppv (and ¶) when the biogas
producer acts first in “Incremental commitment hypothesis”.
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Household acts first Let us start by analyzing the impact of ¶ on the decisions of
biogas producer and household (see Figure 2.12). With ¶ ≤ 0.5 the situation mirrors the
results of the previous paragraph, when the biogas is acting first. With ¶ ∈ [0.6, 0.7], given
that the household receives 1− ¶, he decreases Qpv. Consequently, the self-consumption
decreases. However, the biogas producer finds it not convenient to install Qe, therefore,
only Qg is installed. The situation changes when ¶ ≥ 0.8: the household further decreases
Qpv. However, Qe is now convenient: the biogas producer starts to install it at ¶ = 0.8
and increases it, up to ¶ = 1. Simultaneously, he decreases Qg because of the substitution
effect between the technologies. Qe increases the self-consumption. This substitution
effect among the three technologies has an impact on both profits: with ¶ ∈ [0.8, 0.9],
after a monotonic decrease, there is a less negative marginal profit for the household;
while the biogas, after a monotonic increase, faces a less positive marginal profit. The
household faces lower investment costs that, together with the incentive, compensate
for the lower revenues. Conversely, the biogas producer faces an increase in revenues
for selling electricity and for the incentive that compensates almost exactly the lower
revenues from selling biogas. Furthermore, when ¶ = 1 the lost revenues and the absence
of incentive cause a more negative marginal profit in household profit, while the biogas
producer has a higher marginal positive profit because revenues from selling electricity and
the incentive exceed the lost revenues from biogas.For any level of ¶, household’s profits
are always negative. However, he installs the photovoltaic plant because the revenues from
selling electricity and the incentive generated from self-consumption allow the household
to partially counterbalance the installation costs. Furthermore, the household installation
favours the generation of the self-consumption incentive, which is gained by both agents.

Figure 2.12: Qe (in MW), Qg (in m3 and MW), Qpv (in MW), qREC
t (in MWh), Ãb

(in Me), and Ãh (in Me), for different values of ¶ when the household acts first in
“Incremental commitment hypothesis”.

Sensitivity analysis on incentive, z Figure 2.13 shows the impact of changing z. In par-

ticular, when ¶ = 0.9 and z = 0.055 (labelled as point 1.) qREC
t is zero because, given the

low incentive, both Qpv and Qe are not convenient. Consequently, both profits show a de-
crease. Furthermore, with ¶ = 0.9, when z ∈ [0.0825, 0.1265] (labelled as point 2.) there
is an inversion of trend in the technologies installation: the household finds convenient to
install Qpv, consequently Qe decreases and the biogas producer invests in Qg.
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Figure 2.13: Sensitivity analysis on Qg (in m3), Qe (in MW), Qpv (in MW), qREC
t (in

MWh), Ãb (in Me), and Ãh (in Me), for different values of z (and ¶) when the household
acts first in “Incremental commitment hypothesis”.

Sensitivity analysis on biodigestor installation cost, pqg For this analysis, by looking at
Figure 2.14, it is worth mentioning that, for high values of pqg and ¶ ≥ 0.7 (labelled
as point 1.), Qg is installed to allow the installation of Qe. In other words, the cost of
installing Qg is compensated by the benefits from installing Qe, i.e. the incentive from
self-consumption and the revenues from selling electricity. Furthermore, with ¶ = 0.9, pqg

affects Qpv (labelled as point 2.): when pqg ≤ 9.5890 the installation of Qg is convenient
(Qe is not installed) and Qpv is installed to gain a minimum quantity of self-consumption;
for higher values of pqg, Qg and Qpv decrease proportionally to increases of Qe. However,
with pqg ≥ 20.5479, on one hand Qg results too expensive and is divested, with Qe being
divested accordingly, but on the other hand, Qpv increases to compensate for the turbine
in self-consumption generation. This behaviour of Qpv is reflected in household higher
profits.
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Figure 2.14: Sensitivity analysis on Qg (in m3), Qe (in MW), Qpv (in MW), qREC
t (in

MWh), Ãb (in Me), and Ãh (in Me), for different values of pqg (and ¶) when the household
acts first in “Incremental commitment hypothesis”.

Sensitivity analysis on turbine installation cost, pqe Figure 2.15 plots the sensitivity anal-
ysis carried out for the different values of pqe and ¶. As a general comment, as pqe increases,
higher values of ¶ are necessary to make Qe convenient. Consequently, as Qe occurs, Qg

is decreased, accordingly. In particular, when pqe ≥ 0.9932 and ¶ = 0.9 (labelled as point
1.) Qpv is more convenient than Qe, therefore Qg is installed; consequently, the household
profits face a decrease, while the biogas profits face a peak. The self-consumption plot
depicts very clearly the influences of turbine and PV plant installations: as Qpv decreases,
self-consumption decreases; conversely, as Qe increases, self-consumption increases.
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Figure 2.15: Sensitivity analysis on Qg (in m3), Qe (in MW), Qpv (in MW), qREC
t (in

MWh), Ãb (in Me), and Ãh (in Me), for different values of pqe (and ¶) when the household
acts first in “Incremental commitment hypothesis”.

Sensitivity analysis on PV installation cost, ppv As shown in Figure 2.16, when ppv in-
creases, Qpv decreases. However, with ¶ ≤ 0.5, it is convenient to keep Qpv installed
to gain the incentive from self-consumption; in this context, the biogas producer installs
only Qg. With ¶ ≥ 0.6 and ppv ≥ 0.7 the biogas producer installs Qe, Qpv falls to zero but
self-consumption increases. Therefore, the lower installation costs for the household com-
pensate for the lower revenues from selling electricity and profits increase, while biogas
producer profits decrease because the investment in Qe, together with the consequent rev-
enues from selling electricity, and the incentive from self-consumption, do not compensate
for the lower revenues from selling biogas.
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Figure 2.16: Sensitivity analysis on Qg (in m3), Qe (in MW), Qpv (in MW), qREC
t (in

MWh), Ãb (in Me), and Ãh (in Me), for different values of ppv (and ¶) when the household
acts first in “Incremental commitment hypothesis”.

2.3.3 “Rethink hypothesis (pure Nash equilibrium)” results

The following discussion does not differentiate according to the iteration order, because
it is not relevant anymore. Furthermore, the results discussed are obtained at the end
of the second round, with the confirmed choice. Every quantity has to be intended as
the cumulative value after all iterations (to simplify the discussion the indexes i ∈ I and
j ∈ J , that identify the agents. and the numbers 1 and 2, that distinguish the rounds,
are dropped). Table 2.3 lists the sensitivity analyses carried out in this version.

By analyzing the results obtained for different values of ¶ (see Figure 2.17) it is imme-
diately noticeable that the maximum level of self-consumption is reached with ¶ = 1.
In particular, self-consumption does not follow a monotonic trend. With ¶ ≤ 0.6 self-
consumption follows Qpv2. With ¶ ≥ 0.6, Qpv2 decreases but the biogas producer installs
Qe2, which compensates for Qpv2, therefore self-consumption increases. Furthermore, Qg2
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Parameter Reference value

z 0.055− 0.1705 0.110 e/MWh
pqg 6.8493− 21.2329 13.698630 Me/m3

pqe 0.3425− 1.0616 0.684932 Me/MW
ppv 0.35− 1.085 0.7 Me/MW

Table 2.3: This table summarizes the sensitivity analysis carried out on the results in the
“Rethink hypothesis (pure Nash equilibrium)”.

is coherent with the turbine installation because of the substitution effect between the
two technologies and the binding budget constraint (i.e. when Qe2 becomes convenient,
Qg2 decreases to release money that can be spent in Qe2). It is worth noticing that with
¶ = 0.8 there is an increase in the household profits and a decrease in the biogas profits.
This happens because the high Qe2 generates revenues that, together with the incentive,
do not compensate for the lost sales from Qg2. On the other hand, the high installation
Qe2 allows the household to decrease Qpv2, and the consequent lower investment costs
compensate for the lower revenues from selling electricity.

Figure 2.17: Qe2 (in MW), Qg2 (in m3 and MW), Qpv2 (in MW), qREC
t (in MWh), Ãb

(in Me), and Ãh (in Me), for different values of ¶ in “Rethink hypothesis (pure Nash
equilibrium).”

Sensitivity analysis on incentive, z Figure 2.18 clearly represents how self-consumption is
influenced by Qpv2 and Qe2. With ¶ ≤ 0.8 self-consumption is defined by Qpv2; with ¶ =
0.9, Qpv

j = Qe
i = 0, and also self-consumption falls to zero: this happens because the low

level of incentive z makes the installations not convenient. With ¶ = 1, Qe2 is convenient.
Consequently, as happened before, this substitution effect between the Qe2 and Qpv2

impacts on self-consumption and profits. This substitution effect can be observed also
with ¶ = 0.6 where Qpv2 decreases while Qe2 increases. The lower installation of Qpv2

(i.e. lower investment costs), together with the self-consumption obtained through the
installation of Qe2 compensates the lost revenues from selling electricity and the household
profit has a peak while the biogas producer profit has a fall.
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Figure 2.18: Sensitivity analysis on Qg (in m3), Qe (in MW), Qpv (in MW), qREC
t (in

MWh), Ãb (in Me), and Ãh (in Me), for different values of z (and ¶) in “Rethink hypoth-
esis (pure Nash equilibrium)”.

Sensitivity analysis on biodigestor installation cost, pqg From Figure 2.19 one can see that
self-consumption is maximized when pqg and ¶ are maximum (labelled as point 1.). This
is due to the biogas producer installing a small Qg2, enough for installing the maximum
Qe2. Furthermore, with ¶ = 0.7 (labelled as point 2.), Qg2 is more convenient than Qe2

and the substitution effect with Qpv2 is evident.
Indeed, as pqg increases, Qg2 is divested and Qpv2 is installed. Furthermore, Qpv2 is
substituted with Qe2 when pqg becomes too expensive.
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Figure 2.19: Sensitivity analysis on Qg (in m3), Qe (in MW), Qpv (in MW), qREC
t (in

MWh), Ãb (in Me), and Ãh (in Me), for different values of pqg (and ¶) in “Rethink
hypothesis (pure Nash equilibrium)”.

Sensitivity analysis on turbine installation cost, pqe Figure 2.20 shows how pqe impacts
on decision variables and profits. As pqe increases, higher values of ¶ are required to make
Qe2 convenient. However, with respect to pqe, Qe2 does not follow a monotonic trend:
with pqe ≥ 0.5479 and ¶ = 0.6, Qe

i = 0 and only Qpv2 is installed. The behaviour of Qe2

and Qpv2 is reflected on self-consumption: in particular, with ¶ = 0.6 self-consumption de-
creases because Qpv2 has an efficiency (represented by µpvt ) lower than Qe2. Furthermore,
when ¶ = 1 and pqe is maximum, Qpv2 = 0 but Qe2 is maximized (and Qg2 decreases
accordingly). This investment causes a decrease in the biogas profit because the revenues
from selling electricity, together with the incentive, do not compensate for the lost rev-
enues from biogas.
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Figure 2.20: Sensitivity analysis on Qg (in m3), Qe (in MW), Qpv (in MW), qREC
t (in

MWh), Ãb (in Me), and Ãh (in Me), for different values of pqe (and ¶) in “Rethink
hypothesis (pure Nash equilibrium)”.

Sensitivity analysis on PV installation cost, ppv By looking at Figure 2.21 one can dif-
ferentiate 2 situations: with ppv ≤ 0.63 and with ppv > 0.63. For the latter, another
distinction is necessary: ¶ ≤ 0.5 and ¶ > 0.5. In the first situation, as ppv increases, Qpv2

decreases. This does not have an impact on self-consumption (in this interval, it is de-
fined by the demand), Qe2, or Qg2. In the second situation, Qpv2 decreases even further,
causing a decrease in self-consumption. In the third situation, Qpv2 is not installed any-
more, Qe2 is maximized (Qg2 decreases accordingly) and it maximizes self-consumption.
Consequently, household profits face a rise due to lower investment costs, while the biogas
producer profits have a shift due to the high investment costs.
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Figure 2.21: Sensitivity analysis on Qg (in m3), Qe (in MW), Qpv (in MW), qREC
t (in

MWh), Ãb (in Me), and Ãh (in Me), for different values of ppv (and ¶) in “Rethink
hypothesis (pure Nash equilibrium)”.

2.4 Conclusions

The models presented in this study allow the examination of the intricate dynamics within
RECs, with a particular focus on the interplay among REC members and the regulatory
influence on decision-making processes.
First, the version explained in Section “Incremental commitment hypothesis” enables the
exploration of how size, and iteration order, impact final decisions. The results charac-
terize a non-pure Nash equilibrium because it is influenced by the iteration sequencing
due to agents’ different market powers.
Second, in consideration of real-world complexities such as diverse market powers and
potential conflicts, the introduction of an upper-level administrator is necessary to ensure
REC’s effectiveness. This administrator, acting as an external decision-maker determining
sharing rules to maximize self-consumption, aligns REC members’ interests and promotes
decision equity.
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Third, in the second version,“Rethink hypothesis (pure Nash equilibrium)”, where smaller
individual agents are considered (still categorized into two main groups), iteration order
becomes irrelevant, and results characterize a pure Nash Equilibrium.
Fourth, the incorporation of at least two rounds aligns with real-world REC implementa-
tions and Italian legislative frameworks. This realistic approach enhances the applicability
of the model to practical scenarios.
Fifth, the model introduces a novel aspect by addressing interactions among heteroge-
neous agents. This approach expands the analysis beyond capacity sizing for single-
technology RECs by incorporating multiple agent types and technology choices, thereby
elucidating internal REC dynamics influenced by both external (regulation, prices, incen-
tives) and internal (peer decisions) factors.
Sixth, by optimizing capacity sizing, over-investments are mitigated, while the joint op-
timization of capacities and sharing rules ensures effective REC operations.
In conclusion, this research provides a fresh perspective on REC implementation strategies
and offers insights into navigating challenges inherent in the implementation process.



52



Chapter 3

Markov Chain Bootstrapping and

Simulation for a Quadrivariate

Stochastic Process in Energy Market

Scenario Generation

3.1 Introduction

A huge amount of interconnected and stochastic factors profoundly influence decision-
making processes in energy markets. Fluctuations in the cost of energy production,
influenced by resource availability, geopolitical tensions, and technological advancements,
significantly impact the profitability of energy market participants. Weather conditions,
including temperature variations, precipitation patterns, and extreme events, exert a pro-
nounced influence on energy demand and supply. Sale prices are influenced, among others,
by geopolitical events, regulatory changes, and market speculation. Finally, demand lev-
els are influenced by economic activity, population growth, technological advancements,
and consumer behaviour. In addition to the stochastic nature of the previous factors, it is
essential to recognize the intricate connections among them. These connections are often
nonlinear, which makes them challenging to accurately model. It is of crucial importance
to be able to deal with the previous factors when making investment and operations de-
cisions. One step in this direction is the availability of (risk management) models and
methods capable of capturing the stochasticity and connection of the decision variables
and parameters.
Cerqueti et al. (2017a) addresses the previous challenges in advancing a methodological
framework that has proven effective in modelling nonlinear dependencies among multiple
sources of uncertainty. This approach, based on the approximation of n-variate stochastic
processes using Markov Chains of order k, offers an accurate and robust framework for
capturing the intricacies of factors relevant to decision-making in energy markets.
According to the works examined in Chapter 1, the literature on resampling procedures
based on multivariate Markov Chains is mainly focused on Markov Chains whose compo-
nents share the same temporal frequency. The present work contributes to the literature
in advancing a method to deal with heterogeneous temporal frequencies in bootstrapping
and simulating n-variate stochastic processes approximated by n-variate Markov Chains.
Indeed, this research applies the bootstrapping and simulation approach of Cerqueti et al.
(2017a) to the quadrivariate stochastic process of gas prices, load, electricity prices, and
solar radiation. A key advantage of leveraging the bootstrapping and simulation ap-
proach of Cerqueti et al. (2017a) lies in its parsimonious parameterization compared to
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alternative approaches. By keeping to a minimum the number of parameters required for
modelling, the bootstrapping and simulation offer computational efficiency without com-
promising accuracy in the generation of scenarios for the quadrivariate stochastic process
under scrutiny.
In particular, while gas prices exhibit a daily frequency, the other three components have
an hourly basis. This temporal frequency heterogeneity adds another layer of complexity
to the bootstrapping and simulation process, requiring tailored approaches to effectively
capture and analyze the stochasticity and connection among variables operating at dif-
ferent temporal frequencies. Indeed, to the goal of using the theory of Markov Chains
to jointly model stochastic processes with heterogeneous temporal frequencies, their time
frequencies must be made homogeneous. Special treatments are advanced to deal with
the daily and hourly frequencies of the four components and make all of them into daily
stochastic processes. The resulting daily quadrivariate stochastic process of gas prices,
load, electricity prices, and solar radiation is simulated based on fitting a Markov Chain
of order 2 to the discretized version of such a stochastic process. Order 2 is chosen to
verify if it contributes to modelling the temporal dependence in the series. The goodness-
of-fit of the present method is tested by calculating several statistics on the simulated
series and by comparing them with the same statistics calculated on the historical se-
ries. In particular, the statistics calculated on the historical series are meant to capture
the autodependencies and interdependencies of the quadrivariate stochastic process. The
comparison of such statistics with the ones calculated on the simulated series is meant
to test the robustness and accuracy of the method in reproducing these intricate connec-
tions.
The chapter outline is the following: in Section 3.2 the model is presented; it is followed
by the methodological issues that are described in Section 3.3; in Section 3.4 all the
transformations and computations are applied; last, the goodness-of-fit results and the
conclusions are presented in Sections 3.5 and 3.6, respectively.

3.2 Model

Let us introduce two types of stochastic processes. Let {X
(N)
d }d∈D = (X1

d , X
2
d , . . . , X

N
d )d∈D

be an N -variate stochastic process taking values in R
N with time index d and D =

{0, . . . , D̄}. Let {X
(M)
i }i∈I = (X1

i , X
2
i , . . . , X

M
i )i∈I be an M -variate stochastic process

taking values in R
M with time index i and I = {0, . . . , Ī}. Let D̄ < Ī, that is, the

cardinality of D is smaller than the cardinality of I, but let D̄ and Ī refer to the same
point in time measured on an absolute scale of times with a given starting point related
to a historical event. Therefore, the N -variate stochastic process is said to have a lower
time frequency than the M -variate stochastic process. Without loss of generality, the
cardinality of I is assumed as a multiple of the cardinality of D, that is |I|

|D| ∈ N \ {0, 1}.

Let us introduce the parameter J = |I|
|D| , that is, the number of times that index i is

related to the same value of index d.
As an example, let us consider a stochastic process with daily gas prices and the stochastic
process of hourly electricity prices and load. Focus on December 2022, D = {0, . . . , 30}
for gas prices and I = {0, . . . , 743} for the electricity prices and load. D̄ = 30 is the end
of December 31, 2022 and Ī = 743 is the end of the 24th hour of December 31, 2022.
Consequently, J = 744

31 = 24, which means that 24 hours (24 values of index i) are related
to each day (each value of index d).
To the goal of using the theory of Markov Chains to jointly model both types of stochastic
processes, their time frequencies must be homogeneous. The necessary step is to modify
the M -variate stochastic process into a stochastic process with the same time-frequency
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of the N -variate stochastic process. To do so, the following transformation is performed:

(X1
i , X

2
i , . . . , X

M
i )i∈I −→ (Y 1

d , Y
2
d , . . . , Y

M
d )d∈D,

where Y 1
d = f1(d,X

1
i ; J), Y

2
d = f2(d,X

2
i ; J), . . . , Y

M
d = fM (d,XM

i ; J). The previous M
functions transform the M -variate stochastic process with index i into a corresponding
stochastic process with index d. As an example, one could adopt the following functions:

f1(d,X
1
i ; J) =

J(d+1)−1
∑

j=Jd

X1
j ,

f2(d,X
2
i ; J) =

1

J

J(d+1)−1
∑

j=Jd

X2
j ,

and so on. The first function calculates the sum of values with index i related to each
value of index d, the second function calculates the average of values with index i related
to the same value of index d, and so on. Choosing f1 for the electricity prices and f2 for
the load, the computations become, respectively:

f1(d,X
1
i ; 24) =

24(d+1)−1
∑

j=24d

X1
j

and

f2(d,X
2
i ; 24) =

1

24

24(d+1)−1
∑

j=24d

X2
j .

The first function transforms the hourly electricity prices into their daily sums and the
second function transforms the hourly load into its daily average. Other functions could
be used for this frequency transformation. After performing this step, the following
(N+M)-variate stochastic process with index d, (X1

d , . . . , X
N
d , Y

1
d , . . . , Y

M
d )d∈D ∈ R

N+M

are obtained. For ease of notation, the stochastic process (X1
d , . . . , X

N
d , Y

1
d , . . . , Y

M
d )d∈D

is labelled as {Zd}d∈D.
To model {Zd}d∈D as a (discrete state) Markov Chain, such a process must be discretized,
that is, the support R of each component of the stochastic process is partitioned. Suppose
to deal with finite partitions. For example, the support of {Z1

d}d∈D could be partitioned
into k ≥ 1 intervals. For ease of notation, each interval of this partition is labelled, and its
members are listed, as s1,1, s1,2, . . . , s1,k. The previous partitioning step into k intervals
is, then, repeated for the other components of {Zd}d∈D.1 A given list of N +M intervals
is called state, each of them chosen from the partition of R adopted for the corresponding
component in {Zd}d∈D. Based on N+M partitions of R into k intervals, the overall num-
ber of states is (N+M)k. For example, the state s1 = (s1,1, . . . , sN,1, sN+1,1, . . . , sN+M,1)
collects the first intervals taken from the N +M partitions of the support of {Zd}d∈D.

Analogously, the state s(N+M)k = (s1,k, . . . , sN,k, sN+1,k, . . . , sN+M,k) collects the k-th
intervals of the same partitions. The previous two states could be labelled as “ex-
treme” states. The other possible states combine the k intervals of each partition in
ways other than those of the extreme states. The index ¿ is introduced to label such
states. Therefore, they can be listed in the set s

¿ = (s1, . . . , s¿ , . . . , s(N+M)k). Fi-
nally, given {Zd}d∈D, its discretized stochastic process {Sd}d∈D whose realizations are

1It is implicitly assumed that all the partitions have the same number, k, of elements. However, the
partitioning step could be generalized to partitions with different cardinalities across the components of
{Zd}d∈D.
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sd = (s1d, . . . , s
N
d , s

N+1
d , . . . , sN+M

d ), with d ∈ D, can be built. Each realization is one of
the previous (N +M)k states.
Now, the transition probability matrix for the discretized stochastic process {Sd}d∈D can
be introduced. Such a matrix is composed of conditional probabilities that, as is usual for
a Markov Chain, measure the likelihood of a state given a state, with the understanding
that the conditioning state is observed one time before the conditioned state. For ex-
ample, to estimate the conditional probability p(s2|s1), one counts how many times the
couple (s1, s2) was observed in two consecutive realizations of {Sd}d∈D, with s2 following
s1. The estimated conditional probability is obtained by dividing the previous count by
the number of times when state s1 was a realization sd, with d ∈ D.
A generalization of such probabilities can be introduced, and speak of conditional proba-
bilities of a state given more than one state. For example, one could estimate p(s1|s1, s2),
understanding that the conditioned state is s1 and the conditioning states are s1 and
s2. The conditioning states are observed two times (s1) and one time (s2) before the
time of observation of the conditioned state, respectively. These kinds of probabilities are
collected in a “rectangular” transition probability matrix and model a Markov Chain of
order 2, given that two consecutive states are needed to determine the following state.
The generalization of this example leads to Markov Chains of order k ≥ 1.
It is important to highlight that the degree of determinism/stochasticity associated with
a Markov Chain of order k depends on the number of transition probabilities equal to 1.
The transition probability matrix is said deterministic if, given any conditioning event (k-
tuples of consecutive states observed in a temporal sequence), there is only one state that
can be observed at the following time. In other words, each row has only one probability
equal to 1 and all the other probabilities are null. The lower the number of transition
probabilities equal to 1, the higher the level of stochasticity associated with the Markov
Chain of order k. To obtain the desired level of determinism/stochasticity, one can act on
the number of intervals that partition R when building the discretized stochastic process
{Sd}d∈D.
In this work, the quadrivariate stochastic process of gas prices, electricity load, electric-
ity prices, and solar radiation is modelled. The processes are labelled as g, ℓ, e, and r,
respectively. In particular, gas prices have a daily frequency and the other processes have
an hourly frequency. This causes the introduction of two indexes, i ∈ I and d ∈ D, to
represent the hourly and daily frequencies, respectively. The quadrivariate stochastic pro-
cess has to undergo a transformation that makes hourly frequencies into daily frequencies.
After this step, the quadrivariate stochastic process is discretized and, finally, modelled
as a Markov Chain of order 2. More details on these steps are included in Section 3.3.

3.3 Methodological issues

3.3.1 Intraday distributions and seasonalities

The estimation of models and their bootstrapping and simulation based on multivariate
series whose components display different frequencies (some with an hourly frequency
and others with a daily frequency) is an aspect of no secondary importance and must be
managed.
There are two points in the bootstrapping and simulation method where this aspect must
be considered. The first point is concerned with the data used for fitting the Markov
Chain of order 2. The second point is concerned with the simulated series.
Regarding the first point, among the possible solutions, hourly series are transformed
into daily ones, thus aligning the series with higher frequency to the series with lower fre-
quency. This inevitably bring to a loss of information when summarizing the hourly data,
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but allows for the fitting of a Markov Chain to the quadrivariate time series of daily data.
The transformation of hourly data into daily data is carried out after having detrended
(Section 3.3.2) and deseasonalized (Section 3.3.3) the hourly data. This transformation
is explained in Section 3.3.3 and affects the three hourly series of residuals corresponding
to load, electricity prices, and solar radiation.
Concerning the second point, after having fit a Markov Chain of order 2 to the quadrivari-
ate series of residuals obtained after detrendization and deseasonalization of the historical
data (Section 3.3.4), the bootstrapping of these residuals and their transformation from
daily into hourly, is performed. This step is needed for the simulation of the 3 time series
with hourly frequency.
The nature of the problem arising when transforming bootstrapped daily residuals into
hourly ones is due to the fact that the clustering of daily residuals into states of the set
s
¿ was performed to fit the Markov Chain of order 2 and was based on the “distance”

among the daily residuals; such a distance is not necessarily preserved between the hourly
residuals corresponding to two daily residuals belonging to the same state s¿ ∈ s

¿ , even
more so in the case of hourly residuals corresponding to daily residuals that do not belong
to the same state. In the end, hourly residuals may exhibit different yearly and/or weekly
seasonalities even in the presence of similar daily residuals (i.e., clustered in the same
state s¿ ∈ s

¿ .)
To provide an example, suppose that the daily load residual of a certain Sunday of April
was bootstrapped and used to simulate the load of a certain Thursday in April. If the
distributions of load residuals of the two days differ, there may be a problem in simulat-
ing one day by using the bootstrapped residual belonging to the other. The problem is
graphically captured in Figure 3.1, which plots the frequency distributions of daily load
residuals of all Thursdays and all Sundays of April in the historical series. It is easy to
see that the two distributions differ. By focusing on their medians, it is easily noticeable
that the median of all Thursdays of April is around 0.9137 and the median of all Sundays
of April is around −0.1054. Therefore, to simulate a Thursday of April by bootstrap-
ping a Sunday of April, small values are extracted from the frequency distribution of all
Sundays of April with a higher probability than it would happen if the frequency distri-
bution of all Thursdays of April was used. The opposite would happen when extracting
high values. In a few words, the simulated Thursday values, with respect to the typical
values observed for a Thursday, would be distorted. The problem affecting daily residuals
may be magnified when using the hourly residuals of the bootstrapped day to obtain
the simulated day values. The graphical display of this problem is in Figure 3.2, where
the frequency distributions of hourly load residuals of 03:00 am of all Sundays and all
Thursdays of April are plotted. The medians of the two distributions are different, the
one of 03:00 am of all Sundays of April is around 0.1304, whereas that of the same hour of
all Thursdays of April is around 0.0250. To simulate 03:00 am of a Thursday of April by
bootstrapping 03:00 am of a Sunday of April, one extracts small values from the frequency
distribution of all Sundays of April with a lower probability than it would happen if one
used the frequency distribution of all Thursdays of April. The opposite would happen
when extracting high values. In addition, the two frequency distributions show another
distorting feature: the hourly residuals of Sundays show a minimum that is higher than
that of the hourly residuals of Thursdays, and vice versa for the maximum. This means
that the simulation of Sundays based on bootstrapped Thursdays can display minimum
values never observed on Sundays and maximum values always lower than those observed
on Sundays.
To address the previous problem, an adjustment in the simulation step is advanced: it fo-
cuses on a specific feature of the bootstrapped daily residual to obtain the simulated daily
residual. This feature is the percentile of the bootstrapped daily residual with respect
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to the frequency distribution of daily residuals of the bootstrapped day. The percentile
is, then, used to extract the simulated daily residual with the same percentile from the
frequency distribution of daily residuals of the simulated day. The two frequency distri-
butions, that of residuals for the bootstrapped day and that of residuals for the simulated
day, include all daily residuals in the historical series that share the same bootstrapped
day (and month) and the same simulated day (and month), respectively. The adjustment
does not assign to the simulated day residuals belonging to the bootstrapped day, but
chooses, among the residuals of the simulated day, the element that shares the same per-
centile that the bootstrapped residual scores with respect to the frequency distribution
of the bootstrapped day. Thus, the bootstrapping is not completely disregarded when
adopting the previous adjustment, since the percentile of the bootstrapped daily residual,
not its very value, is used to choose the simulated daily residual.
All the previous explanations of the present adjustment could be referred to as hourly
residuals of a bootstrapped day with respect to the same hour of a simulated day.
Returning to the example of daily residuals, the distribution of bootstrapped residuals
includes the daily residuals of all Sundays of April of the years considered in the historical
series. Similarly, the distribution of simulated residuals includes the daily residuals of all
Thursdays of April.
A detailed description of the adjustment is included in Section 3.4.4, where it is directly
explained in the context of the application covered by this chapter.

Figure 3.1: Frequency distributions of daily load residuals of all Thursdays and all Sundays
of April in the historical series.

3.3.2 Detrendization

The detrendization allows to remove the trend from historical data. It is not applied to
solar radiation due to the physical characteristics that make it to be considered stationary:
it may have changed over very long periods, but, in the period analyzed, there are no
obvious alterations such as to highlight a trend, which should, therefore, be estimated
and removed. A linear detrendization model for gas prices, electricity prices, and load
is applied. Historical series are labelled as w (see Section 3.4.1 for details about the
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Figure 3.2: Frequency distributions of hourly load residuals of 03:00 am of all Thursdays
and all Sundays of April in the historical series.

sources of such series and their preliminary treatment), whereas the detrended residuals
are labelled as ¸. The linear detrendization model includes coefficients, the intercept ³0

and the slope ³1. These coefficients are estimated through Ordinary Least Squares (OLS)
and their numerical values are shown in Section 3.4.2. The models for the detrendization
are:

ln(wg
d) = ³g

0 + ³g
1 d+ ¸gd, for gas prices, (3.1)

ln(wℓ
i ) = ³ℓ

0 + ³ℓ
1 i+ ¸ℓi , for load, (3.2)

ln(we
i ) = ³e

0 + ³e
1 i+ ¸ei , for electricity prices. (3.3)

Indexes i ∈ I and d ∈ D count the hours and the days covered by the historical series,
respectively. To avoid obtaining negative values in the simulated series (Section 3.4.5),
the detrendization is applied to the logarithmic version of the original values.

3.3.3 Deseasonalization

The deseasonalization removes the seasonality from historical data. The deseasonalized
residuals are labelled as ε. In particular, deseasonalization is applied to detrended his-
torical series. Given the specificity of solar radiation, which has a deterministic cycle
and does not have weekly seasonality, it receives a simplified treatment: because of its
deterministic cycle, only the yearly seasonality is removed. In addition, the residuals of
the hourly series are transformed into daily residuals to be used in the cluster analysis for
the estimation of the Markov Chain transition probability matrix (Section 3.3.4). The
deseasonalization is performed via a linear regression model whose parameters are esti-
mated through OLS and their numerical values are shown in Section 3.4.2. The daily,
weekly and yearly seasonalities are estimated. Before going ahead, the following sets must
be introduced:

• H = {00:00:00, . . . , 23:00:00} ≡ {0, . . . , 23},

• W = {Monday, . . . ,Sunday} ≡ {0, . . . , 6},
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• C = {01-01, . . . , 12-31} ≡ {0, . . . , 364},

• M = {January, . . . ,December} ≡ {0, . . . , 11}.

H includes the hours of a day, W includes the weekdays, C includes the calendar days,
and M includes the months of a year.
The linear regression model includes an intercept to deal with multicollinearity. Mul-
ticollinearity is a typical phenomenon when using dummy explanatory variables and is
related to the fact that explanatory variables can be expressed as a linear combination
of other explanatory variables. Multicollinearity corresponds to a singular/non-invertible
correlation matrix of explanatory variables. If the correlation matrix is not invertible, the
OLS estimates are not unique. This makes the interpretation of the coefficients problem-
atic and can lead to unstable and unreliable predictions. Among the existing methods
to deal with multicollinearity in the case of dummy explanatory variables, the “dummy
variable drop” method is applied. It is also known as the “reference category” method,
which consists in excluding an appropriate number of dummy explanatory variables so
that their influence remains captured by the model intercept.
In this case, given the estimation of daily, weekly and yearly seasonalities, the first hour,
the first weekday, the first calendar day, and the first month has been removed from each
of the previously defined sets, H, W , C, and M , respectively. The sets without their
first element are labelled as H−1, W−1, C−1, and M−1, respectively. The intercept of
each linear regression model is labelled as ³2. It compensates the effects of the “dummy
variable drop”.
In the following, the linear regression models used for the deseasonalization of the de-
trended historical series are advanced.

Gas price residuals The detrended residuals of gas prices, ¸gd, d ∈ D, have a daily fre-
quency, therefore the deseasonalization process focuses on removing weekly seasonalities
and yearly seasonalities on a monthly basis. The linear regression model is:

¸gd = ³g
2 +

∑

j∈W−1

µgjÇ(wd(d)=j) +
∑

j∈M−1

¶gjÇ(m(d)=j) + εgd, d ∈ D. (3.4)

The functions wd(d) and m(d) transform the index d ∈ D into elements of W and
M , respectively: wd(d) transforms the day d ∈ D into the corresponding weekday in
W ; m(d) transforms the day d ∈ D in the corresponding month in M . The dummy
explanatory variable for weekday j ∈W−1 is Ç(wd(d)=j), d ∈ D. Analogously, the dummy
explanatory variable for month j ∈ M−1 is Ç(m(d)=j), d ∈ D. The regression coefficients
µgj and ¶gj capture the weekly seasonalities and the yearly seasonalities on a monthly basis,
respectively. Finally, the intercept is ³g

2. At the outset of such a deseasonalization, the
series of gas price residuals εgd, d ∈ D is obtained.

Load residuals The detrended residuals of load, ¸ℓi , i ∈ I, have an hourly frequency,
therefore the deseasonalization process focuses on removing daily and weekly seasonalities,
as well as yearly seasonalities on a monthly basis. The linear regression model is:

¸ℓi = ³ℓ
2 +

∑

j∈H−1

´ℓjÇ(hr(i)=j) +
∑

j∈W−1

µℓjÇ(wd(i)=j) +
∑

j∈M−1

¶ℓjÇ(m(i)=j) + εℓi , i ∈ I. (3.5)

The functions hr(i), wd(i), and m(i) transform the index i ∈ I into elements of H, W ,
and M , respectively: hr(i) is the hour in a day in H corresponding to hour i ∈ I; wd(i)
is the weekday in W corresponding to hour i ∈ I; m(i) is the month in M corresponding
to hour i ∈ I. The dummy explanatory variable for hour j ∈ H−1 is Ç(hr(i)=j), i ∈ I.
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The dummy explanatory variable for weekday j ∈ W−1 is Ç(wd(i)=j), i ∈ I. The dummy
explanatory variable for month j ∈ M−1 is Ç(m(i)=j), i ∈ I. The regression coefficients

´ℓj , µ
ℓ
j , and ¶ℓj capture the daily and weekly seasonalities and the yearly seasonalities

on a monthly basis, respectively. Finally, the intercept is ³ℓ
2. At the outset of such a

deseasonalization, the series of load residuals εℓi , i ∈ I, is obtained.
Furthermore, the hourly residuals are transformed into daily residuals in the following
way:

εℓd =
∑

d(i)=d

εℓi , d ∈ D, i ∈ I, (3.6)

where the summation condition d(i) = d collects the hourly residuals εℓi such that d(i) = d,
that is, the day of hour i is equal to d. In a few words, the 24 hourly load residuals of
each day in the historical series are summed up.

Electricity price residuals The deseasonalization of electricity prices follows an anal-
ogous treatment to that of load. Here, the linear regression model is:

¸ei = ³e
2 +

∑

j∈H−1

´ejÇ(hr(i)=j) +
∑

j∈W−1

µejÇ(wd(i)=j) +
∑

j∈M−1

¶ejÇ(m(i)=j) + εei , i ∈ I. (3.7)

At the outset of such a deseasonalization, the series of electricity price residuals εei , i ∈ I,
is obtained.
Furthermore, the hourly residuals are transformed into daily residuals in the following
way:

εed =
1

24

∑

d(i)=d

εei , d ∈ D, i ∈ I, (3.8)

where the summation condition d(i) = d collects the hourly residuals εei such that d(i) = d,
that is, the day of hour i is equal to d. In a few words, the 24 hourly electricity price
residuals of each day in the historical series are averaged.

Solar radiation As anticipated, solar radiation faces a simplified treatment, which,
first of all, does not include any detrendization. As for the deseasonalization, first daily
values of solar radiation based on the hourly series are computed:

wr
d =





∑

d(i)=d

wr
i



, d ∈ D, i ∈ I, (3.9)

where the summation condition d(i) = d collects the hourly solar radiations wr
i such that

d(i) = d, that is, the day of hour i is equal to d. In a few words, the 24 hourly solar
radiations of each day in the historical series are added up. Next, the natural logarithm
to the daily solar radiations is applied:

¸rd = ln(wr
d), d ∈ D. (3.10)

The natural logarithm is calculated to avoid obtaining negative values in the simulated
series (Section 3.4.5). It is applied to the daily solar radiations instead of the hourly solar
radiations to avoid the natural logarithm of null values during the night hours.
Finally, a yearly seasonality based on calendar days is estimated, therefore weekly sea-
sonalities and yearly seasonalities on a monthly basis are estimated jointly. The linear
regression model is:

¸rd = ³r
2 +

∑

j∈C−1

ϕrjÇ(cd(d)=j) + εrd, d ∈ D. (3.11)
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The function cd(d) transforms the index d ∈ D into elements of C: cd(d) is the calendar
day in C corresponding to day d ∈ D. The dummy explanatory variable for calendar
day j ∈ C−1 is Ç(cd(d)=j), d ∈ D. The regression coefficients ϕrj capture the yearly
seasonality based on calendar days. Finally, the intercept is ³r

2. At the outset of such a
deseasonalization, the resulting series of solar radiation residuals is εrd, d ∈ D.

3.3.4 Cluster analysis and transition probability matrix

The series of quadruplets of residuals of gas prices, load, electricity prices, and solar
radiation obtained from the corresponding adjusted series wg

d, w
ℓ
i , w

e
i , and wr

i after the
steps explained in Sections 3.3.2 and 3.3.3 is labelled as εd = (εgd, ε

ℓ
d, ε

e
d, ε

r
d), d ∈ D. Such

a series serves as the input of a cluster analysis aimed at partitioning the values of each
component into k adjacent intervals. The output of such a procedure pairs the series of
residuals εd with the series of corresponding states sd = (sgd, s

ℓ
d, s

e
d, s

r
d), d ∈ D. The series

of states is, therefore, the realization of the discretized stochastic process corresponding
to the stochastic process of residuals (whose realization is the series of residuals). The
two stochastic processes were labelled as {Sd}d∈D and {Zd}d∈D, respectively, in Section
2.2. Based on the series of states, a Markov Chain of order 2 is fit by estimating the
corresponding transition probability matrix. The cluster analysis and the estimation of
the transition probability matrix are detailed in Section 3.4.3.

3.4 Application

3.4.1 Data sources and treatment

The historical series of gas prices, electricity prices, electricity load, and solar radiation
are collected over 13 years, from January 1, 2010 to December 31, 2022. Given such a
historical period, the two sets I and D of Section 3.3.2 become, respectively:

• I = {01-01-2010 00:00, . . . , 12-31-2022 23:00} ≡ {0, . . . , 113, 879},

• D = {01-01-2010, . . . , 12-31-2022} ≡ {0, . . . , 4, 744}.

These sets do not include values of February 29 for leap years 2012, 2016, and 2020. Such
an exclusion allows the application of homogeneous treatments, especially to simplify the
simulation step by dealing with a standard yearly length of 365 days. Furthermore, the
set of historical years T is introduced:

• T = {2010, . . . , 2022} ≡ {0, . . . , 12}.

Since each series comes from a different source, a different treatment is required before
detrendization.

Gas prices Gas prices are expressed in e/MWh and have daily frequency. They are
related to the EEX Natural Gas Trading Hub Europe Index recorded by the London Stock
Exchange Group (LSEG).2 These historical data are labelled as ugd, d ∈ D. Because gas
prices are not quoted at some weekends and some holidays and considering that the other
3 series are quoted all the days of a year, the missing dates are filled in with the last
available gas price (forward filling method; for example, Friday, December 23 was copied
on December 24, 25, and 26). The adjusted series is labelled as wg

d.

2Source of data: LSEG Workspace, EEX Natural Gas Trading Hub Europe Index (EEX-NCG-D).
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Load Load is expressed in MWh and has an Italian hourly indexing. It is related to
the Italian day-ahead market total purchases (Italian hourly load) recorded by Gestore
del Mercato Elettrico (GME).3 These historical data are labelled as uℓi , i ∈ I. In the case
of time switches from daylight saving time to standard time, 25 values were encountered;
in the case of time switches in the opposite sense, only 23 values were downloaded. The
series has been adjusted by cutting one hour for days with 25 prices and adding one hour
for days with 23 prices. In particular, the 2:00 am price when switching from daylight
saving time to standard time (last Sunday of October) was removed and the 2:00 am
price when switching from standard time to daylight saving time (last Sunday of March)
was copied to the next hour. Therefore, based on the Italian hourly load available at the
GME website,3 the Italian hourly average load was computed in the following way:

ūℓ =

∑

i∈I u
ℓ
i

113,880
· 1,000 = 33,521,714 (kWh),

where |I| = 113,880. The hypothesis that, on average, a household consumes 2,400 kWh
per year (365 days, or 8,760 hours) is introduced to compute the hourly average load per
household in the following way:

ōℓ =
2,400

8,760
= 0.2739726 (kWh).

The ratio

f ℓ =
ōℓ

ūℓ
= 8.1729889E-09

is a pure number and links the hourly average load per household (ōℓ) with the Italian
hourly average load (ūℓ). The Italian hourly load uℓi , i ∈ I, is multiplied by f ℓ and by
1,000 to obtain

wℓ
i = uℓi · f

ℓ · 1,000 (MWh),

which is the hourly load per household.

Electricity prices Electricity prices are expressed in e/MWh and have Italian hourly
indexing. They are related to the Italian day-ahead market single national price recorded
by GME.4 These historical data are labelled as uei , i ∈ I. Similarly to load, the series was
adjusted by cutting one hour for days with 25 prices and adding one hour for days with
23 prices. The adjusted series is labelled as we

i .

Solar radiation Solar radiation is expressed in Wh/m2 and has Universal local time
reference (UT). It is related to the global horizontal all sky irradiation recorded in Brescia,
Italy, by Copernicus Atmosphere Monitoring Service (CAMS).5 These historical data are
labelled as uri , i ∈ I. The UT time of the historical series was transformed into the
corresponding Italian hourly indexing, and the adjustments for the shifts from daylight
saving time to standard time, and vice versa, described above for load and electricity
prices, were applied. The adjusted series are labelled as wr

i .

3Source of data: Gestore del Mercato Elettrico (GME), https://www.mercatoelettrico.org/It/

download/DatiStorici.aspx, day-ahead market total purchases.
4Source of data: Gestore del Mercato Elettrico (GME), https://www.mercatoelettrico.org/It/

download/DatiStorici.aspx, day-ahead market single national price (PUN, Prezzo Unico Nazionale).
5Source of data: Copernicus Atmosphere Monitoring Service (CAMS), https://ads.atmosphere.

copernicus.eu/cdsapp#!/dataset/cams-solar-radiation-timeseries?tab=overview global horizon-
tal all sky irradiation (GHI), that is, the surface solar downward irradiation integrated over the whole
spectrum available at ground level, on a horizontal surface in Brescia, Italy, at the following coordinates:
latitude 45.5400 (positive North, ISO 19115), longitude 10.2100 (positive East, ISO 19115), altitude
147.00 (m).
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3.4.2 Estimation of the models for trend and seasonalities

A linear regression detrendization model for gas prices, electricity prices, and load was
estimated (Section 3.3.2), and, subsequently, a linear regression deseasonalization model
for all four series (Section 3.3.3). The coefficients of both models were estimated through
OLS and are included in Table 3.1. For illustrative purposes, Figures 3.3, 3.4, and 3.5
show historical logarithmic gas prices, load, and electricity prices with their estimated
trend.
Table 3.1 suggests that the majority of the estimated coefficients are statistically signif-
icant: indeed, a substantial majority (88%) is significant at the 1% level of confidence,
accompanied by a small percentage (2%) of estimated coefficients significant at the 5%
level of confidence. This implies that the linear regression models used for detrending and
deseasonalizing the data effectively capture significant relationships among the data.
However, a non-negligible percentage (10%) of estimated coefficients is not significant at
any of the previous two levels of confidence. In particular, the non-significant coefficients
are related to the deseasonalization of solar radiation (7%) and to the deseasonalization
of gas prices (3%). The previous results indicate that some aspects of the data are not
adequately captured by the model.
At the outset of the previous estimations, the inadequacy of some estimated coefficients
is not worrying: indeed, a further estimation is to be performed, which consists in fitting
a Markov Chain of order 2 (Section 3.3.4). Such a fit takes care of the remaining un-
explained relationships among detrended and deseasonalized residuals, especially of the
intricate autodependencies and interdependencies that inevitably characterize the quadri-
variate stochastic process under scrutiny.

Figure 3.3: Gas prices, in logarithmic form (ln(wg
d)), and their trend over d ∈ D.

3.4.3 Definition of the transition probability matrix

As anticipated in Section 3.3.4, a hierarchical clustering procedure on the residuals of
each series based on Euclidean metric and Ward linkage was applied.
The main steps of this procedure are illustrated, by focusing only on the series of daily
gas price residuals {εg0, . . . , ε

g
4744} for the sake of simplicity. Suppose that the hierarchical
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Table 3.1: Detrendization and deseasonalization coefficients.

Gas Load Electricity Solar
prices (g) (ℓ) prices (e) radiation (r)

³
(·) (†)
0 2.8321∗∗ −1.2797∗∗ 3.8608∗∗

³
(·) (‡)
1 0.0001∗∗ −6.523E-07∗∗ 5.2579E-06∗∗

³
(·) (§)
2 −0.0284 −0.1235∗∗ −0.0249∗ 7.2922∗∗

j µ
g (¶)
j ¶

g (¶)
j ´

ℓ (††)
j µ

ℓ (††)
j ¶

ℓ (††)
j ´

e (‡‡)
j µ

e (‡‡)
j ¶

e (‡‡)
j ϕ

r (§§)
c

1 0.0005 −0.0624 −0.0542∗∗ 0.0480∗∗ 0.0296∗∗ −0.0950∗∗ 0.0261∗∗ −0.0653∗∗ −0.3401∗∗

2 0.0034 −0.0452 −0.0854∗∗ 0.0541∗∗ −0.0264∗∗ −0.1640∗∗ 0.0327∗∗ −0.1089∗∗ −0.2206∗∗

3 0.0039 −0.0661 −0.0998∗∗ 0.0526∗∗ −0.1064∗∗ −0.2152∗∗ 0.0352∗∗ −0.1853∗∗ −0.3440∗∗

4 0.0019 −0.0820 −0.0970∗∗ 0.0426∗∗ −0.0879∗∗ −0.2185∗∗ 0.0269∗∗ −0.1930∗∗ −0.2463∗∗

5 0.0032 −0.0948∗ −0.0628∗∗ −0.1024∗∗ −0.0136∗∗ −0.1477∗∗ −0.0539∗∗ −0.1200∗∗ −0.0198
6 0.0004 −0.0437 0.0347∗∗ −0.2147∗∗ 0.0785∗∗ −0.0053 −0.1735∗∗ 0.0490∗∗ −0.0136
7 0.0336 0.1589∗∗ −0.0737∗∗ 0.1067∗∗ 0.0588∗∗ −0.1724∗∗

8 0.1397∗∗ 0.2615∗∗ −0.0124∗∗ 0.1910∗∗ 0.0957∗∗ −0.2900∗∗

9 0.1841∗∗ 0.3002∗∗ −0.0448∗∗ 0.1867∗∗ 0.0545∗∗ −0.1837∗∗

10 0.1741∗∗ 0.3040∗∗ −0.0243∗∗ 0.1371∗∗ 0.0560∗∗ −0.1370∗∗

11 0.1741∗∗ 0.3020∗∗ −0.0333∗∗ 0.0965∗∗ 0.1045∗∗ −0.0343
12 0.2670∗∗ 0.0105 0.0070
13 0.2475∗∗ −0.0459∗∗ −0.2341∗∗

14 0.2554∗∗ −0.0188 −0.0354
15 0.2622∗∗ 0.0396∗∗ 0.0322
16 0.2769∗∗ 0.1153∗∗ −0.0189
17 0.2987∗∗ 0.1978∗∗ 0.1219∗∗

18 0.3147∗∗ 0.2623∗∗ 0.0525
19 0.3239∗∗ 0.3177∗∗ 0.0312
20 0.3037∗∗ 0.3040∗∗ −0.0087
21 0.2535∗∗ 0.2260∗∗ 0.2310∗∗

22 0.1689∗∗ 0.1344∗∗ 0.2899∗∗

23 0.0782∗∗ 0.0431∗∗ 0.2775∗∗

...
...

364 −0.0366(¶¶)

∗ Significant at 5% level of confidence.
∗∗ Significant at 1% level of confidence.
(†) The coefficient is the intercept of detrendization as estimated in Eqs. (3.1), (3.2), and (3.3).
(‡) The coefficient is the slope of detrendization as estimated in Eqs. (3.1), (3.2), and (3.3).
(§) The coefficient is the intercept of deseasonalization as estimated in Eqs. (3.4), (3.5), (3.7), and (3.11).
(¶) The coefficients are the slopes of deseasonalization as estimated in Eq. (3.4).
(††) The coefficients are the slopes of deseasonalization as estimated in Eq. (3.5).
(‡‡) The coefficients are the slopes of deseasonalization as estimated in Eq. (3.7).
(§§) The coefficients are the slopes of deseasonalization as estimated in Eq. (3.11).
(¶¶) The coefficients for solar radiation from j = 24 to j = 363 are available upon request
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Figure 3.4: Load, in logarithmic form (ln(wℓ
i )), and its trend over i ∈ I.

Figure 3.5: Electricity prices, in logarithmic form (ln(we
i )), and their trend over i ∈ I.

clustering procedure determines the following k adjacent intervals of the domain:

[mind∈D εgd, ε
g,1), [εg,1, εg,2), . . . , [εg,k,maxd∈D εgd].

The previous k intervals are called states and are labelled, respectively, as:

sg,1, sg,2, . . . , sg,k.

Therefore, the series {sg0, . . . , s
g
4744} can be built, where each element in the list can be

one of the possible k labels. The other three series (electricity prices, load, and solar
radiation) can be treated similarly.
After completing such an assignment of states, the series of residuals εd = (εgd, ε

ℓ
d, ε

e
d, ε

r
d)

is paired with the series of corresponding states sd = (sgd, s
ℓ
d, s

e
d, s

r
d), d ∈ D.
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The hierarchical clustering procedure can be visualized through the dendrogram. It is a
representation of the clusters of residuals obtained from a hierarchical partitioning starting
from the singleton partition (where all residuals are separated, i.e., each cluster includes
only one residual) and ending with the all-comprehensive partition (where all residuals
populate a unique cluster).
Each of the four dendrograms is cut at a common level of k = k̄ intervals, thus considering
the partitions of each series with the same number of intervals. As a result, the number
of (distinct) states that can be observed in the series sd, d ∈ D, is equal to k̄4. Such
(distinct) states can be listed in the set s

¿ = (s1, . . . , s¿ , . . . , sk̄
4

).
Finally, a Markov Chain of order 2 is fit to the series sd, d ∈ D. In particular, let us
count how many times any couple of states in s

¿ evolved in any state s¿ in the same set,
based on the triplets of consecutive states observed in set sd, with d ∈ D, with the couple
of states in the first two positions in the triplet. The transition probability of any state
s¿ ∈ s

¿ , conditioned on any couple of states in the same set, is obtained by dividing the
previous count by the number of times when that couple of states was observed in two
consecutive states in sd, with d ∈ D (see Section 2.2). For example, suppose that the
couple of states

(s1, s2), s1, s2 ∈ s
¿

with s1 = (sg,1, sl,2, se,1, sr,5) and s2 = (sg,3, sl,1, se,4, sr,2), was observed seven times,
based on the couples of consecutive states in sd, d ∈ D. In addition, suppose that the
state following the previous couple was observed to be:

• s1 = (sg,1, sl,2, se,1, sr,5) one time,

• s2 = (sg,3, sl,1, se,4, sr,2) four times,

• s3 = (sg,1, sl,2, se,1, sr,6) one time,

• s4 = (sg,1, sl,3, se,1, sr,6) one time.

The transition probabilities of the previous four states, based on the couple of states
(s1, s2) at time lags 2 and 1, were, respectively:

• P (s1|s1, s2) = 0.1429,

• P (s2|s1, s2) = 0.5714,

• P (s3|s1, s2) = 0.1429,

• P (s4|s1, s2) = 0.1429.

Based on the estimated transition probability matrix, 365 consecutive states were boot-
strapped. The chosen length was meant to reproduce a whole year of daily data. Such
a series is labelled as s̃c, c ∈ C.6 For ease of understanding, consider time c̄ ∈ C. Also.
suppose that the bootstrapped states at times c̄− 1 and c̄− 2 are s̃c̄−1 and s̃c̄−2, respec-
tively. The choice of the bootstrapped state s̃c̄ is based on the transition probability of the
bootstrapped couple of consecutive states (s̃c̄−2, s̃c̄−1). The choice of the bootstrapped
residuals, ε̃c = (ε̃gc , ε̃ℓc, ε̃

e
c, ε̃

r
c), c ∈ C, corresponding to s̃c, c ∈ C, is now detailed. Consider

the bootstrapped state s̃c̄ =
(

s̃gc̄ , s̃
ℓ
c̄, s̃

e
c̄, s̃

r
c̄

)

, as obtained through the transition probability
matrix. Suppose that s̃gc̄ = sg,1, that is the bootstrapped interval for gas price residuals
at time c̄ is the first interval in the partition of this series, sg,1. Analogously, suppose that

6Each bootstrapped series is initialized by picking up the states observed on January 1 and January
2 of each year in the historical sample; those states were assigned to times c = 0 and c = 1, respectively.
The following states of the bootstrapped series, that is those at time c = 2, . . . , 364, were obtained based
on the transition probability matrix.
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the bootstrapped intervals for the other three components are s̃ℓc̄ = sℓ,3, s̃ec̄ = se,2, and
s̃rc̄ = sr,1, respectively the third, the second, and the first interval of the corresponding
partitions. Therefore, the bootstrapped state at time c̄ is (sg,1, sℓ,3, se,2, sr,1). Such a
state includes “days” of the series of residuals characterized by values of the four compo-
nents jointly belonging to the previous respective intervals. The choice of the quadruplet
of residuals to be associated with the bootstrapped state is based on a discrete uniform
probability distribution applied to all quadruplets of residuals belonging to that state.
The extracted quadruplet is the element at time c̄ of the bootstrapped series of residuals
and is labeled as ε̃c̄ = (ε̃gc̄ , ε̃

ℓ
c̄, ε̃

e
c̄, ε̃

r
c̄).

At the end of Section 2.2, the fact that the degree of determinism/stochasticity associated
with a Markov Chain of order k depends on the number of transition probabilities equal
to 1 was highlighted. In particular, the lower the number of rows populated by transition
probabilities equal to 1, the higher the level of stochasticity associated with the Markov
Chain of order k. Such a level can be reached by acting on the number of intervals that
partition R for each component when building the discretized stochastic process {Sd}d∈D.
In this case, the support of each component (gas prices, load, electricity prices, and solar
radiation) was partitioned into 5 intervals, which resulted in an estimated transition
probability matrix with 2, 012 rows and 293 columns.7 Such a matrix displays 63.17% of
its 2, 012 rows only populated by a unique transition probability (equal to 1).

3.4.4 Intraday distributions and seasonality

The bootstrapped series of residuals, obtained through the steps explained in Sections
3.4.1, 3.4.2, and 3.4.3, are now manipulated to obtain the simulated series. The manip-
ulation consists in adding back the seasonality and the trend to such residuals. These
steps are illustrated in Section 3.4.5. However, an important issue needs to be faced
before adding back seasonality and trend: the adjustment of daily series of bootstrapped
residuals to make them become hourly series of residuals in the case of three components
of the quadrivariate stochastic process: load, electricity prices, and solar radiation. In-
deed, the bootstrapped residuals are daily, but the frequency of the simulated series is
hourly in the previous three cases. Formulas for the transformation of hourly residuals
into daily residuals were advanced in the deseasonalization step in Section 3.3.3 (Eqs.
(3.6), (3.8), and (3.9)). The transformation allowed to fit a Markov Chain of order 2 to
the daily residuals of all components (Section 3.3.4). Now, the hourly residuals for each
bootstrapped daily residual of load, solar radiation, and electricity prices must be chosen
(Section 3.3.1 motivates why such a choice was performed). In the following, the choice
for the three aforementioned components is detailed.

Load Let us begin by considering load and let us focus on the bootstrapped load residual
for day c ∈ C of simulation, ε̃ℓc. This residual belongs to the bootstrapped state of day
c, s̃ℓc, and was chosen based on a discrete uniform probability distribution applied to all
residuals in that state (Section 3.4.3). The bootstrapped residual ε̃ℓc is one of the residuals
of load εℓd, d ∈ D, obtained through Eq. (3.6). First, all residuals of the historical
series sharing the same weekday, wd(d), and month, m(d), of εℓd = ε̃ℓc, are collected in
a set, which is labelled as εℓd,all. Recalling the example in Section 3.3.1, the previous
set collects all Sundays of April in the historical series. Given that 13 years of load are

7The rows and columns of the theoretical transition probability matrix are much more than those
of the estimated one: indeed, if one counts the possible number of states by combining the 5 intervals
partitioning the support of the 4 components, he obtains 5

4
= 625 states; moreover, if he combines these

states with themselves, he gets 625
2
= 390, 625 couples of consecutive states, that is, the conditioning

events of the Markov Chain of order 2; finally, the theoretical transition probability matrix includes
390, 625 rows and 625 columns.
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being considered, the previous set includes a minimum of 4 × 13 = 52 to a maximum of
5× 13 = 65 Sundays of April (April can include 4 or 5 Sundays). Second, the percentile
of εℓd with respect to the elements of εℓd,all is computed and such a number is called

εℓd,perc. Third, another set of load residuals by collecting all residuals of the historical
series sharing the same weekday and month of day c ∈ C that is being simulated, that
is, wd(d) = wd(c), m(d) = m(c), d ∈ D is built and is labelled as εℓc,all. Recalling the
example in Section 3.3.1, the previous set collects the load residuals of all Thursdays
of April in the historical series. Finally, the element of εℓc,all with percentile εℓd,perc is

computed and is called ε̆ℓc. After this treatment, ε̃ℓc was transformed into ε̆ℓc by keeping
the percentile of ε̃ℓc = εℓd in set εℓd,all equal to the percentile of ε̆ℓc in set εℓc,all.

Solar radiation Let us focus on the bootstrapped solar radiation residual for calendar
day c ∈ C of the simulation, ε̃rc. This residual belongs to the bootstrapped state of
day c, s̃rc, and was chosen based on a discrete uniform probability distribution applied
to all residuals in that state (Section 3.4.3). The bootstrapped residual ε̃rc is one of the
residuals of solar radiation εrd, d ∈ D, obtained through Eq. (3.9). First, all residuals of
the historical series sharing the same calendar day, cd(d), of εrd = ε̃rc are collected in a set
labelled as εrd,all. For example, suppose that one wants to simulate December 20 based
on a bootstrapped residual of June 15. Thus, the previous set collects all June 15 in the
historical series. Given that 13 years of solar radiation are being considered, the previous
set includes 13 such days. Second, the percentile of εrd with respect to the elements of
εrd,all is calculated and is called εrd,perc. Third, another set of solar radiation residuals is
built, by collecting all residuals of the historical series sharing the same day c ∈ C that is
being simulated, that is, cd(d) = c, d ∈ D; such a set is labelled as εrc,all. To proceed with
the example, the previous set collects the solar radiation residuals of all December 20 in
the historical series. Finally, the element of εrc,all with percentile εrd,perc was calculated
and is called ε̆rc.

Electricity prices Finally, the third component, electricity prices, did not undergo the
aforementioned treatments for load and solar radiation.

After the previous treatments, the bootstrapped series of residuals, that is, ε̃c = (ε̃gc , ε̃ℓc, ε̃
e
c, ε̃

r
c),

becomes ε̇c = (ε̃gc , ε̆ℓc, ε̃
e
c, ε̆

r
c), c ∈ C.

3.4.5 Reseasonalization and retrendization

Given the residuals ε̇c = (ε̃gc , ε̆ℓc, ε̃
e
c, ε̆

r
c), c ∈ C, obtained in the previous section, now one

can simulate all four series with a reseasonalization and a retrendization of such residuals.
Remember that simulations are going to be one year long. Each simulated year is com-
prised of 365 days, which are identified by the elements of set C = {0, . . . , 364}.

Simulated gas prices The simulation step takes the series of gas price residuals ε̃gc ,
c ∈ C, and adds back the seasonalities and the trend based on the estimated coefficients in
Table 3.1, finally exponentiates the reseasonalized and retrended residuals. Seasonalities
and trends are added back following Eq. (3.4) and (3.1), respectively. The reseasonaliza-
tion proceeds as in the following:

˜̧gc = ³g
2 +

∑

j∈W−1

µgjÇ(wd(c)=j) +
∑

j∈M−1

¶gjÇ(m(c)=j) + ε̃gc , c ∈ C,
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where wd(c) is the weekday in W−1 corresponding to calendar day c and m(c) is the
month in M−1 corresponding to calendar day c.
The retrendization and the exponentiation proceed as in the following:

w̃g
c = e³

g
0
+³

g
1
dc+˜̧gc , c ∈ C,

where
dc = |D|+y · 365 + c,

- |D|= 4, 745 is the cardinality of set D,
- y = simulated year − 2023.
The previous equation transforms c ∈ C into the corresponding d ∈ D. This “renumber-
ing” of the simulated day is needed to take into account the fact that the simulation is
one year of data long, but the detrendization was performed on the whole sample of 13
years.
To give an example of such a transformation, let us assume that the simulated year is
2010. The first simulated day is identified with c = 0. Then, the calculation of d0 needed
for the retrendization gives d0 = 4, 745 + (2010− 2023) · 365 + 0 = 0, which is the value
that the simulated day had in D when detrending. Let us make another example: if the
year to simulate is 2022, then January 1 is associated with c = 0 and corresponds to
d0 = 4, 745 + (2022 − 2023) · 365 + 0 = 4, 745 − 365 + 0 = 4, 380 in D; likewise, the last
day of 2022 is associated with c = 364 and corresponds to d364 = 4, 380+ 364 = 4, 744 in
D.
Even more, the computation of y allows to simulate both years in the original sample (2010
to 2022) and years outside this sample. For example, if one wants to simulate year 2023,
which is the first year after the last year of the original sample, then the first day of 2023,
associated with c = 0, corresponds to d0 = 4, 745 + (2023− 2023) · 365 + 0 = 4, 745; this
number identifies January 1, 2023 and, although it does not belong to D, it immediately
follows the last number in D, 4, 745, that corresponds to December 31, 2022.

Simulated load Let us now proceed to simulate hourly load. First of all, the simulation
step replaces each daily load residual ε̆ℓc with its 24 hourly residuals ε̆ℓh,c, h ∈ H, c ∈ C.
Then, the seasonalities and trend based on the estimated coefficients in Table 3.1 are
added back. Finally, the resulting values are exponentiated. Seasonalities and trend are
added back following Eqs. (3.5) and (3.2), respectively. The reseasonalization proceeds
as in the following:

˜̧ℓh,c = ³ℓ
2 +

∑

j∈H−1

´ℓjÇ(hr(q)=j)

∑

j∈W−1

µℓjÇ(wd(q)=j) +
∑

j∈M−1

¶ℓjÇ(m(q)=j) + ε̆ℓh,c, h ∈ H, c ∈ C,

where q = c · 24 + h counts the hour to be simulated. As an example, if one wants to
simulate the last hour of the third calendar day, he refers to h = 23 and c = 2. Therefore,
11:00 pm of the third calendar day is the 71st hour of that simulated year and is computed
as q = c · 24 + h = 2 · 24 + 23 = 71. Consequently, the functions hr(q), wd(q), and m(q)
determine the hour in H−1, the weekday in W−1, and the month in M−1 of the simulated
year, respectively. The retrendization and the exponentiation proceed as in the following:

w̃ℓ
h,c = e³

ℓ
0
+³ℓ

1
ih,c+˜̧ℓ

h,c , h ∈ H, c ∈ C,

where
ih,c = |I|+ y · 8, 760 + c · 24 + h,

- |I|= 113, 880 is the cardinality of set I,
- y = simulated year − 2023.
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Similarly to gas prices simulation, the previous equation transforms c ∈ C into the cor-
responding i ∈ I. To give an example of such a transformation, let us assume that the
simulated year is 2010. The second simulated hour (h = 1) of the first day (c = 0)
corresponds to i = 1 in I. Then, the calculation of i1,0 needed for the retrendization
gives i1,0 = 113, 880 + (2010 − 2023) · 8, 760 + 1 = 1, which is the value that the sim-
ulated hour had in I when detrending. Let us provide another example: if the chosen
simulated year is 2022, then 10:00 am (h = 11) of January 1 (c = 0) is associated
with i11,0 = 113, 880 + (2022 − 2023) · 8, 760 + 11 = 113, 880 − 8, 760 + 11 = 105, 131
in I; likewise, the last hour (h = 23) of the last day (c = 364) of 2022 is i23,364 =
113, 880− 8, 760 + 364 · 24 + 23 = 113, 879 in I.

Simulated electricity prices The simulation of electricity prices is similar to that of
load. To simulate hourly values, each daily residual ε̃ec is replaced with its 24 hourly
residuals, ε̃eh,c, h ∈ H, c ∈ C. Then, the seasonalities and trend based on the estimated
coefficients in Table 3.1 are added back. Finally, the resulting values are exponentiated.
Seasonalities and trends are added back based on Eqs. (3.7) and (3.3), respectively. The
reseasonalization proceeds as in the following:

˜̧eh,c = ³e
2 +

∑

j∈H−1

´ejÇ(hr(q)=j)

∑

j∈W−1

µejÇ(wd(q)=j) +
∑

j∈M−1

¶ejÇ(m(q)=j) + ε̃eh,c, h ∈ H, c ∈ C,

with q = c · 24 + h.
The retrendization proceeds as in the following:

w̃e
h,c = e³

e
0
+³e

1
ih,c+˜̧e

h,c , h ∈ H, c ∈ C,

where
ih,c = |I|+ y · 8760 + c · 24 + h.

Simulated solar radiation The simulation of hourly solar radiation only includes
the reseasonalization of daily residuals based on the coefficients in Table 3.1. Section
3.3.2 explains the reason why a detrendization was not performed and, consequently, a
retrendization is not needed now. The reseasonalization proceeds as in the following:

˜̧rc = ³r
2 +

∑

j∈C−1

ϕrjÇ(cd(c)=j) + ε̆rc, c ∈ C,

where cd(c) is the calendar day in C−1 corresponding to calendar day c. To the purpose of
simulating hourly values, daily simulated residuals ˜̧rc are exponentiated in the following
way:

w̃r
h,c =

w̄r
h,c

∑

h∈H w̄r
h,c

e˜̧
r
c , h ∈ H, c ∈ C, (3.12)

where

w̄r
h,c =

1

|T |

∑

i∈I

wr
iÇ(hr(i)=h,cd(i)=c), h ∈ H, c ∈ C. (3.13)

The computations hr(i) = h and cd(i) = c transform i ∈ I into the corresponding hour
h ∈ H and calendar day c ∈ C, respectively. The cardinality of set T , |T |, is equal to 13.
The exponentiation in Eq. (3.12) also includes the multiplication of each value by weight
w̄r
h,c, h ∈ H, c ∈ C, which is the average of solar radiations historically observed for hour

h in calendar day c. The reason for such weighting is to avoid the use of exponentiated
(positive) values for simulating solar radiation at night hours when typically null values
are realised. Each weight, based on the historical series, is normalized by the sum of
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weights per calendar day c ∈ C.
For example, if h = 2 and c = 89, then one is considering 02:00 am of March 30. Eq.
(3.13) calculates w̄r

2,89 as the sum of historical solar radiations at that hour of that day;
given the 13 years of data, there are 13 such observations (Ç(hr(i)=2,cd(i)=89) = 1 for 13
values of i and is equal to 0 for the other values of i). These observations are averaged
by dividing them by |T |= 13.

3.5 Results

Following the approach adopted in Cerqueti et al. (2017a) to appreciate the quality of the
bootstrapping and simulation method, several statistics on the simulated series are calcu-
lated and compared with the same statistics calculated on the historical series. In partic-
ular, the historical series wg

d, w
ℓ
i , w

e
i , w

r
i , d ∈ D, i ∈ I (Section 3.4.1) and the simulated

series w̃g
c , w̃ℓ

h,c, w̃
e
h,c, w̃

r
h,c, c ∈ C, h ∈ H (Section 3.4.5) were considered. The univari-

ate statistics of mean, standard deviation, skewness, kurtosis, minimum, and maximum
to minimally describe such series were computed (Section 3.5.1). In addition, univari-
ate auto-regressive models to the previous series were fit. The univariate autoregression
coefficients of such models to highlight auto-dependencies in the series were calculated
(Section 3.5.2). The previous univariate statistics and autoregression coefficients allowed
to appreciate the goodness-of-fit of this method for each component of the quadrivariate
stochastic process under scrutiny. Since this method is powerful in capturing interdepen-
dencies among series, a test aimed at detecting such interdependencies in the simulated
series and comparing them with the corresponding interdependencies in the historical
series (Section 3.5.3) was devised. In particular, a quadrivariate auto-regressive model to
the series of simulated residuals, ε̇c = (ε̃gc , ε̆ℓc, ε̃

e
c, ε̆

r
c), c ∈ C, as opposed to the series of

historical residuals, εd = (εgd, ε
ℓ
d, ε

e
d, ε

r
d), d ∈ D, was fit. Since vector auto-regressive mod-

els require series to be stationary, the previous test was based on the series of residuals,
which do not include trend and seasonality.
20 annual series of 365 days per each year of the observation period (2010-2022) were
simulated. Since the observation period includes 13 years, 13 × 20 = 260 series were
obtained. Each series starts on January 1 of each year in the observation period (foot-
note 6 at page 67 provides a brief explanation of the initialization values needed for the
bootstrapping step). In addition, the set D of time indexes of historical days was par-
titioned into 13 elements: D1, . . . , D13. Each set includes 365 consecutive time index
values: D1 = {0, . . . , 364}, D2 = {365, . . . , 729}, . . . , D13 = {4,380, . . . , 4,744}. The pre-
vious partition corresponds to cutting the daily historical series into 13 annual historical
series, each beginning on January 1.
Given the 260 simulated series, on the one side, and the 13 annual historical series, on
the other side, two frequency distributions for each univariate statistic and autoregres-
sion coefficient could be built: a distribution of values calculated on the simulated series
(simulated distribution) and a distribution of values calculated on the annual histori-
cal series (historical distribution). It should be expected that an acceptable simulation
comes with distributions of the aforementioned univariate statistics and autoregression
coefficients that very much resemble the companion distributions based on the annual
historical series. In the case of the quadrivariate auto-regressive model, the distributions
of autoregression coefficients estimated on simulated residuals were compared with the
analogous distributions estimated on historical residuals.
The previous presentation is suitable for the daily series of historical and simulated resid-
uals of all 4 components and for the daily series of gas prices. In the cases of load,
electricity prices, and solar radiation, the statistics on hourly series covering 365 days
were calculated. Consequently, the set I of time indexes of historical hours was par-
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titioned into 13 components: I1 = {0, . . . , 8,759}, I2 = {8,760, . . . , 17,519}, . . . , I13 =
{105,120, . . . , 113,879}. The previous partition corresponds to cutting the hourly histor-
ical series into 13 annual historical series, each beginning at 00:00 on January 1.

3.5.1 Univariate statistics: mean, standard deviation, skewness, kur-
tosis, minimum, and maximum

Figures 3.6, 3.7, 3.8, and 3.9 show the relative frequency distributions of mean, stan-
dard deviation, skewness, kurtosis, minimum, and maximum calculated on the 13 annual
historical series (historical distribution, on the left) and on the 260 simulated series (simu-
lated distribution, on the right). The simulations were based on a Markov Chain of order
2 characterized by 5 states for all components of the quadrivariate stochastic process.
As a general comment for all 4 components, the simulated distributions are centred to
the historical distributions, with almost all simulated values included in the range of his-
torical values. In addition, is important to observe that such a result was obtained based
on a Markov Chain of order 2 with 5 states for each component, which corresponds to a
level of determinism of 63.17% (end of Section 3.4.3). It may seem that such a high level
of determinism could produce the centered distributions observed in the aforementioned
figures but, on the other side, the level of stochasticity, which is the complement to 100%
of the previous level of determinism, is not negligible at all. Such a high level of stochas-
ticity would be a tough obstacle to many simulation methods, except for this one. The
power of this method is tested not only through the previous univariate statistics, but
also with statistics that capture further aspects of the simulated series, especially their
intricate autodependencies and interdependencies (Sections 3.5.2 and 3.5.3).

Figure 3.6: Gas prices - Relative frequency distributions of mean, standard deviation
(std), skewness (skew), kurtosis (kurt), minimum (min), and maximum (max) calculated
on 13 annual historical series (historical distribution, on the left) and on the 260 simulated
series (simulated distribution, on the right).

Figure 3.10 shows the univariate statistics of load before applying the adjustment dis-
cussed in Sections 3.3.1 and 3.4.4. Without this adjustment, it is clear that there is a
misalignment between the historical and simulated distributions of skewness, kurtosis,
and minimum. In particular, the simulated series show a negative skewness, opposite
to the annual historical series. This is reflected in the minimum values reached by the
simulated series, which are lower than the minima reached by the historical series. To
reinforce the previous observation, the simulated distribution is less platykurtic compared
to the historical one: indeed, the former has thinner but longer tails than the latter, thus
allowing for lower minima in the former distribution compared to the minima in the latter
distribution.
Similar observations can be carried out for solar radiation, which is the other compo-
nent of the quadrivariate stochastic process undergoing the aforementioned adjustment.
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Figure 3.7: Load - Relative frequency distributions of mean, standard deviation (std),
skewness (skew), kurtosis (kurt), minimum (min), and maximum (max) calculated on
13 annual historical series (historical distribution, on the left) and on the 260 simulated
series (simulated distribution, on the right).

Figure 3.8: Electricity prices - Relative frequency distributions of mean, standard de-
viation (std), skewness (skew), kurtosis (kurt), minimum (min), and maximum (max)
calculated on 13 annual historical series (historical distribution, on the left) and on the
260 simulated series (simulated distribution, on the right).

Figure 3.9: Solar radiation - Relative frequency distributions of mean, standard deviation
(std), skewness (skew), kurtosis (kurt), minimum (min), and maximum (max) calculated
on 13 annual historical series (historical distribution, on the left) and on the 260 simulated
series (simulated distribution, on the right).

Figure 3.11 shows that, without this adjustment, there is a misalignment between the
historical and simulated distributions of skewness, kurtosis, and maximum. In particular,
the simulated series show more positive skewness and kurtosis than the annual historical
series. This misalignment causes the simulated series to reach maximum values that are
well beyond the maxima reached by the historical series.
The method advanced in this work takes into account the previous distortions through the
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adjustments explained in Sections 3.3.1 and 3.4.4. Figures 3.10 and 3.11 witness the seri-
ous flaw of this method in the absence of such an adjustment. It should also be mentioned
that Figures 3.10 and 3.11 show the results of simulations based on a Markov Chain of
order 2 characterized by a number of states for each component well above the 5 states
adopted for the simulation including the adjustment. Indeed, 30 states for gas prices, 25
states for load, and 15 states for both electricity prices and solar radiation were adopted,
which meant a much higher level of determinism (99.58%) in the transition probability
matrix than the one associated with using 5 states per each component (63.17%). The
power of this adjustment is, thus, reinforced by the fact that the misalignment shown in
Figures 3.10 and 3.11, based on a high level of determinism (99.58%), is solved even for
a much lower level of determinism (63.17%), as it is shown in Figures 3.7 and 3.9.

Figure 3.10: Load - Relative frequency distributions of mean, standard deviation (std),
skewness (skew), kurtosis (kurt), minimum (min), and maximum (max) calculated on
13 annual historical series (historical distribution, on the left) and on the 260 simulated
series (simulated distribution, on the right), with simulations based on a Markov Chain
of order 2 characterized by 30 states for gas prices, 25 states for load, and 15 states for
both electricity prices and solar radiation. These results were obtained before applying
the adjustment discussed in Sections 3.3.1 and 3.4.4.

Figure 3.11: Solar radiation - Relative frequency distributions of mean, standard deviation
(std), skewness (skew), kurtosis (kurt), minimum (min), and maximum (max) calculated
on 13 annual historical series (historical distribution, on the left) and on the 260 simulated
series (simulated distribution, on the right), with simulations based on a Markov Chain
of order 2 characterized by 30 states for gas prices, 25 states for load, and 15 states for
both electricity prices and solar radiation. These results were obtained before applying
the adjustment discussed in Sections 3.3.1 and 3.4.4.
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3.5.2 Univariate autoregression coefficients

The present section deals with the estimates of univariate autoregression coefficients. An-
other test of the goodness-of-fit of this bootstrapping and simulation consists in comparing
the historical and simulated distributions of estimated coefficients obtained by fitting a
univariate auto-regressive model to both sets of series. The auto-regressive model is fit
only to the hourly series of load, electricity prices, and solar radiation (the daily gas prices
are excluded from this analysis, although they are considered in the daily quadrivariate
auto-regressive model of Section 3.5.3).
Each univariate auto-regressive model includes 5 lags: 1 hour, 2 hours, 1 day, 2 days, and
7 days. More explicitly, the three models are specified by the following equations:

• load:

w̃ℓ
h,c = aℓ0 + aℓ1 w̃

ℓ
h−1,c + aℓ2 w̃

ℓ
h−2,c

+ aℓ3 w̃
ℓ
h,c−1 + aℓ4 w̃

ℓ
h,c−2 + aℓ5 w̃

ℓ
h,c−7 + εℓh,c; (3.14)

• electricity prices:

w̃e
h,c = ae0 + ae1 w̃

e
h−1,c + ae2 w̃

e
h−2,c

+ ae3 w̃
e
h,c−1 + ae4 w̃

e
h,c−2 + ae5 w̃

e
h,c−7 + εeh,c; (3.15)

• solar radiation:

w̃r
h,c = ar0 + ar1 w̃

r
h−1,c + ar2 w̃

r
h−2,c

+ ar3 w̃
r
h,c−1 + ar4 w̃

r
h,c−2 + ar5 w̃

r
h,c−7 + εrh,c. (3.16)

The model implies the estimation of 6 univariate autoregression coefficients for each equa-

tion, a total of 18 coefficients: a
(·)
0 , a

(·)
1 , a

(·)
2 , a

(·)
3 , a

(·)
4 , a

(·)
5 , with (·) = ℓ, e, r.8

The previous equations refer to simulated series and were applied to estimate the coeffi-
cients for the 260 simulated series of this test. The notation used to refer to lagged values
of a simulated series is easily understood: given the value of a simulated series indexed
by the pair “h, c”, c ∈ C, h ∈ H, the values of that series at time lags of 1 hour, 2 hours,
1 day, 2 days, and 7 days are indexed, respectively, by “h − 1, c”, “h − 2, c”, “h, c − 1”,
“h, c− 2”, and “h, c− 7”.
Mutatis mutandis, the previous equations could be written also for the 13 annual histor-
ical series used as a benchmark. In this case, i ∈ I instead of c ∈ C and h ∈ H should
be used. Moreover, keep in mind that the time index i should cover one year of hourly
data, similarly to the hours covered by the combined time indexes c and h used for the
simulated series. The series covering the observation period of 13 years is cut into 13
annual historical series based on the partition of I listed at the beginning of the present
section. Each resulting series begins on January 1. Finally, a univariate auto-regressive
model is fit to each annual historical series. It is observed that, since the annual historical
series are indexed by i, i ∈ Ij , j = 1, . . . , 13, the time lags of 1 hour, 2 hours, 1 day, 2
days, and 7 days are, respectively, “i− 1”, “i− 2”, “i− 24”, “i− 48”, and “i− 168”.
Based on Figures 3.12, 3.13, and 3.14, is easily noticeable that the simulated distributions
and the historical distributions share similar ranges of values for almost all univariate co-
efficients in Eqs. (3.14), (3.15), and (3.16). The method successfully captures the intricate
autodependencies affecting the scrutinized series even with a high level of stochasticity
(36.83%, end of Section 3.4.3) characterizing the fit Markov Chain of order 2 with 5 states
for each component.

8The coefficients are available upon request.
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Figure 3.12: Load - Relative frequency distributions of autoregression coefficients aℓ0, a
ℓ
1,

aℓ2, a
ℓ
3, a

ℓ
4, and aℓ5 in Eq. (3.14) based on 13 annual historical years (historical distribution,

on the left) and on 260 simulated series (simulated distribution, on the right).

Figure 3.13: Electricity prices - Relative frequency distributions of autoregression co-
efficients ae0, a

e
1, a

e
2, a

e
3, a

e
4, and ae5 in Eq. (3.15) based on 13 annual historical years

(historical distribution, on the left) and on 260 simulated series (simulated distribution,
on the right).

Figure 3.14: Solar radiation - Relative frequency distributions of autoregression coef-
ficients ar0, a

r
1, a

r
2, a

r
3, a

r
4, and ar5 in Eq. (3.16) based on 13 annual historical years

(historical distribution, on the left) and on 260 simulated series (simulated distribution,
on the right).

3.5.3 Coefficients of a quadrivariate auto-regressive model

The quadrivariate auto-regressive model tested for interdependencies among residuals
includes their lagged values at 1 up to 7 days. The model was fit to the daily series
of historical residuals εd = (εgd, ε

ℓ
d, ε

e
d, ε

r
d), d ∈ D, and to the daily series of simulated

residuals ε̇c = (ε̃gc , ε̆ℓc, ε̃
e
c, ε̆

r
c), c ∈ C. Since the auto-regressive model assumes that the
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time series are stationary, it was applied to the series of residuals, that is, the series
obtained after detrendization and deseasonalization. The four equations included in the
model, referred to as simulated residuals, are:

• gas prices:

ε̃gc = bg0
+ bg1 ε̃

g
c−1 + bg2 ε̆

ℓ
c−1 + bg3 ε̃

e
c−1 + bg4 ε̆

r
c−1

+ bg5 ε̃
g
c−2 + bg6 ε̆

ℓ
c−2 + bg7 ε̃

e
c−2 + bg8 ε̆

r
c−2

+ . . .

+ bg25 ε̃
g
c−7 + bg26 ε̆

ℓ
c−7 + bg27 ε̃

e
c−7 + bg28 ε̆

r
c−7

+ Èg
c , (3.17)

• load:

ε̆ℓc = bℓ0

+ bℓ1 ε̃
g
c−1 + bℓ2 ε̆

ℓ
c−1 + bℓ3 ε̃

e
c−1 + bℓ4 ε̆

r
c−1

+ bℓ5 ε̃
g
c−2 + bℓ5 ε̆

ℓ
c−2 + bℓ7 ε̃

e
c−2 + bℓ8 ε̆

r
c−2

+ . . .

+ bℓ25 ε̃
g
c−7 + bℓ26 ε̆

ℓ
c−7 + bℓ27 ε̃

e
c−7 + bℓ28 ε̆

r
c−7

+ Èℓ
c, (3.18)

• electricity prices:

ε̃ec = be0

+ be1 ε̃
g
c−1 + be2 ε̆

ℓ
c−1 + be3 ε̃

e
c−1 + be4 ε̆

r
c−1

+ be5 ε̃
g
c−2 + be6 ε̆

ℓ
c−2 + be7 ε̃

e
c−2 + be8 ε̆

r
c−2

+ . . .

+ be25 ε̃
g
c−7 + be26 ε̆

ℓ
c−7 + be27 ε̃

e
c−7 + be28 ε̆

r
c−7

+ Èe
c , (3.19)

• solar radiation:

ε̆rc = br0

+ br1 ε̃
g
c−1 + br2 ε̆

ℓ
c−1 + br3 ε̃

e
c−1 + br4 ε̆

r
c−1

+ br5 ε̃
g
c−2 + br6 ε̆

ℓ
c−2 + br7 ε̃

e
c−2 + br8 ε̆

r
c−2

+ . . .

+ br25 ε̃
g
c−7 + br26 ε̆

ℓ
c−7 + br27 ε̃

e
c−7 + br28 ε̆

r
c−7

+ Èr
c . (3.20)

Eqs. (3.17), (3.18), (3.19), and (3.20) show that the each time series at calendar day
c are regressed against all series at time lags from 1 (the calendar day before c, c − 1)
up to 7 (seven calendar days before c, c − 7). The model also includes intercepts for
each equation. The autoregression coefficients to be estimated are bg0, . . . , b

g
28, b

ℓ
0, . . . , b

ℓ
28,

be0, . . . , b
e
28, and br0, . . . , b

r
28, a total of 116 coefficients. The quadrivariate auto-regressive

model matrix equation is:

vc = b0 +B1 vc−1 +B2 vc−2 + . . .+B7 vc−7 +ψc,
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where

vc =









ε̃gc
ε̆ℓc
ε̃ec
ε̆rc









, vc−1 =









ε̃gc−1

ε̆ℓc−1

ε̃ec−1

ε̆rc−1









, vc−2 =









ε̃gc−2

ε̆ℓc−2

ε̃ec−2

ε̆rc−2









, . . . , vc−7 =









ε̃gc−7

ε̆ℓc−7

ε̃ec−7

ε̆rc−7









,

b0 =









bg0
bℓ0
be0
br0









, B1 =









bg1 bg2 bg3 bg4
bℓ1 bℓ2 bℓ3 bℓ4
be1 be2 be3 be4
br1 br2 br3 br4









, B2 =









bg5 bg6 bg7 bg8
bℓ5 bℓ6 bℓ7 bℓ8
be5 be6 be7 be8
br5 br6 br7 br8









, . . . , and

B7 =









bg25 bg26 bg27 bg28
bℓ25 bℓ26 bℓ27 bℓ28
be25 be26 be27 be28
br25 br26 br27 br28









.

Mutatis mutandis, the previous equations could be written also for the 13 annual histor-
ical series of residuals used as a benchmark and obtained by partitioning the historical
series of residuals into 13 segments according to the partition of D listed at the beginning
of the present section.
Some coefficients to show the performance of this method were selected, precisely, those
in matrices b0, B1, B2, and B7, to test the dependence between today’s values and the
values of yesterday, two days ago, and one week ago. The historical and simulated dis-
tributions associated with the previous coefficients are shown in Figures 3.15, 3.16, 3.17,
and 3.18. Each figure shows the distributions of 13 coefficients, precisely the coefficients
that share the same row in the previous matrices. For example, Figure 3.15 shows the
distributions associated with bg0, b

g
1, . . . , b

g
4, b

g
5, . . . , b

g
8, b

g
25, . . . b

g
28, that is, the 13 coefficients

that are shown in the first row of b0, B1, B2, and B7.
Figures 3.15, 3.16, 3.17, and 3.18, show that, for almost all coefficients, the simulated dis-
tributions and the historical distributions of daily residuals share similar ranges of values.
The method successfully captures the intricate autodependencies and interdependencies
affecting the scrutinized series of daily residuals even with a high level of stochasticity
(36.83%, end of Section 3.4.3) characterizing the fit Markov Chain of order 2 with 5 states
for each component.
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Figure 3.15: Gas prices - Relative frequency distributions of the intercept and the 12
coefficients at lags 1, 2, and 7 in Eq. (3.17) based on 13 annual historical years (historical
distribution, on the left) and on 260 simulated series (simulated distribution, on the right).
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Figure 3.16: Load - Relative frequency distributions of the intercept and the 12 coefficients
at lags 1, 2, and 7 in Eq. (3.18) based on 13 annual historical years (historical distribution,
on the left) and on 260 simulated series (simulated distribution, on the right).
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Figure 3.17: Electricity prices - Relative frequency distributions of the intercept and
the 12 coefficients at lags 1, 2, and 7 in Eq. (3.19) based on 13 annual historical years
(historical distribution, on the left) and on 260 simulated series (simulated distribution,
on the right).
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Figure 3.18: Solar radiation - Relative frequency distributions of the intercept and the 12
coefficients at lags 1, 2, and 7 in Eq. (3.20) based on 13 annual historical years (historical
distribution, on the left) and on 260 simulated series (simulated distribution, on the right).
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3.5.4 Kupiec test

In addition to the previous tests, results have been further analyzed by implementing
the Kupiec “Proportion of Failures” (POF) test. The POF test evaluates the accuracy
of a “Value-at-Risk” (VaR) model by computing the “Likelihood Ratio” (LR). The LR
equation

LR = −2

[

ln
(

(1− p)n−xpx
)

− ln
(

(1− p̂)n−xp̂x
)

]

, (3.21)

with

• p = 1− VaR confidence level,

• n = number of observations,

• x = number of VaR failures,

• p̂ = x
n
,

measures if the observed frequency of VaR failures (p̂) is consistent with the expected rate
(p). This test assumes the Null Hypothesis (H0) that the expected and observed rates of
failures coincide,

H0 : p = p̂

The LR is distributed following a Ç2 distribution with 1 degree of freedom. By setting a
value ³, it is possible to determine the critical value of this distribution.
The comparison between the critical value of a Ç2 distribution and the LR allows to reject
or accept the null hypothesis according to the following rule:

Decision:

{

reject H0 if LR > critical value,

accept H0 if LR ≤ critical value.

The POF test has been applied to the daily series of historical residuals εd = (εgd, ε
ℓ
d, ε

e
d, ε

r
d),

d ∈ D, and to the daily series of simulated residuals ε̇c = (ε̃gc , ε̆ℓc, ε̃
e
c, ε̆

r
c), c ∈ C. The VaR

confidence level and the ³ have been set to 98% and 0.05, respectively. The results are
collected in Table 3.2. With ³ = 0.05 the critical value of the LR Ç2 distribution with 1
degree of freedom is 3.8414. By comparing the LR values with this critical value (3.8414)
only load and radiation accept the null hypothesis H0, while gas prices and electricity
prices reject the H0.

3.6 Conclusions

After a meticulous analysis and a rigorous comparison between historical data and sim-
ulated series, several significant conclusions regarding the modelling of energy market
dynamics can be drawn.
First, the method proposed by Cerqueti et al. (2017a) proves instrumental in captur-
ing nonlinear dependencies among multiple sources of uncertainty in energy markets.
Through a comprehensive statistical analysis, the power of this approach in bootstrap-
ping and simulating series that closely align with historical data across various key statis-
tics, including mean, standard deviation, skewness, kurtosis, minimum, and maximum
was proved. Moreover, the analysis of univariate autoregression coefficients and inter-
dependencies among residuals further corroborates the validity of the present approach
in capturing complex autodependencies and interrelationships among energy market fac-
tors.
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Series Variable Value

Gas prices p 0.020
p̂ 0.034
n 4, 745
x 163
LR 41.14

Load p 0.020
p̂ 0.018
n 4, 745
x 86
LR 0.879

Electricity prices p 0.020
p̂ 0.032
n 4, 745
x 152
LR 29.70

Radiation p 0.020
p̂ 0.019
n 4, 745
x 92
LR 0.091

Table 3.2: Kupiec test results with VaR confidence level = 98%

Furthermore, this study highlights the importance of carefully managing the heteroge-
neous temporal frequencies among the components of the quadrivariate stochastic pro-
cess. By implementing tailored adjustments, which are being advanced in this study, and
extending it with respect to Cerqueti et al. (2017a), the method proves able to successfully
manage different temporal frequencies, effectively capturing daily and hourly dynamics
with high fidelity. The lack of adjustments would lead to a misalignment between his-
torical and simulated series, which was particularly evident for load and solar radiation.
Importantly, these adjustments prove effective even with a lower level of determinism in
the bootstrapping step, reinforcing the versatility and reliability of the present approach
across different levels of stochasticity.
In conclusion, the present study underscores the robustness and accuracy of the proposed
methodology in bootstrapping and simulating energy market dynamics, offering valuable
insights for stakeholders in navigating uncertainties and connections of multiple factors
under scrutiny in decision-making processes. The choice of 5 states for each component of
the quadrivariate stochastic process and of 2 time lags does not result from an optimization
process but it is a choice done after several trials. Therefore, it is necessary to change
the combination of time lags and states to improve the misalignments. Moving forward,
further refinements and extensions of this approach could enhance its applicability across
diverse energy market contexts, facilitating more informed and effective strategies for risk
management of investment and operations decisions.
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Appendix A

List of symbols

This appendix provides a comprehensive list of all the symbols used throughout the thesis,
along with their descriptions and units where applicable.

Table A.1: Symbols Used in Chapter 2

Symbol Description Unit

i Index to count the number of biogas producers = {1, . . . , Ī}

I Total number of biogas producers N

j Index to count the number of households = {1, . . . , J̄}

J Total number of households N

t Time index ∈ T = {1, . . . , T̄}

¶ Incentive sharing rule %

µpvt Solar radiation efficiency %

Ãbi Profit function of i-th biogas producer e

Ãhj Profit function of j-th household e

dbt Biogas producer load MWh

dht Household load MWh

db1t,i Load of the i-th biogas producer in round 1 MWh

dh1t,j Load of the j-th household in round 1 MWh

db1.pret,i Load before the i-th biogas producer in round 1 MWh

dh1.pret,j Load before the j-th household in round 1 MWh

db2t,i Load of the i-th biogas producer in round 2 MWh

dh2t,j Load of the j-th household in round 2 MWh

db2.pret,i Load before the i-th biogas producer in round 2 MWh

dh2.pret,j Load before the j-th household in round 2 MWh

Bb Biogas producer budget Me

Bb
i Individual i-th biogas producer budget Me

Bh Household budget Me

Continued on next page
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Table A.1: Symbols Used in Chapter 2 (Continued)

Symbol Description Unit

Bh
j Individual j-th household budget Me

Cg Fixedd installation cost Me

k Retailer profit margin e/MWh

me Ratio that converts m3 into MWh MWh/m3

pme
t Electricity price on the spot market e/MWh

pgt Gas market price e/m3

pqe Unit cost of 1 MW gas-to-electricity turbine Me/MW

pqg Unit cost of 1 m3 biogidestor plant Me/m3

ppv Unit cost of 1 MW PV plant Me/MW

Qe
i Turbine capacity installed by the i-th biogas producer MW

Qe1
i Turbine capacity installed by the i-th biogas

producer in round 1
MW

Qe1.pre
i Turbine capacity installed before the i-th

biogas producer in round 1
MW

Qe2
i Turbine capacity installed by the i-th biogas

producer in round 2
MW

Qe2.pre
i Turbine capacity installed before the i-th

biogas producer in round 2
MW

qet,i Electricity produced from the turbine of the i-th biogas
producer

MWh

qe1t,i Electricity produced from the turbine of the i-th biogas
producer in round 1

MWh

qe1.pret,i Electricity produced from the turbine before the i-th biogas
producer in round 1

MWh

qe2t,i Electricity produced from the turbine of the i-th biogas
producer in round 2

MWh

qe2.pret,i Electricity produced from the turbine before the i-th biogas
producer in round 2

MWh

Qg
i Biodigestor capacity installed by the i-th biogas producer m3

Qg1
i Biodigestor capacity installed by the i-th biogas producer

in round 1
m3

Qg1.pre
i Biodigestor capacity installed before the i-th biogas

producer in round 1
m3

Qg2
i Biodigestor capacity installed by the i-th biogas producer

in round 2
m3

Qg2.pre
i Biodigestor capacity installed before the i-th

biogas producer in round 2
m3

qgt,i Biogas produced by the biodigestor of the i-th
biogas producer

m3

Continued on next page
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Table A.1: Symbols Used in Chapter 2 (Continued)

Symbol Description Unit

qg1t,i Biogas produced by the biodigestor of the i-th
biogas producer in round 1

m3

qg1.pret,i Biogas produced by the biodigestor before the
i-th biogas producer in round 1

m3

qg2t,i Biogas produced by the biodigestor of the i-th
biogas producer in round 2

m3

qg2.pret,i Biogas produced by the biodigestor before the
i-th biogas producer in round 2

m3

Qpv
j PV plant capacity installed by the j-th household MW

Qpv1
j PV plant capacity installed by the j-th

household in round 1
MW

Qpv1.pre
j PV plant capacity installed before the j-th

household in round 1
MW

Qpv2
j PV plant capacity installed by the j-th

household in round 2
MW

Qpv2.pre
j PV plant capacity installed before the j-th

household in round 2
MW

qpvt,j Electricity produced by the PV plant of the
j-th household

MWh

qpv1t,j Electricity produced by the PV plant of the
j-th household in round 1

MWh

qpv1.pret,j Electricity produced by the PV plant before
the j-th household in round 1

MWh

qpv2t,j Electricity produced by the PV plant of the
j-th household in round 2

MWh

qpv2.pret,j Electricity produced by the PV plant before
the j-th household in round 2

MWh

qREC
t Self-consumption MWh

qREC1
t,i Self-consumption from the i-th biogas producer

in round 1
MWh

qREC1
t,j Self-consumption from the j-th household in

round 1
MWh

qREC1.pre
t,i Self-consumption before the i-th biogas

producer in round 1
MWh

qREC1.pre
t,j Self-consumption before the j-th household in

round 1
MWh

qREC2
t,i Self-consumption from the i-th biogas producer

in round 2
MWh

Continued on next page
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Table A.1: Symbols Used in Chapter 2 (Continued)

Symbol Description Unit

qREC2
t,j Self-consumption from the j-th household in

round 2
MWh

qREC2.pre
t,i Self-consumption before the i-th biogas

producer in round 2
MWh

qREC2.pre
t,j Self-consumption before the j-th household in

round 2
MWh

z Incentive on self-consumption e/KWh

Table A.2: Symbols Used in Chapter 3

Symbol Description Unit

{X
(N)
d }d∈D N -variate stochastic process with time index d R

N

d Daily time index, d ∈ D, d = {1, . . . , D̄}

{X
(M)
i }i∈I M -variate stochastic process with time index i R

M

i Hourly time index, i ∈ D, i = {1, . . . , Ī}

J Number of times that index i is related to the
same value of index d

{Zd}d∈D (N +M)-variate stochastic process with index d R
N+M

k Number of intervals to partition the support R of each
component of {Zd}d∈D

N

(N +M)k Overall number of states based on N +M partitions of R
into k intervals

s
¿ Set of (N +M)k states = (s1, . . . , s¿ , . . . , s(N+M)k)

{Sd}d∈D Discretized stochastic = (s1d, . . . , s
N
d , s

N+1
d , . . . , sN+M

d )

p(s2|s1) Conditional probability which counts how many times the
couple (s1, s2) was observed in two consecutive realizations
of {Sd}d∈D, with s2 following s1

g Gas prices label

ℓ Load label

e Electricity prices label

r Solar radiation label

H Set of hours of a day
= {00:00:00, . . . , 23:00:00} ≡ {0, . . . , 23}

Continued on next page
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Table A.2: Symbols Used in Chapter 3 (Continued)

Symbol Description Unit

W Set of weekdays
= {Monday, . . . ,Sunday} ≡ {0, . . . , 6}

C Set of calendar days
= {01-01, . . . , 12-31} ≡ {0, . . . , 364}

M Set of months of a year
= {January, . . . ,December} ≡ {0, . . . , 11}

t Set of historical years
= {2010, . . . , 2022} ≡ {0, . . . , 12}

H−1 Set of hours of a day without the first one to
deal with collinearity
= {01:00:00, . . . , 23:00:00} ≡ {1, . . . , 23}

W−1 Set of weekdays without the first one to deal
with collinearity
= {Tuesday, . . . ,Sunday} ≡ {1, . . . , 6}

C−1 Set of calendar days without the first one to
deal with collinearity
= {01-02, . . . , 12-31} ≡ {1, . . . , 364}

M−1 Set of months of a year without the first one to
deal with collinearity
= {February, . . . ,December} ≡ {1, . . . , 11}

d(i) = d Condition to collect the hourly residuals such
that the day of hour i is equal to d

Ç Dummy explanatory variable

hr(i) = j Functions to transform the index i into elements of H

wd(i) = j Functions to transform the index i into elements of W

wd(d) = j Functions to transform the index d into elements of W

m(i) = j Functions to transform the index i into elements of M

m(d) = j Functions to transform the index d into elements of M

cd(d) = j Functions to transform the index d into elements of C

ugd Original daily historical gas prices e/MWh

uℓi Original hourly historical load (Italian hourly load) MWh

ūℓ Italian hourly average load kWh

ōℓ Hourly average load per household kWh

f ℓ Ratio that links ōℓ with the ūℓ

uei Original hourly historical electricity prices e/MWh

uri Original hourly historical solar radiation Wh/m2

wg
d Adjusted daily historical gas prices e/MWh

Continued on next page
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Table A.2: Symbols Used in Chapter 3 (Continued)

Symbol Description Unit

wℓ
i Adjusted hourly historical load MWh

we
i Adjusted hourly historical electricity prices e/MWh

wr
i Adjusted hourly historical solar radiation Wh/m2

¸gd Daily gas prices residuals after detrendization

³g
0 Intercept of detrendization for gas prices

³g
1 Slope of detrendization for gas prices

¸ℓi Hourly load residuals after detrendization

³ℓ
0 Intercept of detrendization for load

³ℓ
1 Slope of detrendization for load

¸ei Hourly electricity prices residuals after detrendization

³e
0 Intercept of detrendization for electricity prices

³e
1 Slope of detrendization for electricity prices

εgd Daily gas prices residuals after detrendization
and deseasonalization

³g
2 Intercept of deseasonalization for gas prices

µgj Regression coefficient that captures the weekly
seasonality with j ∈W−1

¶gj Regression coefficient that captures the yearly
seasonality on a monthly basis with j ∈M−1

εℓi Hourly load residuals after detrendization and
deseasonalization

³ℓ
2 Intercept of deseasonalization for load

´ℓj Regression coefficient that captures the daily
seasonality with j ∈ H−1

µℓj Regression coefficient that captures the weekly
seasonality with j ∈W−1

¶ℓj Regression coefficient that captures the yearly
seasonality on a monthly basis with j ∈M−1

εℓd Daily load residuals after detrendization and
deseasonalization by summing hourly values for
each day d ∈ D

εei Electricity prices residuals after detrendization
and deseasonalization

³e
2 Intercept of deseasonalization for electricity prices

´ej Regression coefficient that captures the daily
seasonality with j ∈ H−1

Continued on next page
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Table A.2: Symbols Used in Chapter 3 (Continued)

Symbol Description Unit

µej Regression coefficient that captures the weekly
seasonality with j ∈W−1

¶ej Regression coefficient that captures the yearly
seasonality on a monthly basis with j ∈M−1

εed Daily electricity price residuals after
detrendization and deseasonalization by
averaging hourly values for each day d ∈ D

εrd Daily solar radiation residuals after
deseasonalization

³r
2 Intercept of deseasonalization for solar

radiation

ϕrj Regression coefficient that captures the yearly
seasonality based on calendar days with
j ∈ C−1

s̃c̄ Series of bootstrapped states at time c̄ ∈ C, =
(

s̃gc̄ , s̃
ℓ
c̄, s̃

e
c̄, s̃

r
c̄

)

εd Series of quadruplets of residuals of gas prices,
load, electricity prices and solar radiation
= (εgd, ε

ℓ
d, ε

e
d, ε

r
d)

ε̃c Bootstrapped series of residuals before

treatments = (ε̃gc , ε̃ℓc, ε̃
e
c, ε̃

r
c)

ε̇c Bootstrapped series of residuals after

treatments = (ε̃gc , ε̆ℓc, ε̃
e
c, ε̆

r
c)

ε̃gc Daily gas prices simulated residuals before
reseasonalization and retrendization

ε̆ℓc Daily load simulated residuals before
reseasonalization and retrendization

ε̆ℓh,c Hourly load simulated residuals before reseasonalization

and retrendization associated to ε̆ℓc

ε̃e Daily electricity prices simulated residuals
before reseasonalization and retrendization

ε̆r Daily solar radiation simulated residuals before
reseasonalization and retrendization

q Function to count the hours to be simulated

˜̧gc Daily gas prices simulated residuals after
reseasonalization

˜̧ℓh,c Hourly load simulated residuals after
reseasonalization

Continued on next page



98

Table A.2: Symbols Used in Chapter 3 (Continued)

Symbol Description Unit

˜̧eh,c Hourly electricity prices simulated residuals
after reseasonalization

˜̧rc Daily solar radiation simulated residuals after
reseasonalization

w̃g
c Daily gas prices simulated series after

reseasonalization and retrendization

w̃ℓ
h,c Hourly load simulated series after

reseasonalization and retrendization

w̃e
h,c Hourly electricity prices simulated series after

reseasonalization and retrendization

w̄r
h,c Hourly average solar radiation historically

observed for hour h in calendar day c

w̃r
h,c Hourly solar radiation simulated series after

reseasonalization

a
(†)
(·) Univariate autoregression coefficients, with

(†) = 0, . . . , 5 and (·) = ℓ, e, r

b
(†)
(·) VAR autoregression coefficients, with

(†) = 0, . . . , 28 and (·) = g, ℓ, e, r

p Expected rate in Kupiec test %

p̂ Observed rate in Kupiec test %

n Number of observations in Kupiec test N

x Number of failures in Kupiec test N

³ Threshold to determine the critical value of the
LR distributed according to a Ç2 distribution

R

LR Likelihood ratio in Kupiec test R


