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Abstract
Transcriptomics and metabolomics, two biological research fields that need large numbers of zebrafish embryos, require
the removal of unfertilised or nonviable zebrafish embryos. Biologists routinely conduct the tedious, error-prone, and time-
consuming manual sorting of embryos. We suggest a novel approach that combines deep learning and microfluidics for
automated sorting to overcome this difficulty. To determine the developmental stage and viability of zebrafish eggs, we
trained an optimized YOLOv5 model with 95.8% accuracy and a processing speed of 10.6 ms per frame, classifying them as
dead, unfertilised, or alive. The eggs are contained in traps on a microfluidic chip using micro-pumps. After that, the deep
learning system can identify and automatically sort the eggs according to their viability by positioning this chip on an XYZ
motorized stage. The sorting experiment was conducted in two modes: without feedback and with feedback while using the
dead egg position. The first one had a sorting success rate of 90% as opposed to 97.9% for the feedback mode with 3 seconds
required for each dead egg. This automated approach provides a precise and efficient way to handle a large number of zebrafish
embryos while also greatly reducing the workload associated with manual sorting. The success rates attained demonstrate the
usefulness and effectiveness of our suggested methodology, opening new avenues for biological research involving accurate
embryo selection.
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1 Introduction

Research often involves the use of patient cells or tissue sam-
ples. However, to determine whether a mutation in a specific
gene can cause a patient’s symptoms, experimental animal
models are often necessary. The zebrafish (Danio rerio) has
become an important model organism for developmental
genetic studies and drug discovery. Research based on the
zebrafish has led to newadvances in numerousmedical fields.
The analysis of Zebrafish mutants is crucial in the study
of hematopoietic, cardiovascular, and vascular disorders, as
well as tumours, neurodegenerative, and neuromuscular dis-
eases such as Alzheimer’s syndrome, Huntington’s disease,
and Duchenne muscular dystrophy. These mutants are used
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to simulate human pathologies to study effective pharmaco-
logical therapies.

However, handling zebrafish embryos manually is a time-
consuming and tedious task due to their small size and
the large quantity of samples required in experiments [1].
Therefore, there is a critical need for a fast and auto-
mated screeningmethod to improve working conditions with
zebrafish embryos and larvae. Retrieving and sorting eggs
after a spawning event and removing the unfertilised or
dead ones is crucial for maintaining optimal growth con-
ditions and promoting the well-being of growing embryos.
Contaminated hatching water can stimulate bacterial prolif-
eration among the eggs, which secrete enzymes to degrade
the eggshells, leading to premature hatching and death. Fungi
spores can develop and spread over dead eggs, eventu-
ally contaminating healthy eggs and compromising embryo
development. Therefore, it is crucial to remove unfertilised
eggs or dead embryos to prevent batch contamination, as
spoiled eggs can serve as a growth medium for deadly
microorganisms [2]. Including unfertilised eggs or premature
dead embryos in a cohort of tested embryos can lead to impre-
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cise results, as unfertilised eggs will increase the death rate
following a screening assay. Therefore, it is recommended to
perform early sorting of embryos not only to prevent batch
contamination but also to exclude any irrelevant samples
from the experiment [3]. The current state of technology for
automatedmicroscopic imaging of zebrafish and interpreting
these images is well-established. However, automating the
sample preparation process offers further opportunities for
unique developments [4]. To assess the trend in the cell prepa-
ration domain, powerful strategies to sort cells utilizing high
spatial and often time-resolved data have emerged. These
strategies are collectively called Image-Based Cell Sorting
(IBCS) [5]. These IBCS platforms address the major limi-
tations of commonly used cell sorting technologies, such as
Fluorescence-Activated Cell Sorting (FACS) and Magnetic
Activated Cell Sorting (MACS). These are themost commer-
cialized methods for sorting cells. With the advent of the Big
Data Era and the development of Deep Learning (DL), image
detection is becoming themainstream for single cell analysis.
DL techniques improve the detection procedure compared to
conventional techniques by reducing computational time and
detecting irregular shapes, which are common among biolog-
ical cells [6].

The researchers have developed a classification software
that Support Vector Machines (SVM) able to differentiate
between wild-type embryos and mutant individuals with an
accuracy of 79-99% depending on the test and system [7].
Furthermore, a sorting systembasedonConvolutionalNeural
Networks (CNN) is capable of sorting and placing individ-
ual zebrafish eggs in multiwell plates [8]. A fully automated
pipetting sorting system based on template-matching algo-
rithms made it possible to classify zebrafish eggs and sort
them with a robot [9]. Several machine learning approaches
are available for reliable detection results but Deep Neu-
ral Networks (DNN) is the most popular system exploited
so far for zebrafish egg detection [6, 10, 11]. EmbryoNet
is a software based on a DNN model to identify zebrafish
embryo signaling mutants in an unbiased manner [12]. A
system based on Inception v3 is capable of detecting and
performingmicroinjection on zebrafish eggs [13]. Amachine
vision-guided robot based on YOLOv4 is developed for fully
automated embryonic detection and microinjection [14].

Microfluidics-based approaches are still in their early
stages but are of significant importance. Once the design of
microfluidic chips is established, their fabrication becomes
economically viable, potentially reducing the price barrier
for widespread adoption. Lab-On-Chip (LOC) represents a
new direction in investigative tools that may miniaturize and
revolutionize research in toxicity and physiology in vivo [15].

Microfluidics, with its ability to accommodate a vari-
ety of actuation techniques including flow control based

approaches, is an interesting non-contact method for manip-
ulating cells [16]. However, there is currently no guarantee
that the field will not damage or adversely affect the tar-
get cell when using external actuation such as electrical or
optical methods. It ensures that the cells remain in the liq-
uid medium throughout the process by using only the force
of the fluid on the cells. It is possible to create chambers
for cell immobilisation with the ability to design microflu-
idic chips. The combination of microfluidic approaches with
DL has the potential to automate the sorting and selection
of zebrafish embryos, replacing the manual sample manip-
ulation currently performed by researchers [4]. Microfluidic
chip has been used with zebrafish embryos but more for cul-
ture, perfusion systems [17, 18].

Although zebrafish egg classification systems are well-
established in the literature, there has been little attention and
explorationgiven to fast andprecise zebrafish egg sorting sys-
tems.. In this paper, we propose fully automated microfluidic
and DL based robotic sorting of zebrafish embryos.

2 Materials andmethods

2.1 System overview

A DL model for zebrafish allows for the sorting of dead or
unfertilised embryos and viable embryos of stage 1 or other
stages of development. The process consists in two phases:
the phase of filling the traps of the microfluidic chip with
zebrafish embryos followed by the robotic sorting phase.

2.1.1 Filling process

In this phase, zebrafish embryos, measuring approximately
1 mm, are carefully positioned within cavities to stream-
line and prepare for subsequent sorting procedures. The
eggs are propelled through the water within the microfluidic
chip’s channel by pumps (pump 1 and pump 2) and subse-
quently captured in purpose-built traps. (see Fig. 1). Bartels
mikrotechnik’s piezoelectric mp6-liq micropumps were used
to transport the embryos into the chip. The flowrate of the
pumps is controlled by a microcontroller and a driver pro-
vided by the pumps manufacturer. By acting on the voltage
and the frequency of the driver we can modify the flowrate
as shown in Fig. 2.

A single egg can fill a trap, and the others can slide over it
to pass through the other traps (see Fig. 3). This method has
been shown to be effective in many previous works [19].
The immobilization of zebrafish embryos in microfluidic
devices relies on the forces generated by fluid flow within
the microchannel. The trapping cavity holds the embryos in
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Fig. 1 PHASE 1 : (A) Overview of the filling system, egg are injected with the pipette from the top , (B) Close look-up to the chip when eggs are
injected. Reprinted with permission from IEEE, Copyright (2024), 5719300756547 [21]

place. The transport passageway enables fluid flow, which
carries a force component directed towards the trapping cav-
ity, effectively trapping the embryo. The magnitude of this
component force is closely related to the geometric parame-
ters of the trapping cavity. Figure 4(B) shows the geometric
parameters and their association with the size of the trapping
component. These parameters may include dimensions such
as width, length, and depth of the trapping cavity, among oth-
ers. Tang et al. [20] describe that the ability to trap embryos
depends on the flow resistance along two pathways:

• Path 1 (Rx): Flow resistance along the main channel.
• Path 2 (Ry): Flow resistance along the trapping cavity
direction

According to [19], the flow resistance along themain channel
(Path 1) and along the trapping cavity direction (Path 2), can
be described as:

Rx
Ry

=
[

w4
c

HcLt (Wc + Hc)
2 + w4

c

HgLg
(
Wc + Hg

)2
]
.
HcLm (Wm + Hc)

2

W 4
m

(1)

whereW(.) is the width of the channel, H(.) is height, and the
L(.) is the length. Letterm , c , and t stand for the main chan-
nel, trapping cavities, and transport passageway (behand the
cavities) separately. Zebrafish embryos can be successfully
trapped in microfluidic systems when the flow resistance
along both the main channel and the trapping cavity direc-
tion is appropriately balanced. This balance ensures that the
fluid flow exerts enough force to direct the embryos towards
and eventually trap them within the designated cavity. The
geometric parameters of the trapping cavity can be adjusted
to influence this balance and improve the trapping efficiency.

Fig. 2 mp6-liq micropump flowrate as a function of frequency and voltage. (https://www.bartels-mikrotechnik.de/en/download-area-en/)
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Fig. 3 Zebrafish embryos positioned in the cavities of the chip, one of
which is moving to reach a free cavity

To ensure that the trapping cavity can provide enough force
to the embryo during the trapping process, it’s necessary to
adjust the cavity-related parameters (Hg ,Wc, Lg , Lt ) in such
a way that the flow resistance ratio Rx : Ry is greater than 1.
To ensure effective trapping of embryos, the flow resistance
along the trapping cavity (Ry) direction must be lower than
the flow resistance along themain channel (Rx). The channel
parameters should be adjusted according to Eq. 1 to achieve
the desired trapping and release behaviors of the embryos.
The specific values for these parameters found for this study
are in Table 1.

2.1.2 Robotic sorting process

The cover is carefully removed and the chip is placed on a
motorised XYZ stage after the eggs have been trapped on the
microfluidic chip (see Fig. 5). The stage is positioned above
a DL system, which moves the microfluidic chip so that each
trap can be examined. The zebrafish egg classification algo-
rithm is then used to determinewhether to remove or keep the

Table 1 The parameters of the
channel

Parameters Size/mm

Lm 20

Wm 3

Lg 1

Lt 1.5

Hc 1.5

Wc 1.5

Hg 0.5

egg in question. A micromanipulator with a glass pipette is
used as an effector to suction and hold the egg before finally
placing it in the waste section of the chip (see Fig. 6). The
process of automated suction involves using a piezoelectric
water pump connected to the holding pipette. The pump is
activated when the holding pipette reaches the designated
pick-up point. The sorting steps are detailed in the algorithm
shown in Fig. 15. The DL model training was conducted
usingGoogle Colab’s Tesla T4 GPU. Figure 7 shows the dif-
ferent devices used for the sorting process. The experiment
was carried out with the uMp manipulator from Sensapex,
the XYZ-stage LNR50D and DRV250 stepper motors from
Thorlabs. The vision system comprises a UI-3590CP-C-HQ
R2 USB camera from IDS Imaging Development Systems,
a LM50HC-VIS-SW lens from Kowa and OZB-A4515 6W
LED lights from Kern Optics. Bartels mikrotechnik’s piezo-
electrip mp6-liq micropumps were used for cell suction as
well as for the zebrafish embryo filling system in the traps of
the microfluidic chip.

2.2 Chip design and fabrication

The microfluidic chip consists of an inlet and an outlet, as
well as traps designated for cell placement. A waste section

Fig. 4 (A) Microfluidic chip design. (B) The geometric parameters of a single cavity
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Fig. 5 PHASE 2 : Schematic
overview of the sorting system.
Reprinted with permission from
IEEE, Copyright (2024),
5719300756547 [21]

Fig. 6 Pick and place process:
(A) Dead or unfertilised embryo
being picked. (B) : placed on
waste part. Dead cell are black
dots and orange are for livable.
Reprinted with permission from
IEEE, Copyright (2024),
5719300756547 [21]

Fig. 7 Overview of the real system for the experiments. Reprinted with
permission from IEEE, Copyright (2024), 5719300756547 [21]

Fig. 8 Microfluidic chip printed in 3D after cleaning and passing under
UV light
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Fig. 9 Differents classes of the
model. (a) : stage1 ,
(b) : stage2 − 4,
(c) : advanced ,
(d) : returned , (e) : holder ,
( f ) : dead . (g) : empty.
Reprinted with permission from
IEEE, Copyright (2024),
5719300756547 [21]

is where non-viable cells are deposited by the micromanip-
ulator. (see Fig. 4). The other parts are filled by cells at the
corresponding stage of development. The chip is designed
with the 3D CAD software : Solidworks 2021 and printed
using Formlab’s Form 3+ printer with clear V4 resin. After
printing, the chip is cleanedwith isopropanol and then placed
in UV light for 30 min at 60◦C (see Fig. 8). A cover, which
allows for the injection of eggs on the chip is made with the
Fig. 9 same resin and is placed above the chip during the
filling process.

2.3 Data collection, labelling and augmentation

Wild-type adult zebrafish are maintained acccording to stan-
dard protocol in the Aquatic Facility of Sorbonne University
[22]. Zebrafish eggs are obtained through natural spawn-
ing on the day of each experiment. Zebrafish are known
for their prolific egg production, and eggs are typically
collected shortly after spawning. The eggs are incubated
after collection in E3 solution. It refers to a commonly
used growth medium specifically designed for maintaining
zebrafish embryos at the developmental stage around 3 days
post-fertilization. This medium (34.8 g NaCl, 1.6 g KCl,
5.8 g CaCl2.H2O , 9.78 g MgCl2.6H2O) is crucial for pro-
viding the necessary nutrients, ions, and environmental
conditions to support embryonic development and viability.

The dataset collection was conducted during the first
5 hours after the immediate collection of fresh zebrafish
embryos. The zebrafish embryo images were captured at dif-
ferent developmental stages. Images were collected using
a combination of an external USB camera UI-3590CP-C-
HQ R2 from the manufacturer IDS Imaging Development

Systems connected to the microscope Nikon SMZ800N.
Accordingly, 1381 images were acquired, with a total of
1662 annotations shown in Table 2. For the purpose of
dataset preparations, the online tool called RoboFlow was
used. Images are labelled into seven classes : ′stage1′ ,
′stage2 − 4′, ′advanced ′, ′dead ′, ′returned ′, ′empty′ ,
′holder ′.

The classes ′empty′ and ′dead ′ are under-represented
compared to the others. However, this is not an issue because
these classes contain images that are invariant in shape,
requiring less data for training. As zebrafish studies are often
conducted at the primary stage, such as microinjection, it is
crucial to detect and differentiate between stages 1, 2, and 4.
After 1 hour post-fertilization (hpf), an egg remaining at stage
1 indicates that it is unfertilised. Advanced stages, i.e., above
stage 4, are grouped into a single class. The ′empty′ class
represents an empty cavity, and the ′holder ′ class represents
the tip of the pipette thatwill extract the embryos.Augmented
data is created by making minor modifications to the origi-

Table 2 Class balance on dataset

Classes Train Validation Test Total

stage 1 293 84 48 425

stage 2-4 265 64 43 372

dead 81 28 13 122

advanced 209 68 31 308

returned 174 47 32 253

empty 72 18 12 102

holder 72 14 9 80

all 1151 323 188 1662
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nal data. In the case of image augmentation, geometric and
color space transformations such as flipping, resizing, crop-
ping, adjusting brightness and contrast are applied to increase
the size and diversity of the training set. Rotation, bright-
ness, and saturation operations are performed for our case.
Image augmentation techniques, such as random rotation,
are commonly used in computer vision tasks to diversify and
increase the training dataset, reducing overfitting. Random
rotation introduces variability into the training data, enabling
the model to learn to recognize objects or patterns from dif-
ferent perspectives, making it more resilient to variations in
real-world scenarios where the camera angle may vary. The
zebrafish eggs in the water move and rotate randomly due
to the flow. Therefore, to enhance the model’s performance,
it is appropriate to apply rotation augmentation. Addition-
ally, it is recommended to apply brightness augmentation as
the model may be used in scenarios with varying brightness
levels, such as different microscope images. During train-
ing, adjusting the saturation of images can simulate different
colour environments and conditions, enabling the model to
learn features that are invariant to changes in colour satura-
tion. This can enhance the model’s capacity to generalize to
real-world situations where colours may differ significantly.

These operations resulted in a more larger, augmented
Table 3 training dataset with a total of 2807 images.

2.4 Description and evaluation of YOLOv5 algorithm

A recent version of the YOLO (You Only Look Once) algo-
rithm: YOLOv5 [23] was employed. YOLOv5 builds upon
the previous versions, incorporating various improvements
in terms of speed, accuracy, and efficiency.Its architecture is
composed :

• Backbone: YOLOv5 uses a CSPDarknet53 backbone as
its feature extractor. CSPDarknet53 is a variant of Dark-
net, which is a deep neural network architecture designed
for object detection tasks. CSPDarknet53 includes a
“cross-stage partial” (CSP) connection scheme, which
enhances feature reuse and gradient flow, leading to
improved performance.

• Neck: A novel neck architecture called PANet (Path
Aggregation Network) is introduced. PANet is designed
to aggregate features at different scales and resolutions

Table 3 Data augmentation
parameters

Operation Values

Rotation -15◦ and 15◦

Brightness -25% and 25%

Saturation -25% and 25%

efficiently, enabling the model to detect objects of vary-
ing sizes effectively.

• Head: The detection head of YOLOv5 consists of several
convolutional layers responsible for predicting bound-
ing boxes and object classes. YOLOv5 predicts bounding
boxes using anchor boxes and employs a variant of the
focal loss function to handle class imbalance during train-
ing.

Overall, YOLOv5 is designed to strike a balance between
speed and accuracy,making it suitable for a range of real-time
object detection applications, such as autonomous vehicles,
surveillance systems, and robotics. Its modular architecture
and various variants provide flexibility to meet different
computational constraints and application requirements. The
speed of YOLOv5 is a crucial factor in the zebrafish embryo
sorting system, particularly during the initial stages of devel-
opment when biological studies such as microinjection need
to be conducted before the embryos progress to later stages.
The YOLOv5 training process optimizes multiple loss func-
tions to ensure precise object detection. The loss function is
the combination of loss functions for the bounding box, clas-
sification, and confidence. Equation 2 represents the overall
loss function of YOLOv5 :

lossY OLOv5 = lossbbox + lossclass + losscon f (2)

Where conf refers to confidence, bbox to bounding box and
class to classification. The box loss measures how well the
predicted bounding box covers the object and accurately
locates its center. It evaluates the spatial accuracy of the pre-
dicted bounding boxes. Objectness measures the likelihood
that an object is present within a specific region of interest. It
helps in distinguishing between true objects and background
clutter. The classification loss evaluates how accurately the
model predicts the correct class label for the detected object.
It assesses the algorithm’s ability to classify objects into pre-
defined categories. Common evaluation metrics for DL are
precision (P) (Eq. 3), which is precision rate, recall rate (R)
(Eq. 4) and mean average precision (mAP) (Eq. 6) and Inter-
section over Union (IoU) (Eq. 5) . The expressions are as
follows:

P = T P

(T P + FP)
(3)

R = T P

(T P + FN )
(4)

I oU = Area of Overlap

Area of Union
(5)

IoU is a measure of how well the predicted bounding box
overlaps with the ground-truth bounding box. Among them,
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true positives (TP), false positives (FP), and false negatives
(FN), represent positive samples with correct classification,
negative samples with incorrect classification, and positive
samples with incorrect classification, respectively. AP is the
average accuracy rate, which is the integral of the P index
to the R index; mAP is the average accuracy of the mean,
which means that the AP value of each category is summed,
and then divided by all categories, i.e., the average value. It
is defined as follows:

mAP = 1

|QR |
∑
q=QR

AP(q) (6)

A high mAP means that the model has both a low false neg-
ative and a low false positive rate. The higher the mAP, the
more precise and the higher the recall is for the model. Addi-
tionally,mAP@0.5 andmAP@0.5 : 0.95, which assess the
mAP over different IoU thresholds from 0.5 to 0.95.

2.5 Genetic algorithm for hyperparameter
optimization of YOLOv5

Hyperparameter tuning in object detection involves select-
ing the best values for parameters that shape the model’s
architecture and training process. These parameters signifi-
cantly affect the model’s accuracy, precision, and recall. The
process of hyperparameter tuning entails systematically test-
ing different combinations of these parameters to identify
the configuration that maximizes the chosen performance
metric, like accuracy or mAP . Common techniques for
hyperparameter tuning include grid search, random search,
Bayesian optimization, and genetic algorithms. Eachmethod
aims to efficiently explore the hyperparameter space to find
the optimal configuration for the object detection model.
Selecting the optimal hyperparameters forYOLOv5 is partic-
ularly challenging due to the vast parameter space involved.
Initially, we utilized the hyperparameters provided by the
official YOLOv5 model as a starting point and fine-tuned
them for our custom dataset. Each model underwent train-
ing and evaluation using an objective function, where we
employed mAP metrics with a specific weighting scheme to
ensure consistency with our evaluation method. The basic
loss function of YOLOv5 has not been altered. Instead,
a genetic algorithm was applied to optimize the YOLO
hyperparameters after using the classic YOLO loss func-
tion. Models were selected based on a fitness score derived
from the evaluation metrics, aiming to maximize this score.
The goal is to maximise fitness (see Eq. 7). YOLOv5 has
a default fitness function which is a weighted combination
of metrics mAP@0.5 contributes 10% of the weight and

mAP@0.5 : 0.95 contributes the remaining 90%. We used
the default fitness function, which is defined as follows:

f i tness = w1.P + w2.R + w3.mAP@0.5 +w4.mAP@0.5 : 0.95
(7)

where: P represents Precision, R represents Recall, mAP@
0.5 represents mean Average Precision at 0.5, mAP@0.5 :
0.95 represents mean Average Precision from 0.5 to 0.95,
w1, w2, w3, w4 represent the corresponding weights defined
as [0.0, 0.0, 0.1, 0.9] . These models were then subjected
to a genetic algorithm mutation operator, which introduced
random perturbations to explore new configurations while
preserving successful solutions. The iterations continued for
10 generations. Thefinal hyperparameterswere chosen based
on the YOLOv5 model with the highest evaluation metric
score at the end of the iterations. We successfully tuned all
29 hyperparameters for YOLOv5, demonstrating its effec-
tiveness in improving overall detection accuracy. Figure 10
illustrates the hyperparameter tuning process using a Genetic
Algorithm, with the fitness score plotted on the y-axis and
hyperparameter values on the x-axis, where greater concen-
trations are highlighted in yellow.

3 Results and discussion

The training was completed in 100 epochs, a batch size of 16
using YOLOv5x which is the extra large version of YOLOv5
[23]. This version comes with high robustness at the cost of
higher computation time. The pixel size of the input image
was set to be 640 × 640.

3.1 Zebrafish embryo detection results

The training results are summarized in the Table 4. The val-
ues of Precision, Recall and mAP are obtained using the
equations respectively Eqs. 3, 4, 6. The confusion matrix
(see Fig. 11) aids in comprehending the classes that are
being misclassified. The ′empty′ and ′holder ′ classes are
the most precise and are not mistaken for any other class due
to their dissimilarity. Similarly, the ′dead ′ class is not mis-
taken because eggs become degraded with whitish or black
colors depending on the luminosity applied, which explains
why they are not confused. The training loss is a measure
used to evaluate how well a deep learning model aligns with
the training data. It reflects the model’s error on the training
set and indicates howwell themodel is fitting the dataset. It is
expected to decrease over time as the model learns from the
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Fig. 10 Some hyperparameters tuning.Fitness score plotted on the y-axis and hyperparameter values on the x-axis, where greater concentrations
are highlighted in yellow

dataset, which is the case in our study (see Fig. 12). However,
a very low training loss does not necessarily guarantee good
performance on new, unseen data, as the model may have
overfit the training data. Therefore, the validation loss is use-
ful in assessing the model’s ability to generalize to unseen
data during training. Although the two curves converge, there
is still a shift, indicating that the model performs well on
training data but not on validation data. The initial training
resulted in an accuracy of 0.93, but to improve results, we
attempt to optimize the hyperparameters.

The optimization of the YOLOv5 model offers several
advantages. As shown in Fig. 13 and summarized in the
Table 5, the model consistently achieves higher accuracy

Table 4 Training results for each class

Classes Precision Recall mAP@0.5 mAP@0.5 : 0.95
stage 1 0.732 0.814 0.851 0.732

stage 2 0.717 0.844 0.866 0.767

dead 0.894 0.905 0.95 0.772

advanced 0.902 0.838 0.941 0.801

returned 0.892 0.875 0.92 0.819

empty 0.865 0.83 0.921 0.798

holder 0.983 1 0.995 0.853

all 0.868 0.882 0.93 0.784

over generations. Therefore, the training and validation loss
for the optimized YOLOv5 demonstrates a significantly bet-
ter fit for the training and validation datasets. Unlike the
default model, this one shows a loss validation curve which
follows the loss training towards the end of the epoch. The
optimized model provides accuracy of approximately 82.9%
for mAP@0.5 : 0.95 and 95.8% for mAP@0.5, while the
default model provides accuracy of approximately 78.4% for
mAP@0.5 : 0.95 and 93% formAP@0.5 after 100 epochs.
Which is an increase of 4.5% and 2.8% respectively.

The optimization of the YOLOv5 model provides several
benefits. As illustrated in Fig. 13 and summarised in Table 5,
the model consistently achieves higher accuracy across gen-
erations. Consequently, the training and validation loss for
the optimized YOLOv5 demonstrates a significantly better
fit for the training and validation datasets. Unlike the default
model, this one exhibits a validation loss curve that follows
the training loss towards the end of the epoch. The opti-
mized model achieves an accuracy of approximately 82.9%
for mAP@0.5 : 0.95 and 95.8% for mAP@0.5, while
the default model achieves an accuracy of approximately
78.4% for mAP@0.5 : 0.95 and 93% for mAP@0.5 after
100 epochs. This represents an increase of 4.5% and 2.8%
respectively. The model was tested on a testing database
of 241 images. With the same GPU, an accuracy of 95.8%
was achieved with a detection speed of 10.6 ms per frame.
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Fig. 11 Confusion matrix was
made at IoU threshold of 0.45,
confidence threshold of 0.25

Figure 14 shows examples of zebrafish eggs detected using
the trained model. The model can detect various stages of
zebrafish egg development, as well as mortality, with confi-
dences above 90%.

3.2 Zebrafish embryo sorting experiment result

The optimized model is utilized for robotic sorting zebrafish
eggs. The zebrafish eggs utilized in the experiments were
obtainedunder the sameconditions aswhen the imagedataset

Fig. 12 Performance of first training. (a) mAP@0.5 and mAP@0.5 : 0.95 evolution through generations. (b) overall training loss and validation
loss plotted using Eq. 2
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Fig. 13 (a) Overall training loss and validation loss optmized (10th generation). (b)mAP@0.5 andmAP@0.5 : 0.95 evolution through generations

Table 5 Optimized model
results across generations

Generations Precision Recall mAP@0.5 mAP@0.5 : 0.95
1 0.86711 0.9253 0.93 0.7884

2 0.8394 0.93655 0.93317 0.797

3 0.8671 0.8988 0.94145 0.8116

4 0.85584 0.9026 0.9374 0.80353

5 0.8425 0.9088 0.9231 0.7725

6 0.8619 0.9273 0.9459 0.8108

7 0.85676 0.93631 0.9428 0.8088

8 0.8668 0.9512 0.9480 0.8042

9 0.8858 0.8834 0.9392 0.7960

10 0.9015 0.9102 0.958 0.829

Fig. 14 (a) Image captured on a zebrafish egg detection video with our optimized model(all egg are livable). (b) Image captured on a zebrafish egg
detection video with the optimized model (two dead eggs detected). It is clear that the eggs are well detected as well as their stage of development
with great confidence
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was created. Dead eggs were separated into a separate tube
and used during the experiments. Each trial was conducted
with 40 eggs, consisting of 20 dead eggs and 20 viable eggs
at different stages of development. At 1 hpf, the eggs were
injected into the microfluidic chip using a pipette. Pumps 1
and 2were set at a flowrate of 1000µl/min tomove the eggs,
causing them to fall into the holes (see Fig. 3).

3.2.1 Without feedback use of dead egg position

In this mode the XYZ-stage speed is set at 20mm/s and the
manipulator at 4mm/s. The microfluidic chip is designed so
that the traps all have the same horizontal distance between
them called Ds as shown in Fig. 15(c). The XYZ-stage is
controlled in step by step mode, so that each step of the
XYZ-stage corresponds to a displacement from trap to trap
and a focus of the camera on the following trap. During the
′ I ni tiali zation′ step of the algorithm (see Fig. 15(a)), the
micromanipulator is initialized by fixing Z and Y coordi-
nates so that the holdertip glass faces the initial trap and
the Deep Learning model is initialized to detect embryos.
We have measured the necessary displacement along X axis
(of micromanipulator frame) from the initial position to
reach the egg in the trap. This predefined distance is inte-
grated into the coding program for access to an embryo in
case of sorting. The first trial showed a major efficiency
(100%) in the detection of eggs because all dead eggs and
livable eggs were well detected, however, the pick and place
procedure had a very low efficiency since only 5 of themwas
well picked. A significant amount of water is removed from
the chip during the trap filling process to prevent displace-
ment of zebrafish embryos after immobilization. To address
this issue, the pump was set to bidirectional mode, which
enables the injection of the required amount of water for
suction and automatic suction of the egg with the injected
water in the trap. A second trial was conducted using a pump
set to bidirectional mode for the suction process. The pick
and place success rate significantly improved from 20% in
the first trial to 90%.

After immobilising the eggs, the cover of the chip is care-
fully removed. The chip is then placed on the XYZ stage,
and the sorting process begins. Six trials were conducted.
The first two were conducted without feedback using the
dead egg position, and the remaining four were conducted
with feedback using the dead egg position.

3.2.2 With feedback use of dead egg position

Our experiment for dead egg positioning without feedback
provided us satisfactory results. Nevertheless, the micro-
displacements of the chip finally result from a bad position of
the trap in the picking process but can be solved by fixing the
chip on theXYZ-stage. Anyway, the first approach is weak in

terms of adaptation because a small displacement of the chip
or a change of position of the traps in the chip would limit the
sorting process. We aim to make the holding pipette able to
access to an egg according to the pixel coordinates of the egg.
Given that the field of view (FoV) doesn’t change during all
the process because the camera is fixed, only two coordinates
of the micromanipulator are used during the picking process
namely X and Y. The displacement of the micromanipulator
for the picking process is in reality only two translational
movements, under the x and y axes, while z axis is fixed
for all the process. We create an equation to map camera
pixel Y*, X* coordinates of the holdertip to global reference
frame X, Y coordinates of the micromanipulator. To do so,
we choose an initial position of the holdertip in the FoV and
make travel the micromanipulator along the y axis through-
out the FoV by taking images and recording the real positions
of the manipulator corresponding to each image. We do the
same operation for the x axis. These images are then applied
to our YOLO model detection algorithm by adding a seg-
mentaion algorithm named YOLOv5 Instance Segmentation
for the holding pipette which will allow to recover the pixel
coordinates of the holdertip (see Fig. 17(B)).We then plot the
curves of the coordinates of the micromanipulator X , Y as
a function of the pixel coordinates X* , Y* of the holdertip.
The trend curves are thus recovered (see Fig. 16). We obtain
a relation between the variation of the pixel coordinates of
the holdertip and global frame coordinates of the microma-
nipulator. Assuming the micromanipulator is at the initial
position (Xi,Yi) global reference frame and the holdertip is
at (X*,Y*) pixel coordinate (see Fig. 17(A)). When a dead
egg is detected by the model at (Xc,Yc) pixel coordinates, to
minimize the distance d (see Fig. 17) between the holdertip
and the dead egg, it suffices to calculate the global reference
frame coordinates of themanipulator defined by themapping
equations:

X f = 0.0007Xc2 + 2.3122Xc + 9141.9 (8)

Y f = −0.0004Yc2 + 2.0947Yc + 16227 (9)

With the equations thus obtained, it is possible to move the
holdertip in the FoV based on the pixel coordinates of the
egg and tests show a margin of error of ±2µm, which is
acceptable considering the size of zebrafish embryo (0.7
mm). We define the initial position of the micromanipula-
tor the same as when establishing the mapping. In this mode,
we move the stage continuously rather than in steps, and
it only stops when a dead egg is found by the DL model.
The step ′Bring the holding pipette close to the egg′ of
the algorigram (see Fig. 15(b)) is realized by putting the pixel
coordinates of the detected embryo into the Eqs. 8 and 9. The
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Fig. 15 Algorigram of the robotic sorting system handling the case
where only dead eggs are removed from the chip. (a) Without feed-
back use of dead egg position. (b) With feedback use of dead
egg position. The steps ′Suck the dead egg′ and ′Release the egg′

are realized with a piezelectric pump at 500ml/min. The step :
′Bring the holding pipette in the dead egg compartment ′ means to
reach the waste part of mirofluidic chip. (c) Illustration of distance Ds
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Fig. 16 (a): Manipulator global frame coordinates X in micrometer
evolution in the FoV according to the holdertip pixel coordinates X*.
(b): Manipulator global frame coordinates Y in micrometer evolution

in the FoV according to the holdertip pixel coordinates Y*. Reprinted
with permission from IEEE, Copyright (2024), 5719300756547 [21]

two equations serve as a mapping tool that enables the hold-
ertip to precisely locate and access dead eggs. In trials 3,4,5
and 6, the implementation of these formulas resulted in a 97%
success rate for the pick and place process but a decrease of
the embryo’s detection accuracywhich is 98%. This decrease
in the accuracy of the classification of zebrafish embryosmay
be due to the movement of the stage which is not adequate
with the number of frames that the camera can take because
certain embryos will require more stability to be well seen.
For example, the camera can capture frames with images of
half-viewed embryos. By further reducing the speed of the
XYZ stage, we will be able to obtain better results at the
expense of the speed of the sorting process.

Sorting out dead or unfertilised zebrafish eggs is a crucial
task for biologists. Our optimised detection model suc-
cessfully detects zebrafish eggs with acceptable accuracy,
depending on the operating mode. Additionally, it operates
at high processing speed (10.6 ms per frame), enabling full
exploration of the chip (36 egg traps) in 44 seconds, pro-
vided the traps contain viable eggs or are empty. The use of
a microfluidic chip improves the process of accessing and
handling eggs by reducing computation time and immobiliz-
ing the egg without contact, which can cause damage. The

microfluidic chip enables eggs to be stored in cavitieswithout
being handled, which can also cause damage. The microma-
nipulator is calibrated without feedback using the dead egg
position mode to fix the y and z axes. Knowing the distance
between the cavities, the displacement of the XYZ-stage is
chosen as being the distance which separates the cavities.
Therefore, the cavity must be in front of the pipette holding
and a translation on the x axis will allow the embryo to be
recovered as shown in Fig. 18(X.B). However, a simple cal-
ibration error will upset the process without use of feedback
for the dead embryo position. Using a feedback mode ie with
feedback use of dead egg position, gives us more efficiency
in the picking process but decrease the scanning speed of the
chip. In continuous mode, the experiments made have shown
that the maximum speed of the XYZ-stage which allows
detection of zebrafish eggs is around 4 mm/s. Under these
conditions, our microfluidic chip is fully explored in around
52 s if all of the traps are empty or contain livable eggs. The
feedback mode offers more robustness because, a change
of the microfluidic chip and its characteristics or a micro-
displacement of the chip will not affect the process. The
holding pipette no longer needs to be exactly in front of the
embryo to access it. In Fig. 18(Y.B), the holding attacks the

Fig. 17 Illustration of pipette
displacement. (Xf,Yf) :
Micromanipulator real frame
coordinates (final position);
(Xi,Yi) : Micromanipulator real
frame coordinates (initial
position); (X*,Y*) : Pixel
coordinates of the holdertip ;
(Xc,Yc) : Pixel coordinates of
the cell. (B) An example of
detection followed by
segmentation of the holding
pipette
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Fig. 18 X: Without feedback use of dead egg position. (X.A): Dead
egg in the trap, , holdertip no need to be in the FoV. (X.B): access of
the pipette in the trap, aspiration in progress with 500ml/min during 1
s. (X.C): Egg already picked. (X.D): Empty trap, after aspiration. Y:
With feedback use of dead egg position. (Y.A): Dead egg in the trap,
holdertip in the FoV. (Y.B): Holdertip going to the egg position using
map equations. (Y.C): Aspiration in progress with 500ml/min during 1

s. (Y.D): Egg already picked, empty trap after aspiration. When using
feedback of dead egg position, the holdertip can be anywhere in the
FoV and manages to access the egg compared to the other mode , the
holdertip must be initialized to be in front of the starting trap and only
moves along x axis to acess the dead egg. Reprinted with permission
from IEEE, Copyright (2024), 5719300756547 [21]

cell from the side andmanages to find the cell using the equa-
tions and pixel coordinates of the center of the embryo. This
is a major advantage of the feedback mode because the accu-
racy of sorting increases but the speed of the exploration of
the chip is reduced. This is normal because closed-loop sys-
tems work precisely due to the feedback system. Open loop
system usually gives fast response, while closed loop system
gives slow response. A more effective approach would be to
combine a step-by-step movement of the XYZ stage with a
high speed of 20 mm/s and use the map equations to identify
the embryos to be sorted. To demonstrate the superiority of

our proposed automated zebrafish embryo sorting system,we
conducted a comparison with similar works in the literature.

Our sorting system (see Table 6) provides higher accuracy,
egg detection and sorting speed compared to [8, 9]. However
they have experimented with a larger number of zebrafish
than ours. It is clear that nowadays the detection models are
effective, the competition lies in the speed of execution of
the task. Our work based on an optimized YOLOv5 model
offers a much higher speed compared to the methods used in
these two works, it is 94x faster than [9] based on template
matching. Same observation for the speed of sorting an egg.

Table 6 Comparison of our
work with the literature

Tasks Our work [9] [8]

Num. of eggs for sorting experiments 320 4752 694

Egg sorting accuracy 20% (trial 1)
90% (trial 2)
97.9% (trial 3,4,5 and 6 combined )

- 96.8%

Egg detection speed (per 1 egg) 10.6 ms 1 s -

Egg sorting speed (per 1 egg) 3 s 14 s 8 s
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In addition to the good immobilization and the sorting offered
by the chip, it is believed that our approach may be useful in
particular for rapid cell microinjection.

4 Conclusion

We have successfully developed a sorting system using the
YOLOv5 deep learning detection algorithm to distinguish
dead or unfertilised zebrafish eggs. After training a default
model and then optimized by tuning hyperparameters of
YOLOv5 through generations, our model achieves a remark-
able speed of 10.6milliseconds per framewith an accuracy of
95.8%. Compare to our previous work [21], the microfluidic
chip developed for this work has a percentage of egg cap-
ture higher than the previous chip used. Likewise, the model
acquires a mAP@0.5 and mAP@0.5 : 0.95 slightly higher
than that used in the previous work. The optimized model
was used for a sorting system composed of a microfluidic
chip where the eggs are housed in cell traps, an XYZ-stage
and a micromanipulator with a glass pipette as end-effector.
Our experiments yielded a high sorting efficiency of 97.9% in
feedbackmode, surpassing similar systems. In the future, our
focus will be on refining egg sorting using deep learning and
microfluidic chip, aiming to eliminate external components
like the micro-manipulator and XYZ-stage. Instead, we will
aim to develop a portable sorting system using only water
and pumping system.
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