
DOTTORATO DI RICERCA IN INGEGNERIA

DELL’INFORMAZIONE

SSD: ING-INF/05

CICLO XXXVI

DEEP LEARNING APPROACHES
TO GOAL RECOGNITION

Dottorando:
Mattia Chiari

Matricola 88898

Supervisore: Prof. Alfonso E. Gerevini
Co-Supervisore: Prof. Ivan Serina

Abstract

Recognising the goal of an agent from a trace of observations is an important
task with many applications. In the literature, many approaches to goal recog-
nition (GR) rely on the application of automated planning techniques which re-
quires a model of the domain actions and of the initial domain state (written, e.g.,
in PDDL). We study three alternative approaches (GRNet, Fast and Slow Goal
Recognition and a BERT-based approach) where Goal Recognition is formulated
as a classification task addressed by machine learning. All these approaches are
primarily aimed at solving GR instances in a given domain, which is specified by
a set of propositions and a set of action names. In GRNet, the goal classification
instances in the domain are solved by an LSTM network. The only information
required as input of the trained network is a trace of action names, each one indi-
cating just the name of an observed action. A run of the LSTM processes a trace of
observed actions to compute how likely it is that each domain proposition is part
of the agent’s goal. Fast and Slow Goal Recognition, inspired by the “Thinking
Fast and Slow” framework, is a dual-process model which integrates the use of
the aforementioned LSTM with the automated planning techniques. This archi-
tecture can exploit both the fast, experience-based goal recognition provided by
the network, and slow, deliberate analysis provided by the planning techniques.
Finally, we study how a BERT model trained on plans is able to understand how

i

a domain works, its actions and how they are related to each other. This model
is then fine-tuned in order to classify goal recognition instances. Experimental
analyses confirms that the presented architectures achieve good performance in
terms of both goal classification accuracy and runtime, often obtaining better
results w.r.t. a state-of-the-art GR system over the considered benchmarks.

Abstract

Riconoscere il goal di un agente utilizzando una traccia di osservazioni è un com-
pito importante con diverse applicazioni. In letteratura, molti approcci di goal
recognition (GR) si basano sull’applicazione di tecniche di pianificazione auto-
matica che richiedono un modello delle azioni del dominio e dello stato iniziale
del dominio (scritto, ad esempio, in PDDL). In questa tesi studiamo tre approcci
alternativi (GRNet, Fast and Slow Goal Recognition e un approccio basato su
BERT) in cui il goal recognition è formulato come un compito di classificazione
affrontato utilizzando il machine learning. Tutti questi approcci mirano prin-
cipalmente a risolvere istanze di GR in un dato dominio, specificato da un in-
sieme di proposizioni e da un insieme di nomi di azioni. In GRNet, le istanze di
classificazione del dominio sono risolte da una rete LSTM. L’unica informazione
richiesta come input della rete addestrata è una traccia di nomi di azioni, ognuno
dei quali indica solo il nome di un’azione osservata. Un’esecuzione della LSTM
elabora una traccia di azioni osservate per calcolare la probabilità che ogni propo-
sizione del dominio faccia parte del goal dell’agente. Fast and Slow Goal Recog-
nition, ispirato al framework “Thinking Fast and Slow”, è un modello a doppio
processo che integra l’uso delle sopra-citate reti LSTM con le tecniche di piani-
ficazione automatica. Questa architettura può sfruttare sia il riconoscimento ve-
loce dei goal, basato sull’esperienza, fornito dalla rete, sia l’analisi lenta e delib-

iii

erata fornita dalle tecniche di pianificazione. Infine, studiamo come un modello
BERT addestrato sui piani sia in grado di comprendere il funzionamento di un
dominio, le sue azioni e le loro relazioni reciproche. Questo modello viene poi
sottoposto a fine-tuning per classificare le istanze di goal recognition. Le anal-
isi sperimentali confermano che le architetture presentate raggiungono buone
prestazioni sia in termini di accuratezza della classificazione dei goal che di tempo
di esecuzione, ottenendo spesso risultati migliori rispetto a un sistema di goal
recognition allo stato dell’arte sui benchmark considerati.

Contents

1 Introduction 1

1.1 Topic of the Thesis . 1
1.2 Structure of the Thesis . 4

2 Automated Planning 6

2.1 Classical Planning . 7
2.2 Goal and Plan Recognition . 11

2.2.1 Model-based and Model-free Goal Recognition 13
2.3 State of the Art . 14

2.3.1 Plan Recognition as Planning 14
2.3.2 Landmark-Based Heurisitics for Goal Recogniton 16
2.3.3 MFGR approaches . 17

3 Deep Learning 19

3.1 Word Representations . 19
3.1.1 Encoding . 20
3.1.2 Embedding . 21

3.2 Recurrent Neural Networks . 23
3.2.1 Standard RNNs . 24
3.2.2 Long Short Term Memory 26

v

CONTENTS CONTENTS

3.2.3 Gated Recurrent Unit . 28
3.3 Attention Mechanisms . 30

3.3.1 Feed-forward Attention 30
3.3.2 Self-Attention . 32
3.3.3 Multi-Headed Attention 34

3.4 Transformer . 36
3.4.1 Architecture . 36
3.4.2 BERT . 38

4 Goal Recognition as a Deep Learning Task 40

4.1 GR Example . 41
4.2 GRNet . 43

4.2.1 The Environment Component of GRNet 44
4.2.2 The Instance Specific Component of GRNet 46
4.2.3 Running Example . 47

4.3 Integrating GRNet and LGR: LGRNet 48
4.3.1 Running Example . 50

4.4 Benchmark Suite and Data Sets 52
4.4.1 Domains . 52
4.4.2 Training sets . 53
4.4.3 Test sets . 54
4.4.4 Evaluation measures . 57

4.5 Experimental Results . 58
4.5.1 Hyperparameters of the Neural Networks 58
4.5.2 Accuracy Results for TSLGRGen 59
4.5.3 θ-accuracy results for TSLGRGen 62
4.5.4 Results for TSLGR . 63

CONTENTS CONTENTS

4.5.5 Results for TSRec and sensitiveness to the training set size 63
4.6 Discussion . 68

5 Fast and Slow Goal Recognition 69

5.1 Fast and Slow Architecture for Goal Recognition 71
5.1.1 System 1 and System 2 71
5.1.2 Meta Cognitive Agent 73
5.1.3 Updating System 1 using System 2 76
5.1.4 Running Example . 76

5.2 Benchmark Suite and Datasets 78
5.3 Experimental Results . 79

6 Transformer Based Architectures for Automated Planning 88

6.1 PlanBERT . 89
6.1.1 Planning Language Modeling 90
6.1.2 Training Technique . 90
6.1.3 Goal Recognition Fine-tuning 92
6.1.4 PLM Example . 93

6.2 Benchmark Suite and Datasets 96
6.2.1 Training Sets . 96
6.2.2 Evaluation Tasks and Test Sets 97

6.3 Experimental Results . 98
6.3.1 Planning Language Modeling Task 98
6.3.2 Next Token Prediction Task 99
6.3.3 Previous Token Prediction Task 100
6.3.4 Goal Recognition Task 101

6.4 Discussion . 102

CONTENTS CONTENTS

7 Conclusions and Future Works 104

Chapter 1

Introduction

This thesis illustrates the study and work carried out at the Information Engi-
neering department of Università degli Studi di Brescia during my Ph.D. in In-
formation Engineering, curriculum Computer Science / Engineering and Control
Systems, cohort XXXVI. My work was done under the supervision of Prof. Al-
fonso Emilio Gerevini and Prof. Ivan Serina at Università degli Studi di Brescia.

1.1 Topic of the Thesis

Suppose that there is a robot which is moving in a room. The robot can grab
either a box or an apple that are both in the room. This very simple example is
depicted in Figure 1.1. By solving a goal recognition task, we want to infer, by
observing the robot moving, whether it is aiming for the box or for the apple.
Goal Recognition, in fact, is the task of recognising the goal that an agent (the
robot, in our example) is trying to achieve from observations about the agent’s
behaviour in the environment [62, 23]. Typically, such observations consist of
a trace (sequence) of executed actions in an agent’s plan to achieve the goal, or

1

1.1 Topic of the Thesis 2

Figure 1.1: A simple goal recognition problem. We are observing a robot moving
in a room and we have to recognise whether it is grabbing the yellow box or the
red apple.

a trace of world states generated by the agent’s actions, while an agent goal is
specified by a set of propositions. In this Thesis, we assume that the agent is
either unaware of being observed and it’s trying to reach the goal or that it is
cooperating with the observer; in other words, although the agent may not al-
ways behave in a completely rational way, it is never trying to hide his intentions
from the observer. Goal recognition has been studied in AI for many years, and
it is an important task in several fields, including human-computer interactions
[7], computer games [46], network security [48], financial applications [11], and
others.

In the literature, several systems to solve goal recognition problems have
been proposed [44]. The most effective approaches are based on transforming a
plan recognition problem into one or more plan generation problems solved by
classical planning algorithms [55, 51, 61]. Intuitively, for each possible goal, these

1.1 Topic of the Thesis 3

approaches try to complete the action sequence in order for it to reach that goal.
Then they design different algorithms to select the more likely sequence and,
thus, the more likely goal. In order to perform planning, this approach requires
domain knowledge consisting of a model of each agent’s action specified as a set
of preconditions and effects, and a description of the initial state of the world, in
which the agent performs the actions.

Despite the excellent performance, the computational efficiency (runtime) of
these approaches largely depends on the planning algorithms, which are often
quite slow. We aim to present architectures that make goal recognition faster by
learning how to solve this problem in a given domain without any loss in perfor-
mance. In this thesis, we investigate three alternative approaches in which the
goal recognition problem is formulated as a classification task, addressed through
deep learning, where each candidate goal (a set of propositions) of the problem
can be seen as a value class. To design our architectures, we were inspired by
state-of-the-art techniques used in Natural Language Processing (NLP) such as
LSTM network and Transformer-based architectures.

The approaches we present in this thesis are: GRNet, Fast and Slow Goal
Recognition and a BERT-based approach. GRNet is a new system for goal recog-
nition based on LSTM. A run of the LSTM processes a trace of observed actions to
compute how likely it is that each domain proposition is part of the agent’s goal.
Fast and Slow Goal Recognition is a novel approach to goal recognition inspired
by the “Thinking, Fast and Slow” framework, which highlights the distinct cog-
nitive processes involved in decision-making. Fast and Slow Goal Recognition
integrates the use of the LSTM network for fast, intuitive recognition and imme-
diate goal identification and a automated planning approach for slow, deliberate
analysis and deeper understanding and inference. Finally, we present a BERT-
based architecture trained on plans generated through automated planning. Our

1.2 Structure of the Thesis 4

aim is to study whether this model is able to understand the actions and how
they are related in a given domain. We then fine-tune this model to classify goal
recognition instances.

1.2 Structure of the Thesis

In this section, we present a brief overview of the structure of the content set
forth in this thesis.

In Chapter 2 we provide a brief introduction on Automated Planning. We
first introduce the basics of Classical Planning (Section 2.1). Then we give a strict
definition of goal and plan recognition (Section 2.2.1), explaining differences and
common points between these two close research fields. Finally in Section 2.3.3,
we describe the current state-of-the-art for goal and plan recognition.

Chapter 3 addresses some of the state-of-the-art techniques used in Deep-
Learning, in particular those applied in the field of Natural Language Processing.
In the first section of this chapter we explain the word embedding techniques,
that is, how to represent words so that they can be processed by a neural network.
Recurrent Neural Networks represent a well-established approach in many NLP
applications; their use is shown in Section 3.2. After that, we show both the
intuition and the theory behind different variants of the Attention Mechanism.
In the last section, we show how the attention mechanism is used in the recent
Deep-Learning architectures such as Transformers and BERT.

The original contributions of this thesis are reported in Chapter 4, 5 and 6
which report respectively the description of GRNet, Fast and Slow Goal Recog-
nition and a BERT-based approach for goal recognition.

First, in Chapter 4 we introduce a simple goal recognition instance that will
be used throughout the chapter to show how the proposed architectures work.

1.2 Structure of the Thesis 5

Then, we describe the architecture of GRNet (Section 4.2), and the combined
system obtained by integrating GRNet with the state-of-the-art model-based
architecture, that we call LGRNet (Section 4.3). In Section 4.4, we report the
experimental setup, including a description of the automated planning domains
used in our experiments, the selected data sets and evaluation measures. The
experimental results are reported in Section 4.5. In this section, after reporting
the hyperparameters of the networks, we compare GRNet and LGRNet with
the state-of-the-art model based goal recognition system LGR on different test
sets. We also provide a more in-depth analysis of our models by testing different
problems with different difficulty classes and by evaluating their sensitiveness
to the training data. Lastly, in Section 4.6, we propose a brief discussion on the
strengths and weaknesses of the presented approaches.

In Chapter 5, we address some of the weaknesses described in Section 4.6 by
introducing Fast and Slow Goal Recognition. We first describe the new archi-
tecture analysing all the different parts that compose it: S1, S2 and the Meta-
Cognitive Agent. Then we describe the experimental setup (Section 5.2) and the
experimental results we obtained (Section 5.3).

Finally, in Chapter 6, we describe a BERT model with a custom designed train-
ing task that we called planning language modeling. After describing in detail the
model and how it can be trained on different tasks (Section 6.1), in Section 6.2
we introduce the four designed evaluation tasks and the data used for training
the model. Then, we show the performances obtained by PlanBert on these tasks
considering six well-known planning domain. In the last section, we discuss
some of the pros and cons about the presented approach.

Chapter 2

Automated Planning

One of the core problems of Artificial Intelligence (AI) is the problem of intelli-
gent behaviour, that is the capability of using one’s knowledge about the world
to make decisions in novel situations. In particular, we are interested in selecting
the next action that an autonomous agent have to perform in an environment.
In the literature, we can find three different approaches to solve these problem:

• programming-based approach: in this approach the programmer knows
the next action to do and codes it into the agent; this solution is provided
as a program or a collection of rules and behaviours;

• learning-based approach: in this approach the solution is induced from
experience; usually the solution is provided exploiting Machine Learning
techniques such as Deep Learning or Reinforcement Learning;

• model-based approach: in this approach the solution is provided auto-
matically starting from a model of the actions, sensors and goals.

While Automated Planning is often defined as the branch of AI that deals with

6

2.1 Classical Planning 7

synthesis of plans of actions to achieve a goal, it is best conceived as the model-
based approach for action selection.

Model-based approaches to the action selection problem are composed by
three parts:

• the model that expresses the dynamics, feedback, and goals of the agent;

• the languages that express these models in a compact form;

• the algorithms that use these representations of the models to generate
the solution.

In this chapter, we introduce the concept of Classical Planning, we give a strict
definition of goal recognition, that is the addressed task, and highlight its com-
monalities and differences with plan recognition. Finally we describe the current
state-of-the-art approaches in these fields.

2.1 Classical Planning

In this thesis, we will work within the branch of Automated Planning called Clas-

sical Planning. In Classical Planning the environment is deterministic and the
initial state and goals are fully known. The model underlying classical planning
can be described as a model S = ⟨S, s0, SG, A, f, c⟩, where:

• S is a finite and discrete set of possible states. These states are a represen-
tation of all the possible configurations of the environment;

• s0 ∈ S is the initial state (i.e. the initial configuration of the environment);

• SG ⊆ S is the non-empty set of goal states;

• A(s) ⊆ A is the set of actions in A that are applicable in each state s ∈ S;

2.1 Classical Planning 8

• f(a, s) is a deterministic transition function where s′ = f(a, s) is the state
that follows s after applying action a ∈ A(s);

• c(a, s) is a positive cost for executing action a in the state s.

A solution or plan π is a sequence of applicable actions π = a0, a1, . . . , an that
generates a state sequence s0, s1, . . . , sn+1 where ai ∈ A(si), si ∈ S, si+1 =

f(ai, si) and sn+1 is a goal state (i.e. sn+1 ∈ SG). The cost of the plan is defined
as:

cost(π) =
n∑︂

i=0

c(ai, si) (2.1)

That is the sum of the action costs c(ai, si) with i ∈ [0, n]. A solution plan is
optimal if it has minimum cost among all possible solution plans. A common
cost structure consists in setting all action costs c(a, s) to 1. In this case the cost
of the plan is given by its length, and the optimal plans are the shortest ones.

There are two types of language for expressing classical planning models in
a compact form: in the first, the state variables are all boolean while in the other
they are multivalued and can be represented as a value from a finite domain [29].
The simplest classical planning language in use is STRIPS [21], a language based
on boolean variables. In STRIPS, the boolean variables that compose a state can
be called facts, fluents or atoms. A planning problem in STRIPS is represented by
a tuple P = ⟨F, I, A,G⟩ where:

• F represents the set of atoms or propositions of interest;

• I ⊆ F represents the initial state;

• A represents the set of actions;

• G ⊆ F represents the goal.

2.1 Classical Planning 9

(define (domain b l o c k s w o r l d)
(:requirements : s t r i p s : equa l i t y)
(: p r ed i c a t e s (c l e a r ? x) (o n− t a b l e ? x) (arm−empty) (h o l d i n g ? x) (on ? x ?y))
(: a c t i on pick−up

:parameters (? ob)
:precondi t ion (and (c l e a r ? ob) (o n− t a b l e ? ob) (arm−empty))
: e f f e c t (and (h o l d i n g ? ob) (not (c l e a r ? ob)) (not (o n− t a b l e ? ob))

(not (arm−empty))))
(: a c t i on put−down

:parameters (? ob)
:precondi t ion (and (h o l d i n g ? ob))
: e f f e c t (and (c l e a r ? ob) (arm−empty) (o n− t a b l e ? ob)

(not (h o l d i n g ? ob))))
(: a c t i on s t a c k

:parameters (? ob ? underob)
:precondi t ion (and (c l e a r ? underob) (h o l d i n g ? ob))
: e f f e c t (and (arm−empty) (c l e a r ? ob) (on ? ob ? underob)

(not (c l e a r ? underob)) (not (h o l d i n g ? ob))))
(: a c t i on u n s t a c k

:parameters (? ob ? underob)
:precondi t ion (and (on ? ob ? underob) (c l e a r ? ob) (arm−empty))
: e f f e c t (and (h o l d i n g ? ob) (c l e a r ? underob)

(not (on ? ob ? underob)) (not (c l e a r ? ob)) (not (arm−empty))))
)
(define (problem pb2)

(:domain b l o c k s w o r l d)
(: o b j e c t s b l o c k a b l o c k b)
(: i n i t (o n− t a b l e b l o c k a) (o n− t a b l e b l o c k b) (c l e a r b l o c k a)

(c l e a r b l o c k b) (arm−empty))
(: goa l (and (on b l o c k a b l o c k b)))

)

Figure 2.1: An instance of the blocksworld domain expressed in PDDL

In STRIPS, the actions a ∈ A are represented by three sets of atoms over F called
the Add (Add(a)), Delete (Del(a)) and Precondition (Pre(a)) lists. The Add list
describes the atoms that the action a makes true, the Delete list describes the
atoms that a makes false and the Precondition list describes the atoms that must

2.1 Classical Planning 10

be true in order for the action a to be executed.
Planning Domain Definition Language (PDDL) [42] is a language that ex-

tends the STRIPS language by adding a number of syntactic constructs, like, for
instance, allowing preconditions and goals to contain negative literals. In Fig-
ure 2.1, we report the description of the well-known blocksworld domain, in
which the agent has the goal of building one or more stacks of blocks, and only
one block may be moved at a time, expressed in PDDL. As we can see in Figure
2.1, PDDL problems are expressed in two parts enclosed in a “define” clause:

• the domain part: it represents the general domain. In this part the actions
are expressed using generic atoms defined using predicate names, variables
and constants;

• the problem part: it represents a particular domain instance. In this part,
the object names that will replace the variables are declared, together with
the atoms used to describe the initial state, and a formula describing the
goal state.

As we can see in Figure 2.1, in the blocksworld domain the predicates are
clear, on-table, holding, arm-empty and on. The predicates clear,
on-table and holding represent the property that the objects (i.e. the blocks)
can have; the objects are expressed through the use of variables (e.g. ?x). The
predicate arm-empty is a property of the environment as it does not involve
any object while the predicate on expresses the relation between two objects.
Following the predicates definition we have four actions: Pick-Up, Put-Down,
Stack and Unstack. Pick-Up is the action of lifting a block, represented by
the variable ?ob, from a table; similarly, Put-Down is the action of dropping a
block on the table. The action Stack concerns lifting a block ?ob from the top
of another block ?underob; the opposite action of dropping ?ob on the top of

2.2 Goal and Plan Recognition 11

Figure 2.2: Activity, Goal and Plan Recognition

?underob is represented by action Unstack.
Finally, in the last define clause of Figure 2.1, we have the problem definition. In
this very simple problem instance there are two blocks: Block A and Block B.
In the initial state both blocks are on the table and the goal of the problem is to
reach a state where Block A is on top of Block B.

2.2 Goal and Plan Recognition

Goal recognition, and its more general form of plan recognition, are classic prob-
lems in artificial intelligence [24]. These tasks are connected by their shared focus
on recognizing patterns in action sequences, and they are widely regarded as key
components of human intelligence. The capacity to interpret patterns in others’
actions is critical for navigating everyday situations, such as driving a car, hold-
ing a conversation, or playing a sport. Since in the literature sometime they are

2.2 Goal and Plan Recognition 12

not clearly distinguished, we will provide an informal definition of them follow-
ing [62] and we will refer to these fields of research considering the reported
definitions throughout this work of thesis. Among these definitions, we also
include the Activity Recognition definition, since it’s a very related task even
though it is not addressed in this thesis. Figure 2.2 reports an overview of the
different roles of activity, goal and plan recognition in the process of recognizing
the plan and the goal of an agent from raw data.

Activity recognition concerns analyzing sequences of data generated by hu-
mans or autonomous agents acting in an environment, to identify the corre-
sponding activity that they are performing. These data are typically low-level
data, like the ones that can be collected from wearable sensors, accelerometers,
or like images to recognize human activities such as running, cooking, driving,
etc. [65].

Goal recognition (GR) is the problem of identifying the intention (goal) of an
agent from observations about the agent behaviour in an environment. These
observations can be represented in different ways such as an ordered sequence
of images, each one representing a state or an ordered sequence of actions iden-
tified by activity recognition. The agent’s goal can be expressed either as a set
of propositions or a probability distribution over alternative sets of propositions
(each one forming a distinct candidate goal).

Plan recognition is more general than GR and concerns both recognising the
goal of an agent and identifying the full ordered set of actions (plan) that have
been, or will be, performed by the agent in order to reach that goal; as GR, typi-
cally plan recognition takes as input a set of observed actions performed by the
agent [12]. A plan recognition task includes the goal recognition task and com-
plements it with the task of defining a set of observed and predicted actions and
the relations between them that will lead to that goal.

2.2 Goal and Plan Recognition 13

2.2.1 Model-based and Model-free Goal Recognition

The approach to GR known as “goal recognition over a domain theory” [56, 59,
61, 62], represents the agent/environment states and the set of actions A that the
agent can perform; typically it is specified by a planning language such as PDDL,
as described in Section 2.1. An instance of a GR problem is represented by a tuple
T = ⟨Π, I, O,G⟩ where:

• Π = ⟨F,A⟩ is a planning domain where F specifies the set of possible
fluents and A represents the set of actions

• an initial state I of the agent and environment (I ⊆ F);

• a sequence O = ⟨obs1, .., obsn⟩ of observations (n ≥ 1), where each obsi is
an action in A performed by the agent;

• and a set G = {G1, .., Gm} (m ≥ 1) of possible goals of the agent, where
each Gi is a set of fluents over F that represents a partial state.

The observations form a trace of the full sequence π of actions performed by
the agent to achieve a goal G∗, i.e., a trace of the agent plan. Such a plan trace
is a selection of actions in π, ordered as in π; the selected actions can be non-
consecutive in π. Solving a GR instance consists of identifying the G∗ in G that
is the hidden goal of the agent.

The approach based on a model of the agent’s actions and of the agent/envi-
ronment states, that we call model-based goal recognition (MBGR), defines GR as
a reasoning task addressable by automated planning techniques [29, 44].

An alternative approach to MBGR is model-free goal recognition (MFGR) [23,
11]. In this approach, GR is formulated as a classification task addressed through
machine learning. The domain specification consists of a fluent set F , and a set

2.3 State of the Art 14

of possible actions A, where each action a ∈ A is specified by just a label, that is
a unique identifier for each action.

A MFGR instance for a domain is specified by an observation sequence O =

⟨obs1, .., obsn⟩, formed by action labels and, as in MBGR, a goal set G formed by
subsets of F . MFGR requires minimal information about the domain actions, and
can operate without the specification of an initial state, that can be completely
unknown. Moreover, since running a learned classification model is usually fast,
a MFGR system is expected to run faster than a MBGR system based on planning
algorithms. On the other hand, MFGR needs a data set of solved GR instances
from which learning a classification model.

2.3 State of the Art

Goal and plan recognition have been extensively studied through model-based
approaches exploiting planning techniques [44, 55, 61, 59, 51] or matching tech-
niques relying on plan libraries (e.g., [47]). Among these approaches, we would
like to highlight the work of Ramı́rez and Geffner [55], that is one of the first
work that applies classical planning techniques to solve goal and goal recognition
problems and the work of Pereira et al. [51], that is the current state-of-the-art
approach for MBGR. Finally, as in this thesis we will propose approaches to solve
MFGR instances, here we introduce the most relevant approaches for MFGR.

2.3.1 Plan Recognition as Planning

The work of Ramı́rez and Geffner [55] (PRP) presents two approaches: an exact
approach and an approximate approach.

The exact approach computes, for all the goals G ∈ G, the optimal plan from
the initial state to the goal and the optimal plan that complies with the observa-

2.3 State of the Art 15

tions O from the same initial state to the same goal. The latter is computed by
transforming the original goal recognition problem T . Given the original goal
recognition problem T = ⟨Π, I, O,G⟩, the transformed goal recognition problem
is T ′ = ⟨Π′, I, O′,G ′⟩ where:

• Π′ = ⟨F ′, A′⟩. F ′ is defined as F ′ = F ∪ Fo, where Fo = {pa|a ∈ O}. A′

is defined as A′ = A ∪ Ao, where Ao = {oa|a ∈ O}; the new action oa

has the same preconditions and effects of a ∈ A except for the new fluent
pa that is added to Add(oa) and the fluent pb for action b that immediately
precedes a in O, if any, that is added to Pre(oa);

• O′ is empty;

• G ′ contains the goal G′ = G ∪Go ∀G ∈ G, where Go = Fo.

The solution set for T is G∗T , while the solution set for T ′ is G∗T ′ .
The candidate goals are all the goals for which the cost of these two optimal plans
is the same; formally, G ∈ G iif c∗Π′(G) = c∗Π′(G′) where c∗Π′(G) is the optimal
cost for achieving G in Π′.
Although this approach is formally exact, its major drawback is that it requires
checking all the possible goals in the hypothesis set, with several calls to the
planner, which could take a long time.

The approximate approach tries to mitigate this drawback computing a set of
“good plans” for all the goals G ∈ G using a modified version of Fast-Forward
[34] instead of the optimal plans. In this case the candidate goals are the ones
that contain the highest number of actions in the observations. This approach
is faster than the exact one but, as the name suggests, it does not provide any
formal guarantee of correctness.

A follow-up of this work [56] expands the Ramı́rez and Geffner [55] method

2.3 State of the Art 16

using standard planners and providing a probability distribution over the candi-
date goals.

2.3.2 Landmark-Based Heurisitics for Goal Recogniton

The work in Pereira et al. [51] (LGR) is a state-of-the-art approach for model-
based goal recognition. LGR is a planning-based system exploiting landmarks
[35] (i.e., propositions that are necessarily true in every sequence of actions
reaching a goal from an initial state). In this work the authors develop two
heuristic methods for solving a goal recognition problem: the Goal Completion
heuristic and the Uniqueness heuristic.

The Goal Completion heuristic (hgc) aggregates the percentage of completion
of each sub-goal into an overall percentage of completion for all facts of a candi-
date goal G ∈ G. For a goal G, the heuristic hgc is computed as:

hgc(G,ALG,LG) =

∑︁
f∈G

|ALf∈ALG|
Lf∈LG

|G|
(2.2)

WhereALf is the set of achieved landmarks from observations of every sub-goal
f and Lf represents the set of necessary landmarks to achieve every sub-goal f .
For each candidate goal G, we define the set ALG as ALG = {ALf | f ∈ G}
and the set LG as LG = {Lf | f ∈ G}. This heuristic estimates the completion
of a goal G by computing the ration between the sum of the percentage of the
completion of every sub-goal and the number of sub-goals in G.

The Uniqueness heuristic (huniq) aims to capture how unique, and as a conse-
quence informative, each landmark is to help to disambiguate similar goals for a
set of candidate goals. To express this concept, the landmark uniqueness (Luniq)
is computed as the inverse frequency of a landmark among the landmarks found

2.3 State of the Art 17

in the set of candidate goals G:

Luniq(Lf ,LG) =
1∑︁

LG∈LG
|{Lf |Lf ∈ LG}|

(2.3)

The value of huniq for a goal G is computed by summing the uniqueness values
of the landmarks achieved in the observations. Intuitively this heuristic weights
the completion value by the informative value of a landmark so that unique land-
marks have the highest weight. Formally, huniq is defined as:

huniq(G,ALG,LG,Υuv) =

∑︁
ALf∈ALG

Υuv(ALf)∑︁
Lf∈LG

Υuv(Lf)
(2.4)

Where Υuv contains the landmark uniqueness value (Luniq) of every landmark
Lf ∈ LG ∀G ∈ G, computed following the Equation 2.3.

LGR achieves good performance in terms of accuracy solving GR instances
much faster than PRP. However, this speed is achieved by relaxing the formal
guarantees provided by PRP; in fact, LGR does not provide any guarantees of
correctness if the observation trace is incomplete (i.e. O ̸= π∗), which is the
normal use-case.

2.3.3 MFGR approaches

Concerning MFGR and in particular GR systems using neural networks, some
works use them for specific applications, such as game playing [46]. In order to
extract useful information from image-based domains and perform goal recogni-
tion, Amado et al. [3] used a pre-trained encoder and a LSTM network, which will
be described in Section 3.2.2, for representing and analysing a sequence of ob-
served states. Amado et al. [4] trained a LSTM-based system to identify missing
observations about states in order to derive a more complete sequence of states
that can be analysed by a MBGR system based on classical planning techniques.

2.3 State of the Art 18

Borrajo et al. [11] investigated the use of XGBoost [13] and LSTM neural net-
works for goal recognition using only traces of plans, without any knowledge on
the domain. They train a specific machine learning model for each goal recogni-

tion instance (the goal set G is fixed), using instance-specific datasets for training
and testing. Moreover, the experimental evaluation of the networks proposed in
[11] use peculiar goal recognition benchmarks with custom-made instances.

Maynard et al. [41] compared model-based techniques and approaches based
on deep learning for goal recognition. As in [11], such a comparison is made us-
ing specific instances, and several kinds of neural networks are trained to directly
predict the goal among a set of possible ones. This makes the trained networks in
[41] specific for the considered GR instances in a domain. While in a typical goal
recognition problem we can have missing observations across the entire plan of
the agent(s), the work in [41] considers only observations from the start of the
plan to a given percentage of it, treating every possible successive observation
as missing.

Chapter 3

Deep Learning

In this thesis, as mentioned in Section 2.2.1, we tackle the problem of Goal Recog-
nition. However, we study some novel approaches to solve it; to do so, we formu-
late a GR problem as a classification task and we address this task through deep
learning. In this chapter we show the formalisation and the main idea behind
some of the state-of-the-art approaches adopted in the field of Natural Language
Processing such as Word Representation, Recurrent Neural Networks, Attention
Mechanism and Transformers.

3.1 Word Representations

In order for the machine learning system to process an GR problem, we chose
to represent each observation as a word. In Computer Science, a word can be
represented in two ways: it can be mapped into a number, which is generally
referred to as encoding or it can be projected into a latent space of arbitrary
dimensions (i.e., it is mapped into a vector), which is called embedding.

19

3.1 Word Representations 20

Figure 3.1: ASCII encoding

3.1.1 Encoding

Encoding involves the use of a code to change the original data into a form that
can be used by an external process. We can intuitively represent an image as a
colored pixel matrix, where each pixel is encoded using three numbers between
0 and 255. Similarly, we can represent a word as a sequence of characters, which
are then converted into numbers using the American Standard Code of Informa-
tion Interchange (ASCII). Summing these numbers is one of the simplest way of
encoding of a word. In Figure 3.1 we show an example of the ASCII encoding
for three words: ape, pea, and monkey. Figure 3.1 also highlights the bigger
problems of this approach: the encoding of the word ape is the same as that of
the word pea; in fact, for an algorithm that only processes the encodings with-
out any knowledge of the original words, these two words are indistinguishable.
This makes the ASCII encoding not suitable for machine learning approaches.

A widely used encoding method that solves this problem is the One-Hot En-

coding. Given a set of words with size K that we want to encode, in order to
obtain their one-hot encoding, we first assign a unique integer identifier from 0

to K − 1 to each of them. The encoding of the word with ID = j is a binary
vector of size K with 1 in the j-th position and 0 in all the other positions. Fig-
ure 3.2, reports the one-hot encoding with K = 3 for the same three words: ape,
pea and monkey. As we can see, using this encoding, we can guarantee that each

3.1 Word Representations 21

Figure 3.2: One-Hot encoding

word has a unique representation. One-Hot Encoding is a good way to encode
words, but has some limitations: First of all, a high cardinality vector is needed
to represent each word; this can be a problem, as most machine learning algo-
rithms can only handle low-dimensional numerical data as input [64]. Second,
this encoding does not take into account one of the most important aspects of
a word: its meaning. For example, the words ape and monkey are synonyms,
but the fact that they are similar and can be interchanged cannot be implied in
any way. In fact, when using this encoding, the word distribution sits in an or-
thogonal vector space (that is, OneHot(word1) · OneHot(word2) = 0̄ for each
couple of considered words). Finally, the role of the word in the sentence, its
grammatical features, and its connections to other words are almost impossible
to represent through this encoding.

3.1.2 Embedding

An embedding is a relatively low-dimensional space used to translate high-dimen-
sional vectors. Embeddings are widely used in machine learning to handle large
categorical inputs; in Natural Language Processing (NLP), for example, embed-
ding is used to translate sparse vectors that represent words into a low-dimensional

3.1 Word Representations 22

Figure 3.3: Bi-dimensional word embedding

representation [2]. The embedding provides a word representation that consid-
ers its meaning and its role in the sentence. In fact, each word is represented as
a n-dimensional vector of real numbers, also called word vector. We can think of
this representation as a single point in a vector space of size n. When creating
this representation, two main factors must be considered:

• words whose meanings are closely related should be represented in the
same portion of the vector space; in particular synonyms, singular and
plural terms and words with different conjugations should have very close
representations

• words whose meaning or context of application is very different should be
far from each other in the vector space

3.2 Recurrent Neural Networks 23

Figure 3.3 shows, as a toy-example, a two-dimensional embedding for the three
words ape, pea and monkey. As we can see, in the bottom left part of the image,
the synonym words ape and monkey have a very close representation, while
the representation of the word pea, which is not related to the other two, is on
the top right side of the image, far from the other representations. In recent
years, many algorithms like GloVe [50], FastText [37] and the most famous and
used Word2Vec [45] have been developed to understand how language works
and obtain an embedding representation of words.

However, in this work, we need a representation of tokens that are specific
to our application; for this reason, we opted to compute the embeddings while
training our supervised machine learning model model. Actually, this process
allows us to encode the categories we predict in the classification task into em-
bedding vectors. The embedding shown in Figure 3.3, for example, could also be
obtained from a model that classifies vegetables and animals. This means that
this training encodes ad hoc embedding that contains relevant features for the
specific task, grouping words so that embedding vectors are words that belong
to the same class.

3.2 Recurrent Neural Networks

A recurrent neural network (RNN) [19] represents one of the two primary cate-
gories within the realm of artificial neural networks, distinguished by the manner
in which information flows between its layers. In contrast to the unidirectional
nature of feedforward neural networks, an RNN constitutes a bidirectional ar-
tificial neural network. This means that it allows the output from some nodes
to affect subsequent input from the same nodes. In particular, RNNs are imple-
mented for their ability to use internal state (also called memory) to process

3.2 Recurrent Neural Networks 24

h

X

Y

UNFOLD

Figure 3.4: Compressed (left) and unfolded (right) representation of a Recurrent
Neural Network having as input a sequence X of length n. Wx, Wh and Wy are
the weight matrices computed by the network.

arbitrary sequences of inputs. In fact, RNNs analyze one element of the input se-
quence at a time and compute the i-th input, also considering what was provided
in the previous i− 1 inputs.

3.2.1 Standard RNNs

As an example, let us consider a sentence X of n words. Taking into account the
word wt at position t, we will call its embedding xt ∈ Rk where k is the size of
the embedding space and t ∈ [1, n]. Figure 3.4 shows the structure of an RNN
both compressed (on the left) and unfolded (on the right). When unfolded, the
RNN can be seen as a feedforward neural network of n layers where each layer
has d neurons and d is a hyperparameter of the network. The t-th layer takes as
input xt and ht−1, where the latter is the memory computed by layer t− 1.

Considering the input embedding at time t as xt ∈ Rk and its corresponding
output as yt ∈ Rm, we can define the weight matrices Wx ∈ Rd×k, Wh ∈ Rd×d

and Wy ∈ Rm×d and the bias vectors bh ∈ Rd and by ∈ Rm so that:

ht = σh(Wxxt +Whht−1 + bh) (3.1)

3.2 Recurrent Neural Networks 25

yt = σy(Wyht + by) (3.2)

Where σh is an activation function like ReLU or tanh and σy is an activation
function that depends on the addressed task. Equation 3.1 shows how the RNN
processes each element of the sequence considering both the current input xt

and the memory computed during the previous computation ht−1, creating the
new memory ht. Equation 3.2, instead, computes the output of the RNN after
processing the t-th element of the sequence.

Please note that, as shown on the left of Figure 3.4, these weight matrices
(and also the bias vectors) are shared among all layers. The idea behind this im-
plementation is that a word has the same meaning independently of its position
in the sentence, and, for this reason, it should always be processed in the same
way. This weight-sharing allows the use of fewer computational resources and a
shorter computation time because we have to train fewer weights compared to
a fully connected neural network.

However, the standard RNNs have two main issues:

• Exploding and Vanishing Gradients [49]: the exploding gradients problem
refers to the large increase in the norm of the gradient during training.
The vanishing gradient problem refers to the opposite behavior, when the
gradients go exponentially fast to norm 0, making it impossible for the
model to learn correlation between temporally distant events;

• Long-term dependency [28]: while processing a long document, for in-
stance, the RNN has a tendency to forget the context expressed in the first
sentences. When doing so, important parts of the document might be for-
gotten, and the RNN might not be able to process them properly.

3.2 Recurrent Neural Networks 26

Figure 3.5: Unfolded representation of a LSTM cell. The yellow blocks represent a
neural network layer with sigmoid (σ) or tanh activation. Pink circles represent
point-wise operations. Lines merging denote concatenation, while a line forking
denote its content being copied.

3.2.2 Long Short Term Memory

Long Short Term Memory networks (LSTMs) [33], are a special kind of RNN,
which were designed to solve the problems of the standard RNNs. In Figure 3.5,
we show the unfolded representation of an LSTM network. The new component
introduced by this network is the cell state ct, which works as memory buffer
storing long-term information. The LSTM has the ability to remove or add in-
formation to the cell state, through structures called gates. Gates are made up
of a neural network layer with a sigmoid activation function and a point-wise
multiplication operation. An LSTM has three gates: the forget gate, the input
gate, and the output gate.

The forget gate ft, as the name suggests, decides what information in the
previous cell state ct−1 will be forgotten considering the current input xt and the
previous output ht−1. More formally, the forget gate ft ∈ (0, 1)k can be expressed

3.2 Recurrent Neural Networks 27

as:
ft = σ(Wf [ht−1, xt] + bf) (3.3)

Where σ is the sigmoid activation function, Wf ∈ Rk×(k+n) is a weight matrix,
[ht−1, xt] ∈ Rk+n is the concatenation of the previous output ht−1 ∈ (−1, 1)k

and the input vector xt ∈ Rn and bf ∈ Rk is the bias vector.
The input gate it decides how relevant the new information is considering

the input xt and the previous output ht−1. The LSTM also creates a vector of
new candidate values C̃t that could be added to the state from the information
in [ht−1, xt]. Using the input gate, the forget gate, and the candidate values, the
LSTM can update the old cell state ct−1 into the new cell state ct: multiplies the
old state ct−1 by ft, forgetting the things decided by the forget gate; then it adds
it · C̃t which are the new candidate values, scaled by how much the input gate
decided to update each state value.
More formally, the input gate it ∈ (0, 1)k can be expressed as:

it = σ(Wi[ht−1, xt] + bi) (3.4)

Where Wi ∈ Rk×(k+n) is a weight matrix and bi ∈ Rk is the bias vector.
The candidate values vector C̃t ∈ (−1, 1)k can be formalized as:

C̃t = tanh(Wc[ht−1, xt] + bi) (3.5)

Where tanh is the layer activation function, Wc ∈ Rk×(k+n) is another weight
matrix and bc ∈ Rk is its bias vector.
Finally the new cell state ct ∈ Rk can be formalized as:

ct = it ⊙ C̃t + ft ⊙ ct−1 (3.6)

Where ⊙ is the element-wise product.

3.2 Recurrent Neural Networks 28

The output gate ot, finally, decides which parts of the cell state can be provided
as output considering the current input xt and the previous output ht−1. To
compute the new output ht, which stores the short-term information, the cell
state is given as input to a tanh function (to push the values to be between −1
and 1) and multiplied by the output gate.
More formally the output gate ot can be expressed as:

ot = σ(Wo[ht−1, xt] + bo) (3.7)

Where Wo ∈ Rk×(k+n) is a weight matrix and bo ∈ Rk is its bias vector.
The output of the LSTM ht ∈ (−1, 1)k can then be written as:

ht = tanh(ct)⊙ ot (3.8)

3.2.3 Gated Recurrent Unit

Gated Recurrent Units (GRUs) [16] are another type of recurrent neural network
that attempts to simplify the structure and, therefore, the training of LSTMs. In
Figure 3.6, we show the structure of an unfolded GRU network. We can see that,
unlike the LSTM, the GRU cell does not implement a cell state ct; in fact, its role
is replaced by output ht. Similarly to the LSTM, the architecture of a GRU cell is
also based on gates; the GRU has two gates: the reset gate and the update gate.

The reset gate rt has the same function as the forget gate ft: it decides which
information from the previous output ht−1 will be forgotten considering also the
current input xt. It can be formalized as:

rt = σ(Wr[ht−1, xt] + br) (3.9)

Where rt ∈ (0, 1)k, σ is the sigmoid activation function, Wr ∈ Rk×(k+d) is a
weight matrix, [ht−1, xt] ∈ Rk+n is the concatenation of the previous output
ht−1 ∈ (−1, 1)k and the input vector xt ∈ Rn and br ∈ Rk is the bias vector.

3.2 Recurrent Neural Networks 29

Figure 3.6: Unfolded representation of a GRU cell. The yellow blocks represent a
neural network layer with sigmoid (σ) or tanh activation. Pink circles represent
point-wise operations. Lines merging denote concatenation, while a line forking
denote its content being copied.

The update gate zt, similar to the input gate it of the LSTM, decides how
relevant the new information is, considering the previous output ht. We can
write the update gate zt ∈ (0, 1)k as:

zt = σ(Wz[ht−1, xt] + bz) (3.10)

Where Wr ∈ Rk×(k+d) is a weight matrix and bz ∈ Rk is its bias vector.
Unlike LSTM, the new candidate output h̃t is a vector of new candidate values

that is generated from the relevant information contained in the previous output
(i.e. ht−1 ⊙ rt) and the current output xt. Finally, the new output ht will be the
sum of the important information, computed by reversing the update gate zt,
contained in the previous output ht−1 (i.e., (1 − zt) ⊙ ht−1), and the relevant
information contained in the candidate output h̃t (i.e., zt ⊙ ht). Please note that
in the GRU cell there is no output gate.

3.3 Attention Mechanisms 30

The new candidate output h̃t ∈ (−1, 1)k can be written as:

h̃t = tanh(Wh[rt ⊙ ht−1, xt] + bh) (3.11)

Where⊙ is the element-wise product, tanh is the layer activation function, Wh ∈
Rk×(k+d) is a weight matrix, [rt ⊙ ht−1, xt] is the concatenation of the element-
wise product between rt ∈ (0, 1)k and ht−1 ∈ (−1, 1)k, and the current input
xt ∈ Rn, and bh ∈ Rk is the bias vector.
Finally the new output ht ∈ (−1, 1)k can be expressed as:

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t (3.12)

3.3 Attention Mechanisms

Despite the improvement provided by the implementation of recurrent neural
networks such as LSTM and GRU, their ability to connect elements in a document
that are far from each other is still limited [54]. For example, suppose that we
want to run a classification task on a n words document, where the word in
position t is represented by its embedding wt for t ∈ [1, n] using an LSTM. When
n is large, it can happen that the output hn for the word wn is not influenced at
all by the first words (e.g. w1) and it’s too depending on the last ones. To solve
this problem, Attention mechanisms [6, 54] have been developed.

3.3.1 Feed-forward Attention

Feed-forward Attention [54] applies the Attention Mechanism presented in [6],
which was used in encoder-decoder systems for machine translations, to Feed-
forward Neural Networks. Figure 3.7 reports a schematic of the Feed-forward At-
tention mechanism. Given a state sequence h of size n (i.e. ht ∈ h for t ∈ [1, n]),

3.3 Attention Mechanisms 31

Figure 3.7: Schematic of the Feed-Forward Attention mechanism. Vectors in the
hidden state sequence ht are fed into the learnable function a(ht) to produce a
probability vector α. The vector c is computed as a weighted average of ht, with
weighting given by α. Figure from [54].

produced by a feed-forward neural network, we want to compute a context vec-
tor c that is an embedding of the sequence h obtained by computing an adaptive
weighted average of that sequence. This vector is a representation of the entire
sentence that can be learned during network training to improve the quality of
the sequence representation and help address memory-related problems.

The context vector c can be expressed as:

c =
n∑︂

t=0

αtht (3.13)

Where αt is the weight associated to the state ht.
Each weight αt can be computed as the result of the softmax function σ applied
on the element et ∈ e:

αt = σ(e)t =
exp(et)∑︁n
k=1 exp(ek)

(3.14)

3.3 Attention Mechanisms 32

Figure 3.8: Steps of the Self-Attention procedure.

Where et is an integer that represents the relation between the final output and
the state ht. Formally, this relation is represented by a function, called a, which
is a learnable function.

et = a(ht) (3.15)

Usually, the function a is computed using a feed-forward neural network.

3.3.2 Self-Attention

The Self-Attention mechanism [63] computes the interaction among all words in
the considered document or sentence. The intuition behind this approach is that
the RNNs are not the only way to process a sentence or a document; a sequence
of attention mechanism and fully-connected layers can be used to process all the
words of a document in parallel and can achieve even better results.

Considering a document of n words, the Self-Attention takes as input a word

3.3 Attention Mechanisms 33

embedding xt ∈ Rd with t ∈ [1, n], and computes three different representations
of the same word, namely query (qt), key (kt) and value (vt), using three weights
matrices Wq,Wk,Wv ∈ Rb×d:

qt = Wqxt, kt = Wkxt, vt = Wvxt (3.16)

Where b represents the size of internal representation of the word, and it’s an
hyperparameter set by the user; usually its value is set to 512 or 768 [63].
These three representations are then used to create a final representation zt of the
word xt, considering the relations between all the other words in the document
and the word itself to better represent its meaning. The final representation zt

can be expressed as:

zt =
n∑︂

i=1

αitvi (3.17)

Where αit is a scalar value that represents the influence of word xi with i ∈ [1, n]

on the input word xt and vi is the value representation of the word xi.
The value αit is computed as:

αit = σ

(︃
qtk

T

√
b

)︃
i

=
exp

(︂
qtkTi√

b

)︂
∑︁n

j=1 exp
(︂

qtkTj√
b

)︂ (3.18)

Where σ is the softmax function.
Taking into account a two-word toy document, Thinking and Machines, Fig-

ure 3.8 reports the step-by-step procedure to calculate the self-attention of the
first word. First, we compute the key (k1 and k2), query (q1 and q2), and value
(v1 and v2) representations of the two words (Equation 3.16). Subsequently, we
compute the two scores as the scalar product of the query q1 and the key rep-
resentation of each word (k1 and k2). These scores are then divided by

√
b = 8;

in this toy example b is set to 64 for simplicity’s sake; usually b is set to 512 or

3.3 Attention Mechanisms 34

768. After division operations, the function softmax is applied to both quotients
(Equation 3.18), which are then multiplied by their relative value representations.
Finally, we sum the two products to obtain the final representation z1 for word
x1 (Equation 3.17).

Considering an input matrix X ∈ Rn×d where X[t] = xt and t ∈ [1, n], we
can redefine Equation 3.16 as:

Q = XWq, K = XWk, V = XWv (3.19)

Where Q,K, V ∈ Rn×b.
We can also combine Equation 3.17 and Equation 3.18 to obtain a more compact
definition of Self-Attention over Q,K, V :

Attention(Q,K, V) = softmax

(︃
QKT

√
b

)︃
V (3.20)

Where Attention(Q,K, V) ∈ Rn×b is a matrix that contains the final represen-
tation of the input in each row (i.e. Attention(Q,K, V)[t] = zt for t ∈ [1, n])

3.3.3 Multi-Headed Attention

The work in [63] further refined the Self-Attention layer by adding a mecha-
nism called Multi-Headed Attention. This improves the performance of the Self-
Attention mechanism by giving it multiple representation subspaces. In fact,
with Multi-Headed Attention, we have multiple sets of query, key, value weight
matrices; in [63], the authors set the cardinality of these sets, called h, to 8. Each
of these sets is initialized at random. After training, each set is used to project
the input vector into a different subspace of representation.

Figure 3.9 shows the Multi-Headed Attention mechanism with h = 8 for
a sentence containing two words: thinking and machines. Given h different

3.3 Attention Mechanisms 35

Figure 3.9: Multi-Headed Attention mechanism with h = 8 for a simple sentence
of two words. X represents the matrix that contains the embedding of the input
words. Each later i ∈ [0, h− 1] computes a separate final representation matrix
Zi, also called head, using the Self-Attention mechanism. These representation
matrices are finally concatenated and multiplied with matrix WO to obtain the
final representation matrix Z

representations, also called heads, we can write the Multi-Headed Attention as:

MultiHead(Q,K, V) = concat(head1, head2, . . . , headh)W
O (3.21)

Where WO ∈ Rhb×b is a new output matrix that rescales the concatenated heads
vector of size n × hb to a single head shape and headi ∈ Rn×b for i ∈ [1, h] is
defined as:

headi = Attention(XWQ
i , XWK

i , XW V
i) (3.22)

Where WQ
i ,WK

i ,W V
i ∈ Rd×b are the query, key and value weight matrices for

head i and X ∈ Rn×d is the input matrix.

3.4 Transformer 36

Figure 3.10: Transformer architecture with N = 2 stacks of encoder and de-
coders. The input matrix X is unfolded into its rows x1 and x2

3.4 Transformer

A Transformer [63] is a deep-learning architecture based on the parallel Multi-
Headed Attention mechanism. This architecture was developed to reduce the
computational times needed to train LSTMs and was later used to train large
language models (LLMs) using large language datasets.

3.4.1 Architecture

At a high level, the Transformer architecture is composed by an encoder compo-
nent and a decoder component. The encoder component is a stack ofN encoders,
while the decoder component is a stack of N decoders; in [63], for example, N
is set to 6. In Figure 3.10, we report the model architecture with N = 2 stacks of

3.4 Transformer 37

encoders and decoders and a sentence of 2 words (x1 and x2) as input.

Embedding

As we can see in Figure 3.10, the input is a matrix X ∈ Rn×d that is unfolded
into its rows for representation purposes; the output matrix Y ∈ Rn×d that is
used as input for the decoder stack is not reported. Since the Transformer does
not contain recurrence or convolution, in order for the model to make use of the
order of the sequence, the Positional Encoding is summed to the matrices X and
Y . The Positional Encoding injects information about the relative or absolute
position of the tokens in the sequence and it can be either fixed or learned; in
the work in [63], the Positional Encoding is fixed and set to:

PE(pos,2i) = sin(pos/10000(2i/d))

PE(pos,2i+1) = cos(pos/10000(2i/d))
(3.23)

Where pos ∈ [0, n − 1] is the position of the word in the document and i ∈
[0, f loor

(︁
d
2

)︁
] is the embedding dimension.

Encoders and Decoders

As previously mentioned, the transformer is made up of a stack of N identical
encoders and a stack of N identical decoders. In Figure 3.10, N is set to 2.

Each encoder (left side of Figure 3.10) has two sub-layers. The first is a Multi-
Headed Attention mechanism, and the second is a simple fully connected feed-
forward network. A residual connection [30] is implemented around each of
the two sub-layers, followed by layer normalization (“Add & Normalize” blocks).
That is, the output of each sub-layer is computed asLayerNorm(X+Sublayer(X)),
where Sublayer(X) is either the MultiHead function (Equation 3.21) for the
first sub-layer or a feed-forward network for the second one. In [63], to facilitate

3.4 Transformer 38

the residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension b = 512.

In addition to the two sub-layers in each encoder, the decoder (right side of
Figure 3.10) inserts a third sub-layer, which performs Multi-Headed Attention
over the output of the encoder stack. This layer takes as input the matrix ZE ,
output of the last encoder and ZD, output of the Multi-Headed attention sub-
layer in the decoder and computes the Q,K, V matrices as:

Q = ZDWQ
enc/dec K = ZEWK

enc/dec V = ZEW V
enc/dec (3.24)

Similarly to the encoder, residual connections around each of the sub-layers,
followed by layer normalization, were implemented. The self-attention sub-layer
in the decoder was also modified using masking to prevent a word in position
i in the output from being influence by words in position j > i. This masking,
combined with the fact that the output embeddings are offset by one position,
ensures that the predictions for position i can depend only on the known outputs
at positions less than i.

3.4.2 BERT

Bidirectional Encoder Representations from Transformers (BERT) [17] is a
Transformer-based model designed to be pre-trained using unlabeled text. We
can consider BERT as an encoder-only Transformer architecture (left part of Fig-
ure 3.10). The BERT pre-train uses two unsupervised tasks, as presented in the
left part of Figure 3.11:

• Masked Language Model (MLM) task: given a sentence, a certain num-
ber of words (also called tokens) are masked, which means that they are
replaced by another special token. The model is trained to predict these

3.4 Transformer 39

Figure 3.11: Pre-training (on the left) and Fine-Tuning (on the right) of BERT. The
model is trained simultaneously on Masked Language Model and Next Sentence
Prediction tasks. Once trained it can be fine-tuned on different specific tasks.

masked words using the masked sentence as input and confronting its out-
put with the unmasked input. In [17], 15 % of the words in each sentence
is masked during training. This task is used to make the model learn the
context of the words in a sentence.

• Next Sentence Prediction task: given a couple of sentences A and B,
the model is trained to predict whether B follows A in the corpus data.
This task is used to make the model learn the relations between sentences,
which is particularly useful in context such as Question Answering.

Please note that these two tasks are learned simultaneously, as shown on the left
side of Figure 3.11.
Finally, the pre-trained BERT model can be fine-tuned with just one additional
output layer to create state-of-the-art models for a wide range of tasks, such as
Question Answering and Common Sense Inference (right part of Figure 3.11)

Chapter 4

Goal Recognition as a Deep

Learning Task

In this chapter, we tackle the goal recognition task in a given domain through a
LSTM Network (LSTM). A run of our LSTM processes a trace of observed actions
to compute how likely it is that each domain proposition is part of the agent’s
goal, for the problem instance under considerations. These predictions are then
aggregated through a goal selection mechanism to choose one of the candidate
goals.

The proposed approach, that we call GRNet, is generally faster than the
model-based approach to goal recognition based on planning, since running a
trained neural network can be much faster than plan generation. Moreover, GR-
Net operates with minimal information, since the only information required as
input for the trained LSTM is a trace of action labels (each one indicating just the
name of an observed action), and the initial state can be completely unknown.

The LSTM of GRNet is trained only once for a given domain, i.e., the same
trained network can be used to solve a all goal recognition instances that involve

40

4.1 GR Example 41

a maximum number of objects. The maximum numbers of objects are consid-
ered as hyperparameters.On the other hand, as usual in supervised learning, a
(possibly large) dataset of solved goal recognition instances for the domain un-
der consideration is needed for the training. When such data are unavailable or
scarce, they can be synthetized via planning. In such a case, the resulting overall
system can be seen as a combined approach (model-based for generating train-
ing data, and model-free for the goal classification task) that outperforms the
pure model-based approach in terms of both classification accuracy and classifi-
cation runtime. Indeed, an experimental analysis confirms that GRNet achieves
good performance obtaining better results with respect to the state-of-the-art
goal recognition system LGR [51] for the considered benchmark domains.

Moreover, we propose an effective method to integrate GRNet and LGR in
an ensemble fashion, and we experimentally show that this system combination
performs consistently better than both GRNet and LGR considered alone show-
ing promising perspectives for integrating learning components and symbolic
reasoning in goal recognition.

This chapter describes and extends the work in [15]

4.1 GR Example

As a toy example, we will use a very simple GR instance in the well-known
blocksworld domain, in which the agent has the goal of building one or more
stacks of blocks, and only one block may be moved at a time. There are four
types of actions: Pick-Up a block from the table, Put-Down a block on the
table, Stack a block on top of another one, and Unstack a block that is on
another one. In blocksworld there are three types of facts (predicates): On,
that has two blocks as arguments, plus On-Table and Clear that have one ar-

4.1 GR Example 42

I

(a)

G = ⟨G1G2⟩
(b)

(Pick-Up Block C) (Stack Block C Block B) (Pick-Up Block F)

O

(c)

Figure 4.1: Representation of the toy goal recognition instance in
the blocksworld domain. (a) The initial state I , (b) The goal set G
composed by G1 (left) and G2 (right), (c) The sequence of observa-
tions O = ⟨(Pick-Up Block C), (Stack Block C Block B),
(Pick-Up Block F)⟩.

4.2 GRNet 43

gument. A goal recognition instance in the presented domain, composed by an
initial state I , an observation sequence O and a goal set G, is illustrated in Figure
4.1. The initial state, reported in Figure 4.1a, is I = ⟨(On-Table Block F),
(On-Table Block C), (On-Table Block H), (On-Table Block G),
(On Block B, Block H), (Clear Block F), (Clear Block C),
(Clear Block B), (Clear Block G)⟩. In Figure 4.1c, we report the obser-
vation sequence O = ⟨(Pick-Up Block C), (Stack Block C Block B),
(Pick-Up Block F)⟩. Finally, the goal set G of the instance example (Figure
4.1b) consists of the two goalsG1 = {(On Block F Block C),(On Block C

Block B)} andG2 = {(On Block G Block H),(On Block H Block F)};

4.2 GRNet

The approach we present to solve goal recognition instances is an alternative
approach in which the goal recognition problem is formulated as a classification
task, addressed through machine learning, where each candidate goal (a set of
propositions) of the problem can be seen as a value class. Our primary aim is
making goal recognition more accurate as well as faster by learning how to solve
it in a given domain. This approach to goal recognition, called GRNet, is depicted
in Figure 4.2. It consists of two main components. The first component takes as
input the observations of the GR instance to solve, and gives as output a score
(between 0 and 1) for each proposition in the domain proposition set F . This
component, called Environment Component, is general in the sense that it can be
used for every GR instance over F (training is performed once for each domain).
The second component, called Instance Component, takes as input the proposition
ranks generated by the environment component for a GR instance, and uses them

4.2 GRNet 44

Figure 4.2: Architecture of GRNet. The input observations are encoded by em-
bedding vectors and then fed to a LSTM neural network. After that the attention
mechanism computes the context vector, which is used by a feed-forward layer
to define the corresponding output values. This layer is composed by |F | neu-
rons, each one representing a possible fluent in the domain. The output of the
neural network is then used by the instance component for selecting the goal
with the highest score (G1 in the example of the figure). The observed actions
a05, a17, …, a31 are ordered from top to bottom according to their execution order.

to select a goal from the candidate goal set G.
GRNet can be used alone or it can be combined with the MBGR system LGR

[51], as shown in the last part of this section.

4.2.1 The Environment Component of GRNet

Given a sequence of observations, represented on the left side of Figure 4.2, each
action ai corresponding to an observation is encoded as a vector ei of real num-
bers by an embedding layer [8] 1. In Figure 4.2, the observed actions are displayed
from top to bottom in the order in which they are executed by the agent. The
embedding layer is initialised with random weights, and trained at the same time

1https://keras.io/api/layers/corelayers/embedding/

https://keras.io/api/layers/core_layers/embedding/

4.2 GRNet 45

with the rest of the environment component.
The index of each observed action is simply the result of an arbitrary order

of the actions that is computed in the pre-processing phase, only once for the
domain under consideration. Note that two consecutively observed actions ai

and aj may not be consecutive in the full plan of the agent, which may contain
any number of actions in between ai and aj .

The Environment Component is based on a Long Short-Term Memory net-
work (LSTM) (see Section 3.2.2), which is especially suitable for processing se-
quential data like signals or text documents that, in our case, is the sequence of
observed actions. The cells that compose the LSTM process each action a in the
input sequence O of observed actions. The output of each cell is processed by
an Attention Mechanism (see Section 3.3), in particular, the implementation of
the Feed-Forward Attention proposed by Yang et al. [67], which computes the
weights representing the contribution of each element of the sequence, and gen-
erates a unique representation (also called the context vector) of the entire plan
trace. The context vector is then passed to a feed-forward layer, which has N

output neurons with sigmoid activation function. N is the number of the do-
main fluents (propositions) that can appear in any goal of G for any GR instance
in the domain; in this work, N was set to the size of the domain fluent set F ,
i.e., N = |F |. The output of the i-th neuron oi corresponds to the i-th fluent fi
where fluents are lexically ordered, and the activation value of oi gives a rank for
fi being true in the agent’s goal (with rank equal to one meaning that fi is true
in the goal). In other words, our network is trained as a multi-label classification
problem, where each domain fluent can be considered as a different binary class;
each class (fluent) has value 1 is the fluent is present in the goal and 0 otherwise.
As loss function, we used standard binary crossentropy.

As shown in Figure 4.2, the dimensions of the input and output of our neural

4.2 GRNet 46

Hyperparameter Range

|E| [50, 200]
|LSTM | [150, 512]
Use Dropout {True, False}
Dropout [0, 0.5]
Use Rec. Dropout {True, False}
Rec. Dropout [0, 0.5]

Table 4.1: Value ranges of the hyperparameters for the Bayesian-optimisation
done by the Optuna framework. |E| represents the dimension of the embedding
vectors, |LSTM | is the number of neurons in the LSTM layer. Interval [x, y]
indicates a range of integer values from x to y, while set {x1, ..xn} enumerates
all possible values the hyperparameter can assume.

networks depend only on the selected domain and some basic information, such
as the maximum number of possible output facts that we want to consider. The
dimension of the embedding vectors, the dimension of the LSTM layer and other
hyperaparameters of the networks are selected using the Bayesian-optimisation
approach provided by the Optuna framework, [1], with a validation set formed by
20% of the training set, while the remaining 80% is used for training the network.
More details about the hyperparameters are given in Table 4.1.

4.2.2 The Instance Specific Component of GRNet

After the training and optimisation phases of the environment component, the
resulting network can be used to solve any goal recognition instance in the en-
vironment through the instance-specific component of our system (right part of

4.2 GRNet 47

Figure 4.2). Such component performs an evaluation of the candidate goals in G
of the GR instance, using the output of the environment component fed by the
observations of the GR instance. To choose the most probable goal in G (solving
the multi-class classification task corresponding to the GR instance), we designed
a simple score function that indicates how likely it is that G is the correct goal,
according to the neural network of the environment component. This score is
defined as

SGRNet(G) =
∑︂
f∈G

of (4.1)

where of is the network output for fact f of the current GR instance. For each
candidate goal G ∈ G, we consider only the output neurons that have associated
facts in G. By summing only these predicted values, we derive an overall score
for G being the correct goal. The element with the highest score is the most
probable goal in G.

4.2.3 Running Example

Considering the goal recognition example reported in Section 4.1, we will show
how GRNet processes a goal recognition instance.
Let’s assume that a GR instance in this domain involves at most 22 blocks. As a
consequence, we have that the action set A is formed by 22 Pick-Up actions, 22
Put-Down actions, 22 ∗ 21 = 462 Stack actions and 462 Unstack actions, for
a total of 968 different actions in the domain (i.e. = |A| = 968). Considering three
types of predicates, On, that involves two blocks and On-Table and Clear that
involve one block, we have that the fluent set F consists of 22× 21+ 22+ 22 =

506 propositions. We can suppose that the three observed actions (Pick-Up
Block C), (Stack Block C Block B) and (Pick-Up Block F) form-
ing the observation sequence O of Figure 4.1 have ids corresponding to indices

4.3 Integrating GRNet and LGR: LGRNet 48

5, 17 and 21, respectively. In the Environment Component of GRNet, after being
processed by the embedding layer, the input O is represented by the sequence
of vectors e05, e17 and e21 which is fed to the following network layer (see Fig-
ure 4.2). Then this sequence is fed to the LSTM layer and subsequently to the
attention mechanism, producing a context vector c representing the entire plan
trace formed by the observed actions. Finally, the vector c is processed by a final
feed-forward layer made of |F | = 506 output neurons. In this representation,
each neuron corresponds to a distinct proposition inF . Considering two possible
goals, G1, made by (On Block F Block C) and (On Block C Block B),
and G2 made by (On Block G Block H) and (On Block H Block F), if
the network has to predict G1, the neurons associated to the different proposi-
tions should have value 1, while the neurons of the propositions in G2 should
have value 0.

Therefore, in the Instance Component of GRNet, the prediction values of G1

andG2 is the sum of the predictions for the neurons representing their facts. Sup-
pose that o(On Block F Block C) = 0.017, o(On Block C Block B) = 1.000, o(On Block G Block H) =

0.000, o(On Block H Block F) = 0.003, we have that the final score of G1 is 1.017,
while the final score of G2 is 0.003.

The goal with the highest score (G1) is selected as the most probable goal
solving the GR instance according to the scores of the neural network.

4.3 Integrating GRNet and LGR: LGRNet

GRNet can be integrated with an approach based on plan generation such as the
state-of-the-art system LGR, which is described in Section 2.3.2. GRNet and LGR
focus on different aspects of the goal recognition problem. While GRNet has the
capability of learning from experience the relations among actions and fluents

4.3 Integrating GRNet and LGR: LGRNet 49

Figure 4.3: Architecture of LGRNet. The input Goal Recognition instance is
processed by both GRNet (top) and LGR (bottom). The numerical scores for each
goal provided by these systems are combined using the Integration Mechanism,
which outputs the aggregated score.

belonging to the goal, LGR exploits domain knowledge and automated reasoning
for selecting the most probable goal. Combining these two ways of addressing
goal recognition can lead to better accuracy results, overcoming the limits of
the automated reasoning approach, especially in the presence of incomplete plan
traces, and improving GRNetwhen the learned experience is inadequate to solve
the task. Therefore, we have created an integrated system, called LGRNet, that
combines LGR with GRNet.

The integration is simple and effective. Both GRNet and LGR provide a nu-
merical score for each goal in G, and each system considers the goal with the
highest score as the most probable one. Therefore, we can combine them by us-
ing an aggregated score defined as the normalized sum of the scores of the two
individual systems. More formally, given a GR instance, for each candidate goal

4.3 Integrating GRNet and LGR: LGRNet 50

G ∈ G, the score SLGRNet(G) computed by LGRNet for G is:

σ([SLGR(Gi)|Gi ∈ G])G + σ([SGRNet(Gi)|Gi ∈ G])G (4.2)

where SLGR(G) is the score of LGR for G, and σ([·])G is the output for G of the
softmax function applied to the input score vector [·]. The softmax normalisation
is chosen in order to have the same value distribution space for the two scores,
i.e., values in the range [0, 1] with sum 1. Furthermore, the softmax function
tends to flatten the score values, which helps to avoid cases where the sum is
extremely biased towards one approach or the other.

4.3.1 Running Example

Carrying on the goal recognition example shown in Sections 4.1, we will
show how LGRNet processes a goal recognition instance. In the first step, the
goal recognition instance is solved by both LGR and GRNet. For the overall
working of LGR, please see Section 2.3.2.

The output of LGR containing the computed landmarks, their uniqueness
scores (Luniq) and the heuristic values (huniq) for each goal are reported in Figure
4.4. As we can see, there are 6 landmarks achieved in the observations over a total
of 7 landmarks for G1 and 2 achieved landmarks over a total of 6 for G2. Among
the total landmarks there is only one that belongs both to G1 and to G2; this
landmark obtains a uniqueness score of 0.5 while all the others get a uniqueness
score of 1. As a consequence, the heuristic value (i.e. the final score) of G1 is
0.85 while the heuristic value of G2 is 0.28. As described in Section 4.2.3, the
final scores computed by GRNet when processing this simple goal recognition
example are 1.017 for G1 and 0.003 for G2.
Therefore, the Integration Mechanism of LGRNet combines these two scores
by computing the sum on the normalized scores. The normalization process is

4.3 Integrating GRNet and LGR: LGRNet 51

Computing a c h i e v e d landmarks
− Goal : (and (on f c) (on c b))

Ordered Landmarks :
∗ on f c −> [[arm−empty , on− t a b l e f , c l e a r f] , [h o l d i n g f , c l e a r c] , [on f c]]
∗ on c b −> [[on− t a b l e c , arm−empty , c l e a r c] , [on h b , c l e a r h , arm−empty] ,

[c l e a r b , h o l d i n g c] , [on c b]]
T o t a l number o f Landmarks : 7
Achieved Landmarks i n O b s e r v a t i o n s [6] :

[[on− t a b l e c , arm−empty , c l e a r c] , [h o l d i n g f , c l e a r c] , [on c b] ,
[arm−empty , on− t a b l e f , c l e a r f] , [on h b , c l e a r h , arm−empty] ,
[c l e a r b , h o l d i n g c]]

− Goal : (and (on h f) (on g h))
Ordered Landmarks :
∗ on h f −> [[on h b , c l e a r h , arm−empty] , [h o l d i n g h , c l e a r f] , [on h f]]
∗ on g h −> [[arm−empty , c l e a r g , on− t a b l e g] , [h o l d i n g g , c l e a r h] , [on g h]]
T o t a l number o f Landmarks : 6
Achieved Landmarks i n O b s e r v a t i o n s [2] :

[[arm−empty , c l e a r g , on− t a b l e g] , [on h b , c l e a r h , arm−empty]]
Landmark Uniqueness H e u r i s t i c
− Goal : (and (on f c) (on c b))

∗ [on− t a b l e c , arm−empty , c l e a r c] = (1 . 0)
∗ [h o l d i n g f , c l e a r c] = (1 . 0)
∗ [on c b] = (1 . 0)
∗ [arm−empty , on− t a b l e f , c l e a r f] = (1 . 0)
∗ [on h b , c l e a r h , arm−empty] = (0 . 5)
∗ [c l e a r b , h o l d i n g c] = (1 . 0)

H e u r i s t i c Value = 5 . 5 / 6 . 5 = 0 . 8 5
− Goal : (and (on h f) (on g h))

∗ [arm−empty , c l e a r g , on− t a b l e g] = (1 . 0)
∗ [on h b , c l e a r h , arm−empty] = (0 . 5)
H e u r i s t i c Value = 1 . 5 / 5 . 5 = 0 . 2 8

Figure 4.4: Solution provided by LGR with huniq heuristic for solving the toy goal
recognition instance reported in Section 4.1.

4.4 Benchmark Suite and Data Sets 52

obtained by applying the softmax function on the original scores. Hence, given
that the normalized scores of LGR are 0.639 for G1 and 0.361 for G2 and the
nomalized scores for GRNet are 0.734 for G1 and 0.266 for G2, we have that
the final score for G1, following Equation 4.2, is 1.373 while the final score G2 is
0.627.
The goal with the highest combined score (G1) is selected as the most probable
goal solving the GR instance accordind to the scores of both LGR and GRNet.

4.4 Benchmark Suite and Data Sets

4.4.1 Domains

We consider six well-known benchmark domains [43, 40]:

• blocksworld. The domain consists of an hand robot that has to stack or
unstack blocks, picking up them one at a time, in order to obtain a desired
configuration of an available set of blocks.

• depots. The domain consists of actions for loading and unloading pack-
ages into trucks through hoists, and moving them between depots. The
goals concern having the packages at certain depots.

• drivelog. In this domain there are drivers (trucks) that can walk (drive)
between locations. Walking and driving require traversing different paths.
Packages can be loaded into or unloaded from trucks, that can be moved
by drivers. The goal is to deliver (move) all packages (drivers) to their
destinations.

• logistics. In this domain there are aircrafts that can fly between cities,
trucks that can move between locations within a city, and packages that

4.4 Benchmark Suite and Data Sets 53

can be loaded into/unloaded from trucks and aircrafts. The goal is to deliver
a set of packages to their delivery locations.

• satellite. This is a scheduling domain in which one or more satellites
can make certain observations, collect data, and download the collected
data to a ground station. The goals concern having observation data at a
ground station.

• zenotravel. This is another variant of a transportation domain where
passengers have to be embarked and disembarked into aircrafts, that can
fly between cities at two possible speeds. The goals concern transporting
(move) all passengers (aircrafts) to their required destinations.

Of course GRNet can be trained and tested also using other domains.

4.4.2 Training sets

In order to create the (solved) GR instances for the training and test sets in the
considered domains, we used automated planning techniques. Concerning the
training set, for each domain, we randomly generated a large collection of (solv-
able) plan generation problems of different size. We considered the same ranges
of the numbers of involved objects as in the experiments of Pereira et al. [51].
For each of these problems, we computed up to four (sub-optimal) plans solving
them. As planner we used lpg [26, 27], which allows to specify the number of
requested different solutions for the planning problem it solves. From the gen-
erated plans, we derived the observation sequences for the training samples by
randomly selecting actions from the plans (preserving their relative order). The
selected actions are between 30% and 70% of the plan actions. However, the test
sets described next also include GR instances with lower and higher percentages
of observed actions.

4.4 Benchmark Suite and Data Sets 54

The generated training set consists of pairs (O,G∗) where O is a sequence of
observed actions obtained by sampling a plan π, and G∗ is the hidden goal cor-
responding to the goal of the planning problem solved by π. For each considered
domain, we created a training set with 55000 pairs.

4.4.3 Test sets

Domain A F
Gi G Object

min max min max Name min max Total

blocksworld 968 506 4 16 19 21 block 7 17 22

depots 13050 150 2 8 7 10

depot 1 3 3

distributor 1 3 3

truck 2 3 3

pallet 2 6 6

crate 2 10 10

hoist 2 6 6

drivelog 4860 156 4 11 6 10

driver 2 3 3

truck 2 3 3

package 2 7 7

locationss 3 12 12

locationsp 2 25 41

logistics 15154 154 2 4 10 12

airplane 1 8 8

airport 2 8 8

location 6 11 11

city 2 6 6

truck 2 5 5

4.4 Benchmark Suite and Data Sets 55

Domain A F
Gi G Object

min max min max Name min max Total

package 2 14 14

satellite 33225 629 4 9 6 8

satellite 1 5 5

instrument 1 11 11

mode 3 5 12

direction 7 17 37

zenotravel 23724 66 5 9 6 11

aircraft 2 3 3

person 5 8 8

city 3 6 6

flevel 7 7 7

Table 4.2: Size of A, F , Gi ∈ G and G and number of objects involved in the
considered GR instances for each considered domain. min and max columns
indicate a range of values from min to max. Column Total represents the total
number of objects of that type in the domain.

For evaluating GRNet, we generated two test sets formed by GR instances not seen at

training time: TSLGRGen and TSRec. Such test instances were generated as for the training

instances, except that the observation sequences were derived from plans computed by

lama [57], while for the training instances we used plans computed by lpg; this change

was made in order to make the testing more robust.

TSLGRGen is a generalisation and extension of the test set used in [51] for the same

domains that we consider. We indicate the test set provided by Pereira et al. [51] with

TSLGR. TSLGRGen includes all TSLGR instances; moreover, the goal sets (G) of TSLGR and

TSLGRGen are the same. The additional instances in TSLGRGen are motivated by the limited

number and particular structure of those in TSLGR. The structure is limited because the

observations in the instances of TSLGR are created from plans for the goals inG that are all

4.4 Benchmark Suite and Data Sets 56

generated from the same initial state. In TSLGRGen, the GR instances are created combin-

ing different initial states with the candidate goal sets, obtaining a richer diversification

of the observation traces and a larger number of test instances. In particular, for each of

depots, drivelog, satellite and zenotravel, TSLGR contains only 84 instances, while

TSLGRGen contains 1000 instances for each domain.

For each plan generated for being sampled, we randomly derived five different action

traces formed by 10%, 30%, 50%, 70% and 100% of the plan actions, respectively. This

gives five groups of test instances, for each considered domain, allowing to evaluate the

performance of GRNet also in terms of different amounts of available observations.

Table 4.2 gives information about the size of the GR instances in our test and training

sets for each domain, in terms of number of possible actions (|A|), facts (|F |), min/max

size of a goal (|Gi|) in a goal set G, min/max size of a goal set (|G|), the names of the

objects involved in the GR instances, the min/max number of objects of each type that

are involved in an instance and the total number of objects of each type among all the

instances (Object column). Please note that column Total reports the number of all possi-

ble objects of a certain type that can be used when defining a GR instance while column

Object max indicates the maximum number of objects of a certain type that are used in

a GR instance.

Test set TSRec was created to evaluate how well the compared systems behave on GR

instances of different difficulty. We focus this analysis on a specific domain (zenotravel).

In TSRec, the generated GR instances are grouped into several classes according to their

difficulty. As difficulty measure, we used the notion of recognizability of the hidden goal,

which is inspired by the notion of the Uniqueness Value (Equation 2.3). Specifically, the

recognizability R(G) of a goal G ∈ G is defined as

R(G) =
∑︂
f∈G

1

|{G′ | G′ ∈ G ∧ f ∈ G′}|
(4.3)

The lower R(G) is, the more difficult recognising G is; vice versa, the higher R(G) is,

the more discernible G is. We normalize R(G) as a value between 0 and 1, denoted

RZ(G). E.g., if G = {G1, G2, G3}, with G∗ = G1 = {a, b, c}, G2 = {a, e, f} and

4.4 Benchmark Suite and Data Sets 57

G3 = {g, h, i}, then R(G∗) = 1
2 +1+1 = 5

2 and RZ(G
∗) = 0.75 (high recognizability).

If G = {G1, G2, G3}with G∗ = G1 = {a, b, c}, G2 = {a, b, x} and G3 = {a, b, y}, then

R(G∗) = 1
3 + 1

3 + 1 = 5
3 , and so RZ(G

∗) = 0.33 (low recognizability).

Using different values for RZ(G
∗), we generated nine classes of GR instances, de-

noted C1, ..., C9. For each GR instance in class Ci, we have 0.1 · i ≤ RZ(G
∗) <

0.1 · (i+ 1), for i = 1...9. Each class consists of 100 GR instances.

4.4.4 Evaluation measures

We use the GR accuracy for a set of test instances as the main evaluation criteria, which

is defined as the percentage of instances whose goals are correctly identified over the

total number of instances in the test set. If for an instance the evaluated system provides

k different goals with the same highest score, then, in the overall count of the solved

instances, this instance has value 1
k if the true goal is one of these k goals, 0 otherwise.

Following the methodology in [51], we also analyze the GR θ-accuracy. This measure

assumes that the scores assigned to the goals by the GR system are values between 0 and

1, and uses a θ threshold to select the set of candidate goals whose score is greater than or

equal to the highest assigned score minus θ. If the true goal belongs to the set of selected

goals, the instance is considered correctly identified, and this instance obtains θ-accuracy

1 (otherwise θ-accuracy is 0). For evaluating the θ-accuracy for GRNet and LGRNet,

their prediction scores (positive numbers) are scaled using the min-max normalization

which sets each score to a value in the [0, 1] range. For θ = 0 the system selects the

k ≥ 1 goals with the highest score, and if the true goal belongs to this set, the instance

is considered solved obtaining value 1, instead of 1
k as in the standard accuracy metric.

The θ-accuracy is analysed together with the Spread measure, i.e., the average number

of predicted goals for an instance according to the used θ threshold.

4.5 Experimental Results 58

Domain |E| |LSTM | Dropout Recurrent Dropout

blocksworld 119 354 0.00 0.00
depots 200 450 0.15 0.23
drivelog 183 473 0.00 0.00
logistics 85 446 0.12 0.01
satellite 117 496 0.04 0.00
zenotravel 83 350 0.00 0.00

Table 4.3: Hyperparameters of the neural networks used in our experiments.
|E| is the size of the vector in output from the embedding layer, |LSTM | is the
number of neurons in the LSTM layer.

4.5 Experimental Results

We experimentally evaluate GRNet and LGRNet, and we compare them with the state-

of-the-art system LGR. For the goal selection in LGR we used heuristic huniq because the

authors stated that it performs better than heuristic hgc.

4.5.1 Hyperparameters of the Neural Networks

We used the Optuna framework [1] to find the best hyperparameters for out networks.

For each benchmark domain, we used a separate process of optimization (study) which

executes 30 objective function evaluations (trials). We used a sampler that implements

the Tree-structured Parzen Estimator algorithm.

Table 4.3 reports the hyperparameters of the neural networks in our experiments.

For all the experiments we selected a batch size of 64 elements; we used Adam as opti-

mizer with β1 = 0.9 and β2 = 0.99.

4.5 Experimental Results 59

4.5.2 Accuracy Results for TSLGRGen

Table 4.4 summarizes the performance results of LGR, GRNet and LGRNet in terms of

GR accuracy using TSLGRGen. Bold results for GRNet and LGRNet indicate better per-

formance w.r.t. to LGR. GRNet and LGRNet perform generally well, and they improve

their performances with the increase of the percentage of the observed actions. With

30% of the actions, the accuracy of GRNet improves w.r.t. 10% of the action in every

domain by more than 20 points. For instance, in drivelog, GRNet improves from 39.8

to 65.4. Similar improvements can be observed considering 50%, 70% and 100% of the

actions. E.g., with 70% of the observed actions, the accuracy of GRNet is higher than

96 in satellite and zenotravel. GRNet always obtains higher accuracy w.r.t. LGR

except in depots with 100% of the observations, and in many cases the performance im-

provement is of several points (e.g., more than 12 points for blocksworld, drivelog,

logistics and zenotravel with 30% of the actions).

Regarding the accuracy of LGRNet, it always performs better than both LGR and

GRNet. Moreover, in several domains, we can see a remarkable improvement w.r.t. both

LGR and GRNet, especially with 30% and 50% of the actions. For instance, in depots the

accuracy of LGRNet for 30% of actions is almost 72, 24 points better than LGR and 12

points better than GRNet. With 100% of the actions, the accuracy scores of GRNet and

LGRNet are higher than or equal to 90%, and still generally better than (especially for

LGRNet) the accuracy scores of LGR.

Moreover, GRNet’s performance does not seem to be affected by the diversity of the

domains indicated by the parameters of Table 4.2. While the remarkable performance

obtained for zenotravel might be correlated with the fact that in this domain the test

instances have only 66 facts (see column |F | of Table 4.2), the results for satellite

are not so distant even if the instances in this domain have 629 facts. Analysing the

experimental results, it seems that also the number of the actions has no significant

impact on the performance. In fact, while blocksworld has only 968 actions, the other

domains have more than 15000 actions, and GRNet obtains better results for them. This

4.5 Experimental Results 60

Plan % Models blocks depots drivelog logistics satellite zeno

10

LGR 20.39 25.42 25.43 27.20 41.26 28.37

GRNet 22.85 32.95 39.80 39.15 45.50 48.00

LGRNet 30.80 40.30 44.50 43.60 58.70 58.00

30

LGR 38.92 47.52 41.27 55.50 73.95 49.70

GRNet 52.35 59.80 65.40 68.80 75.10 76.90

LGRNet 63.70 71.90 72.70 77.60 85.50 85.70

50

LGR 53.02 65.88 59.07 73.93 84.35 69.90

GRNet 71.10 74.70 78.40 80.40 88.30 89.20

LGRNet 79.30 87.60 82.90 90.90 94.50 94.80

70

LGR 72.25 78.78 76.32 85.06 92.34 88.18

GRNet 84.90 84.90 86.20 89.20 96.10 96.80

LGRNet 90.60 93.60 91.10 97.10 97.80 98.80

100

LGR 88.62 93.17 89.94 90.14 96.44 98.71

GRNet 92.02 91.95 90.78 93.94 98.73 98.73

LGRNet 96.81 97.25 94.28 99.23 99.36 99.58

Table 4.4: Goal recognition accuracy (% of GR instances correctly predicted) by
LGR, GRNet and LGRNetwith test set TSLGRGen. Results for GRNet and LGRNet
are in bold when they are better than the corresponding results for LGR.

4.5 Experimental Results 61

Domain plan %
LGR GRNet LGRNet

θ-Acc (↑) Spread in G (↓) θ-Acc (↑) Spread in G (↓) θ-Acc (↑) Spread in G (↓)

0 0.1 0.2 0 0.1 0.2 0 0.1 0.2 0 0.1 0.2 0 0.1 0.2 0 0.1 0.2
10 21.7 43.8 64.2 1.07 3.65 7.94 23.0 56.9 65.9 1.00 3.39 4.46 31.2 53.4 68.3 1.00 2.49 4.51

30 40.4 63.3 77.9 1.07 3.07 6.43 52.5 79.5 86.5 1.01 2.26 3.00 65.8 78.6 87.5 1.00 1.56 2.28

blocks 50 56.1 77.3 88.7 1.10 2.69 5.60 71.3 90.3 94.3 1.00 1.89 2.55 80.2 88.3 93.3 1.00 1.28 1.66

(1000) 70 75.9 89.8 96.2 1.11 2.14 4.40 85.2 96.2 98.3 1.01 1.65 2.24 91.4 95.7 98.3 1.01 1.15 1.33

100 98.5 100.0 100.0 1.25 1.66 3.19 92.2 99.9 99.9 1.00 1.46 1.96 98.6 99.5 100.0 1.00 1.05 1.13

10 27.2 47.3 69.6 1.15 2.49 4.56 33.0 50.5 56.4 1.00 1.78 2.19 40.9 57.4 73.3 1.00 1.87 3.07

30 49.3 67.0 82.3 1.10 2.10 3.79 59.8 72.6 79.0 1.00 1.45 1.73 72.8 81.4 86.9 1.00 1.34 1.72

depots 50 68.0 80.8 92.1 1.07 1.78 3.08 74.7 87.4 90.9 1.00 1.36 1.54 88.9 92.3 94.7 1.00 1.12 1.28

(1000) 70 80.8 90.9 97.2 1.05 1.52 2.43 84.9 92.4 95.0 1.00 1.25 1.38 94.2 96.4 97.7 1.00 1.05 1.13

100 96.2 99.2 99.8 1.06 1.30 1.63 91.9 96.6 98.2 1.00 1.16 1.24 97.7 98.1 98.5 1.00 1.01 1.04

10 26.9 46.1 67.6 1.06 2.12 3.61 39.8 58.4 71.4 1.00 1.72 2.40 45.6 54.2 65.6 1.00 1.38 1.90

30 43.1 64.1 80.8 1.07 1.97 3.23 65.4 82.5 89.8 1.00 1.61 2.23 73.8 79.8 85.4 1.00 1.18 1.45

drivelog 50 61.9 76.8 91.3 1.09 1.77 2.77 78.4 90.5 96.4 1.00 1.45 1.96 84.3 88.6 91.6 1.00 1.11 1.24

(1000) 70 80.3 90.3 96.3 1.11 1.58 2.30 86.2 95.2 98.4 1.00 1.37 1.75 92.3 94.9 97.1 1.00 1.06 1.17

100 97.2 99.0 99.6 1.18 1.32 1.78 90.8 98.0 99.3 1.00 1.27 1.57 95.7 97.4 98.4 1.00 1.04 1.10

10 29.0 47.3 65.6 1.10 2.44 4.58 39.2 57.1 63.8 1.00 1.66 2.06 44.2 64.1 79.7 1.00 2.02 3.70

30 57.4 71.5 82.3 1.07 1.71 2.82 68.8 81.6 85.3 1.00 1.54 1.75 77.7 87.9 93.9 1.00 1.31 1.78

logistics 50 75.8 84.5 92.2 1.06 1.41 1.94 80.4 91.0 92.6 1.00 1.43 1.58 90.9 95.3 97.9 1.00 1.14 1.33

(1000) 70 89.0 93.7 98.0 1.11 1.25 1.50 89.2 96.5 98.0 1.00 1.32 1.45 97.3 98.8 99.9 1.00 1.05 1.11

100 99.6 100.0 100.0 1.22 1.24 1.31 93.9 99.8 100.0 1.00 1.18 1.24 99.2 100.0 100.0 1.00 1.01 1.02

10 47.4 84.5 97.7 1.27 3.25 5.27 45.5 68.9 81.1 1.00 1.92 2.52 60.1 83.5 94.2 1.11 2.14 3.18

30 78.4 92.2 98.4 1.20 1.96 3.27 75.1 91.4 95.8 1.00 1.56 1.82 87.1 94.0 97.6 1.11 1.34 1.61

satellite 50 87.9 95.7 98.8 1.16 1.52 2.20 88.3 97.0 98.6 1.00 1.26 1.40 95.5 97.5 98.9 1.11 1.18 1.26

(1000) 70 95.3 98.4 99.7 1.14 1.29 1.59 96.1 99.4 99.7 1.00 1.13 1.23 97.9 99.0 99.4 1.11 1.14 1.17

100 98.5 99.6 99.8 1.12 1.19 1.37 98.7 99.6 99.8 1.00 1.08 1.19 99.7 99.8 99.8 1.12 1.12 1.13

10 29.6 46.1 63.1 1.05 1.89 3.04 48.0 71.7 89.6 1.00 1.97 2.98 59.4 70.0 80.8 1.00 1.43 2.00

30 50.5 67.4 80.0 1.03 1.74 2.65 76.9 88.0 94.7 1.00 1.32 1.65 87.5 91.0 94.3 1.00 1.12 1.28

zeno 50 70.5 83.9 92.1 1.02 1.53 2.24 89.2 94.7 97.7 1.00 1.15 1.27 95.7 97.4 98.6 1.00 1.04 1.09

(1000) 70 88.6 94.4 98.8 1.01 1.27 1.64 96.8 99.0 99.6 1.00 1.05 1.10 99.4 99.5 99.8 1.00 1.00 1.02

100 99.8 99.9 100.0 1.02 1.04 1.15 98.7 99.4 99.8 1.00 1.01 1.04 99.8 99.8 99.9 1.00 1.00 1.01

Table 4.5: θ-accuracy and spread of LGR, GRNet and LGRNet for test set
TSLGRGen. Results for GRNet and LGRNet are in bold when they are better than
the corresponding results for LGR.

4.5 Experimental Results 62

is probably due to the embedding layer that is able to learn a compact and informative

representation even with a large vocabulary of actions. Overall, GRNet exhibits good

robustness with respect to the size of the space of actions and the number of facts in the

domains (the output of the network).

4.5.3 θ-accuracy results for TSLGRGen

Table 4.5 compares GRNet and LGRNet with LGR in terms of θ-accuracy and the cor-

responding spread in G. Considering θ equal to either 0 or 0.1 and partial plan traces

(from 10% to 70% of observed actions), GRNet obtains a better θ-accuracy w.r.t. LGR in

44 out of 48 configurations, while LGRNet has better performance in 47 out of 48 con-

figurations. In several cases, the improvement is by several points, such as in drivelog

with 10% of the actions. With θ = 0.2, overall GRNet and LGRNet perform better than

LGR. There are two notable exceptions, depots and satellite. In depots, LGR obtains

a higher θ-accuracy w.r.t. GRNet but not w.r.t. LGRNet. However, this result should

be analysed also in terms of spread in G. LGR has a considerably higher spread than

GRNet, especially considering low percentages of actions. According to the definition

of θ-accuracy, an instance is considered correctly solved if the true goal belongs to the

selected set of goals, and so a higher spread can lead to a higher θ-accuracy. The same

can be said for satellite with θ = 0.2, in which GRNet and LGRNet have considerably

lower spreads and worse θ-accuracy (but in most cases performing similarly).

We can observe that GRNet and LGRNet have lower spreads in all but three con-

sidered configurations. In particular, with θ = 0 the spread of GRNet is always 1. With

θ > 0, especially when considering low percentages of actions, we have a remarkable

improvement in terms of spread w.r.t. LGR alongside an improvement in terms of θ-

accuracy (see, e.g., drivelog and zenotravel with 30% of the actions).

Concerning instances with complete plan traces (100% of the actions), in terms of

θ-accuracy, all three systems obtain very good results, in many cases close to 100%.

Although for these cases LGR often has better θ-accuracy, considering also the lower

4.5 Experimental Results 63

spreads of GRNet and LGRNet, we think that overall the results for the full plan traces

are comparable.

In term of CPU time to solve (classify) a GR instance, GRNet is generally much faster

than LGR. The average execution time of LGR is 1.158 seconds with a standard deviation

of 0.87 seconds, while GRNet runs on average in 0.06 seconds with a standard deviation

of 0.04 seconds.

4.5.4 Results for TSLGR

While we consider the evaluation using the extended set TSLGRGen more significant and

informative than using the restricted test set TSLGR, we compared LGR, GRNet and LGR-

Net also on TSLGR. As shown in Table 4.6 and Table 4.7, in terms of accuracy, θ-accuracy

and spread, the results are still in favor of GRNet compared with LGR, and substantially

better for LGRNet compared with LGR. However, this is not the case for domain satel-

lite with test instances that have 70% of the actions. In this case LGR reaches accuracy

93.4, while GRNet and LGRNet have accuracy 84.5 and 88.1, respectively. Most of the

errors made by GRNet are due to the restricted and particular set of instances in TSLGR,

which has instances with very similar goals in G. These are not clearly distinguished by

GRNet, making LGRNet less effective in such cases.

4.5.5 Results for TSRec and sensitiveness to the training set

size

Figure 4.5 shows the accuracy of the two compared systems considering different classes

of test sets with decreasing difficulty measured using RZ . We focus this analysis on in-

stances with 30-50-70% of observed actions. As expected, the accuracy of GRNet de-

pends on the difficulty of the problem, since there is an increasing trend in terms of

accuracy for each observation percentage. This trend is more evident when we have

30% of the actions and becomes less marked as the number of observations grows. LGR

4.5 Experimental Results 64

Plan % Models blocks depots drivelog logistics satellite zeno

10

LGR 30.08 32.14 34.23 43.25 42.06 34.52

GRNet 18.90 41.67 42.86 46.41 42.86 44.05

LGRNet 26.83 29.76 46.43 50.98 44.05 53.57

30

LGR 49.59 45.63 42.26 70.92 66.27 60.71

GRNet 48.58 66.67 63.10 75.16 64.29 67.86

LGRNet 58.13 67.86 65.48 75.16 72.62 73.81

50

LGR 52.91 71.43 62.30 84.64 79.76 76.19

GRNet 69.92 83.33 77.38 88.89 79.76 84.52

LGRNet 71.54 88.10 78.57 92.81 85.71 86.90

70

LGR 72.09 83.93 83.93 94.44 93.45 90.48

GRNet 86.59 84.52 84.52 96.08 84.52 97.62

LGRNet 88.62 91.67 86.90 95.42 88.10 98.81

100

LGR 85.96 98.21 92.26 100.00 96.43 100.00

GRNet 92.93 92.86 92.86 95.08 96.43 100.00

LGRNet 95.65 100.00 92.86 100.00 96.43 100.00

Table 4.6: Goal recognition accuracy (% of GR instances correctly predicted) by
LGR, GRNet and LGRNet with test set TSLGR. Results for GRNet and LGRNet
are in bold when they are better than the corresponding results for LGR.

4.5 Experimental Results 65

Domain plan %
LGR GRNet LGRNet

θ-Acc (↑) Spread in G (↓) θ-Acc (↑) Spread in G (↓) θ-Acc (↑) Spread in G (↓)

0 0.1 0.2 0 0.1 0.2 0 0.1 0.2 0 0.1 0.2 0 0.1 0.2 0 0.1 0.2

blocks

10 30.9 52.4 67.5 1.04 2.77 6.12 19.5 50.8 58.5 1.02 2.78 3.75 25.6 43.5 60.6 1.01 2.11 3.62

30 51.2 65.9 77.6 1.07 2.50 5.02 49.2 76.0 85.8 1.03 2.10 2.73 61.8 72.8 79.7 1.01 1.46 1.98

50 56.1 73.6 84.6 1.10 2.31 4.51 70.7 88.2 93.1 1.02 1.83 2.55 71.5 80.9 85.4 1.02 1.24 1.68

(246) 70 77.2 89.0 95.9 1.15 2.00 3.53 87.8 96.7 98.4 1.02 1.65 2.10 89.8 93.9 95.9 1.02 1.17 1.35

100 100.0 100.0 100.0 1.38 1.60 2.61 94.6 100.0 100.0 1.03 1.45 1.76 98.9 100.0 100.0 1.03 1.10 1.20

depots

10 32.1 51.2 75.0 1.10 2.74 5.42 41.7 56.0 63.1 1.00 1.73 2.24 28.6 48.8 76.2 1.00 2.14 3.68

30 47.6 70.2 94.0 1.08 2.49 4.83 66.7 79.8 89.3 1.00 1.51 1.81 64.3 78.6 88.1 1.00 1.52 1.98

50 72.6 84.5 96.4 1.04 2.11 3.67 83.3 95.2 95.2 1.00 1.39 1.56 88.1 94.0 94.0 1.00 1.21 1.38

(84) 70 84.5 95.2 96.4 1.01 1.60 2.82 84.5 94.0 96.4 1.00 1.21 1.39 94.0 96.4 97.6 1.00 1.06 1.19

100 100.0 100.0 100.0 1.04 1.29 1.75 92.9 100.0 100.0 1.00 1.18 1.18 100.0 100.0 100.0 1.00 1.00 1.04

drivelog

10 36.9 56.0 79.8 1.11 2.35 4.29 42.9 64.3 73.8 1.00 1.99 2.52 46.4 54.8 65.5 1.00 1.30 1.90

30 45.2 69.0 83.3 1.08 2.01 3.40 63.1 81.0 86.9 1.00 1.73 2.43 64.3 72.6 78.6 1.00 1.26 1.58

50 67.9 82.1 94.0 1.13 1.75 2.68 77.4 88.1 96.4 1.00 1.38 1.86 77.4 81.0 85.7 1.00 1.06 1.15

(84) 70 91.7 96.4 100.0 1.18 1.60 2.17 84.5 95.2 96.4 1.00 1.35 1.79 88.1 95.2 97.6 1.00 1.08 1.17

100 100.0 100.0 100.0 1.18 1.29 1.46 92.9 96.4 100.0 1.00 1.21 1.54 92.9 100.0 100.0 1.00 1.07 1.11

logistics

10 49.0 78.4 94.1 1.22 3.61 6.66 46.4 59.5 64.7 1.00 1.48 1.74 50.3 84.3 96.7 1.00 2.87 5.58

30 73.9 85.0 98.0 1.10 1.84 3.14 75.2 84.3 88.2 1.00 1.47 1.66 74.5 89.5 98.7 1.00 1.56 2.27

50 86.3 94.1 100.0 1.05 1.46 2.01 88.9 94.8 95.4 1.00 1.29 1.47 92.8 96.1 99.3 1.00 1.22 1.51

(153) 70 95.4 96.1 100.0 1.02 1.12 1.41 96.1 99.3 99.3 1.00 1.23 1.39 95.4 96.7 100.0 1.00 1.05 1.20

100 100.0 100.0 100.0 1.00 1.00 1.08 95.1 96.7 100.0 1.00 1.08 1.21 100.0 100.0 100.0 1.00 1.00 1.00

satellite

10 47.6 81.0 96.4 1.21 3.01 4.90 42.9 60.7 71.4 1.00 1.68 2.19 42.9 76.2 85.7 1.00 2.27 3.13

30 70.2 89.3 97.6 1.14 2.04 3.55 64.3 85.7 89.3 1.00 1.71 1.98 72.6 88.1 97.6 1.00 1.62 2.14

50 84.5 92.9 98.8 1.12 1.58 2.32 79.8 89.3 94.0 1.00 1.32 1.60 86.9 90.5 95.2 1.00 1.25 1.40

(84) 70 95.2 98.8 100.0 1.04 1.35 1.88 84.5 94.0 97.6 1.00 1.25 1.44 88.1 92.9 95.2 1.00 1.13 1.20

100 100.0 100.0 100.0 1.07 1.18 1.50 96.4 96.4 100.0 1.00 1.14 1.29 96.4 96.4 96.4 1.00 1.04 1.07

zeno

10 36.9 48.8 73.8 1.05 1.90 3.14 44.0 66.7 84.5 1.00 1.75 2.70 53.6 67.9 78.6 1.00 1.51 2.02

30 61.9 79.8 90.5 1.02 2.06 3.12 67.9 78.6 89.3 1.00 1.39 1.76 76.2 84.5 91.7 1.00 1.27 1.57

50 76.2 88.1 95.2 1.00 1.57 2.17 84.5 92.9 97.6 1.00 1.18 1.33 85.7 90.5 94.0 1.00 1.08 1.17

(84) 70 90.5 95.2 100.0 1.00 1.30 1.57 97.6 100.0 100.0 1.00 1.05 1.12 98.8 98.8 98.8 1.00 1.00 1.04

100 100.0 100.0 100.0 1.00 1.07 1.11 100.0 100.0 100.0 1.00 1.00 1.00 100.0 100.0 100.0 1.00 1.00 1.00

Table 4.7: θ-accuracy and spread of LGR, GRNet and LGRNet for test set TSLGR.
Results for GRNet and LGRNet are in bold when they are better than the corre-
sponding results for LGR.

4.5 Experimental Results 66

Figure 4.5: Accuracy results of LGR and GRNet on GR instances grouped into
classes of decreasing difficulty with test set TSRec. C1 is the most difficult class;
C9 is the easiest one.

appears to be more stable over the recognizability classes than GRNet. However, GRNet

always performs significantly better than LGR regardless the value of RZ .

Since the predictive performance of a machine learning system can be deeply influ-

enced by the number of training instances, we experimentally investigated how much

GRNet is sensible to this issue. We focus the analysis on the domain satellite, training

several neural networks with different fractions of our training set: 20%, 40%, 60% and

80%. Figure 4.6 shows how accuracy increases for TSLGRGen when the training set size

increases. In particular, for TSLGRGen we can observe that using only 20% of the training

instances gives accuracy lower than 40 in all three cases (30-50-70% of observed actions),

but accuracy rapidly improves reaching more than 60 using 60% of the training instances.

We evaluatedGRNet also for larger training sets, up to twice the number of instances

in the original training set. As it can be seen in Figure 4.6, the enlarged training set for

TSLGRGen produces only a small improvement in accuracy.

4.5 Experimental Results 67

Figure 4.6: Accuracy of GRNet trained using data sets of different sizes (% of
the original train set) using test set TSLGRGen in domain satellite.

4.6 Discussion 68

4.6 Discussion

The proposed architecture, i.e. GRNet, is an approach to address goal recognition as a

deep learning task. Our system learns to solve goal recognition tasks as classification

problems learning from past experience in a given domain. The learning process con-

sists in training only one neural network for the considered domain, allowing to solve a

large collection of GR instances in the domain by the same trained network. Moreover,

GRNet can be effectively integrated with the state-of-the-art model-based system LGR.

An experimental analysis shows that GRNet and LGRNet, our system integrating GR-

Net and LGR, perform generally well for the considered benchmark domains, in terms

of accuracy, θ-accuracy and spread.

Differently from LGR, the GR instances addressable by GRNet are limited to those

involving subsets of fluents and actions that were used in the training phase. If the

GR instance to solve involves a new fluent, clearly such a fluent cannot be predicted in

GRNet; if the instance involves a new action, such an action cannot be part of the in-

put observed actions for GRNet. Another possible drawback of the proposed approach

is that it is important to have a large dataset for training the net, which in some con-

texts may not be available. However, this problem can be mitigated by exploiting data-

augmentation techniques, or by dataset generation assisted by automated planning, as

we did for our experiments. Finally, we can notice how the network, unlike some model

based approaches like PRP, does not provide any formal guarantees of correctness; in

other words, there is no way to tell whether we can trust the network prediction or not.

We try to address some of these problems by adopting a new architecture that will

be presented in the following chapter, Chapter 5.

Chapter 5

Fast and Slow Goal Recognition

Advancements in algorithms, techniques, computational power, and specialized hard-

ware have made automated reasoning tools more efficient and reliable. However, they

often still lack some desired properties that are common in human intelligence, such

as generalizability, robustness, and abstraction. To address these limitations, a grow-

ing number of AI experts are striving to develop systems that possess more human-like

properties.

One of the main strategies is to create cognitive architectures that utilize a combina-

tion of neural networks and symbolic/logic-based AI. This chapter explores multi-agent

planning for goal recognition within the context of one such architecture [10], inspired

by dual process theories, like the one described in Kahneman’s “Thinking, Fast and Slow”

[38]. According to this theory, human reasoning is divided into two distinct systems:

System 1 (fast thinking) and System 2 (slow thinking), that handle decision-making in

different ways. System 1 makes intuitive and imprecise decisions, while System 2 deals

with complex, logical, and rational decision-making. The division of responsibilities be-

tween the two systems is based on the difficulty of the problem and the experience gained

in solving it. Over time, System 2 accumulates examples that System 1 can later use with

ease. The division between the two systems enables humans to consider different levels

69

70

Figure 5.1: Architecture of FSGR. A GR instance is processed by System 1 (S1)
and its solution is evaluated by a meta-cognitive agent which decides whether to
trust it or not. In the latter case, System 2 (S2) is engaged. The plans computed
by System 2 are stored in the knowledge base and used for training System 1.

of abstraction, adapt and generalize their experiences, and multi-task. In this chapter,

we present an architecture based on the Fast and Slow principles to solve goal recog-

niton, called Fast and Slow Goal Recognition (FSGR). FSGR can exploit both the fast,

experience-based goal recognition provided by a neural network (i.e. GRNet), and slow,

deliberate analysis provided by the planning techniques (i.e. PRP). This is a novel way of

combining planning based and data-driven approaches, allowing FSGR to provide both

guarantees of correctness, provided by the planner and a certain degree of trust over the

prediction provided by the network.

This chapter describes and extends the work presented in [14]

5.1 Fast and Slow Architecture for Goal Recognition 71

5.1 Fast and Slow Architecture for Goal Recogni-

tion

In this section, we describe the architecture of the implemented system, called Fast and

Slow Goal Recognition (FSGR), based on the “Fast and Slow” framework. To effectively

orchestrate this dual process framework, we developed a meta-cognitive agent, as sug-

gested in the existing literature [22]. In particular, we show how System 1 (also S1) and

System 2 (also S2) are realized and how the meta-cognitive agent (also MC) orchestrates

between the two systems to provide the final prediction.

The architecture is depicted in Figure 5.1: given a GR instance, System 1 computes

a solution based on past experience in the domain. The solution proposed by S1 is then

evaluated by the meta-cognitive agent that decides whether to accept it or engage System

2 for a better solution. In this case, the solution of the instances computed by System 2

is also added to the knowledge base for possible retraining of System 1. We assume that

the agent is fully rational and follows optimal plans to achieve its goals, as described in

Section 4.5. Moreover, we assume partial observability of the agent’s actions (i.e. only a

percentage of the actions can be seen) and absence of noise in such observations.

5.1.1 System 1 and System 2

System 1 is developed with an MFGR system based on an LSTM neural network, as

proposed in GRNet, presented in Section 4.2; in particular, we only implement the En-

vironment Component of GRNet. The structure of S1 is shown in Figure 5.2. The input

of the network is the sequence of action O in the GR instance. The output of the Envi-

ronment Component of GRNet is a score in [0, 1] for each proposition in F . The output

of the i-th neuron oi corresponds to the i-th fluent fi (fluents are lexically ordered), and

the activation value of oi gives a rank for fi being true in the agent’s goal (with a rank

greater than 0.5 meaning that fi is true in the goal). For each fact fi, we evaluate net-

work performance using common machine learning metrics, such as precision, recall, or

5.1 Fast and Slow Architecture for Goal Recognition 72

Figure 5.2: Architecture of System 1 composed by the Environment Component
of GRNet.

F-Score on a separate validation set, made of instances that the network did not see at

training time. In particular, we calculate the precision score as:

Precision =
TP

TP + FP
(5.1)

Where TP represents the fluents correctly identified by our neural network while TP +

FP represents all those fluents predicted by the network as true. We use this score to

measure how the neural network performs when it makes a specific prediction.

System 2 is based on the work of Ramı́rez and Geffner [55] (i.e. PRP), described in

Section 2.3.1. Given an instance of a goal recognition problem T = ⟨Π, I, O,G⟩, we

want to compute G∗T , the exact solution to the problem. G∗T is a goal set that contains all

goals G ∈ G such that some optimal plan for a classical planning problem P = ⟨Π, I, G⟩

satisfies the observation sequence O. To obtain this goal set, we run an optimal planner

twice for each goal inG. First, we compute an optimal solution, if it exists, to the planning

problem PG = ⟨Π, I, G⟩ for all G ∈ G; then again, for all G ∈ G, we compute an optimal

5.1 Fast and Slow Architecture for Goal Recognition 73

solution to a transformed planning problem P ′
G whose solution is a solution for PG that

satisfies the observations in O. In our implementation, we compile the problems using

pac-c [9], this is possible by converting P ′
G into a pac problem ⟨Π, I, G,C⟩, where the

set C contains the constraints to encode the observed actions a1 . . . ak. In pac, these

constraints are expressed through the so-called pattern a1 . . . ak constraint which can

be handled by pac-c with the addition of the extra effects of the actions in A′ related to

the observed actions off-the-shelf.

5.1.2 Meta Cognitive Agent

Algorithm 1 MC Algorithm
Input:

• T = ⟨Π, I,O,G⟩: the goal recognition instance

• yi: output of S1 for the current instance

• p: vector of S1 precision scores for each fact on a validation set

• τ1, τ2: Meta Classifier thresholds

Output:

A set of predicted goals

1: Ĝ← argmaxG∈G
∑︁

f∈G(yi[f])

2: Ĝ2 ← argmaxG∈G−{Ĝ}
∑︁

f∈G(yi[f])

3: confidence←
∑︁

f∈Ĝ(yi[f])−
∑︁

f∈Ĝ2
(yi[f])

4: count← 0

5: sum← 0

6: for f ∈ Ĝ do

7: if yi[f] > 0.5 then

8: sum← sum+ p[f]

9: count← count+ 1

5.1 Fast and Slow Architecture for Goal Recognition 74

10: end if

11: end for

12: experience← sum/(count+ ϵ)

13: if confidence > τ1| & experience > τ2 then

14: return { Ĝ }

15: else if experience > τ2 then

16: goalset← {G ∈ G|0 ≤
∑︁

f∈Ĝ yi[f]−
∑︁

f∈G yi[f] ≤ τ1}

17: else

18: goalset← G

19: end if

20: results← S2(⟨Π, I,O, goalset⟩)

21: if results == {} then

22: return Ĝ

23: else

24: return result

25: end if

Inspired by Ganapini et al. [22], in our system, the meta-cognitive agent (MC) is in

charge of deciding whether to accept the solution proposed by S1 or, instead, engage S2

to evaluate a better solution. Intuitively, the meta-cognitive assessment is twofold. On

the one hand, it considers S1 confidence in its answer. But due to the fact that S1 is a

machine learning approach that may have great confidence in the solution even if it is

utterly wrong, the meta-cognitive agent also evaluates the level of correctness of System

1 in similar tasks.

The pseudocode of the meta-cognitive process is reported in Algorithm 1. It takes in

input a goal recognition instance T , the solution yi proposed by S1, the vector p of S1

precision scores (i.e., the precision metric calculated for each fact in F on a validation

set), and two thresholds τ1, τ2. The solution proposed by S1 is a vector of real numbers

that represents a score in [0, 1] for each proposition in F . First, MC calculates a score for

each goal Gi ∈ G. This score is obtained as the sum of the GRNet output for all fluents

5.1 Fast and Slow Architecture for Goal Recognition 75

belonging to Gi. The candidate goal Ĝ is the one with the highest score (line 1). MC also

calculates the second-best candidate, G2̂ (line 2), this is used to define the confidence of

S1 for the proposed solution. This is computed as the difference between the score of the

candidate goal and the second-best candidate (line 3). We call this metric confidence.

The intuition behind this metric is that if there is a large difference between these two

goals, the neural network has identified more fluents belonging to Ĝ than belonging to

G2̂, and therefore Ĝ is the most probable goal according to GRNet.

In order to evaluate the quality of the prediction provided by the network, we com-

pute a metric, called experience. This metric indicates the network performance on

problems that cover similar goals, in particular, it evaluates how often it predicted a cor-

rected output in the past (line 12, where ϵ is a small value used to avoid division by

zero). In particular for each fluent f in the candidate goal Ĝ (line 6), we calculate the

average precision over only the ones with a score greater than a threshold (in our case

0.5), meaning that f is true (lines 4-12). Intuitively, this indicates how the network per-

forms when it chooses to predict those fluents, and therefore if its prediction is reliable

or not.

The confidence and experience metrics are compared with two thresholds (τ1 divided

by the number of fluents in the candidate goal and τ2) and, if both exceed those thresh-

olds, MC trusts the prediction made by S1, returning Ĝ as the candidate goal predicted

by the whole system (lines 13-14). In our experiments, after a grid search optimiza-

tion phase, we set τ1 = 0.08 and τ2 = 0.8. Otherwise, if the network has enough ex-

perience with those fluents but predicted two or more goals with similar scores, MC

selects all the goals for which the scores provided by the network are in the range

[
∑︁

f∈Ĝ yi[f] − τ1,
∑︁

f∈Ĝ yi[f]] (lines 15-16), these goals are then examined by S2 (line

20). Finally, if the network does not perform sufficiently on the fluents in Ĝ, MC chooses

to discard its predictions and all the goals in G are processed by S2 (lines 17-20). If S2

does not return any solution, the solution of S1 is returned instead (lines 21-25).

5.1 Fast and Slow Architecture for Goal Recognition 76

5.1.3 Updating System 1 using System 2

An important desideratum consists in improving the performance of S1 the more the

system is used, as the experience on the domain increases. To do that, we fine-tuned S1

using the optimal plans that are generated by S2 every time this is adopted to solve a goal

recognition instance: when a new goal recognition instance is solved by S2, we memo-

rize each generated plan together with the candidate goal that this plan is achieving in a

temporary memory buffer of predefined size L. Once the memory buffer is full, actions

are randomly selected (preserving their sequential order) from the stored plans in order

to create new observation sequences. These observations, along with their correspond-

ing goals, are then used for continuing the training of S1, with a fine-tuning procedure

that starts from the weights previously learned.

Following the completion of the fine-tuning procedure, some plans are randomly

selected to be transferred from the temporary memory buffer to a permanent memory

buffer with a capacity of 2L, after which the temporary memory buffer is cleared. As the

permanent memory buffer fills up, old plans are randomly replaced with new ones, thus

maintaining a balanced number of samples among all the temporary memory buffers

used. If observations derived from the plans in the temporary memory contain new

actions or achieve unseen fluents, the permanent and the temporary memory buffers

are used to train a new model from scratch. In our experiments, we set L = 960 plans.

5.1.4 Running Example

As a simple example of the overall working of our FSGR system, we will use the simple

example reported in Section 4.1. We use the same assumption applied to the Running Ex-

ample of GRNet (Section 4.2.3): the GR instances involve at most 22 blocks, a total of 968

actions (i.e. |A| = 968) and a total of 506 possible output fluents (i.e. |F | = 506). We also

assume that the three observed actions (Pick-Up Block C), (Stack Block C

Block B) and (Pick-Up Block F) have ids corresponding to indices 5, 17 and

21 respectively, as in the previous example. The two possible goals in G, as reported

5.1 Fast and Slow Architecture for Goal Recognition 77

in Figure 4.1, are G1 = {(On Block F Block C) (On Block C Block B)}

and G2 = {(On Block G Block H), (On Block H Block F)}

Initially, the observation sequence is computed by S1, which produces a score be-

tween 0 and 1 for all 506 propositions. However, in our specific GR instance, we consider

only the facts belonging to one of the goals in G. For these facts we obtain

o(On Block F Block C) = 0.017, o(On Block C Block B) = 0.810, o(On Block G Block H) = 0.000,

o(On Block H Block F) = 0.003. These values are then passed to the MC for computing

the confidence and experience metrics. Given that the final scores are 0.827 for G1 and

0.003 for G2, the MC selects G1 as the goal with the highest score (Ĝ in Algorithm 1)

and G2 as the second best choice (G2̂ in the algorithm). Please note that, in this simple

example G2 is the only possible candidate for G2̂; however in GR instances with more

than two candidate goals (i.e. |G| > 2), G2̂ is the candidate goal with the second highest

final score. The confidence metric is computed as the difference of the two final scores:

1.017 − 0.003 = 1.014. Supposing of having a threshold of τ1 = 0.08, we can see that

the confidence is way over the threshold τ1, and therefore we consider that S1 is certain

enough of its prediction.

Then, we evaluate the experience metric, i.e. the average precision of S1 on those

fluents predicted as true. The only fluent predicted as true (i.e. with a score higher than

0.5) is (On Block C Block B), which has a score of 0.810. Suppose that the preci-

sion of S1, calculated on a validation set, for that fluent is 0.82 and the threshold for the

experience metric is τ2 = 0.8. Given that the precision value is greater than τ2, the Meta

Cognitive Agent trusts S1 and returns G1 as the predicted goal. Otherwise, suppose that

the precision of S1, calculated on a validation set, for (On Block C Block B) is

0.19, lower than τ2. In this case the Meta Cognitive Agent, recognising that S1 doesn’t

have enough experience to provide a trustworthy solution, calls S2. If S2 is able to pro-

vide a solution within a predefined amount of time (e.g. 15 minutes), the MC Agent

returns it as the final solution to the problem. However, if S2 is not able to provide any

solution within the given time, the MC Agent returns the goal identified by S1.

5.2 Benchmark Suite and Datasets 78

5.2 Benchmark Suite and Datasets

We experimentally evaluate our system and compare it with the state-of-the-art model

for goal recognition by observing optimal plans, PRP. We consider four well-known

benchmark domains, introduced in Section 4.4: blocksworld, depots, logistics and

zenotravel; of course, as for GRNet, FSGR can be trained and tested using other do-

mains. In the domains considered, we use automated planning techniques to create the

solved GR instances for the training and test sets. Concerning the training set, for each

domain, we randomly generated a large collection of plan generation problems of dif-

ferent sizes. We use the same number of actions (|A|), fluents (|F |), fluents for each goal

(|Gi|), number of candidate goals (|Gi|) and objects used in the experimental setup of

GRNet, reported in Table 4.2. For each problem, we computed an optimal plan for solv-

ing it, in this case, we adopted the Big Joint Optimal Landmarks Planner [18] to compute

the solution. For evaluation, we generated a test set made of 600 GR instances (not seen

at training time) of different sizes. The procedure for obtaining problems and plans is

akin to the one we described for the training set. Optimal solutions for the planning

problems compiled with pac-c are computed with the A* search guided by the hLM−Cut

heuristic that supports conditional effects [58], implemented in FastDownward [31]. For

each optimal plan πi, we derived three different observations by subsampling 30%, 50%,

and 70% of each πi actions. For each considered domain, this results in three groups of

test instances, allowing us to evaluate the performance of FSGR in terms of different

amounts of available observations.

The experiments were conducted on an Intel Xeon Gold 6140M 2.3 GHz processor.

For calculating optimal solutions, runtime and memory were constrained to 1800 sec-

onds and 8GB, respectively. When training the models, memory utilization was limited

to 40GB. The system is evaluated in terms of two different aspects:we evaluate the GR

accuracy, and we also keep track of the time taken by the systems to find a solution. For

a set of test instances, the accuracy is defined as the percentage of instances whose goals

are correctly identified (predicted) over the total number of instances in the test set. If,

5.3 Experimental Results 79

bl
oc

ks
w
or

ld

(a) (b) (c)

Figure 5.3: Average performance on blocksworld domain considering the
whole test set: (a) Use of S1 and S2; (b) Accuracy of S1, S2, and FSGR; (c) Time
for S1, S2, and FSGR.

for a problem instance, the evaluated system provides k different goals with the same

highest score, then, in the overall count of the solved instances, this instance has value
1
k if the true goal is one of these k goals, 0 otherwise.

5.3 Experimental Results

We analyzed the performance of FSGR on the test set as well as on the three subgroups of

instances based on the percentage of plan observations. The performances on the three

different subsets of instances of the test set in terms of GR accuracy and time are reported

in Table 5.1. For all the considered domains, we can see that the accuracy of System 1

increases with both the number of plans used for training GRNet and the percentage of

observed actions of the plan. This is consistent with the fact that the more information is

used to train System 1, the better it performs. However, it is interesting to notice that the

system is able to exploit the available information providing a gain either in accuracy or

in time. For instance, considering 50% of the plan, the accuracy of GRNet in the depots

domain changes from 24.8%, when 6k plans are used, to 77.1% with 24k plans. This

improvement leads the meta-cognitive system to trust System 1 more, and thus using it

5.3 Experimental Results 80

Domain Train plans
30% of the plan 50% of the plan 70% of the plan

AS1 AS2 AFSGR TS2 TFSGR AS1 AS2 AFSGR TS2 TFSGR AS1 AS2 AFSGR TS2 TFSGR

- - 62.5 - 9108 - - 79.6 - 10958 - - 88.1 - 12124 -
0 4.7 62.5 9108 7.2 79.6 10958 7.0 88.1 12124

blocksworld 6k 35.1 65.3 8364 49.5 80.6 9818 59.9 88.3 11677
(600) 12k 42.8 66.4 5506 57.9 78.1 5811 72.3 87.9 6778

18k 46.5 66.9 4504 62.4 77.8 4263 75.3 86.7 4320
24k 46.3 67.7 3298 62.9 77.8 2507 77.0 87.0 2214

- - 85.4 - 4148 - - 94.2 - 4330 - - 97.3 - 4487 -
depots 0 19.2 85.4 4148 16.2 94.2 4330 16.6 97.3 4487

(600) 6k 22.3 85.4 4148 24.8 94.2 4330 25.9 97.3 4487
12k 45.5 81.0 2930 60.6 87.8 2580 69.3 90.2 2312
18k 57.5 79.8 1172 74.6 89.1 378 86.3 93.0 251
24k 58.7 82.4 837 77.1 92.3 182 87.4 95.5 73

- - 62.4 - 10629 - - 66.5 - 10467 - - 67.9 - 10388 -
0 9.7 62.4 10629 10.7 66.5 10467 9.1 67.9 10388

logistics 6k 45.1 62.8 10375 55.8 66.6 10129 55.3 68.1 10225
(600) 12k 52.0 69.1 5736 62.2 70.5 6164 70.5 70.8 7117

18k 54.8 72.7 4854 65.3 75.4 4486 77.8 76.3 4658
24k 59.1 74.5 4112 71.2 78.7 3004 81.8 79.8 3018

- - 92.7 - 4998 - - 97.2 - 5591 - - 98.9 - 6008 -
0 16.0 92.7 4998 17.1 97.2 5591 18.5 98.9 6008

zenotravel 6k 75.9 86.3 478 87.8 92.8 54 95.3 96.9 2
(600) 12k 74.5 88.1 581 87.3 91.9 51 95.1 97.9 10

18k 75.2 88.3 597 87.8 92.5 66 95.5 96.6 4
24k 75.5 88.5 590 87.3 93.4 69 94.8 97.6 14

Table 5.1: Performance of FSGR in terms of accuracy (in %) and Time (in seconds)
considering goal recognition problems into which the actions observed are the
30%, 50%, or 70% of the entire plan. In the AS1 columns, we report the accuracy
of System 1 (i.e., GRNet), in the AS2 columns, we report the accuracy of System
2 (i.e., PRP), in the AFSGR columns, we report the accuracy of FSGR. In the TFSGR

column, we report the average time taken by FSGR to find a solution. For each
domain, the first row reports the performance of System 2, and from the second
row on, we report different stages of the incremental training of System 1.

5.3 Experimental Results 81

Domain Train plans
5 minutes 10 minutes 15 minutes

AS1 AS2 AFSGR TS2 TFSGR AS1 AS2 AFSGR TS2 TFSGR AS1 AS2 AFSGR TS2 TFSGR

- - 69.9 - 3337 - - 73.6 - 5258 - - 75.3 - 6864 -
0k 6.3 69.9 3337 6.3 73.6 5258 6.3 75.3 6864

blocksworld 6k 48.2 71.4 3041 48.2 75.1 4834 48.2 76.7 6335
(600) 12k 57.7 72.1 1868 57.7 75.2 2955 57.7 76.4 3866

18k 61.4 72.8 1398 61.4 75.4 2176 61.4 76.4 2824
24k 62.1 73.8 917 62.1 76.0 1383 62.1 76.9 1771

- - 90.6 - 1682 - - 92.2 - 3033 - - 92.3 - 4265 -
0k 17.3 90.6 1682 17.3 92.2 3033 17.3 92.3 4265

depots 6k 24.3 90.6 1682 24.3 92.2 3033 24.3 92.3 4265
(600) 12k 58.5 85.2 1023 58.5 86.2 1840 58.5 86.3 2583

18k 72.8 86.6 249 72.8 87.1 435 72.8 87.3 599
24k 74.4 89.4 159 74.4 89.9 269 74.4 90.1 364

- - 60.8 - 2135 - - 62.3 - 3969 - - 63.4 - 5703 -
0k 9.8 60.8 2135 9.8 62.3 3969 9.8 63.4 5703

logistics 6k 52.1 61.3 2082 52.1 62.8 3872 52.1 63.7 5566
(600) 12k 61.6 66.7 1281 61.6 67.8 2388 61.6 68.5 3437

18k 66.0 71.5 942 66.0 72.3 1754 66.0 73.1 2526
24k 70.7 75.1 689 70.7 75.9 1278 70.7 76.5 1836

- - 85.4 - 1398 - - 93.1 - 2407 - - 95.0 - 3288 -
0k 68.2 84.1 1195 68.2 91.3 2056 68.2 93.3 2808

zenotravel 6k 86.3 91.5 50 86.3 91.9 82 86.3 92.0 109
(600) 12k 85.6 92.2 58 85.6 92.6 97 85.6 92.6 131

18k 86.2 92.0 61 86.2 92.4 102 86.2 92.5 136
24k 85.9 92.7 62 85.9 93.1 102 85.9 93.2 137

Table 5.2: Performance of our system in terms of accuracy (A) and Time (T) con-
sidering goal recognition problems considering time limits of 5, 10 and 15 min-
utes for solving each planning problem computed by S2. In the A1 and columns,
we report the accuracy of System 1 (i.e., GRNet), in the AFSGR columns, we report
the accuracy of the integrated system. In the TFSGR column, we report the average
time the integrated system needs to find a solution. For each benchmark domain,
the first row reports the performance of System 2 (i.e., PRP), from the second row
instead we report different stages of the incremental training of System 1.

5.3 Experimental Results 82

de
po

ts

(a) (b) (c)

Figure 5.4: Average performance on depots domain considering the whole test
set: (a) Use of S1 and S2; (b) Accuracy of S1, S2, and FSGR; (c) Time for S1, S2,
and FSGR.

lo
gi
st
ic
s

(a) (b) (c)

Figure 5.5: Average performance on logistics domain considering the whole
test set: (a) Use of S1 and S2; (b) Accuracy of S1, S2, and FSGR; (c) Time for S1,
S2, and FSGR.

more times without exploiting System 2, which is slower and more resource-demanding.

The effect of this process can be seen in the TFSGR column reporting the average time to

compute a solution by the integrated system: the value of TFSGR decreases drastically as

the number of train plans increases. For instance, in depots, the time required by FSGR

to find a solution changes from 4330 seconds to 182 seconds, more than twenty times

less. Despite this time reduction, the system maintains a high accuracy, which is always

over 87%. Notice that with 70% of the observed plan, the system obtains 95.5% (just

1.8 points less than PRP) with an average time of only 73 seconds compared to the 4430

5.3 Experimental Results 83

ze
no

tr
av

el

(a) (b) (c)

Figure 5.6: Average performance on zenotravel domain considering the whole
test set: (a) Use of S1 and S2; (b) Accuracy of S1, S2, and FSGR; (c) Time for S1,
S2, and FSGR.

required by PRP.

An interesting result of this approach is reported in the logistics domain. For all

the considered cases, it can be noticed that trusting System 1 increases the overall per-

formance of the integrated system, which obtains an accuracy even higher than the one

reached by System 2, that has guarantees of correctness. For instance, with 50% of the

plan, System 2 has an accuracy of 66.5%, while the integrated system, with a fully trained

GRNet, reaches 78.7%. These results are due to the fact that System 1 can provide a solu-

tion in less time than System 2, overcoming the time limit of the system. Regarding the

results reported in Table 5.1, we set the limit to 30 minutes for computing the solution

of a single planning instance. Although in several cases this time limit is not enough for

S2, the system is able to compute a solution even for these cases by exploiting System 1

capabilities.

The results in Table 5.1 allow us to compare our system with two baselines: a system

that randomly predicts a goal (in Table 5.1, this corresponds to the results on rows with

0 train plans, i.e. a neural network not trained which acts as a random classifier) and

the state-of-the-art PRP (AS2 and TS2 columns in Table 5.1 respectively). We can see that

when System 1 performs very poorly due to insufficient training (as in the 0k rows of

Table 5.1 and, for instance, in the 6k row for the logistics domain), the integrated sys-

5.3 Experimental Results 84

tem behaves almost as PRP in terms of average accuracy and time. On the contrary, with

a properly trained System 1, the behavior of the integrated system shows a neglectable

decrease of just a few points in terms of accuracy with respect to PRP but with a con-

siderable gain in terms of time. In fact, in some cases such as in blocksworld with 24k

training plans with 70%, we can even reduce the time necessary to compute a solution

by more than 5 times. This shows the capability of our meta-cognitive system to work

remarkably well in both cases, taking the best of System 1 and System 2.

In Figures 5.3, 5.4, 5.5 and 5.6 we graphically show the behavior of our system respec-

tively for blocksworld, depots, logistics, and zenotravel. In each figure, we report

three different plots showing three different aspects and how they vary during the in-

cremental training of GRNet: in the first, we report the use of Systems 1 and System 2

(i.e., the number of times the meta-cognitive system adopts one of the two systems, in

percentage). It can be noticed that, in each considered domain, S1 is more used when it

is trained with a larger quantity of plans. For instance, in depots (Figure 5.4a), S1 is used

for 68.6% of the test instances when it is trained with 24k plans. This result is expected:

in fact, a larger training set should lead to better performance for S1 and, therefore, the

Meta Cognitive System should be more inclined to trust its predictions. In the second

plot we report the accuracy of S1, S2, and the overall accuracy of FSGR. In the third

plot, we represent the average time required to find a solution to a GR instance. It is

worth noting that, while Table 5.1 presents results categorized according to various per-

centages of observations, the presented figures display the average results, considering

all percentages collectively, which means that the reported performance refers to the

whole test set. In blocksworld, it can be noticed that the increase in the use of System

1 (see Figure 5.3a) corresponds to a negligible variation in accuracy (see Figure 5.3b),

but the time taken to compute a solution decreases (see Figure 5.3c). A similar but more

determined behavior can be seen in zenotravel. In fact, in this domain, even a limited

number of plans allows GRNet to obtain remarkably good performance reaching 80% of

use very rapidly (see Figure 5.6a). Once again, this causes a very small variation in terms

of accuracy (see Figure 5.6b) but reduces the time by more than 10 times (see Figure

5.3 Experimental Results 85

5.6c). The performance in depots is similar in principle to that in zenotravel, except

for the fact that S1 needs more plans to obtain good accuracy. For logistics, Figure 5.4

illustrates a crucial advantage of S1 over S2, as it demonstrates that S1’s quicker compu-

tation of solutions allows the entire system to produce outputs even for instances where

S2 would exceed its time constraints. This results in higher overall accuracy (see Figure

5.5b).

We also evaluated how sensible our system is to different threshold values of the

confidence (τ1) and the experience (τ2) metrics. In Table 5.3 we report the performance

of the FSGR system for the considered domains. Considering three different values of τ1
and τ2, in the considered domains, we can see that when the neural network is not prop-

erly trained, in particular when using only 0 or 6k training problems, S1 does not have

enough confidence or experience in its predictions, and therefore S2 is called most of the

time; for instance, in depots the average time for resolving a problem instance is 4322

seconds. When the performance of System 1 increases with 12k and 18k training plans,

we can notice some differences, especially when varying τ1. In fact, in blocksworld,

logistics and zenotravel setting an higher threshold for the confidence metric and,

therefore, requesting that only a single goal is selected by the neural network, increases

the accuracy by a few points but at the expenses of the computation time. For instance,

in blocksworld, with 18k training plans and τ2 = 0.8, the accuracy goes from 75.4

to 78.2 while the time to compute a solution goes from 6578 to 6689. In these three

domains the experience threshold (i.e. τ2) doesn’t seem to affect much the accuracy or

the computation time; this is due to the fact that the networks are very confident of the

predicted outputs, with precision values greater than 0.8. However, the higher the expe-

rience threshold is, the more correct prediction computed by System 1 will be rejected

by the MC agent, leading to higher computation times. Nevertheless, in depots, where

the neural network precision on the validation set is not always high, the experience

threshold has an higher impact on the performance of the system. For example, with

18k training plans and τ1 = 0.16, the accuracy goes from 88.7 to 89.9 while the training

time goes from 631 to 1501, meaning that some unreliable predictions of System 1, that

5.3 Experimental Results 86

were in fact wrong, were correctly solved by System 2. A smaller impact can be seen

when the neural network is fully trained (24k training plans). Although increasing the

confidence and experience thresholds generally leads to a longer computation time with-

out remarkable improvements in terms of accuracy, we can see that in general the S1 is

generally precise enough that even setting a low τ2 does not lead to a loss of accuracy.

Finally, Table 5.2 reports the performance considering different time limits (5, 10

and 15 minutes), to solve each planning problem generated by S2. For all the considered

domains, we can see that the accuracy of S1 (column AS1) increases as the number of

training plans used increases according to what is reported in Table 5.1. We can also see

that, as the time limit grows, both the accuracy of System 2 (columns AS2) and the aver-

age time S2 needs to find a solution (columns TS2) increases for almost all the considered

domains. However, this is not the case for logistics, where the average time decreases

as the time limit increases. In this domain, FSGR maintains the same properties seen

in Table 5.1. In fact, by exploiting the new information collected through training, the

meta-cognitive agent is able to choose S1 more often, leading to a gain in either perfor-

mance or time (columns AFSGR and TFSGR). This is particularly noticeable when S2, due

to the time limit, does not perform well; for instance, in blocksworld with 5 minutes

time limit, starting from 6k training plan, FSGR always performs better than S2 both

in terms of GR Accuracy and average time. In fact, often S2 is not able to provide any

solution within this limited amount of time as demonstrated by its low performance (i.e.

AS2 = 62.5). As shown in Algorithm 1, when no solution is provided by System 2, MC

agent returns the solution of S1, improving the performance of FSGR scenarios where

the available time is limited.

5.3 Experimental Results 87

D
om

ai
n

Tr
ai

n
pl

an
s

τ 1
=

0
.0
4

τ 1
=

0
.0
8

τ 1
=

0
.1
6

τ 2
=

0
.4

τ 2
=

0
.8

τ 2
=

0
9

τ 2
=

0
.4

τ 2
=

0
.8

τ 2
=

0
9

τ 2
=

0
.4

τ 2
=

0
.8

τ 2
=

0
9

A
FS
GR

T
FS
GR

A
FS
GR

T
FS
GR

A
FS
GR

T
FS
GR

A
FS
GR

T
FS
GR

A
FS
GR

T
FS
GR

A
FS
GR

T
FS
GR

A
FS
GR

T
FS
GR

A
FS
GR

T
FS
GR

A
FS
GR

T
FS
GR

bl
oc

ks
w
or

ld

0
76

.7
10

73
0

76
.7

10
73

0
76

.7
10

73
0

76
.7

10
73

0
76

.7
10

73
0

76
.7

10
73

0
76

.7
10

73
0

76
.7

10
73

0
76

.7
10

73
0

6k
75

.2
93

69
76

.6
10

00
0

76
.6

10
25

9
76

.9
94

08
77

.6
10

01
2

77
.2

10
27

0
77

.6
94

38
78

.0
10

02
5

77
.5

10
27

6
12

k
74

.1
43

17
75

.5
73

07
76

.8
94

60
77

.4
44

52
77

.2
73

76
77

.1
94

85
78

.9
45

51
78

.4
74

36
77

.6
95

07
(6

00
)

18
k

73
.0

20
08

75
.4

65
78

75
.9

90
42

76
.5

21
18

77
.1

66
30

76
.8

90
71

78
.6

22
21

78
.2

66
89

77
.4

91
03

24
k

73
.6

17
27

75
.9

53
59

75
.9

95
58

77
.1

18
36

78
.0

54
26

76
.6

95
74

79
.3

19
27

79
.0

54
83

77
.1

95
93

de
po

ts

0
92

.3
43

22
92

.3
43

22
92

.3
43

22
92

.3
43

22
92

.3
43

22
92

.3
43

22
92

.3
43

22
92

.3
43

22
92

.3
43

22
6k

92
.3

43
22

92
.3

43
22

92
.3

43
22

92
.3

43
22

92
.3

43
22

92
.3

43
22

92
.3

43
22

92
.3

43
22

92
.3

43
22

12
k

81
.6

18
84

85
.2

25
52

89
.5

36
87

83
.3

19
57

86
.3

26
07

90
.0

37
11

85
.0

20
13

87
.5

26
53

90
.7

37
21

(6
00

)
18

k
85

.0
53

3
84

.9
55

6
86

.6
14

18
87

.3
57

9
87

.3
60

0
88

.6
14

56
88

.7
63

1
88

.7
65

3
89

.9
15

01
24

k
87

.9
32

8
87

.9
32

8
88

.3
47

4
90

.1
36

4
90

.1
36

4
90

.3
50

7
91

.3
38

9
91

.3
38

9
91

.4
53

1

lo
gi
st
ic
s

0
65

.6
10

49
4

65
.6

10
49

4
65

.6
10

49
4

65
.6

10
49

4
65

.6
10

49
4

65
.6

10
49

4
65

.6
10

49
4

65
.6

10
49

4
65

.6
10

49
4

6k
66

.0
10

17
9

65
.9

10
23

7
65

.8
10

26
3

66
.0

10
18

6
65

.8
10

24
3

65
.7

10
26

9
66

.0
10

19
2

65
.8

10
24

9
65

.7
10

27
6

12
k

70
.4

62
73

70
.4

62
73

69
.9

65
35

70
.1

63
39

70
.1

63
39

69
.8

65
93

70
.0

63
89

70
.0

63
89

69
.7

66
38

(6
00

)
18

k
74

.7
46

15
74

.7
46

15
74

.7
46

15
74

.8
46

66
74

.8
46

66
74

.8
46

66
74

.7
46

86
74

.7
46

86
74

.7
46

86
24

k
78

.1
33

09
78

.1
33

09
78

.1
33

09
77

.7
33

78
77

.7
33

78
77

.7
33

78
77

.7
34

19
77

.7
34

19
77

.7
34

19

ze
no

tr
av

el

0
96

.2
55

32
96

.2
55

32
96

.2
55

32
96

.2
55

32
96

.2
55

32
96

.2
55

32
96

.2
55

32
96

.2
55

32
96

.2
55

32
6k

90
.4

15
9

90
.4

15
9

90
.7

18
2

92
.0

17
8

92
.0

17
8

92
.3

20
0

93
.5

19
8

93
.5

19
8

93
.6

22
0

12
k

90
.6

19
6

90
.6

19
6

90
.6

19
6

92
.6

21
4

92
.6

21
4

92
.6

21
4

93
.4

23
0

93
.4

23
0

93
.4

23
0

(6
00

)
18

k
90

.9
20

0
90

.9
20

0
90

.9
20

0
92

.5
22

2
92

.5
22

2
92

.5
22

2
93

.6
23

5
93

.6
23

5
93

.6
23

5
24

k
91

.0
20

4
91

.0
20

4
91

.0
20

4
93

.2
22

4
93

.2
22

4
93

.2
22

4
94

.6
23

6
94

.6
23

6
94

.6
23

6

Ta
bl

e
5.3

:P
er

fo
rm

an
ce

of
FS

GR
in

te
rm

s
of

ac
cu

ra
cy

(A
F
S
G
R

in
%)

an
d

Ti
m

e
(T

F
S
G
R

in
se

co
nd

s)
co

ns
id

er
in

g
di

ffe
re

nt
th

re
sh

ol
d

va
lu

es
fo

rt
he

co
nfi

de
nc

e
(τ

1
)a

nd
th

e
ex

pe
rie

nc
e

(τ
2
)m

et
ric

sf
or

th
e
de

po
ts

do
m

ai
n.

Chapter 6

Transformer Based Architectures

for Automated Planning

In 2007, the work in [25] drew an interesting parallel between automated planning and

natural language processing (NLP), presenting a new formulation for plan recognition,

that is the task of inferring an agent’s plan observing some of its actions, based on gram-

mars. The authors claimed that the two disciplines could share some of the research re-

sults, but they stated that much of the recent work in both fields had gone unnoticed by

the researchers in the other field. In the following years, the separation between these

two fields has not diminished. For NLP, deep learning techniques such as the ones pre-

sented in Chapter 3, like the attention mechanism and Transformer-based architectures

have revolutionised the field, reaching a completely new state-of-the-art in many dif-

ferent tasks [17]. On the other hand, deep learning had a limited impact on automated

planning, and it is mostly used for predicting heuristics [20], processing sensor data in

order to create a symbolic representation of a planning problem [5] and for goal recog-

nition tasks [3, 46].

Inspired by the parallelism pointed out by Geib and Steedman [25], in the following

sections, we aim to transfer Transformer-based techniques to the automated planning

88

6.1 PlanBERT 89

field. We claim that plans and actions can be seen similarly to sentences and words, and

we design a planning language modeling task to train the model into which the model

has to reconstruct an incomplete sequence of actions. With this technique, for each

considered domain, we train a BERT model, described in Section 3.4.2, using tokenized

actions, where each token can be either the action name or one of its grounded predi-

cates. This model can be used as a foundation model for the considered domain, that is

a large machine learning model trained on a vast quantity of data at scale such that it

can be adapted to a wide range of downstream tasks. For this reason, we evaluate the

performance of the model on its training task and in three additional experiments: Next

Token Prediction (ntp), into which the model has to predict the token that follows a

input sequence; Previous Token Prediction (ptp), into which the predicted token is the

one that precedes the input sequence. Finally we fine-tune the BERT model to perform

a goal recognition task. These tasks were made to demonstrate how well the model un-

derstands about how a planning domain works, its rules, its actions and their effects.

Moreover, in this chapter, we present a detailed report of the main difficulties in the

training process, the necessary choices the user has to make in order to train a similar

model, the dimension of the datasets required to obtain good results, etc. Finally, we

discuss the positive and negative aspects of applying these techniques to the planning

domain.

This chapter describes and extends the work presented in [60]

6.1 PlanBERT

In this section, we focus on one of the most recent deep learning architectures for NLP:

BERT, which is described in Section 3.4.2. By processing a huge quantity of sentences

and documents, BERT is able to learn how the language works and its capabilities can be

exploited for different tasks such as text classification [52], sentiment analysis [32], ques-

tion answering [53] and other NLP tasks. This is done by training the model to perform

the so-called masked language modeling task. Basically, the input of the BERT model is

6.1 PlanBERT 90

an incomplete sentence, into which some words are replaced by a special marker, and

the model has to reconstruct the complete sentence, predicting the missing words from

the context.

6.1.1 Planning Language Modeling

Our BERT model is trained using a slight variation of the typical language modeling task

that we call Planning Language Modeling (PLM). In order to perform PLM, we approach

the planning domains as a NLP task. In this technique, given a sequence of actions π

composed of n actions ai, with i ∈ [1, n], we split each action into separated tokens,

dividing the action name and the action’s predicates. For instance, the action (Stack

Block A Block B) is divided into three separate tokens: Stack, Block A and

Block B.

Initially, the action sequence is divided into separated tokens, using the WordPiece

tokenizer [66]. Next, we substitute a certain percentage of tokens with the special token

[MASK] and give this incomplete sequence as input. The BERT model has the task of

predicting the missing token from the overall context of the action sequence. If the model

is capable of performing this operation, it is likely that it has the ability to understand

how the planning domain works, the impact of the actions, when they are performed

by an agent, and which effects they have. In order to perform the planning language

modeling, the BERT model needs processing a large quantity of these training instances,

progressively adjusting the training weights of the model with the backpropagation al-

gorithm until it reaches a satisfying level of accuracy.

6.1.2 Training Technique

In order to properly train the model, there are some necessary choices that the user must

make. Although typically BERT models treat a specific language, there are several multi-

language models. Given that a planning domain has its own set of actions, predicates,

and rules, we can consider it as a sort of an independent language. Therefore, the user

6.1 PlanBERT 91

should evaluate whether training a BERT model for each domain, perhaps specialising

and improving its predictive capabilities, or building a multi-domain model, selecting

which domains to consider and their quantity. In order to properly evaluate the capabil-

ities on each domain separately and to try to achieve higher performance, we opted for

training a BERT model for each domain.

Next, an important constraint of the BERT model is that it must have a predefined

vocabulary of tokens. Therefore, before the training process, the user has to define a

maximum number of ground objects that the model can handle in each domain. Al-

though this process makes the model sensitive to the chosen object names, in practice

this operation only affects the choice of the maximum number of objects. In fact, a map-

ping algorithm can be easily implemented for translating new names into predefined

ones.

Considering that the input sequence of actions π is a solution to a classical planning

problem P = ⟨F, I,A,G⟩, we decided to include the initial state I and the goal G into

the input sequence as they are crucial to correctly process the sequence. For this reason,

we add two new special tokens, [EIS] (End of Initial State) and [EG] (End of Goal), to

help the model to understand when the initial state and the goal end. On the other hand,

we don’t want the model to learn the initial state or the goal; for this reason, during

training we used the [MASk] token only in the action sequence (i.e. after the [EG]

token).

As it happens with all deep learning techniques, a crucial aspect for obtaining good

performance is the number of training instances, i.e. the number of plans necessary to

train the BERT model. The choices of how many domains to consider for training and

how many objects to include have a serious impact on the number of plans which have

to be collected or generated for the training of the model, the amount of time required

to this process, and its difficulty. The overall dimension of our data set is about 350 MB

of data; therefore, it is definitively smaller w.r.t. the dataset (∼ 3 TB) used for training

standard BERT architectures [17, 39].

Our model architecture is very similar to the one proposed by Devlin et al. [17]. We

6.1 PlanBERT 92

Figure 6.1: Architecture for goal recognition using a fine-tuned BERT model. The
architecture receives as input the initial state, an empty goal and the observation
sequence. The fine-tuned BERT model outputs |F | neurons, each one represent-
ing a possible fluent in the domain. As in GRNet, the output is used by the
instance specific component for selecting the goal with the highest score.

use a total of 12 encoding layers, each one of them with 12 heads, and we use 768 as

the embedding size, i.e. tokens are represented as vectors of 768 real numbers across the

model.

6.1.3 Goal Recognition Fine-tuning

As described in Section 3.4.2, BERT models can be fine-tuned by adding an additional

output layer. In order to perform goal recognition, similarly to GRNet, we add an addi-

tional feed-forward layer which has N = |F | output neurons with sigmoid activation.

For the overall working of GRNet, please refer to Section 4.2.

The architecture is shown in Figure 6.1. Given a goal recognition instance T =

⟨Π, I, O,G⟩, the BERT model receives as input the initial state I and the observation

sequence O, tokenized using the same process described in Section 6.1.1. Similarly to

the Environment Component of GRNet, the output of the i-th neuron ōi corresponds

to the i-th fluent fi and the activation value of ōi gives a rank for fi being true in the

6.1 PlanBERT 93

goal. The instance component remains the same and takes as input the ranks generated

by the fine-tuned model and uses them to select a goal from the candidate goal set G.

6.1.4 PLM Example

In this section, we present a simple example of how we structure our planning language

modeling task. As in previous examples, we use the blocksworld domain and we as-

sume that our plans involve at most 22 blocks. In this case, our vocabulary is made of

22 tokens for the blocks (i.e. a different name for each block), 4 tokens for the possi-

ble actions (i.e. Stack, Unstack, Pick-Up, Put-Down), 4 tokens for the possible

predicates (i.e. clear, on-table, holding, arm-empty) and the 3 for the addi-

tional tokens (i.e. [MASK], [EIS], [EG]) for a total of 33 different tokens.

In order to perform a planning language modeling task, we need an initial state I ,

a goal G and an action sequence π that leads from I to G. The initial state, reported

in Figure 6.2a, is I = ⟨ (on-table Block F), (on-table Block C), (on

Block B Block F), (arm-empty) ⟩. The goal, reported in Figure 6.2b is G =

⟨ (on Block B Block C) ⟩. Finally, Figure 6.2c reports the solution plan π = ⟨

(Unstack Block B Block F), (Stack Block B Block C) ⟩.

Therefore, the tokenized input sequence is “on-table” “Block F” “on-table”

“Block C” “on” “Block B” “Block F” “arm-empty” “[EIS]” “on” “Block B”

“Block C” “[EG]” “Unstack” “Block B” “Block F” “Stack” “Block B”

“Block C”. Next, we mask 1 token after [EG] (17%), chosen randomly; in this example

the Stack token is replaced by [MASK].

This sequence is then processed by the embedding layer and by all the encoding lay-

ers, producing a final representation of each token as a vector of 768 real numbers. Given

that the fourth element of the sequence is masked, its embedding vector is passed to a

feed-forward layer composed of 33 neurons (one for each possible token of the domain)

with the softmax activation function. Supposing that the output neuron corresponding

to the Stack token has index 8, we want in output a vector formed by all zeroes except

6.1 PlanBERT 94

I

(a)

G

(b)

(Unstack Block B Block F) (Stack Block B Block C)

π

(c)

Figure 6.2: Representation of the toy classical planning problem in the
blocksworld domain and a solution plan π. (a) The initial state I , (b)
The goal G, (c) A solution plan π = ⟨ (Unstack Block B Block F),
(Stack Block B Block C)⟩.

6.1 PlanBERT 95

Figure 6.3: Schematic representation of a BERT model performing the PLM task

for a 1 at index 8. Therefore, the result produced by the feed-forward layer is compared

with the desired output. This procedure is repeated for every training instance, evalu-

ating the overall error made by the architecture and calculating a loss function, that is

cross-entropy in our experiments, which will be used by the backpropagation algorithm

to adjust the model weights.

In Figure 6.3 we show a simplified representation of the model architecture perform-

ing the planning language modeling task. The tokens are encoded into vectors by several

encoding blocks and, in the last step, the vectorial representation of [MASK] is passed

6.2 Benchmark Suite and Datasets 96

Domain
Training Set Vocabulary Avg. Avg.

Size Size Tokens Actions

blocksworld 200k 40 171.3 39.2
depots 192k 50 243.2 32.9
drivelog 239k 84 204.5 30.9
logistics 225k 66 187.8 28.8
satellite 154k 83 114.3 17.5
zenotravel 252k 41 170.8 22.1

Table 6.1: Number of training plans, number of tokens in the vocabulary, average
number of input tokens (Avg. Tokens) and average plan length (Avg. Actions) of
the plans in the training set for each considered domain.

to a feed-forward layer with softmax activation function that predicts a 1 at the index 8

and 0 for all the other indexes.

6.2 Benchmark Suite and Datasets

For our experiments, we consider six benchmark domains: blocksworld, depots, driv-

elog, logistics, satellite and zenotravel; these domain are described in more detail

in Section 4.4.

6.2.1 Training Sets

Concerning the training set, for each domain, we randomly generated a large collection

of (solvable) plan generation problems of different size. We consider the same ranges of

objects used for the GRNet experimental evaluation (see Table 4.2). As we did in Section

4.4, for each of these problems, we computed up to four (sub-optimal) plans solving them

6.2 Benchmark Suite and Datasets 97

using lpg. The generated training set consists of input sequences ⟨I,G, π⟩ where I is

the initial state of the problem, G is the goal and π is a plan that leads from I to G. Table

6.1 reports the number of training plans, the number of considered tokens, the average

number of token that the model receives as input and the average length of training

plans for each domain.

Additionally, we designed a data set for fine-tuning the model to perform goal recog-

nition. For each domain we randomly selected 25k plans. From these plans, we derived

the observation sequences for the fine-tuning samples by randomly selecting actions

from the plans (preserving their relative order). The selected actions are between 30%

and 70% of the plan actions. The generated data set consists of pairs (⟨I,O⟩, G∗) where

I is the initial state of the planning problem, O is a sequence of observed actions ob-

tained by sampling a plan π, and G∗ is the hidden goal corresponding to the goal of

the planning problem solved by π. Please note that we reduced the amount of training

data from 55k plans used to train GRNet to 25k because we are taking advantage of the

information learned by the BERT model during its training phase.

6.2.2 Evaluation Tasks and Test Sets

For each domain, we evaluate the capabilities of our model using two test sets: one used

for the evaluation of PLM, ntp and ptp tasks and the other one for the goal recognition

task.

The first test set is composed by 2k plans which were not used during training. In

the planning language modeling task, we check whether the predictions of the masked

input tokens are correct. Given that the softmax activation function of the output layers

actually predicts a score between 0 and 1 for all the possible tokens of our domains, we

evaluate the planning language masked in two configurations. We consider only the

token predicted with the highest score. The planning language modeling (PLM) task is

evaluated using the following percentages of masked tokens: 10%, 15%, 25% and 50%.

In the second task, calledNext TokenPrediction (ntp), we ask our model to predict

6.3 Experimental Results 98

the token that follows an input token sequence. In detail, given a token sequence of

length l, for (ntp), we pass the first l-1 tokens to the model and ask the model to predict

the l-th token. Similarly, for the third task, called Previous Token Prediction (ptp),

the model should predict the first token of the sequence while the remaining token are

passed in input. We evaluate ntp and ptp using different token sequence lengths (i.e. 5,

10, 25, 50) and with the entire plan without the last and first token, respectively (Tot).

Please note that the initial state and the goal are always included in the input string;

however, the token sequence length is computed counting only the tokens that belong

to the plan (i.e. after the [EG] token).

For the goal recognition evaluation, we use TSLGRGen, introduced in Section 4.4. This

test set contains observations derived from plans computed by lama and it is an exten-

sion of TSLGR; thus it has a richer diversification of the observation traces and a larger

number of test instances. In our experiments, we consider action traces formed by 10%,

30%, 50%, 70% and 100% of the plan actions, respectively and use GR accuracy as evalu-

ation metric.

6.3 Experimental Results

We experimentally evaluate BERT on the selected tasks. On the goal recognition task,

we compare the obtained results with the ones obtained by GRNet.

6.3.1 Planning Language Modeling Task

In Table 6.2, we show the results for all the considered domains in terms of accuracy, of

the planning language modeling task. In this experiment, we masked different percent-

ages of tokens: 10%, 15%, 25% and 50%. As it should be expected, the accuracy decreases

proportionally to the increasing of the percentage of masked actions (i.e. less input data).

The overall performance in this task is very good; in particular we can notice that,

for all the considered masking percentages, the accuracy is always greater than 90%,

6.3 Experimental Results 99

Masked tokens (%) blocks depots drivelog logistics satellite zeno

10 99.47 99.38 98.99 98.53 96.10 99.54
15 99.36 99.22 98.82 98.31 95.95 99.49
25 98.90 98.88 98.00 97.45 95.24 99.05
50 96.14 96.62 94.23 92.40 90.08 95.66

Table 6.2: Results for the Planning Language Modeling task in terms of accuracy.
On the rows, we report the percentage of masked actions in the test sequences.

which is remarkable. In blocksworld, depots and zenotravel we obtain the highest

performance with an accuracy greater than 95% even when half of the input token are

masked. The relatively low performance in satellite can be due to the lower number

of training plan (i.e. 50k plans less than the other domains) and the short length of the

generated plans which lead to less overall training samples.

6.3.2 Next Token Prediction Task

The results for the ntp task in terms of accuracy are shown in Table 6.3. In each row, we

consider an input sequence of different length. For instance, if the length is 5 we have

the inital state, the goal state and the first 5 tokens of the plan as input and we want to

predict the 6-th token.

The results obtained on the considered domains are good. In each column, we can

notice the same trend: the accuracy increases with the length of the plan with the ex-

ception of blocksworld and depots in which the results for 5 input tokens are higher

then the results with 10. This may be due to the fact that the very first possible actions

in the plans of these two domains are limited (e.g. unstack the blocks in blocksworld).

We can also see that, in all considered domains except satellite, the performance

noticeably increase of almost 15 point increasing the input sequence from 50 to 100 to-

6.3 Experimental Results 100

Sequence Length blocks depots drivelog logistics satellite zeno

5 99.9 84.85 36.70 21.40 45.60 58.80
10 80.85 67.55 68.10 32.00 56.45 51.85
25 82.30 74.10 71.80 70.50 74.55 67.10
50 81.65 74.30 80.60 76.80 78.65 75.55
100 94.28 90.95 85.00 90.95 79.40 89.10
Tot 100.0 100.0 100.0 100.0 100.0 100.0

Table 6.3: Results for the ntp task. Sequence Length stands for the number of
input tokens; initial state and goal tokens are not considered. In row Tot we pass
the entire plan to the model except for the last token.

kens. This happens because BERT can exploit the sensible increase of input information

to infer the final token. In fact, we can see that in the Tot row, where we pass the entire

plan to the model except for the last token, we obtain 100% accuracy in all the domains.

Regarding the performance in the satellite domain with 50 input tokens, we think that

the little increase in performance w.r.t. 25 input token is reflected by the lower perfor-

mance obtained on this domain on the PLM task, which is an easier task compared to

ntp.

6.3.3 Previous Token Prediction Task

In Table 6.4 we report the results for the ptp task in terms of accuracy using the same

format used in the evaluation of the ntp task.

The results on this task are remarkable; in particular, we can notice that by consid-

ering only 5 input tokens, we manage to obtain an accuracy higher than 95% in almost

all the considered domains. Similarly to the ntp results, we can notice that, for each

column, the accuracy increases as the input length increases. Looking at the 10 input

6.3 Experimental Results 101

Sequence Length blocks depots drivelog logistics satellite zeno

5 100.0 99.95 98.25 99.05 99.4 83.5
10 100.0 100.0 99.10 99.15 99.4 99.75
25 100.0 100.0 100.0 99.85 99.4 99.95
50 100.0 100.0 100.0 100.0 100.0 100.0
100 100.0 100.0 100.0 100.0 100.0 100.0
Tot 100.0 100.0 100.0 100.0 100.0 100.0

Table 6.4: Results for the ptp task. Sequence Length stands for the number of
input tokens; initial state and goal tokens are not considered. In row Tot we pass
the entire plan to the model except for the first token.

tokens row, we can see that in all the domains the accuracy is higher than 99%; from 50

input tokens onward, the accuracy is 100% for all the considered domains.

The fact that the performance are so high is related to the fact that, among all the

designed tasks, ptp is the easier to solve for BERT. In fact, BERT processes the whole

sequence together and can predict the masked token using the information that comes

after it, which is often more informative.

6.3.4 Goal Recognition Task

Table 6.5 summarizes the performance results of GRNet and the BERT model fine-tuned

on the goal recognition task in terms of GR accuracy on TSLGRGen. We can see that

BERT performs generally well and improves its performance with the increase of the

percentage of the observed actions. In depots, BERT obtains always better performance

w.r.t. GRNet for all the considered percentages of observed actions; in particular, with

30, 50 and 70% of the observation, BERT improves the results by over 10 points. Similar

results can be seen in drivelog, and zenotravel. However, in satellite GRNet always

6.4 Discussion 102

Plan % Model blocks depots drivelog logistics satellite zeno

10
GRNet 22.85 32.95 39.80 39.15 45.50 48.00

BERT 23.00 36.07 38.87 32.29 44.13 41.76

30
GRNet 52.35 59.80 65.40 68.80 75.10 76.90
BERT 56.31 74.81 75.40 66.84 71.93 81.14

50
GRNet 71.10 74.70 78.40 80.40 88.30 89.20
BERT 78.06 89.27 91.11 82.17 84.73 96.64

70
GRNet 84.90 84.90 86.20 89.20 96.10 96.80
BERT 89.70 95.19 96.94 91.17 91.63 99.67

100
GRNet 92.02 91.95 90.78 93.94 98.73 98.73
BERT 87.01 96.39 98.21 93.30 93.63 99.99

Table 6.5: Goal recognition accuracy (% of GR instances correctly predicted) by
GRNet and BERT with test set TSLGRGen.

outperforms BERT; as previously shown in the MLM and ntp tasks, the performance on

this domain were lower, compared to the other domains and this reflects also in the

performance of the fine-tuned model.

6.4 Discussion

The results presented in Section 4.5 show that a deep learning model such as BERT,

trained on a set of action sequences from well-known planning domains, can effectively

accomplish three predictive tasks: the planning language modeling, i.e. predicting ac-

tions from context, the prediction of the next action given sequences of different length

and, in the same conditions, the prediction of the previous action. We also shows that it

6.4 Discussion 103

is possible to fine-tune the BERT model to solve a different task, like we did with goal

recognition.

In our opinion, this demonstrates that BERT is able to understand how a planning

domain works and which rules are followed by the action sequences. However, we are

also conscious of several limits. For instance, as we show in Table 6.1, the number of

plans necessary to train such a model is very high. In a real-world applications, this can

be a huge problem because it would require a long time to collect the necessary data

to exploit this kind of model. Another related problem with this kind of architectures

is the training time and the computational resources required. An interesting line of

research could be apply knowledge distillation techniques and build smaller versions of

our model [36].

Moreover, as we saw with goal recognition, BERT can be adapted for other tasks

such as document classification. However, in natural language processing, Devlin et al.

[17] introduced a special token called [CLS] for representing the entire document. In

our context, we could have the same token for obtaining a vector representation of the

entire plan and use it for other tasks such as heuristic prediction. However, training

[CLS] in BERT requires another task, called Next Sentence Prediction, into which the

model learns the ability to predict whether two sentences are consecutive in a document.

Although this is a very intuitive operation in NLP, the same concept is not present in

automated planning. Thus, there is the need to design a completely new task which

could lead the model to learn an informative representation of a sequence of actions.

Chapter 7

Conclusions and Future Works

In this thesis we described the main research activities carried out during my three years

of PhD and their experimental results. In the context of goal recognition, the main con-

tribution of this thesis is to develop architectures based on deep learning that can resolve

goal recognition tasks faster w.r.t. automated planning based approaches without los-

ing accuracy. To do so, we designed three novel approaches where the goal recognition

problem is formulated as a classification task.

The first system we presented, called GRNet, learns to solve goal recognition tasks

from past experience in a given domain. The learning process consists in training only

one LSTM network for the considered domain, allowing to solve a large collection of GR

instances in the domain by the same trained network. Moreover, GRNet can be effec-

tively integrated with the state-of-the-art model-based system LGR. The experimental

analysis shows that GRNet and LGRNet, our system integrating GRNet and LGR, per-

form generally well for the considered benchmark domains, on all the tested metrics that

are accuracy, θ-accuracy and spread.

FSGR the second presented architecture, introduces a novel approach to goal recog-

nition which seamlessly integrates both intuitive and deliberative reasoning techniques.

By proposing a dual-process model, FSGR harnesses the power of fast, intuitive recog-

104

105

nition for immediate goal identification, while employing slow, deliberate analysis for

deeper understanding. This unique combination leverages deep learning techniques and

planning-based reasoning, effectively modeling the dual-process system. The experi-

mental evaluation of this system demonstrates improved accuracy and robustness w.r.t.

the state-of-the-art system, especially in complex scenarios. This approach bridges the

gap between rapid inference and deep understanding, paving the way for advanced and

proficient systems.

Finally, as a third approach, we trained a BERT model in the context of automated

planning. We designed an adaption of the masked language modeling task, called plan-

ning language modeling into which the model learns how to identify masked action to-

kens from context. We have also presented a detailed account of the operations necessary

to train such a model and show how this model can be fine-tuned to solve goal recog-

nition tasks. In the experimental evaluation, our models obtains very promising results

and we show that they have a high accuracy in all the analyzed tasks. Regarding the

goal recognition task, the fine-tuned BERT performs generally well for the considered

benchmarks and often achieves better results w.r.t GRNet.

Differently from model-based approaches, the GR instances addressable by the pre-

sented architectures are limited to those involving subsets of fluents and actions that are

used during the training. If the GR instance to solve involves a new fluent, clearly such a

fluent cannot be predicted; similarly, if the instance involves a new action, such an action

cannot be part of the input observed actions. An interesting question for future work

is how to extend these architectures to solve GR instances involving new actions and

fluents; this can be performed considering the object names involved in the GR instance

to solve, and defining a mapping with the object names of instances considered in the

training phase. Additionally, we believe that it is possible to further exploit the integra-

tion between model-based and learning based approaches and that this is an interesting

direction for future work. Furthermore, please consider that the BERT-based approach

presented in Chapter 6 is a first step towards the use of BERT in the context of automated

planning. It can be further analyzed and tested using different benchmarks and different

106

training and testing tasks. Finally, we would like to test and extend our approaches also

when dealing with real-time goal recognition (also known as Online Goal Recognition).

Bibliography

[1] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori

Koyama. Optuna: A next-generation hyperparameter optimization framework. In

Proceedings of the 25th ACM SIGKDD, pages 2623–2631, 2019.

[2] Felipe Almeida and Geraldo Xexéo. Word embeddings: A survey. CoRR,

abs/1901.09069, 2019.

[3] Leonardo Amado, João Paulo Aires, Ramon Fraga Pereira, Mauricio Cecilio Mag-

naguagno, Roger Granada, and Felipe Meneguzzi. LSTM-Based Goal Recognition

in Latent Space. CoRR, abs/1808.05249, 2018.

[4] Leonardo Amado, Gabriel Paludo Licks, Matheus Marcon, Ramon Fraga Pereira,

and Felipe Meneguzzi. Using Self-Attention LSTMs to Enhance Observations in

Goal Recognition. In Proceedings of IJCNN 2020. IEEE, 2020.

[5] Masataro Asai and Alex Fukunaga. Classical planning in deep latent space: Bridg-

ing the subsymbolic-symbolic boundary. In Proceedings of the Thirty-Second AAAI

Conference on Artificial Intelligence, pages 6094–6101. AAAI Press, 2018.

[6] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine transla-

tion by jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[7] Ligia Batrinca, Nadia Mana, Bruno Lepri, Nicu Sebe, and Fabio Pianesi. Multimodal

107

BIBLIOGRAPHY 108

Personality Recognition in Collaborative Goal-Oriented Tasks. IEEE Transactions

on Multimedia, 18(4), 2016. doi: 10.1109/TMM.2016.2522763.

[8] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. A neural

probabilistic language model. The journal of machine learning research, 3, 2003.

[9] Luigi Bonassi, Alfonso Emilio Gerevini, and Enrico Scala. Planning with qualita-

tive action-trajectory constraints in PDDL. In Luc De Raedt, editor, Proceedings of

the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI 2022,

Vienna, Austria, 23-29 July 2022, pages 4606–4613. ijcai.org, 2022.

[10] Grady Booch, Francesco Fabiano, Lior Horesh, Kiran Kate, Jonathan Lenchner, Nick

Linck, Andreas Loreggia, Keerthiram Murgesan, Nicholas Mattei, Francesca Rossi,

and Biplav Srivastava. Thinking fast and slow in AI. In Proceedings of the AAAI

Conference on Artificial Intelligence, volume 35, pages 15042–15046, 2021.

[11] Daniel Borrajo, Sriram Gopalakrishnan, and Vamsi K. Potluru. Goal recognition

via model-based and model-free techniques. Proceedings of FinPlan 2020, 2020.

[12] Sandra Carberry. Techniques for plan recognition. User Model. User Adapt. Interact.,

11(1-2):31–48, 2001.

[13] Tianqi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting system. In

Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Dis-

covery and Data Mining, pages 785–794, 2016.

[14] Mattia Chiari, Alfonso Emilio Gerevini, Andrea Loreggia, Luca Putelli, and Ivan

Serina. Fast and Slow Goal Recognition. In AAMAS 2024 (Accepted).

[15] Mattia Chiari, Alfonso Emilio Gerevini, Francesco Percassi, Luca Putelli, Ivan Se-

rina, and Matteo Olivato. Goal recognition as a deep learning task: the grnet ap-

proach. In Proceedings of the International Conference on Automated Planning and

Scheduling, volume 33, pages 560–568, 2023.

BIBLIOGRAPHY 109

[16] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empir-

ical evaluation of gated recurrent neural networks on sequence modeling. arXiv

preprint arXiv:1412.3555, 2014.

[17] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-

training of deep bidirectional transformers for language understanding. arXiv

preprint arXiv:1810.04805, 2018.

[18] Carmel Domshlak, Malte Helmert, Erez Karpas, Emil Keyder, Silvia Richter,

Gabriele Röger, Jendrik Seipp, and Matthias Westphal. Bjolp: The big joint opti-

mal landmarks planner. 2011.

[19] Jeffrey L Elman. Finding structure in time. Cognitive science, 14(2):179–211, 1990.

[20] Patrick Ferber, Malte Helmert, and Jörg Hoffmann. Neural network heuristics for

classical planning: A study of hyperparameter space. In ECAI 2020, pages 2346–

2353. IOS Press, 2020.

[21] Richard E. Fikes and Nils J. Nilsson. Strips: A new approach to the application of

theorem proving to problem solving. Artificial Intelligence, 1971.

[22] M Bergamaschi Ganapini, Murray Campbell, Francesco Fabiano, Lior Horesh, Jon

Lenchner, Andrea Loreggia, Nicholas Mattei, Francesca Rossi, Biplav Srivastava,

and Kristen Brent Venable. Thinking fast and slow in ai: The role of metacognition.

In International Conference on Machine Learning, Optimization, and Data Science,

pages 502–509. Springer, 2022.

[23] Hector Geffner. Model-free, Model-based, and General Intelligence. In Proceedings

of IJCAI 2018, 2018.

[24] Christopher Geib and David Pynadath. Plan, activity, and intent recognition. AI

Magazine, 28(4):124, 2007.

BIBLIOGRAPHY 110

[25] Christopher W. Geib and Mark Steedman. On natural language processing and

plan recognition. In Manuela M. Veloso, editor, IJCAI 2007, Proceedings of the 20th

International Joint Conference on Artificial Intelligence, Hyderabad, India, January

6-12, 2007, pages 1612–1617, 2007.

[26] Alfonso Gerevini and Ivan Serina. Planning as propositional CSP: from walksat to

local search techniques for action graphs. Constraints An Int. J., 8(4):389–413, 2003.

[27] Alfonso Gerevini, Alessandro Saetti, and Ivan Serina. Planning Through Stochastic

Local Search and Temporal Action Graphs in LPG. J. Artif. Intell. Res., 20:239–290,

2003.

[28] Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to forget: Contin-

ual prediction with lstm. Neural computation, 12(10):2451–2471, 2000.

[29] Malik Ghallab, Dana S. Nau, and Paolo Traverso. Automated Planning and Acting.

Cambridge University Press, 2016. ISBN 978-1-107-03727-4.

[30] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. In Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 770–778, 2016.

[31] Malte Helmert. The fast downward planning system. Journal of Artificial Intelli-

gence Research, 26:191–246, 2006.

[32] Mickel Hoang, Oskar Alija Bihorac, and Jacobo Rouces. Aspect-based sentiment

analysis using bert. In Proceedings of the 22nd nordic conference on computational

linguistics, pages 187–196, 2019.

[33] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural com-

putation, 9(8):1735–1780, 1997.

[34] Jörg Hoffmann. Ff: The fast-forward planning system. AI Mag., 22:57–62, 2001.

URL https://api.semanticscholar.org/CorpusID:9968823.

https://api.semanticscholar.org/CorpusID:9968823

BIBLIOGRAPHY 111

[35] Jörg Hoffmann, Julie Porteous, and Laura Sebastia. Ordered landmarks in planning.

J. Artif. Intell. Res., 22:215–278, 2004.

[36] Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang,

and Qun Liu. Tinybert: Distilling BERT for natural language understanding. In

Trevor Cohn, Yulan He, and Yang Liu, editors, Findings of the Association for Com-

putational Linguistics: EMNLP 2020, Online Event, 16-20 November 2020, volume

EMNLP 2020 of Findings of ACL, pages 4163–4174. Association for Computational

Linguistics, 2020.

[37] Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. Bag of tricks

for efficient text classification. arXiv preprint arXiv:1607.01759, 2016.

[38] Daniel Kahneman. Thinking, Fast and Slow. Macmillan, 2011.

[39] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer

Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly

optimized BERT pretraining approach. CoRR, abs/1907.11692, 2019.

[40] Derek Long and Maria Fox. The 3rd International Planning Competition: Results

and Analysis. J. Artif. Intell. Res., 20, 2003.

[41] Mariane Maynard, Thibault Duhamel, and Froduald Kabanza. Cost-Based Goal

Recognition Meets Deep Learning. Proceedings of PAIR 2019, 2019.

[42] Drew McDermott, Malik Ghallab, Adele E. Howe, Craig A. Knoblock, Ashwin Ram,

Manuela M. Veloso, Daniel S. Weld, and David E. Wilkins. Pddl-the planning do-

main definition language. 1998. URL https://api.semanticscholar.

org/CorpusID:59656859.

[43] Drew V. McDermott. The 1998 AI Planning Systems Competition. AI Mag., 21(2):

35–55, 2000.

https://api.semanticscholar.org/CorpusID:59656859
https://api.semanticscholar.org/CorpusID:59656859

BIBLIOGRAPHY 112

[44] Felipe Meneguzzi and Ramon Fraga Pereira. A Survey on Goal Recognition as

Planning. In Proceedings of IJCAI 2021, 2021.

[45] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of

word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[46] Wookhee Min, Bradford W. Mott, Jonathan P. Rowe, Barry Liu, and James C.

Lester. Player Goal Recognition in Open-World Digital Games with Long Short-

Term Memory Networks. In Proceedings of IJCAI 2016. IJCAI/AAAI Press, 2016.

[47] Reuth Mirsky, Roni Stern, Ya’akov (Kobi) Gal, and Meir Kalech. Sequential Plan

Recognition. In Proceedings of IJCAI 2016. IJCAI/AAAI Press, 2016.

[48] Reuth Mirsky, Ya’ar Shalom, Ahmad Majadly, Kobi Gal, Rami Puzis, and Ariel Fel-

ner. New Goal Recognition Algorithms Using Attack Graphs. In CSCML 2019,

Proceedings, volume 11527. Springer, 2019.

[49] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training

recurrent neural networks. In Proceedings of the 30th International Conference on

Machine Learning, pages 1310–1318, 2013.

[50] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global

vectors for word representation. In Proceedings of the 2014 conference on empirical

methods in natural language processing (EMNLP), pages 1532–1543, 2014.

[51] Ramon Fraga Pereira, Nir Oren, and Felipe Meneguzzi. Landmark-based ap-

proaches for goal recognition as planning. Artif. Intell., 279, 2020.

[52] Luca Putelli, Alfonso Emilio Gerevini, Alberto Lavelli, Tahir Mehmood, and Ivan

Serina. On the behaviour of bert’s attention for the classification of medical re-

ports. In Cataldo Musto, Riccardo Guidotti, Anna Monreale, and Giovanni Semer-

aro, editors, Proceedings of the 3rd Italian Workshop on Explainable Artificial Intel-

ligence co-located with 21th International Conference of the Italian Association for

BIBLIOGRAPHY 113

Artificial Intelligence(AIxIA 2022), Udine, Italy, November 28 - December 3, 2022, vol-

ume 3277 of CEUR Workshop Proceedings, pages 16–30. CEUR-WS.org, 2022. URL

http://ceur-ws.org/Vol-3277/paper2.pdf.

[53] Chen Qu, Liu Yang, Minghui Qiu, W Bruce Croft, Yongfeng Zhang, and Mohit Iyyer.

Bert with history answer embedding for conversational question answering. In Pro-

ceedings of the 42nd international ACM SIGIR conference on research and development

in information retrieval, pages 1133–1136, 2019.

[54] Colin Raffel and Daniel PW Ellis. Feed-forward networks with attention can solve

some long-term memory problems. arXiv preprint arXiv:1512.08756, 2015.

[55] Miquel Ramı́rez and Hector Geffner. Plan Recognition as Planning. In Proceedings

of IJCAI 2009, 2009.

[56] Miquel Ramı́rez and Hector Geffner. Probabilistic Plan Recognition Using Off-the-

Shelf Classical Planners. In Proceedings of AAAI 2010. AAAI Press, 2010.

[57] Silvia Richter and Matthias Westphal. The LAMA planner: Guiding cost-based

anytime planning with landmarks. J. Artif. Intell. Res., 39:127–177, 2010.

[58] Gabriele Röger, Florian Pommerening, and Malte Helmert. Optimal planning in the

presence of conditional effects: Extending lm-cut with context-splitting. 2014.

[59] Luı́sa R. A. Santos, Felipe Meneguzzi, Ramon Fraga Pereira, and André Grahl

Pereira. An LP-Based Approach for Goal Recognition as Planning. In Proceedings

of AAAI 2021. AAAI Press, 2021.

[60] Lorenzo Serina, Mattia Chiari, Alfonso E Gerevini, Luca Putelli, Ivan Serina, et al.

A preliminary study on bert applied to automated planning. In CEUR WORKSHOP

PROCEEDINGS, volume 3345. CEUR-WS, 2022.

http://ceur-ws.org/Vol-3277/paper2.pdf

BIBLIOGRAPHY 114

[61] Shirin Sohrabi, Anton V. Riabov, and Octavian Udrea. Plan Recognition as Planning

Revisited. In Subbarao Kambhampati, editor, Proceedings of IJCAI 2016. IJCAI/AAAI

Press, 2016.

[62] Franz A. Van-Horenbeke and Angelika Peer. Activity, plan, and goal recognition:

A review. Frontiers Robotics AI, 8, 2021.

[63] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.

Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. 2017. URL

https://arxiv.org/pdf/1706.03762.pdf.

[64] Naveen Venkat. The curse of dimensionality: Inside out, 2018.

[65] Michalis Vrigkas, Christophoros Nikou, and Ioannis A. Kakadiaris. A review of

human activity recognition methods. Frontiers Robotics AI, 2:28, 2015.

[66] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolf-

gang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s

neural machine translation system: Bridging the gap between human and machine

translation. arXiv preprint arXiv:1609.08144, 2016.

[67] Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alexander J. Smola, and Ed-

uard H. Hovy. Hierarchical Attention Networks for Document Classification. In

Kevin Knight, Ani Nenkova, and Owen Rambow, editors, Proceedings of NAACL

HLT 2016, 2016.

https://arxiv.org/pdf/1706.03762.pdf

	Introduction
	Topic of the Thesis
	Structure of the Thesis

	Automated Planning
	Classical Planning
	Goal and Plan Recognition
	Model-based and Model-free Goal Recognition

	State of the Art
	Plan Recognition as Planning
	Landmark-Based Heurisitics for Goal Recogniton
	MFGR approaches

	Deep Learning
	Word Representations
	Encoding
	Embedding

	Recurrent Neural Networks
	Standard RNNs
	Long Short Term Memory
	Gated Recurrent Unit

	Attention Mechanisms
	Feed-forward Attention
	Self-Attention
	Multi-Headed Attention

	Transformer
	Architecture
	BERT

	Goal Recognition as a Deep Learning Task
	GR Example
	GRNet
	The Environment Component of GRNet
	The Instance Specific Component of GRNet
	Running Example

	Integrating GRNet and LGR: LGRNet
	Running Example

	Benchmark Suite and Data Sets
	Domains
	Training sets
	Test sets
	Evaluation measures

	Experimental Results
	Hyperparameters of the Neural Networks
	Accuracy Results for TSLGR Gen
	θ-accuracy results for TSLGR Gen
	Results for TSLGR
	Results for TSRec and sensitiveness to the training set size

	Discussion

	Fast and Slow Goal Recognition
	Fast and Slow Architecture for Goal Recognition
	System 1 and System 2
	Meta Cognitive Agent
	Updating System 1 using System 2
	Running Example

	Benchmark Suite and Datasets
	Experimental Results

	Transformer Based Architectures for Automated Planning
	PlanBERT
	Planning Language Modeling
	Training Technique
	Goal Recognition Fine-tuning
	PLM Example

	Benchmark Suite and Datasets
	Training Sets
	Evaluation Tasks and Test Sets

	Experimental Results
	Planning Language Modeling Task
	Next Token Prediction Task
	Previous Token Prediction Task
	Goal Recognition Task

	Discussion

	Conclusions and Future Works

