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Abstract

In this thesis, we theoretically investigate the actin-based motility (ABM) of
pathogens and cells.

ABM refers to the movement of several biological systems powered by the
polymerization and depolymerization of actin filaments. Actin is a protein that
can chemically transform from a monomer form (G-actin) into a network form
(F-actin) and vice versa. It plays a crucial role in eukaryotic cells by providing
structural support and facilitating various cellular processes. In ABM, the
assembly and disassembly of actin filaments generate the force necessary for
promoting movement and deformation of several biological systems. In this thesis,
we study two phenomena that are particularly prominent in eukaryotic cells:
pathogen ABM and cell ABM.

Pathogen ABM refers to the ability of certain microorganisms that cause
diseases to move within host cells by hijacking the host cell’s actin cytoskeleton.
This phenomenon is particularly well studied in certain bacteria and parasites
that have evolved mechanisms to exploit the host cell’s machinery for their
movement and survival. One of the most well-known examples of the pathogen
ABM is the bacterium Listeria monocytogenes. Once inside the host cell, Listeria
uses a protein called ActA to recruit host cell actin and induce the polymerization
of actin filaments. These actin filaments form a tail-like structure at one end
of the bacterium, propelling it through the host cell cytoplasm and allowing it
to spread from cell to cell without exposure to the extracellular environment or
the host immune system. Pathogens that exploit ABM often possess specific
virulence factors or proteins that manipulate the host cell’s actin dynamics. These
mechanisms allow pathogens to move within the host, disseminate, and establish
infection while avoiding detection by the host immune system.

Cell ABM, instead, refers to the ability of eukaryotic cells to move and
change their shape through the dynamic assembly and disassembly of actin
filaments in the cytoskeleton. This process is essential for many physiological
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functions, including cell migration, immune responses, and tissue development.
Regulation of actin dynamics is tightly controlled by various signaling pathways
and regulatory proteins. For example, the Arp2/3 complex and formins are
proteins that play a role in nucleating actin filaments and promoting their growth.
The dynamic nature of actin allows cells to respond to external signals, adapt to
their environment, and perform essential functions for development, tissue repair,
and immune responses.

Because pathogen and cell ABM share common features, their behavior can be
investigated through similar continuum multi-physical frameworks. Specifically,
we herein illustrate two original models, both based on a continuum multi-
physics model, stemming from chemotransport-mechanics continuity equations
that account for the actin chemical kinetics. The core of these two models is
represented by the di�erence in the partial molar volumes between F-actin and G-
actin, which embodies the mechanical essence of the polymerization motor. The
rearrangement of monomers results in a volume variation, which is captured by a
multiplicative decomposition of the deformation gradient into chemical and elastic
parts, with the chemical part motivated by the actin chemical transformation
from a monomer form into a polymerized network form and vice versa.

The pathogen ABM is represented by the first model. It captures the general
features of pathogen motility observed in experimental studies, including the
signal dependence of the polymerization of the F-actin network on the bacterium
tail and the F-actin network distribution during pathogen motility. The second
model, inspired by the first one, extends the pathogen ABM model to represent cell
ABM, encompassing the lamellipodia protrusion mechanism at the leading edge
of the cell. Additionally, some results that come from the Deshpande-McMeeking
model for F-actin network contractility are obtained, and two di�erent theories
that model cell-substrate interaction are introduced. The former theory is an
original contribution representing at a continuum level the receptor relocation
and complex formation on an advecting cellular membrane. The latter, already
present in the literature, is a probabilistic theory, that extensively studies the role
of the viscoelastic behavior of the substrate on cell spreading and motility. For
completeness, the extensive bibliographic research that was carried out during
the Ph.D. is illustrated to have a general overview of the models already present
in the literature representing cellular adhesion, cellular contractility, and receptor
relocation on the advecting membrane.

We believe that elucidating the phenomena that underlie ABM may be
of paramount importance for describing, interpreting, and predicting the key
mechanisms that govern the behavior of several biological systems.



Compendio

In questa tesi, approfondiamo a livello teorico la motilità basata sull’ actina
(ABM) di agenti patogeni e cellule.

La motilità basata sull’ actina (ABM) si riferisce al movimento di diversi
sistemi biologici dovuto alla polimerizzazione e/o depolimerizzazione dei filamenti
di actina. L’ actina è una proteina in grado di trasformarsi chimicamente in un
network di filamenti (F-actina) partendo da una forma monomerica (G-actina) e
viceversa. Essa svolge un ruolo cruciale nelle cellule eucariote, fornendo supporto
strutturale e facilitando vari processi cellulari. Nell’ ABM, l’ assemblaggio
e il disassemblaggio dei filamenti di actina generano la forza necessaria per
promuovere il movimento e la deformazione di diversi sistemi biologici. In questa
tesi studiamo due processi particolarmente importanti nelle cellule eucariotiche:
l’ ABM dei patogeni e l’ ABM delle cellule.

La motilità basata sull’ actina di agenti patogeni si riferisce alla capacità di
alcuni microrganismi che causano malattie di muoversi all’ interno delle cellule
ospiti modificandone il citoscheletro di actina. Questo fenomeno è particolarmente
studiato in alcuni batteri e parassiti che hanno sviluppato la capacità di sfruttare
i meccanismi di funzionamento della cellula ospite per il proprio movimento
e la propria sopravvivenza. Uno degli esempi più noti di motilità basata sull’
actina riguarda il batterio Listeria monocytogenes. Una volta all’ interno della
cellula, il Listeria utilizza una proteina chiamata "ActA" per reclutare l’ actina
cellulare e indurre la polimerizzazione dei filamenti di actina. Questi filamenti
formano una struttura a coda ad un’ estremità del batterio, che permette al
batterio di spingersi all’interno del citoplasma cellulare e di di�ondersi da cellula
a cellula senza esporsi all’ ambiente extracellulare o al sistema immunitario
ospite. Gli agenti patogeni che sfruttano la motilità basata sull’ actina spesso
possiedono specifici fattori di virulenza o proteine che manipolano la dinamica
dell’ actina. Questi meccanismi consentono agli agenti patogeni di spostarsi
all’ interno dell’ ospite, di�ondendo l’ infezione e evitando di essere rilevati del
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sistema immunitario ospite.
La motilità cellulare basata sull’ actina, invece, si riferisce alla capacità delle

cellule eucariote di muoversi e cambiare forma attraverso l’ assemblaggio e il
disassemblaggio dinamico dei filamenti di actina nel citoscheletro. Questo processo
è essenziale per molte funzioni fisiologiche, tra cui la migrazione cellulare, le
risposte immunitarie e lo sviluppo dei tessuti. La regolazione della dinamica dell’
actina è strettamente controllata da varie vie di segnalazione e proteine regolatrici.
Ad esempio, il complesso Arp2/3 e le formine sono proteine che svolgono un ruolo
nella nucleazione dei filamenti di actina e nella promozione della loro crescita.
La natura dinamica dell’ actina consente alle cellule di rispondere a segnali
esterni, adattarsi al loro ambiente e svolgere funzioni essenziali per lo sviluppo,
la riparazione dei tessuti e le risposte immunitarie.

Poiché l’ ABM del patogeno e della cellula condividono caratteristiche comuni,
il loro comportamento può essere studiato attraverso modelli multifisici continui
simili. Nello specifico, qui illustriamo due modelli originali, entrambi basati su
un modello multi-fisico del continuo, derivanti da equazioni di continuità chemio-
meccaniche-di-trasporto che tengono conto della cinetica chimica dell’ actina. Il
cuore di questi due modelli, che costituisce il motore della polimerizzazione, è
rappresentato dalla di�erenza dei volumi molari parziali tra F-actina e G-actina.
Il riarrangiamento dei monomeri, infatti, comporta una variazione di volume,
che viene rappresentata meccanicamente dalla decomposizione moltiplicativa
del gradiente di deformazione in parte chimica ed elastica, con la parte chimica
motivata dalla trasformazione chimica dell’ actina da una forma monomerica a
una forma polimerizzata e viceversa.

Il processo di ABM per il patogeno è rappresentato dal primo modello. Questo
modello riproduce le caratteristiche generali della motilità dei patogeni osservate
negli studi sperimentali, inclusa la dipendenza dal segnale della polimerizzazione
della rete di F-actina sulla coda del batterio e la distribuzione della rete di
F-actina durante la motilità dei patogeni. Il secondo modello, ispirato al primo,
estende il modello di ABM del patogeno per descrivere l’ ABM cellulare, in
particolare il meccanismo di protrusione dei lamellipodi sul fronte della cellula.

Inoltre, vengono mostrati alcuni risultati che provengono dal modello Desh-
pande - McMeeking per la contrattilità della rete di F-actina e vengono presentate
due diverse teorie che rappresentano l’interazione cellula-substrato. La prima
teoria è un contributo originale che descrive attraverso un modello continuo la
rilocazione dei recettori e la formazione di complessi su una membrana cellulare
avvettrice. La seconda teoria, già presente in letteratura, è una teoria probabi-
listica, che studia approfonditamente il ruolo della viscoelastà dell’ ECM sulla



Compendio viii

di�usione e motilità cellulare. Per completezza, inoltre, è stata riportata l’estesa
ricerca bibliografica realizzata per avere una panoramica generale dei modelli
già presenti in letteratura che rappresentano l’adesione cellulare, la contrattilità
cellulare e la rilocazione di recettori sulla membrana cellulare.

Riteniamo che chiarire i processi alla base dell’ ABM possa essere di fonda-
mentale importanza per descrivere, interpretare e prevedere i meccanismi chiave
che regolano il comportamento di diversi sistemi biologici.





Chapter 1

Introduction

Actin is one of the most powerful and abundant proteins in eukaryotic cells.
Like molecular motors such as myosin, actin can generate physical forces that are
responsible for several biological systems’ movement and deformation (see figure
1.1) [1]. For example, locomotion of certain types of cells, such as fibroblast,
requires two types of forces, i.e., protrusion and traction, which are both actin-
dependent. The protrusion force allows the extension of the cell’s leading edge
margin forward, and the traction force allows the translocation of the rear cell
body. Lipid vesicles are another type of biological system that is drastically
deformed by actin. When the monomer actin is enclosed in a lipid vesicle
and polymerization is induced by a salt concentration increment, the vesicle
transforms from a roughly spherical shape into flattened disks with filopodial-like
protrusions. Actin polymerization is also often employed to generate forces during
fertilization. When the sea cucumber Thyone comes into contact with the egg
jelly coat, it triggers a rapid actin polymerization reaction, that leads to the
extension of an acrosomal process, allowing the sperm plasma membrane to come
into contact and combine with the egg’s plasma membrane. A similar process
occurs during Chlamydomonas mating. Cells of opposite mating types (plus and
minus) perceive each other through specific adhesion receptors on their flagella,
and the plus mating type extends a fertilization tubule (a membrane-bound
bundle of actin filaments resembling a miniature Thyone acrosome) to encounter
the minus mating type. In these cases, water influx likely contributes to force
generation through a hydrostatic mechanism, assisting in the extension of the
membrane [1].

All these biological systems are extremely complicated, and most of them
require several types of force-generation mechanisms to perform deformations
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Figure 1.1: Collection of systems in which actin polymerization is linked to the
generation of pushing force, with the protrusion forces indicated by the bold
arrows. A) Lamellipodial and filopodial protrusion; B) Distension of an actin-
containing liposome; C) Extension of the acrosomal process from Thyone sperm;
D) Extension of a fertilization tubule from a Chlamydomonas cell of the plus
mating type toward the minus mating type partner; E) Actin-based movement of
Listeria monocytogenes; F) Inward movement of a nascent endosome [1]. Figure
from [1].

and movements. Therefore, the study of the polymerization motor was initially
conducted on a specific biological system that only needs actin polymerization
to generate motion. This is about the ABM of intracellular bacterial and viral
pathogens, the most familiar examples being Listeria monocytogenes and Shigella
flexneri. These bacteria make use of particular virulence factors emitted near
their surface to catalyze local polymerization of actin filaments, generating an
actin-rich comet tail, that triggers the bacteria motion inside the cell [1].

Actin filament behavior in the actin comet tail is reminiscent of a simpler
form of actin dynamics seen in lamellipodia, in which bacteria seem to imitate a
segment of the leading edge of moving cells. The rate at which bacteria move
through the cytoplasm corresponds to the rate of new actin filament formation
at the front of the actin comet tail. It is worth noting that there is no identified
myosin isoform associated with the actin comet tail, and the broad-spectrum
myosin ATPase inhibitor butanedione monoxime, which broadly targets myosin,
does not a�ect bacterial movement [1].

It follows that it is broadly recognized that actin polymerization, rather than
myosin ATPase activity, is the same motor for bacterial movement as for cell
protrusion. Recently, it was reported that actin-rich comet tails is also generated
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in normal, uninfected cells during endocytosis. Actin comet tails are noticed
actively pushing nascent endosomes toward the cell interior, and it seems that the
endosomes detach from the membrane with a rapid surge of actin polymerization.
This mechanism may be a way for endosomes to transport themselves to ready
microtubule tracks [1].

What ties together all these di�erent types of actin-based movements is the
common observation that force appears to emerge when a group of actin filaments
undergoes polymerization in close proximity to a barrier or a load. This load could
be the cell’s plasma membrane, a bacterium, or an endosome. The assembly of
actin filaments may take the form of a bundle (as in filopodia, Thyone sperm, and
Chlamydomonas) or a cross-linked network (as seen in lamellipodia, pseudopodia,
and actin comet tails) [2]. What is notable is that in all these phenomena, the
actin filament assembly by itself seems capable of pushing the barrier forward,
and there is no requirement to invoke myosin for any of these cases [1].

In this chapter, we analyze ABM from a biological and mechanical viewpoint,
illustrating the biological phenomena that are present in all ABM processes.
In the next chapters, we specify the processes involved in pathogens and cell
ABM, introducing the chemo-transport-mechanical models representing these
two phenomena.

1.1 Monomer and filamentous forms of actin
In cells, actin occurs in two distinct states: the monomeric form, G-actin, and

the filamentous form, F-actin. The G-actin can be referred to as the globular form
or subunit form of actin. When actin subunits polymerize, they can assemble
head-to-tail, forming filamentous actin, which has a right-handed-double-helix-
like structure consisting of two strands that spiral around the axis of the polymer
(see figure 1.2). The overall diameter of the polymer is approximately 7-9 nm
wide [3]. Since the asymmetrical actin subunits within a filament all orient in the
same direction, these filaments exhibit polarity and possess structurally distinct
ends: a slower-growing minus end and a faster-growing plus end. The minus end
is often referred to as the "pointed end", while the plus end is termed the "barbed
end". This nomenclature is derived from the "arrowhead" appearance created
by the complex formed between actin filaments and the motor protein myosin.
Inside the filament, the subunits are arranged such that their nucleotide-binding
cleft faces the minus end [4]. Regulation of actin filament formation is a crucial
mechanism through which cells manage their shape and movement. Although
small oligomers of actin subunits can spontaneously assemble, they are inherently
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Figure 1.2: The process of actin filament formation follows a scheme. Initially,
G-actin binds to ATP. Subsequently, it forms stable di- or trimers, and ultimately,
filaments elongate through the addition of monomers. Hydrolysis of ATP to ADP
introduces a distinction between the fast-growing (+)-end and the slower-growing
or dissociating (-)-end [2]. Figure from [2]

unstable and easily disassembled because each monomer is bound to only one
or two other monomers. To establish a new actin filament, the subunits must
come together to form an initial aggregate or nucleus. This nucleus is stabilized
by multiple subunit-subunit contacts and can then be rapidly elongated by
the addition of more subunits. This process, known as filament nucleation, is
primarily constrained by the production of dimers and trimers [4].

Cells regulate their shape and movement by controlling actin filament for-
mation. Small actin subunit oligomers can spontaneously assemble, but their
instability and tendency to disassemble quickly arise because each monomer is
bound to only one or two other monomers. To initiate the formation of a new
actin filament, subunits must come together to form an initial aggregate, or
nucleus, which is stabilized by multiple subunit-subunit contacts. Subsequently,
rapid elongation occurs through the addition of more subunits. This process is
known as filament nucleation and is primarily restricted by the generation of
dimers and trimers [4]. Once the trimer state is attained, the process of filament
nucleation accelerates quickly, contingent upon the availability of the G-actin
pool (refer to figure 1.2) [2].

The instability of the smaller actin aggregates creates a kinetic barrier to
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nucleation. When polymerization begins, a barrier introduces a lag phase during
which no filaments are observed. Despite this, within this lag phase, a few
of the small, unstable aggregates successfully transition to a more stable form
resembling an actin filament. This sets the stage for a phase of rapid filament
elongation, which is characterized by the quick addition of subunits to the ends
of the nucleated filaments. Ultimately, as the concentration of actin monomers
decreases, the system approaches a steady state in which the rate of adding new
subunits to the filament ends precisely balances the rate of subunit dissociation
[4].

Neglecting external energy input that could reverse the reaction, the polymer-
ization process is governed by the di�erence in chemical potential (Gibb’s free
energy) between the free monomer form and the polymer form of a protein sub-
unit, which is dictated by the e�ective and the critical concentration of subunits
in the solution. At chemical equilibrium, the rate of addition of new subunits to
the filament ends is exactly balanced by the rate of subunit dissociation

kon[C] = koff ,

where C is the free subunit concentration. When the free subunit concentration
remaining in the solution is at equilibrium, C is typically called the "critical
concentration" and it is defined as

C = Cc = koff

kon

,

which is equal to the dissociation constant, Kd and the inverse of the equilibrium
constant, K [1].

When the subunit free energy in solution is greater than the subunit free energy
in the polymer, namely when the subunit concentration in solution is higher
than the critical concentration, filaments elongate spontaneously; otherwise,
filaments lose subunits (when the subunit concentration in solution is less then
the critical concentration and the subunit free energy in the solution is less
than the subunit free energy in the polymer). In a test tube with actin, the
Cc for actin polymerization - that is, the free actin monomer concentration
at which the fraction of actin in the polymer stops increasing - is about 0.2
micromole [4]. Because the cellular concentration of unpolymerized actin is
generally higher, several mechanisms to avoid polymerization of monomeric actin
when not necessary have been developed by cells [1].

In most biological systems, cells use external energy input to reverse the



1.1 Monomer and filamentous forms of actin 6

reaction and prevent polymerization from reaching its conclusion. This external
energy input is typically driven by the hydrolysis of nucleoside triphosphate ATP,
a process catalyzed by actin. The coupling between polymerization and nucleotide
hydrolysis observed in actin and tubulin allows for continuous and steady poly-
merization without reaching chemical equilibrium. While the hydrolysis of free
actin subunits occurs at a slow rate, its rate is accelerated when these subunits
become part of filaments [1]. Following ATP hydrolysis, the free phosphate group
is released from each subunit, but the ADP remains trapped within the filament
structure. Consequently, two distinct types of filament structures can coexist:
one with the "T form" of the nucleotide bound (ATP) and another with the "D
form" bound (ADP) [4].

When the nucleotide undergoes hydrolysis, a significant portion of the free
energy, released through the cleavage of the high-energy phosphate-phosphate
bond, becomes stored in the polymer. In other words, the free energy of the
D-containing polymer is higher than that of the T-containing polymer. As a
result, the critical concentration Cc = koff /kon (the dissociation equilibrium
constant) for the D-form of the polymer is greater than that for the T-form of the
same polymer. It follows that D-form polymers shrink while T-form polymers
grow when the actual free subunit concentration is located between these two
critical concentrations [1].

In living cells, most soluble actin subunits are in the T form, as the free
concentration of ATP is approximately 10-fold higher than that of ADP [1]. Over
time, there is an increasing likelihood that ATP is hydrolyzed in actin subunits.
Whether the subunit at each end of a filament is in the T or D form depends
on the rate of this hydrolysis compared with the rate of subunit addition. If the
concentration of actin monomers is higher than the critical concentration for both
T-form and D-form polymers, subunits will be added to both ends before the
nucleotides in the previously added subunits undergo hydrolysis. Consequently,
the tips of the actin filament will maintain the T-form. In contrast, if the subunit
concentration is below the critical concentrations for both T-form and D-form
polymers, hydrolysis may occur before the next subunit is added, resulting in
both ends of the filament being in the D form, causing filament shrinkage [4].

In cases of intermediate concentrations of actin subunits, the rate of subunit
addition can be faster than nucleotide hydrolysis at the plus end but slower
than nucleotide hydrolysis at the minus end. In this scenario, the plus end of
the filament remains in the T conformation, while the minus end adopts the D
conformation. This leads to a net addition of subunits at the plus end while
simultaneously losing subunits from the minus end, a dynamic process known as
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Figure 1.3: Some of the key accessory proteins of the actin cytoskeleton, with
each major type represented by an example, excluding the myosin motor proteins
[4]. Figure from [4].
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filament "treadmilling" [4].
At a specific intermediate subunit concentration, the growth of the filament

at the barbed end is precisely counteracted by filament shrinkage at the pointed
end. This results in the rapid cycling of subunits between the soluble and filamen-
tous states, maintaining a constant filament length. The cell expends chemical
energy to disassemble filaments and replenish the monomer pool, ensuring that
polymerization is always energetically favored and that the reaction never reaches
equilibrium [1]. Under these conditions, the subunits cycle rapidly between
the free and filamentous states, while the total length of the filament remains
unchanged [4]. This steady-state treadmilling requires a constant consumption of
energy in the form of ATP hydrolysis [4].

Starting with filament formation, actin can either facilitate or inhibit nucle-
ation and elongation. Moreover, it can crosslink filaments, with the assistance of
various biological factors (see figure 1.3), forming di�erent types of structures.
These factors vary depending on the specific biological system and the mechanical
function of the actin filaments (refer to figure 1.3), so we delve into this topic
in the upcoming chapters, focusing on each biological system. Now, we analyze
the general mechanisms that allow actin to generate pushing forces and trigger
motion and deformation.

1.2 Pushy polymerization
When a chemical reaction releases an excess of free energy (�G), this surplus

energy can potentially be harnessed and transformed into another form of en-
ergy. To illustrate how the free energy change (�G) resulting from spontaneous
polymerization can be used to generate a pushing mechanical force, a scenario
involving a simple filament is considered. This filament is anchored at one end
and encounters a movable load at its opposite tip, such as an actin filament
coming into contact with a plasma membrane [1].

For the filament to add a single subunit, it needs to push the load forward
by a distance, ”, which is equivalent to the size of the protein subunit. The act
of applying force over a distance to the load constitutes mechanical work. As a
result, after a filament adds a subunit while pushing against a load, the final free
energy state of the system is higher than that of a filament encountering no load.
However, as long as the overall �G remains negative, this reaction will continue
spontaneously, resulting in elongation and forward movement of the load [1].

Consistent with the ideas of Hill and Kirschner, the presence of the load in
the case of a single filament may impact both kon and koff . The addition of a
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subunit is hindered by the presence of an object at the filament tip, decreasing
in kon. In addition, an object pushing on the tip may weaken the bond between
the terminal subunit and its neighbor, increasing koff . The ratio between koff

and kon corresponds to the critical concentration. Therefore, the presence of a
load force overall increases the critical concentration, regardless of the specific
underlying mechanism [1]. The precise amount by which a particular load
force alters the critical concentration can be determined using thermodynamic
arguments

Cc(loaded) = Cc(unloaded) exp
! ” F

k T
"

,

where ” is the length of the subunit, F is the load force, k is Boltzmann’s constant
and T is the absolute temperature [1].

By rearranging this equation, we can determine the maximum force that a
polymerizing filament can generate at a specific concentration of free monomers
as follows

Fmax = (kT

”
) ln

!kon[C]
ko�

"
.

At a concentration of 50 µM, the stall force for a single actin filament is approx-
imately 9 pN, which is equivalent to the force exerted by several molecules of
myosin [1].

In this type of force generation, the ATPase activity of actin is generally not
required, because mechanical force can be induced by the chemical potential of
protein polymerization. However, a limitation of this polymerization-induced
force generation is that the cell can only use it once. The polymerization reaction
is initiated, reaches equilibrium, and at that point, no additional chemical energy
can be extracted from the polymerization, and no more force can be generated.
Therefore, in most types of cell motility, an external energy input is used to
e�ectively reverse the polymerization reaction and move it far from chemical
equilibrium. The most controlled forms of this process operate in continuous
cycles at the expense of nucleotide hydrolysis [1].

This mechanism allows the polymer to use the free energy released during
ATP or GTP hydrolysis to convert kinetic di�erences between subunit addition
rates at the plus and minus ends into energetic disparities. As a result, a
treadmilling filament positioned between two barriers can continuously perform
mechanical work. Conversely, when a treadmilling filament is anchored to a
surface at one point, the entire filament appears to move forward, even though
the subunits within it remain stationary. When a treadmilling filament interacts
with a movable load, such as a plasma membrane or L. monocytogenes, the load
can be propelled forward indefinitely while the monomer concentration remains
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constant, as long as ATP is abundantly available [1].
This appears to be the case in the most common forms of force generation

by actin polymerization. In both the lamellipodia of moving cells and the L.
monocytogenes actin comet tail, actin filaments remain fixed to the substrate,
expanding at the front to propel the load forward. According to this thermo-
dynamic analysis, it is predicted that the barbed end of the filament should be
oriented forward for force generation through this mechanism [1].

An important point to highlight is that the production of force through protein
polymerization, as emphasized in [1], does not require nucleotide hydrolysis. The
sole function of ATP hydrolysis by actin in force generation is to facilitate the
recycling and repeated use of the polymerization motor within a living cell.
The energy needed for force generation comes from the polymerization motor,
and force is exclusively generated through polymerization. Nevertheless, the
speed and e�ciency of this motor mechanism cannot be anticipated without a
comprehensive physical model [1].

Oster et al. have proposed physical models explaining how chemomechanical
energy transduction occurs at the microscopic level through protein polymeriza-
tion. These models are essentially variations of the concept of the "Brownian
ratchet", a perpetual motion machine proposed by Feynman [1].

It is essential to recognize that the Brownian ratchet models, as discussed in
[1], do not attribute directed motion solely to thermal energy. Thermal motion,
by its nature, lacks inherent directionality. The introduction of directionality
arises from the presence of an asymmetric potential. In the context of force
generation based on polymerization, the asymmetric potential is represented by
an excess of monomers and an external source of energy [1].

Two distinct physical models proposing a Brownian ratchet mechanism for
the polymerization motor have been presented (see figure 1.4). In both models,
the discrete step involves the addition of a single protein subunit to a filament tip,
and the energetic asymmetry is attributed to the chemical potential of protein
polymerization, following the thermodynamic scheme of Hill and Kirschner. The
divergence between the two models lies in the incorporation of thermal motion
within the system [1].

The initial model, introduced by Peskin et al. in 1993, envisions a stationary
filament encountering a movable load (see figure 1.4 A). While a valuable starting
point, this model overlooks the impact of thermal motion on all components in
the system, including the filament and load. In most biological scenarios, the
load significantly outweighs the filament, and thermal bending of the filament is
more likely to create a monomer-sized gap between the filament and the load
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Figure 1.4: Two models proposed for the polymerization motor, both based on
the Brownian ratchet concept [1]. Figure from [1].

than the di�usion of the entire load (see figure 1.4 B). Consequently, Mogilner
and Oster proposed a revised "elastic" Brownian ratchet model in 1996, where
the load is considered stationary, and the filament is subject to bending. In this
model, the amount of force generated is predicted to depend on the sti�ness
(Young’s modulus) of the filament and the angle between the filament and the
load, but not on the di�usion coe�cient of the load object. However, quantitative
comparisons suggest that filament bending makes a more substantial contribution
[1].

While these models o�er intriguing insights, they have significant limitations,
as outlined in [1]. A key assumption in both calculations is that the load force
a�ects only kon and not koff . The accuracy of the models depends on the
precise nature of the interaction between the filament tip and the pushed object.
These models assume that the components remain completely unattached and
interact as smooth rigid bodies. Although these assumptions simplify the real
situation, the current lack of su�cient quantitative experimental data in any
relevant system hinders a precise assessment of how these limitations impact the
accuracy of the models’ predictions [1].

1.3 Force-velocity relation of actin-network growth
Despite several limitations, measurements of the force exerted by the actin

network on generic loads have been performed by Theoriot’s lab, which conducted
several experiments on force and force-velocity measurements of growing actin
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Figure 1.5: Growth of an actin network from an AFM cantilever [5]. (a-c)
Illustration of the experimental geometry [5]. (d-f) Images of a cantilever before
and during polymerization [5]. Figure from [5].

networks to perceive the relation between branched actin network growth velocity
and the applied forces on the network [5].

Regarding the force measurement, the experiments were completed using
an optical trap, a bead, and acrosomes. The bead is held onto by the optical
trap and it is brought up against a micro-fabricated wall, the optical trap pulls
the actin network, and the acrosomes are set into the optical trap to let the
actin polymerize. In that configuration, when the bead is pushing up against
the wall and the thermal fluctuations of the bead and the trap are given, the
actin monomers can sneak in between the end of the acrosome and the wall and
extend that bundle of actin filaments and push the bead out of the trap. The
researchers successfully measured the displacement of the bead from the trap
and quantified the force generated in the experiment, which is in the range of a
few picoNewtons, typically around 1 or 2 pN, for these small bundles of actin
filaments.

Regarding the force-velocity measurements, Theriot’s lab performed measure-
ments of actin network growth through stall against a flexible cantilever [5]. They
carried out three experiments using two cantilevers: the first cantilever absorbs
a nucleation promoter, ActA, initiating the formation of a localized, branched
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actin network between the cantilever and a nearby surface; the second cantilever
compensates for the unpredictable drift between the surface and cantilevers, thus
ensuring spatial stability throughout the experiment [5].

The growth of the actin network was quantified by measuring the deflec-
tion of the actin-associated cantilever using an optical lever design sensitive
to nanometer-scale displacements. Actin networks exhibit elastic properties;
therefore, polymerization at the cantilever’s nucleating surface leads to both
compression of the supporting network and deflection of the cantilevers [5]. By
treating the network as a compressible spring, the fractional amount of growth
transduced by the cantilever is

”

D
= ka

ka + kc

,

where ” is the deflection of the cantilever, D is the increase in the length of the
actin network due to polymerization, ka is the sti�ness of the actin network, and
kc is the sti�ness of the cantilever. Assuming that the network is a homogeneous
elastic body with an elastic modulus, E, the sti�ness of the network is given by

ka = EA

L
,

where A is the area of the network and L is the length of the network [5]. It
results in 90%-85% of actin polymerization being transduced into cantilever
deflection [5]. Therefore, since the compression of the existing network is small,
only cantilever deflection is considered in the analysis. Moreover, network growth
is simultaneously monitored with epifluorescence imaging of labeled actin (see
figure 1.5, d-f), a force microscopy technique that is capable of exerting forces
up to several hundred nN. This tool allows active adjustment of the load on
the actin network and provides a flat nucleating surface that avoids ambiguities
caused by surface curvature [5].

The first experiment performed by Theriot’s lab aims to measure the Force-
velocity relationship with the natural growth of the actin network: the actin
network is allowed to grow naturally, deflecting the cantilever, so that it is
subjected to increasing forces that are proportional to the cantilever deflection.
The actin network grows against the cantilever until it stops at the stall force.
Actin network growth exhibits three phases:

- an initial developmental phase where the network growth velocity increases
against increasing forces experiments, indicating that it is a transient
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Figure 1.6: (1) First experiment: A length-force-time plot from a single ex-
periment and normalized values [5]. (2) Second and (3) Third experiment:
Force-reduction experiments showing two stable velocities at a single force [5].
Figure from [5].

phenomenon, therefore it is excluded from further analysis [5];

- a load-independent phase where the network length increases linearly with
time against an increasing force. During this phase the actin network grows
at a velocity ≥ 72 nm min≠1 over a 50-160 nN range;

- a stall phase, where the rate of network elongation slows until it stalls at
a force of 294 nN, corresponding to a pressure of ≥ 1 nN µm≠1 [5]. This
observed stall is force-dependent: the network resumes its elongation with
a force reduction, and there is no depletion of protein components that
might cause the network stall.

The major outcome is observed in the second phase, which corresponds to a
third of the force range, where the network growth velocity remains essentially
load-independent (see figure 1.6). This phase is followed by a convex decline in
velocity until stalling. After normalizing the velocity and force for each record,
which can depend on variations in ActA density and area covered, all Fv curves
overlap. This result suggests that the average normalized Fv trace represents a
characteristic behavior for actin networks growing against increasing loads, which
is independent of network area and cantilever sti�ness [5].
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The second experiment involves the application of a fixed force to the network.
The network is allowed to grow until it reaches a force of 145 nN, exhibiting a
load-independent velocity of approximately 129 nanometers per minute [5]. The
applied load is then reduced to 120 nN, still within the load-independent regime
by gradually retracting the surface with a piezo-electric stage [5]. Following
the force reduction, the load was clamped at 120 nN, and the growth velocity
was measured. Remarkably, a 17% force decrease leads to a 2.1-fold increase
in velocity, reaching 275 nm/min. Surprisingly, this elevated velocity persists
for more than 10 min, corresponding to almost 3 m of growth [5]. In all force-
reduction experiments (n = 8), the growth velocity after a 17-98% force reduction
stabilizes at a value 1.75-10.9 times higher than the original velocity, persisting
during the recorded data (1-4 micrometers and up to 30 minutes) [5] (see figure
1.6).

The third experiment validates the existence of two growth velocities under
identical force conditions. Force-clamp-reduction experiments were conducted by
initially maintaining a constant force on the network and measuring the resulting
velocity. Upon removal of the force clamp, subsequent network growth leads to
increased cantilever deflection and force on the network, similar to the earlier
force-reduction experiments. After a period of escalating force, the force on the
network was reduced to its initial value and clamped, and the resulting velocity
was measured (see figure 1.6). The velocity during the second force clamp was 1.6-
fold greater than that during the first force clamp after a 19% reduction in force.
In all force-clamp-reduction experiments (n = 8), the growth velocity was found
to increase by a factor of 1.22-3.63 (mean = 2.3) following a 20-95% reduction in
force. Additional control experiments demonstrate that this phenomenon is not
dependent on network length. These results underscore the existence of di�erent
steady-state growth velocities under the same load, indicating hysteresis in the
Fv relationship. This suggests that the loading history of the actin network must
be considered, and a single Fv relationship cannot fully describe the behavior of
the actin-network growth system [5].

The observed behavior in the load-independent phase, where the velocity
remains constant as the force increases, can be explained by an increase in
filament density with force. As the force increases, filament density may increase
to sustain a constant force per filament, resulting in a consistent velocity [5].

When a lower force is applied, the filament density stabilizes, maintaining a
velocity v2 greater than v1 instead of exponentially reducing to v1. This behavior
indicates structural remodeling of the actin network, which is dependent on the
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loading history of growing actin filaments, leading to an increase in the number of
active filaments pushing the load. Velocity data suggest that network hardening
with increasing force alone, resulting in an increment in network sti�ness (ka),
cannot fully account for the observed history dependence. Beyond the load-
independent regime, at forces above, the growth velocity starts to decline as the
network approaches a saturating density of filaments, and growth is eventually
halted. This implies a crucial role for actin filament nucleation in force production
[5].

1.4 Motivations and research objectives
The current work aims at building multi-physical models able to describe,

interpret, and predict the key mechanisms that rule ABM. It is included in a
long-term plan, that aspires to realize several multiphysics models that describe
the main phases of the metastasis of cancer. We identify the modeling of ABM
as one of the first phases of this plan because ABM is a fundamental and ancient
phenomenon that contributes to cancer metastasis in cells and it is conserved
even in other organisms, such as bacteria.

To provide a consistent model that represents ABM, we first study the
pathogens ABM. It represents a simpler system, that can be a paradigmatic
example of the mechanical and energetical behavior of ABM. Then, a proposal
for a model of cells ABM is introduced with a digression into other aspects of
cell motility, e.g. receptor dynamics and substrate-cell interaction.

The description of ABM is conducted at a continuum level. The core of the
model is represented by the transformation of G-actin into the F-actin network,
which is described, at a macroscopic level, with a volume variation between F-
actin and G-actin, which embodies the mechanical essence of the polymerization
motor.

The notion of volumetric expansion is common to many types of motors. In
steam engines, for example, fuel is burned and heat is used to boil water and
produce steam. Heat is converted into motion when the steam expands and
pushes a piston. Similarly, chemical energy is converted into motion when the
polymerization of G-actin into a cross-linked network gives rise to volumetric
expansion and protrusive forces.

From a conceptual point of view, physical theories and mathematical tools
allow relating the mechanical principles with the behavior of living matter:
thermo-mechanics of continua [24, 33] is the ideal framework to model nature’s
laws. Due to its intrinsic interdisciplinarity, a multi-physics approach to biological
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phenomena may have the potential to highlight key and limiting factors, providing
innovative pathways for analysis and interpretation.

The purpose of this large-scale treatment is to describe the ABM in all its
processes and to consider the global response of the actin filament network, show-
ing that some important characteristics of the motion arise from their collective
behaviors. Most of the microscopic descriptions concern the microstructural
machinery of the pulling action of single filaments and they do not consider the
global response of the F-actin network, which is relevant to the mechanical and
energetical behavior of the biological system. Even if our approach lacks a clear
description of the microscopic mechanism at work in the polymerization/reticula-
tion process, it provides a novel mechanistic and energetical understanding of
ABM, allowing to connect phenomena that are generally modeled separately, and
it has the potential, in principle, to be extended to further phenomena where the
polymerization motor is the motion trigger.

Metastasis remains the greatest challenge in the clinical management of
cancer. Therefore, it is important to elucidate the mechanisms underlying ABM,
with the ultimate goal of identifying combination therapies that increase the
motility of beneficial cells and block the spread of harmful ones. Enhancing the
ABM knowledge can lead to major improvements in the pro- and anti-angiogenic
therapies, so, even if these models represent a very early step of a series of patterns
characterizing the phenomenon of tumor metastasis, they can be adapted to all
those processes in which ABM plays a major role.





Chapter 2

Notation and symbols

Scalars are indicated with lightface letters, vectors attached to points with
lightface letters and arrows above them and tensors with boldface letters.

operator symbol

Scalars –, b, C

Vectors ą, B̨, c̨

2-nd order tensors A,B, c

4-th order tensors A,B,C

Table 2.1: Operators and their symbols.

Following the customary notation of modern Continuum Mechanics, the
vectors in the current configuration � are represented with x̨ and the vectors in
the reference configuration �R with X̨.

The referential and spatial description of geometry-dependent scalars, vectors,
and tensors are denoted with lowercase and uppercase symbols, respectively. As
for mixed tensors such as the deformation gradient, we use uppercase letters and
we indicate their components with one lowercase and one uppercase index.

The direct notation for gradient, curl, and divergence operators with respect
to the referential and current coordinates follows the same rule. Thus, the
notation for gradient, curl, and divergence operators for referential coordinates
are

Grad [ ] Curl [ ] Div [ ] (2.1)
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and for current coordinates are

grad [ ] curl [ ] div [ ] , (2.2)

respectively.

We distinguish between scalar, vector, and tensor functions, where the argu-
ments are scalar, vector, or tensor variables respectively (see Table 2.2). The
returned values can be scalars, vectors, or tensors. For the sake of simplicity, in
this paragraph we do not distinguish between material and spatial coordinates,
taking for granted that the above rules apply. In the first column, the function

variables and values scalar vector tensor

scalar „(t) v̨(t) a(t)
vector „(x̨) v̨(x̨) a(x̨)
tensor „(b) v̨(b) a(b)

Table 2.2: Scalar, Vector and Tensor Functions

assigns a scalar „ to each scalar t, vector point x̨ or tensor b. In the second
column, the function assigns a vector v̨ to each scalar t, vector point x̨ or tensor
b. In the third column, the function assigns a tensor a to each scalar, vector
point x̨ or tensor b (see Table 2.2).

When the index notation is used, Einstein’s summation convention is adopted,
namely the "

q
" symbol is dropped and any index appearing twice in a product

of variables is taken to be a dummy index, over which a sum is done

v̨ =
3ÿ

i=1
vi ęi = vi ei .

In the following, we introduce the notation used for di�erential operations.
First (nth) total derivatives with respect to a scalar argument (i.e. time t) are
represented as

„̇(t) = d „(t)
dt

˙̨v(t) = d v̨(t)
dt

ȧ(t) = da(t)
dt

, (2.3)

dn
„(t)

dnt

dn
v̨(t)

dnt

dn a(t)
dnt

.

We consider total, substantial and material derivative as synonyms. The partial
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derivative is represented as
ˆ „(t)

ˆt
.

Vector operators, which include the gradient, divergence, and curl, are defined
for scalar, vector, or tensorial fields. For vector-valued fields, the gradient is
defined as

grad [ „ ]
x̨

= ˆ„

ˆxi

= „,i

¸ ˚˙ ˝
as for grad [ µ ]

grad [ v̨ ]
x̨

= ˆvi

ˆxj

= vi,j grad [a ]
x̨

= ˆaij

ˆxk

= aij,k ,

(2.4)
and the divergence as

div [ v̨ ]
x̨

= ˆvi

ˆxi

= vi,i

¸ ˚˙ ˝
as for div

Ë
h̨

È

div [a ]
x̨

= ˆaij

ˆxj

= aij,j . (2.5)

For tensor-valued fields, the gradient is defined as

grad [ „ ]b = ˆ„

ˆbij

= „,ij

¸ ˚˙ ˝
as for ˆÂ(✏)

ˆ✏

grad [ v̨ ]b = ˆvi

ˆbjk

= vi,jk grad [a ]b = ˆaij

ˆbkl

= aij,kl

¸ ˚˙ ˝
as for ˆS

ˆC

,

(2.6)
and the divergence as

div [ v̨ ]b = ˆvj

ˆbij

= vj,ij div [a ]b = ˆaij

ˆbkj

= aij,kj . (2.7)

In the following, we introduce the notation used for algebraic operations. The
products between vectors are defined as

ą · b̨ = ai · bi dot product , (2.8)

ą ◊ b̨ = eijkajbk vector product , (2.9)

ą ¢ b̨ = aibj dyadic product . (2.10)

The products between two 2nd-order tensors or a 2nd-order tensor and a vector
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are defined as

c = ab = aij bjk = cik contraction of an index , (2.11)

c̨ = a b̨ = aij bj = ci contraction of an index , (2.12)

A : B = tr
#
AT B

$
= AIJ BIJ double index contration . (2.13)

We adopt the standard superscripts T and ≠1 to indicate the transpose and the
inverse operations.
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Pathogens ABM
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Chapter 3

Pathogens biological
background

This chapter is adapted from [6], "Actin based motility unveiled: How chemical
energy is converted into motion, J MECH PHYS SOLIDS".

The polymeric network of F-actin is a critical target of several intracellular
bacterial pathogens [7], e.g., Listeria monocytogenes, Shigella, Ricketssia, My-
cobacterium, and Burkholderia. They exploit and manipulate the F-actin network
at multiple stages of infection to support their survival and growth in the host cell
environment. Because of its low virulence and its ease in experimental handling
[8], mainly Listeria monocytogenes is chosen to investigate this form of ABM,
with the result of a wider experimental literature compared to other pathogens
[9, 10, 11, 12, 13].

3.1 Introduction
During the late 1980s, various research groups discovered that F-actin plays a

significant role in the intracellular movement of two distinct bacterial pathogens,
Listeria monocytogenes and Shigella flexneri, both of which reside within the
host cell’s cytoplasm. As L. monocytogenes is comparatively less virulent and
more manageable in experimental settings than S. flexneri, most laboratories
investigating this form of ABM have directed their attention toward L. monocy-
togenes. Hence, this chapter focuses on L. monocytogenes biological background
only.

The intracellular lifestyle and motility of Listeria are thoroughly investigated
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through electron microscopy, giving rise to the term actin comet tail. This term
is coined based on the observed images of F-actin accumulation at one of the
bacterial poles within infected macrophages. The precise bacterial protein or
factor causing actin polymerization remained mysterious until the landmark
discovery of Pascale Cossart who identified the crucial role of ActA, which
changed the way how actin has been studied afterward [14].

3.2 Listeria monocytogenes
Listeria monocytogenes is a common soil organism that was first identified in

1926 after an outbreak that a�ected rabbits and guinea pigs. In the 1970s it was
recognized as an agent of human disease and in the 1980s it was classified as a food-
borne pathogen. It has a high percentage of mortality among infected individuals
(20-30%) and a low number of infections per year, with approximately 23150
cases in 2010 worldwide. Food such as salad and cheese commonly contains it in a
minimum amount, but when food is heavily contaminated (up to ≥ 109 bacteria)
and it is ingested by humans, it can cause severe gastroenteritis. However, some
categories such as children, elderly individuals, immunocompromised individuals,
and pregnant women, even after ingestion of low levels of contaminated food
(≥ 102 - 104 bacteria) can risk bacterial sepsis, subsequent bacterial meningitis
and/or infection of the fetus, resulting in abortion or complications to pregnancy
[15]. Due to their adaptability, Listeria pathogens can thrive in several stressful
environments. They can survive and grow at low temperatures, at high salt
concentrations, and at low pH levels, making them a great concern for the food
industry.

3.2.1 Infection process

After the ingestion of contaminated food, Listeria encounters and invades
di�erent regions of the intestinal epithelium. Upon crossing the epithelial barrier,
they spread via lymph and bloodstream towards their target organs, the liver or
the spleen. Listeria can also cross the blood-brain barrier in immunocompromised
individuals or the fetoplacental barrier in pregnant women. At the level of
infected organs, Listeria has the powerful ability to alter host physiology. Before
the invasion, it secretes a toxin, that creases spores in the host membrane,
promoting bacteria entry and invasion and compromising some internal cellular
processes. Upon binding to the membrane receptors, bacteria trigger cytoskeletal
rearrangements, leading to internalization into the cytoplasm. Once inside the
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Figure 3.1: The actin-based movement of Listeria monocytogenes [4]. Figure
from [4].

cell, Listeria ruptures the membrane of the internalization vacuole and it modifies
its surface to become resistant to the cell’s inner defenses. Then, it multiplies,
populating its host, and secretes virulence factors that compromise distinct
cellular functions.

Inside the cell, the bacterium expresses a particular stable protein on its
surface called ActA, a bacterial factor that recruits small actin filaments from
which other actin filaments rapidly grow to form an actin comet tail, that allows
the bacterium to move inside and outside the cell (pathogens ABM) (see figure
3.1). The actin-propelled movement of the bacterium enables it to push the
cell membrane into that of the neighboring cell. The double membrane vacuole
is again ruptured thereby spreading the infection to the neighboring cells. In
response to bacterial infection, the host immune system, composed of several
cells such as neutrophils, is activated to destroy infected cells and/or bacteria and
to control the spread of infection. With the help of adaptive immunity, bacteria
are totally eliminated, but in immunocompromised individuals, they may lead to
the most severe symptoms of listeriosis.

3.2.2 ABM

ABM plays a crucial role in the life cycle of Listeria monocytogenes. After the
invasion, the bacterium strategically covers one of its surface poles with ActA, a
bacterial protein capable of binding to various factors present in the host cell
cytoplasm (see figure 3.1). These factors are essential for the nucleation of actin
filaments. Two domains of ActA are particularly vital for the pathogen’s ABM:
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Figure 3.2: (a) Movement of Listeria monocytogenes in a cell [16]. (b) Bacterial
surface proteins cause local nucleation of actin filaments [17]. Figure from [16]
and [17].

the amino-terminal domain and the central proline-rich domain. The former
activates actin filament nucleation through Arp2/3, while the latter enhances
filament elongation by binding to VASP, which, in turn, interacts with profilin,
the protein responsible for elongation. The amino-terminal domain directly binds
to the nucleating complex, the Arp2/3 complex, which can then bind to the side
of a preexisting actin filament in the tail. This initiation leads to the nucleation
of a new filament at that location, creating a branch at a 70¶ angle from the
original filament [8] (see figure 3.1 and 3.2).

As these filaments are nucleated, they grow by the addition of actin monomers
present in the cytoplasm, landing on the ends of the filaments through di�usion.
This growth is responsible for the movement, as it propels the bacterium through
the cytoplasm using a force generation mechanism. Apart from factors influencing
the bacterial surface, capping protein inhibits the elongation of older filaments
by binding to the barbed end of actin filaments. Additionally, –-actinin plays
a role in crosslinking filaments to stabilize the tail structure, while ADF (actin
depolymerizing factor) or cofilin facilitates the disassembly of old filaments [8].

Several proteins, including capping protein (CapZ) and gelsolin, possess
barbed-end F-actin capping activity. ActA may indirectly suppress capping near
the bacterial surface, and is strongly associated with actin comet tails. Gelsolin
is distributed throughout the tail and is paradoxically enriched at the bacterial
surface. The combined e�ect of suppressing barbed-end capping at the bacterial
surface, exclusive localization of elongation enhancers VASP and profilin at the
bacterial surface, and robust activation of Arp2/3 by ActA appears su�cient to
facilitate nucleation and elongation primarily at the front of the actin comet tail
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[8].
Immunodepletion of ADF/cofilin from cytoplasmic extracts supporting L.

monocytogenes motility results in altered actin comet tail morphology, increasing
its length fivefold compared to normal. Conversely, the addition of excess
exogenous ADF/cofilin to extracts leads to the shortening of the actin tail
and an acceleration of bacterial motility. ADF/cofilin is found throughout the
L. monocytogenes actin comet tail, aligning with previous observations that
depolymerization occurs uniformly across the tail [8].

Various F-actin crosslinking proteins, including fimbrin and –-actinin, are
distributed throughout the actin comet tail. Microinjection of a dominant-
negative fragment of –-actinin, which inhibits cross-linking by the endogenous
protein, leads to the cessation of L. monocytogenes movement in infected cells.
This underscores the importance of robust crosslinking for navigating through
the highly viscous cytoplasm of a living cell. Actin, Arp2/3, ADF/cofilin, and
capping protein are indispensable for motility, while VASP and profilin enhance
the rate of movement, and –-actinin contributes to tail stabilization [8].

One of the recent significant discoveries about actin propulsion is that the
actin tail is attached to the surface of the pathogens [18]. By using an optical
trap to measure the force necessary for separating the bacterial cell from the actin
tail, it is revealed that a force exceeding 10 pN is required. Moreover, electron
microscopy observations of the transient attachment of actin filaments from the
branching network to the bead’s surface demonstrate that the attachment of
F-actin to either the bacteria or beads appears to facilitate stable and persistent
movement. This discovery raises questions about the existence of a gap between
undulating filaments and the cell surface and how it coexists with the fact that
the filaments attach to the surface. The answer lies in the temporariness of
the attachment: filaments transiently attach to the bacterial surface. Initially,
nascent filaments associate with protein complexes on the surface, but then they
disengage and grow freely until they are eventually capped and lose contact with
the surface. Throughout this process, the attached fibers are under tension,
resisting the forward movement of the bacterium or bead. Simultaneously, the
disassociated fibers experience compression, generating the propulsive force [18].
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3.3 Existing literature models and a new ap-
proach presentation

3.3.1 Existing literature models

Numerous models describing ABM of pathogens can be found in the existing
literature [19, 18, 20, 21].

In [19], a mesoscopic description of Listeria motility at a length scale larger
than that of individual proteins is introduced to understand the mechanisms that
control the speed of the bacterium, the maximum force it can overcome, and the
e�ect of the obstacles it encounters during the motion. The actin comet tail is
treated as a linear elastic gel, whose shape depends on the way the gel adopts
the lowest energy conformation. The addition of new actin filaments builds up a
new polymerized layer at the bacterium surface, which compresses the previously
formed layers and induces elastic deformations in the gel. Thus, the free energy
produced by actin polymerization is not directly used for the propulsion but
is rather first stored as elastic energy [19] and then triggers the motion of the
bacterium after the relaxation of the strain in the tail. The shape of the gel, and
therefore, the motion of the bacterium depends on the way the gel adopts the
lowest energy conformation [19], so, for the sake of simplicity, the actin comet
tail is artificially simplified in two parts: the internal gel, produced from the back
part of the bacterium, and the external gel, produced on the cylindrical surface
of the bacterium. Three models are considered: a one-dimensional model, in
which the bacterium produces only the internal gel, a three-dimensional model,
where the bacterium is pushed only by the external gel and a three-dimensional
complete model in which the bacterium is pushed by both gels. Thus, the relation
between the bacterium’s speed and the external forces that induce the stresses
on the bacterium’s surface is obtained.

In [18], the "elastic ratchet model" of Mogilner and Oster is extended to
incorporate the transient binding at the actin/cell interface. The "elastic ratchet
model" bases its mechanism of polymerization force generation on the fluctuations
of filaments against the bacterium [18] and the transient binding takes into
account the attachment and detachment of actin filaments to the surface of
the pathogens. A two-compartment model consisting of attached and detached
filaments is formulated where the detached compressed fibers (the "working
filaments") generate the protrusive force, and the attached stretched fibers resist
the forward progress of the bacterium. The model consists of three ingredients:
dynamic equations for the numbers of actin filaments near the surface, that
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describe the dynamics of the two filaments populations (attached and working
filaments); a force-balance equation between the polymerization ratchet force,
generated by the working filaments, that is balanced with the force of attached
filaments and the load force represented by the sum of the viscous drag force
on the cell and the external conservative force exerted on the cell, e.g. a laser
trap; and constitutive relations describing the correlation between the velocity of
propulsion and the polymerization ratchet force. The model is used to derive the
force-velocity relation for Listeria, that fits the available data, and to generate
testable predictions for future experiments.

In [20], a dynamical model that provides a unified mathematical description
of the trajectories of the Listeria pathogen is developed. The model is defined by
a set of deterministic evolution equations that incorporate not only a propulsive
force included in most of the microscopic models to date but also its rotation
about the body axis. A key ingredient of the model is torque, which is directed
out of/into the plane in which the bacterium moves and which can arise from the
rotation of the propulsive force about the body axis of the bacterium. Specifically,
the torque arises if the moment of the surface force distribution about the centroid
of the bacterium does not vanish, and/or it can arise from the surface moments
exerted by the filaments. With di�erent angular speeds of rotation, the analysis
can obtain a rich array of 2D Listeria trajectories with a defined geometric
structure, that predicts the trajectories of Listeria.

In [21], a generalized Brownian ratchet model that accounts for the interactions
of actin filaments with the surface of Listeria is introduced to develop a microscopic
model for the movement of Listeria propelled by actin polymerization. A key
ingredient in this formulation is the coupling between the motion of Listeria
and the force-dependent rate of filament growth [21]. A numerical scheme is
presented to determine the force distribution among filaments and bacteria
movement and, despite some limitations, the model successfully establishes
a connection between the macroscopic movement of Listeria and microscopic
polymerization details. Among the main findings, it is highlighted that they can
represent the nonuniform distribution of propelling forces generated by spatial
variation of polymerization rate, the generation of a curved bacteria trajectory
due to nonuniform polymerization velocity on the sides of the actin comet tail,
the presence of a tangential force induced by polymerizing filament, and the
correlation between filaments orientations in the actin comet tail and movement
of Listeria.
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3.3.2 New approach presentation

To provide a unique understanding of pathogens ABM, we propose a contin-
uum multi-physics model, stemming from chemotransport-mechanics continuity
equations that account for the actin chemical kinetics. This model describes
actin comet tail, connecting di�erent aspects of the ABM, such as polymeriza-
tion/depolymerization of actin and mechanical response/mechanical flow of the
F-actin network. Moreover, it provides a novel mechanistical and energetic un-
derstanding of the phenomenon, examining the actin polymerization motor from
a thermodynamical point of view. It has the potential, in principle, to provide
quantitative results on F-actin and G-actin concentration variation in cells, and
actin comet tail displacements and stresses induced by G-actin transformation.
The ultimate goal of this pathogens ABM model is to provide a first simple
approach to ABM that can serve as a paradigm for more complicated phenomena,
such as cells ABM.



Chapter 4

A model for Pathogens
ABM

This chapter is adapted from [6], "Actin based motility unveiled: How chemical
energy is converted into motion, J MECH PHYS SOLIDS".

4.1 Kinematics
Kinematics of a continuum body is the study of motion of a continuum body

per se without any reference to the causes of motion, exactly as the kinematics
of particles is completely independent of forces. So, the study of the kinematics
of continuum bodies (i.e., of body motion and deformation) deals with positions,
velocities, and accelerations of all points of the system at study, without relating
them to the causes that generate the motion [22, 23].

In this chapter, we introduce the continuum deformable body and its con-
figurations, various measures of deformation, and rates of deformation and we
define them in the realm of a�ne space, the mathematical model of the physical
space S. In the "theater" of physical space S, in which Mechanics takes place,
the "actors" of Continuum Mechanics are material bodies [22, 23].

A material body is identified with a reference configuration �R, namely a
subset of the physical space S representing a particular placement of the body in
space, from which it is mathematically and geometrically convenient to study the
motion of the body. So, a configuration of the body �R is a point map

„ : �R æ S : X̨ ‘æ x̨ = ‰̨(X̨) ,
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i.e. a map such that both its domain and codomain are point sets. The image of
�R through the configuration ‰̨ is a subset of S denoted �, and it is called the
current configuration of the body �R [22, 23].

The definition of configuration map is static, so to describe the motion of the
body, the time t œ I is introduced as a parameter, where I µ R is an interval of
real numbers. So, a motion of �R can be described by the one-parameter family
of configurations

‰̨ : �R ◊ I æ S : (X̨, t) ‘æ x̨ = ‰̨(X̨, t) ,

where ‰̨(X̨, t) is a map that assigns to each material point at time t a location
which is referred to as the spatial point occupied by X̨ at time t [22, 23, 24]. We
will name deformation ‰̨t a motion at a fixed time t

‰̨t(X̨) = ‰̨(X̨, t) .

To characterize the deformation of the body in a neighborhood of a point, the
non-symmetric deformation gradient F is introduced. The deformation gradient
is the most important measure of deformation, from which all the other measures
of deformation descend. It is a two-point tensor involving points in two distinct
configurations and it is closely related to the di�erentiability of the configuration
map ‰̨. The configuration map ‰̨ is di�erentiable at point X̨ if, and only if, there
exists a two-point tensor F , such that, for every vector W̨

[F (X̨)] W̨ = (ˆ
W̨

‰̨)(X̨) œ TxS , (4.1)

which states that a point map such as the configuration map ‰̨ is di�erentiable
at X̨ if its directional derivative with respect to W̨ at X̨ is a linear function of
the direction W̨ , so it is the di�erential of the configuration map ‰̨ at point X̨

[22, 23].
The mathematical restriction for the deformation gradient on its determinant

is
J = det [F ] > 0 ,

i.e., the deformation gradient has to be strictly positive: it has to be non-zero
to guarantee the invertibility of the deformation gradient F , and it has to be
positive so that the transformation described by F preserves the orientation of
space, namely J must be positive to prevent the occurrence of a volume being
turned "inside out" and of compenetration of matter [22, 23].
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Figure 4.1: Schematic representation of volume increment upon the structural
arrangement of monomers after polymerization. Figure from [25].

The transformation of G-actin into F-actin entails a structural arrangement
of monomers, from a disorganized form (G), into an organized form (F). We
claim that this reorganization implies a di�erent partial molar volume between
F-actin and G-actin, with the crosslinked network having a greater molar volume
than monomers. We represent this as a continuum dilatation of the actin in
which the dilated configuration, the F-actin network, is a mixture of cytosol and
polymerized actin monomers [6]. We claim that this is the mechanical engine of
the protrusion mechanism at a continuum scale. Since we consider the process
at a macroscopic continuum scale, the filament bending and the discrete steps
corresponding to the addition of a single protein subunit to the filament tip by
insertion are not considered [22, 23].

So, we base our model on a multiplicative decomposition of the deformation
gradient

F = F eF c
, (4.2)

which splits the total deformation gradient into two contributions: a purely
chemical contribution F c and a purely mechanical contribution F e:

- F c(X̨, t) is called the polymerization tensor and is the local distortion
of the material neighborhood of a point due to the volumetric swelling
(de-swelling) of the material. This physical phenomenon is caused by the
phase change of actin after polymerization, from monomeric to a network
of filaments and vice versa [26].
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Figure 4.2: The reference �R, the intermediate �C and the deformed �(t) configu-
ration. The arrows indicate the mapping properties of the linear transformations
F , F e, and F c [6]. Figure from [6].

- F e(X̨, t) is called elastic distortion and is the local distortion of the material
neighborhood of a point due to the elasticity of the network [6].

F c(X̨, t) is defined as
F c = ⁄

c 1 , (4.3)

with
⁄

c
> 0 , det [F c ] = J

c = ⁄
c3

,
1
Jc

dJ
c

dt
= 3

⁄c

d⁄
c

dt
, (4.4)

and ⁄
c is the swelling stretch.

By the definition of the deformation gradient, the right Cauchy-Green tensor
C(X̨, t) is defined

C = F TF ,

where right is because F (X̨, t) is on the right side of C(X̨, t).
Given the definition (4.3), the decomposition (4.2) leads to a multiplicative

decomposition for the Cauchy-Green tensor, too,

C(X̨, t) = Ce Cc
, (4.5)

with the polymerization and elastic factors

Cc = F c
T
F c = J

c2/3 1 , Ce = F e
T
F e = J

c≠2/3 C , (4.6)
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respectively [6].
The Green-Langrange strain tensor E

E = 1
2

!
F TF ≠ 1

"
,

and its elastic counterpart, defined as

Ee = 1
2

!
Ce

≠ 1) , (4.7)

are related by the identities

E = J
c

2/3
Ee + 1

2
!
J

c
2/3

≠ 1)1 , (4.8)

and
dE

dt
= 1

3
!
J

c
≠1/3 d J

c

dt
Ce) +

!
J

c
2/3 dEe

dt
) . (4.9)

The spatial velocity gradient, which expresses the variation of the velocity field
with the point, is defined as usual as

l(x̨, t) = grad [ v̨(x̨, t) ] = dF

dt
F≠1

, (4.10)

and the following tensors

le = dF e

dt
F e

≠1
, lc = dF c

dt
F c

≠1
(4.11)

are defined in � and �c, respectively. It holds

l = le + F e lc F e
≠1

. (4.12)

The linear field l(x̨, t) can be split into the rate of deformation tensor d(x̨, t)
(symmetric) and the spin (vorticity tensor) w(x̨, t) (antisymmetric)

lc = dc + wc
, (4.13a)

le = de + we
. (4.13b)

From eq. (4.3) and (4.4) the following transformations hold

wc = 0 , lc = dc = 1
3 Jc

d J
c

dt
1 ,

d J
c

dt
= J

c tr [dc ] . (4.14)

Because of eq. (4.12) and (4.14), l = le + lc holds [6].
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In the realm of viscoelasticity [27, 28], the deformation gradient F e is fre-
quently defined as a multiplicative decomposition of the deformation gradient
into volumetric F e

v and isochoric F e
i factors

F e = F e
v

F e
i

, (4.15)

with volumetric factor F e
v = J

e1/3 1 completely identified by the determinant
of F e and for the isochoric factor det

Ë
F e

i

È
= 1 [6]. These results lead to similar

relationships to those summarized above [6].

4.2 Transformation of geometric elements
Vector fields. We say that the material vector field W̨ is the pull-back of

the spatial vector field w̨ if, for every x̨ = ‰̨(X̨) and corresponding X̨ = ‰̨
≠1(x̨),

W̨ = F≠1(x̨) w̨(x̨) = F≠1(‰̨(X̨)) w̨(‰̨(X̨)) . (4.16)

Conversely, the spatial vector field w̨ is the push-forward of the material vector
field W̨ if, for every x̨ = ‰̨(X̨) and corresponding X̨ = ‰̨

≠1(x̨) [22],

w̨ = F (X̨) W̨ (X̨) = F (‰̨≠1(x̨)) W̨ (‰̨≠1(x̨)) . (4.17)

The prototype of a vector field is the velocity field [22].
Covector fields. We say that the material covector field � is the pull-back of

the spatial covector field fį if, for every x̨ = ‰̨(X̨) and corresponding X̨ = ‰̨(x̨)≠1

[22],
�̨ = F T (x̨) fį(x̨) = F T (‰̨(X̨)) fį(‰̨(X̨)) . (4.18)

Conversely, the spatial vector field fį is the push-forward of the material covector
field �̨ if, for every x̨ = ‰̨(X̨) and corresponding X̨ = ‰̨(x̨)≠1 [22],

fį = F≠T (X̨) �̨(X̨) = F≠T (‰̨≠1(x̨)) �̨(‰̨≠1(x̨)) . (4.19)

The prototype of a covector field is the force field, linear momentum, or force
density field, e.g. force per unit mass or electric field (force per unit charge) [22].

Volume fields. Volume forms are particular tensors, that induce the notion of
volume subtended by a set of vectors, of orientation of space, and of determinant.
In a n-dimensional space V , a volume form, or n-form, µ is a completely skew-
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symmetric n-th-order tensor that, for every set of n vectors v̨1, v̨2, ..., v̨n œ V

µ(v̨i1 v̨i2 ...v̨in
) = ‘i1i2...in

µ(v̨1, v̨2, ..., v̨n), (4.20)

where ‘i1i2...in
is the permutation symbol [22]. Therefore, the spatial and material

Euclidean volume forms

vol(̨h, l̨, m̨) = det
Ë

h̨, l̨, m̨

È
= ‘ijk hiljmk , (4.21)

V ol(H̨, L̨, M̨) = det
Ë

H̨, L̨, M̨

È
= ‘IJK HILJMK (4.22)

are uniform tensor fields that are independent of x̨ œ � and X̨ œ �R, respectively
[22].

The pull-back of the spatial Euclidean volume form through the configuration
map ‰̨ is defined as the material volume form [22]

vol(̨h(x̨), l̨(x̨), m̨(x̨)) = vol(F H̨,F L̨,F M̨)

= (‘ijk FiI FjJ FkKHILJMK)(X̨)

= J(X̨) (‘IJKHILJMK)(X̨)

= J(X̨) V ol(H̨, L̨, M̨)(X̨) ,

(4.23)

where
J = det [F ] = ‘ijk Fi1 Fj2 Fk3 . (4.24)

In traditional notation, the expression 4.23 reads

dv = JdV , (4.25)

which represents the volume element transformation [22].
Area fields: We define the area as

˛area(̨l, m̨) = l̨ ◊ m̨ . (4.26)

Thus, the area subtended by l̨ and m̨ is a vector orthogonal to both l̨ and m̨, by
definition of the cross product [22]. Indeed,

l̨ · (̨l ◊ m̨) = det
Ë

l̨, l̨, m̨

È
= 0 ,

and similarly for m̨. The norm of (4.26) is the measure of the area subtended
by l̨ and m̨, and is obtained using the usual expression of the norm of the cross
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product [22].
The pull-back of the area is obtained through the pull-back of vol and the

definitions of triple product and cross product

n̨(x̨)Î ˛area(̨l, m̨)Î= JF≠T
N̨Î ˛Area(L̨, M̨)Î , (4.27)

which separates the area measures from the normal vectors [22].
We note how the pull-back of the area does not follow the rules of vector fields.

The area element is, indeed, not a vector, but a pseudo-vector, as is obvious from
its definition in terms of a cross-product [22].

In the traditional notation, the expression reads

n̨ da = JF≠T
N̨ dA , (4.28)

which takes the name of Nanson’s formula and transforms the areas and orienta-
tion of the face elements [22]. The expression of area elements transformation
without orientation reads [22]

da = |JF≠T
N̨ | dA . (4.29)

Volume property: The properties transformations defined over a volume,
like density, read

a dv = aR dV , a: volume density, mass density etc [22] . (4.30)

Area property: The property transformations defined over an area, like
flux, read

ą · n̨ da = Ą · JF≠T
N̨ dA , (4.31)

ą: vector flux. It is a surface density, a flux across a surface,

a n̨ da = AJF≠T
N̨ dA , (4.32)

a: tensor flux. It is a surface density, like the stress tensor [22].
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4.3 Volume and surface integral transformation
theorems

The transformation of volume and area is pivotal in theorems with volume
and area integral transformation. Here we enunciate the Theorem of Change of
Variables for volume integrals and the analogous theorem for surface integrals,
which employs the Piola transformation [28].

Theorem of the Change of Variables in (Volume) Integrals. We
enunciate this fundamental theorem in the notation and context of Continuum
Mechanics, but it is completely general. Let PR ™ �R be subpart of the (material)
domain, ‰̨ : �R æ � the configuration map, which is a di�eomorphism, and
f : ‰̨(PR) æ R a scalar field, with the current configuration of PR denoted with
P. The integral of f on P can be transformed into an integral on PR via [28]

⁄

P
f(x̨, t) dv =

⁄

PR

f(x̨, t) J dV =
⁄

PR

fR(X̨) dV (4.33)

The Piola Transformation and Change of Variables in Surface Inte-
grals. Using the transformation of the area element is the most straightforward
way to prove the expression of the Piola transformation, which has fundamental
importance in Continuum Mechanics since it is used to transform vector fields.
Let A µ �R be a (material) surface with normal N̨ , ‰̨ : �R æ � the configuration
map and a the current placement of the surface A, with normal n̨. The vector
field w̨ is called a flux density for the physical quantity q if the integral

Flux(q, ‰̨(A)) =
⁄

‰̨(A)
w̨ · n̨ da =

⁄

A

W̨ · N̨ dA

=
⁄

A

w̨ · JF≠T
N̨ dA =

⁄

A

JF≠1
w̨ · N̨ dA

(4.34)

measures the flux of the physical quantity q across the surface a [28].

4.4 Divergence theorem and Reynold’s theorem
Divergence Theorem. Let P be an open subset of the physical space �

with smooth boundary ˆP, n̨ be the normal to ˆP, and w̨ be a vector field
defined over P . The Divergence Theorem enables to transform the integral of the
scalar product w̨ · n̨ (i.e., the component of w̨ normal to ˆP) on the boundary
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ˆP into a volume integral over the set P, i.e. [28],
⁄

ˆP
w̨ · n̨ da =

⁄

P
div [ w̨ ] dv (4.35)

where we recall that the vector field w̨ is said to describe a flux density and its
divergence is defined as the trace of the gradient of w̨ or, equivalently, the double
contraction of the gradient with the identity tensor, i.e. [28],

div [ w̨ ] = tr [ grad [ w̨ ] ] = grad [ w̨ ] : 1 = wi,i. (4.36)

Reynolds’ Transport Theorem. The time derivative of the integral of a
scalar field f over a time-dependent domain is given by

d
dt

⁄

P
f dv =

⁄

P

!ˆf

ˆt
+ div [ f v̨ ]

"
dv =

⁄

P

ˆf

ˆt
dv +

⁄

ˆP
(f v̨ · n̨) da (4.37)

where
s

ˆP (f v̨ · n̨
"

da stands for the outward normal flux, or the rate of transport
of f v̨ across the surface (arising from moving region), with v̨ representing the
advecting velocity [28].

4.5 Balance laws
The reorganization of monomeric subunits into a network through polymer-

ization induces a local volume change, which is captured in a continuum-based
framework by a polymerization tensor. The process is reversible, and a volume
decrement occurs upon depolymerization [6].

Such a mechanism also requires the presence of a cytosol, capable of filling all
interstitials during network expansion and retreating upon shrinkage. Further-
more, the cytosol brings monomeric units into the proximity of the signal, thus
stimulating the polymerization process. In the present version of our model, we do
not provide the cytosol with any mechanical capability, other than a viscous drag
on the F-actin network, which opposes the F -actin network retrograde motion ‰̨.
The cytosol is not equipped with any mechanical strength and thus it is not a
hosting lattice in the Larché-Cahn sense. The cytosol, though, is considered a
medium through which species can flow and di�use. The mechanical strength
and sti�ness are provided merely by the F -network upon its polymerization [6].

Accordingly, at a point X̨ œ �R we can idealize the coexistence of G actin
and a polymer network in the cytosol, each of those two species being able to
flow according to mass balances. Mechanical strength and sti�ness at X̨ œ �R
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are provided by the polymerized network; at all locations at which no network
is present, the balance of momentum reduces to the trivial null identity. At all
other locations, linear and angular momentum rule the transmission of loads
through the interaction of the polymeric skeleton and the cytosol [6].

4.5.1 Mass balance

The mass balance equations rule the transformation and the flow of species
that live in the cellular domain. A multitude of components coexist in the cell,
but few of them are involved in pathogens ABM. For this reason, the model
consists of two mass balance equations that govern the F-actin and G-actin
arrangement in the cell domain, and the presence of other components (such
as microtubules and microfilaments, that do not a�ect the pathogen’s motility)
is omitted. Moreover, the cytosol’s role is limited to drag force on the F-actin
network, even if it is the fluid in which species flow. As a consequence, a mass
balance equation for cytosol arrangement is not provided and its mechanical
response is neglected.

The interplay between the monomeric (G) and network (F) of actin in the
cytosol is described as a chemical reaction

G
kf

�
kb

F , (4.38)

which models nucleation, branching, as well as cross-linking of actin and it is
active in a volume surrounding the nucleation loci. It portrays how many moles
of G-actin are converted into F-actin network and vice versa by the rate of the
reaction (4.38), denoted with w

(4.38) [6]. The parameters kb and kf denote the
backward and forward reaction rate parameters [6]. We define a mole of the
F-actin network as the result of polymerization of a mole of G-actin monomers
[6].

Define
ca(x̨, t) , with a = G, F , (4.39)

as the molarity (moles per unit volume) reckoned per unit volume of the current
configuration [6]. If necessary, the molarity of species can be rephrased in terms
of density, multiplying the concentration by molecular mass (mG or mF ) [6].
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Figure 4.3: Schematic representation of the mass balance on an advecting cytosol
P(t). A straightforward application of Reynold’s theorem leads to eq. (4.44) [6].
Figure from [6].

4.5.1.1 Global form of balance of mass

Consider a cell continuum body � with a set of particles occupying an arbitrary
region P with boundary surface ˆP at time t. The mass balance equations of
species G and F in the current configuration read

d
dt

⁄

P
cG dv +

⁄

ˆP
h̨G · n̨ da +

⁄

P
w

(4.38)
≠ sG dv = 0 , (4.40a)

d
dt

⁄

P
cF dv +

⁄

ˆP
h̨F · n̨ da ≠

⁄

P
w

(4.38)
dv = 0 . (4.40b)

The mass flux vector h̨a, expressed in terms of moles per unit area per unit
time, represents the flux of species a out of the surface body ˆP [6]. The flux
consists of two contributions, the transport and the advection out of the body
so that h̨a = ca(v̨a ≠ v̨adv). v̨adv represents the advection velocity, namely the
velocity of the hosting material (cell) or the velocity of the species a attached to
the cell. In this case, we neglect the velocity of the cell, so the advecting velocity
is null. v̨a represents the velocity of the species a itself, which can be due to a
gradient in energy, chemical potential, or mechanics. The species needs to have
a di�erent velocity with respect to the advecting one if it leaves the material.
sG is the rate in moles at which the G-actin is generated by cells. Since F-actin
network production results only from the chemical reaction (4.38), the source
term sF is null [6].

The mass balance equation can be defined in the reference configuration at



4.5 Balance laws 45

point X̨ and time t, making usage of the pushback rules (4.30) and (4.31), so
every specific quantity, defined per unit volume, transforms as the density

caR
(X̨, t) = J(X̨, t) ca( x̨(X̨, t), t ) , (4.41a)

w
(4.38)
R

(X̨, t) = J(X̨, t) w
(4.38)(x̨(X̨, t), t) , (4.41b)

sGR
(X̨, t) = J(X̨, t) sG( x̨(X̨, t), t ) , (4.41c)

while taking advantage of Nanson’s relationship, surface fluxes transform as

H̨a(X̨, t) = J F≠1
h̨a( x̨(X̨, t), t ) , (4.42)

where H̨a(X̨, t) is the reference flux vector. So, the global mass balance equation
in the reference configuration reads

d
dt

⁄

PR

cGR
dvR +

⁄

ˆPR

H̨G · N̨ daR +
⁄

PR

w
(4.38)
R

≠ sGR
dvR = 0 , (4.43a)

d
dt

⁄

PR

cFR
dvR +

⁄

ˆPR

H̨F · N̨ daR ≠

⁄

PR

w
(4.38)
R

dvR = 0 . (4.43b)

4.5.1.2 Local form of balance of mass

Taking advantage of Reynold’s theorem for the total derivative of ca with
respect to time (4.37) and the Divergence Theorem for the flux (4.35), the
mass balance equations of species G and F in the polymerized configuration,
schematized in figure 4.3, localize as

ˆcG

ˆt
+ div [ cG v̨adv ] + div

Ë
h̨G

È
+ w

(4.38) = sG , (4.44a)

ˆcF

ˆt
+ div [ cF v̨adv ] + div

Ë
h̨F

È
≠ w

(4.38) = 0 . (4.44b)

and the mass balance equations in the reference configuration localize as

ˆcGR

ˆt
+ Div

Ë
H̨G

È
+ w

(4.38)
R

= sGR
, (4.45a)

ˆcFR

ˆt
+ Div

Ë
H̨F

È
≠ w

(4.38)
R

= 0 . (4.45b)
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4.5.2 Balances of momentum

In this section, the balance of linear and angular momentum for the cell system
is described. Moreover, Cauchy’s first equation of motion and the symmetry of
the Cauchy stress tensor are shown. These principles are valid for the whole
or arbitrary parts of the continuum body �, but, as previously mentioned, the
mechanical strength in this model is provided by the polymerized network only,
so mechanical balances reduce to the trivial null identity where there is no F-actin
network.

Di�erently from several well-established theories [29], either accounting for
trapping or not [30, 31], the present framework for ABM does not fall into the
class of Larché-Cahn models. The notion of hosting lattice is meaningless, since
at t = 0 s only the cytosol is assumed to exist, together with a locus at which
polymerization develops at all times t > 0.

4.5.2.1 Balance of linear and angular momentum in spatial and ma-
terial description

Consider a cell continuum body � with a set of particles occupying an arbitrary
region P with boundary surface ˆP at time t. It is considered a close cell system
with a given motion x̨ = ‰̨(X̨, t) and spatial velocity v̨ = v̨(x̨, t). In addition,
since the mechanical strength is supplied by the F-actin network, the spatial
mass density takes into account the F-actin contribution only, flF (x̨, t). For this
reason, the total linear momentum L̨ reads [28]

L̨(t) =
⁄

P
flF (x̨, t) v̨(x̨, t) dv =

⁄

PR

flFR
(X̨) V̨ (X̨, t) dvR , (4.46)

and the total angular momentum (or momentum of momentum) J̨ relative
to a fixed point (characterized by the position vector x̨0) reads [28]

J̨(t) =
⁄

P
r̨ ◊ flF (x̨, t) v̨(x̨, t) dv =

⁄

PR

r̨ ◊ flFR
(X̨) V̨ (X̨, t) dvR , (4.47)

where r̨ = x̨ ≠ x̨0 = ‰̨(X̨, t) ≠ x̨0.
In the context of continuum mechanics, the material time derivatives of linear

and angular momentum result in Newton’s first and second principles of motion.
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The balance of linear momentum reads

d L̨(t)
dt

= d
dt

⁄

P
flF v̨ dv = d

dt

⁄

PR

flFR
V̨ dvR

=
⁄

PR

d flFR

dt
V̨ + flFR

d V̨

dt
dvR = F̨ (t) ,

(4.48)

and the balance of angular momentum reads

d J̨(t)
dt

= d
dt

⁄

P
r̨ ◊ flF v̨ dv = d

dt

⁄

PR

r̨ ◊ flFR
V̨ dvR

=
⁄

PR

r̨ ◊ flFR

d V̨

dt
+ r̨ ◊

d flFR

dt
V̨ + d r̨

dt
◊ flFR

V̨ dvR = M̨(t) ,

(4.49)

where F̨ (t) and M̨(t) are vector-valued functions that represent respectively the
resultant force and the resultant moment (or resultant torque) [28]. They
represent the external forces and moments acting on the continuum body and
are defined respectively as [28]

F̨ (t) =
⁄

ˆP
t̨ da +

⁄

P
b̨ dv =

⁄

ˆPR

T̨ daR +
⁄

PR

B̨ dvR , (4.50)

and

M̨(t) =
⁄

ˆP
r̨ ◊ t̨ da +

⁄

P
r̨ ◊ b̨ dv =

⁄

ˆPR

r̨ ◊ T̨ daR +
⁄

PR

r̨ ◊ B̨ dvR . (4.51)

4.5.2.2 Cauchy’s stress theorem

Cauchy’s Theorem (of Cauchy’s Tetrahedron) for the Stress states that there
exist unique second-order tensor fields � and P such that

t̨ = �n̨ , (4.52a)

T̨ = P N̨ . (4.52b)

which describe the linear relation between the surface traction t̨ or T̨ and the
normal n̨ or N̨ [28].

4.5.2.3 Equation of motion in spatial and material description

Applying the Cauchy’s Stress Theorem (4.52) and the Divergence Theorem
(4.35), the balance of linear momentum in the current and in the reference
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configuration, which are written at points x̨ and X̨ in the comet tail, read
⁄

P
div [� ] + b̨ ≠

d flF v̨

dt
dv = 0 , (4.53)

and ⁄

PR

Div [P ] + B̨ ≠
d flFR

V̨

dt
dvR = 0 , (4.54)

respectively [28].
In the referential local form, the balance of linear momentum reads

Div [P ] + B̨ = d flFR

˙̨‰
dt

, X̨ œ �R (4.55)

with B̨ denoting external body forces per unit reference volume in the material
representation, ˙̨‰ = V̨ denoting the referential F-actin network advection velocity
and flFR

denoting the referential density of actin network. P is the nominal stress
tensor (first Piola-Kirchho� stress tensor), obeying the symmetry condition

PF T = FP T
, (4.56)

which is the balance of angular momentum. Among the external forces acting
on the F-actin network, the cytosol viscous drag forces, that act opposite to the
relative motion of the F-actin network, are included [6, 28, 32, 24, 33].

4.6 Chemical kinetics: mass action
The coexistence of G-actin and F-actin can be studied in terms of volume

fractions, defining the volume fractions occupied by F and G, or in terms of
concentrations. It is defined as an initial volume, in which no F-actin filaments
are present, and a current volume, in which an amount of network is present.
The molar volumes of G-actin and F-actin are considered as di�erent and this
di�erence constitutes the molecular motor. If this is true, there is a di�erence
between the volume in the current and in the reference configuration, which
is dictated by the amount of the F-actin network that polymerizes. The ratio
between the volume in the current and in the reference configuration, in the
absence of mechanical forces of elastic type, represents a swelling factor.

The concentration of G-actin within actin filaments should not be taken as
an unknown field, since it is always "saturated". However, the volume occupied
by the network polymer is not known, so we may use the volume fractions to
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characterize the evolution of the polymerization process. It reads

�F = vF

vtot

, �G = vG

vtot

, (4.57)

where �F represents the volume occupied by F-actin network and �G represents
the volume occupied by G-actin molecules. Combining the volume fraction and
the volume occupied by the network, it follows

vF = molF ÊF �F = molF

vtot

ÊF . (4.58)

4.6.1 Swelling factor

We assume that the G-actin is partially transformed into the F-actin network
by the reaction (4.38); hence, at every point X̨ œ �R at time t, two phases G
and F coexist [6]. Assume that mol

0
G

= molG + molF ; in the initial condition
the reference state is defined to be pure monomeric G-actin and in the absence
of any mechanical e�ect, the volume of a neighborhood at X̨ evolves as

dv = dvR ≠ dv
0
G

+ dvG + dvF

= dvR ≠ mol
0
G

ÊG + molG ÊG + molF ÊF

= dvR ≠ ÊG (molG + molF ≠ mol
0
G

) + molF (ÊF ≠ ÊG)

= dvR + molF (ÊF ≠ ÊG)

= dvR + (molF ) �F ,

(4.59)

with �F = (ÊF ≠ ÊG). Êa denotes the molar volume of a-species (volume of the
a-mole, presumed to be constant), which takes a di�erent value for each species
(ÊG and ÊF ) [6].

From eq. (4.59), the change in volume per unit reference volume can be
written as

J
c(X̨, t) = dv

dvR

= 1 + cFR
(X̨, t) �F , (4.60)

with cFR
depicting the referential concentration of the F-actin network, namely the

number of F-actin unit molecules reckoned per unit volume of the un-polymerized
reference configuration, and J

c representing the swelling factor, entirely due to
polymerization [6]. From eq. (4.60), we can write

d J
c

dt
= �F

d cFR

dt
. (4.61)
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4.6.2 Signal for polymerization and delay for depolymer-
ization

The rate of the reaction (4.38) is defined via the law of mass action in the
current configuration as

w
(4.38)(x̨, t) = kf

ËG

1 ≠ ËG

≠ kb

ËF

1 ≠ ËF

, (4.62)

with kb and kf the backward and forward reaction rate parameters,

Ëa(x̨, t) = ca(x̨, t)
cmax

a
(x̨, t) with a = G, F , (4.63)

and c
max

a
the saturation limit for every a-species. Taking advantage of eq. (4.41a)

and (4.41b), eq. (4.62) writes in the reference configuration as

w
(4.38)
R

(X̨, t) = kfR

ËGR

1 ≠ ËGR

≠ kbR

ËFR

1 ≠ ËFR

, (4.64)

with ËaR
denoting the ratio

ËaR
(X̨, t) = caR

(X̨, t)
cmax

aR
(X̨, t)

, with a = G, F . (4.65)

As discussed in [34], two paradigmatic cases shall be considered for the relation-
ship between the saturation concentration in the reference and in the current
configuration [6]. Here it is assumed that the maximum number of molecules per
unit volume is invariant: this case occurs when the volume occupied by each unit
species is invariant, and species can relocate to occupy eventual volumetric ex-
pansions of the hosting material. Under this assumption, c

max

aR
(X̨, t)=c

max

a
(x̨, t),

while kfR
= kf and kbR

= kb far from saturation [6].
Normally, the polymerization reaction begins and reaches equilibrium, where

the continuous addition of new monomers to the filament is balanced by the loss
of monomers, resulting in a constant filament length. In this state, no net force
or energy can be derived from the process. Therefore, in most forms of ABM,
an external energy input is necessary to reverse the polymerization reaction and
maintain actin filaments far from chemical equilibrium. The most controlled
version of this external energy input occurs in continuous cycles, primarily at the
cost of ATP hydrolysis. In this process, the polymer utilizes the free energy from
ATP hydrolysis to convert kinetic di�erences between subunit addition rates at
the plus and minus ends into energetic disparities that the polymerization motor
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can potentially exploit [1].
In addition to hydrolysis, accessory proteins such as Arp2/3, VASP, and

capping protein are recruited to support the formation of the F -actin network
during actin polymerization [35, 8]. In the context of pathogen motility, the
activator that initiates and coordinates all these processes is the ActA, a stable
protein located on the surface of the bacterium.

As done in [36], we embody all these biochemical signaling pathways in a
single signaling function C in the forward reaction rate parameter kf

kf = C k
ú
f

, (4.66)

where k
ú
f

is a constant and C represents the activation signal that triggers actin
polymerization and network formation [6].

The network depolymerization is also dependent on external cues; whereas
biological studies are still insu�ciently detailed, we include all environmental
factors (such as the mechanical stress in the network, among others) into a
phenomenological descriptor, a time delay · from the onset of polymerization,
which corresponds to the notion of the half-life of filaments, introduced in [8].
For this reason, the backward reaction rate parameter is defined as follows

kb = 0 if cFR
(X̨, t ≠ ·) = 0 ,

kb = k
ú
b

otherwise .

(4.67)

Two circumstances occur

- the depolymerization does not take part at positions X̨ of the cell in which
the concentration of F-actin network at time t ≠ · > 0 was null, namely
everywhere when t ≠ · Æ 0 or where G-actin had not been polymerized at
time t≠· yet. This implies that kb = 0 and it is consistent with considering
that each filament has a lifetime, during which no depolymerization occurs;

- the depolymerization does take part at positions X̨ of the cell where the
F-actin network was already present at time t≠· . This implies that kb = k

ú
b

with k
ú
b

”= 0 and it entails that filaments start to depolymerize a period of
time · after their polymerization began [6].

The assumption that both the forward and backward reaction parameters are
force-independent is a simplification of the real process since the presence of the
load force can a�ect both kf and kb [1].
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4.7 Construction of a thermodynamically consis-
tent model

4.7.1 Energy balance

4.7.1.1 Energy balance in the current configuration

Denote with �(t) the advecting cell and with ˆ�(t) its membrane [6]. Con-
sider an arbitrary region P µ �(t) [6]. The first law of thermodynamics (energy
balance) rules the transformation from one type of energy involved in the ther-
modynamic process into another [6]. The energy balance for the problem at hand
reads [28]

d K(P)
dt

+ d U(P)
dt

= Wu(P) + Qu(P) + Tu(P) , (4.68)

where

- K(P) represents the kinetic energy of a continuum body occupying a
region P at time t. It is a generalization of Newtonian mechanics to
continuum mechanics and it is defined as

K(P) =
⁄

P

1
2flF v̨ · v̨ dv , (4.69)

so it is non null only when flF ”= 0. The spatial velocity field is denoted by
v̨ = ˙̨x [28].

- U(P) represents the internal energy possessed by a continuum body
occupying a certain region P. It is the sum of all the microscopic forms of
energy and it is defined as

U(P) =
⁄

P
u dv , (4.70)

where u is a thermodynamic extensive state variable defined per unit current
volume [28].

- Wu(P) represents the mechanical external power or the rate of me-
chanical external work. It is the power input on a region P at time t

done by the system of forces (̨t, b̨)

Wu(P) =
⁄

ˆP
v̨ · t̨ da +

⁄

P
v̨ · b̨ dv . (4.71)

The scalar quantities v̨ · t̨ and v̨ · b̨ give the external mechanical power
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per unit current surface a and the current volume v, respectively. As
mentioned before, the cytosol does not provide any mechanical capability,
so the external forces act on the F-actin network only. Using the Cauchy
Stress Theorem (4.52) and the Divergence Theorem (4.35), we can rewrite
the eq. (4.71) as [28]

Wu(P) =
⁄

ˆP
�n̨ · v̨ da +

⁄

P
v̨ · b̨ dv =

⁄

ˆP
�v̨ · n̨ da +

⁄

P
v̨ · b̨ dv

=
⁄

ˆP
div [�v̨ ] dv +

⁄

P
v̨ · b̨ dv

=
⁄

ˆP
� : grad [ v̨ ] dv +

⁄

P
(div [ ‡ ] + b̨) · v̨ dv

=
⁄

ˆP
� : d dv + d

dt

⁄

P

1
2flF v̨ · v̨ dv = W

int

u
(P) + d K(P)

dt
.

(4.72)

- Qu(P) represents the thermal (non-mechanical) power or the rate of
thermal work [28]

Qu =
⁄

P
sq dv ≠

⁄

ˆP
q̨ · n̨ da . (4.73)

where sq denotes the heat source per unit time and per unit current volume
and q̨ denotes the heat flux, which is defined per unit time and per unit
current surface area. The total heat flux

s
ˆP q̨ · n̨ da determines the rate

at which heat enters (inward normal flux) the body across the current
boundary surface ˆP.

- Tu(P) represents the power due to mass transfer

Tu =
⁄

P

u
µ

G
sG dv ≠

⁄

ˆP

u
µ

F
h̨F · n̨ + u

µ
G

h̨G · n̨ daR , (4.74)

where h̨a and sG are defined in paragraph 4.5.1.1 and u
µ

a
denotes the

change in specific energy (energy per mol) provided by a unit supply of
moles of a-species [6, 28].

4.7.1.2 Energy balance in the reference configuration

To express the terms of the balance of mechanical energy with respect to
material coordinates at time t, all the contributions of the energy balance in
the material coordinates must be established. So, using the rules for scalar
transformation in 4.2, the contributions of eq. (4.68) can be rewritten as [28]
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- K(P): considering that v̨ = V̨ , the kinetic energy in the reference
configuration reads [28]

K(P) =
⁄

P

1
2flF v̨ · v̨ J dvR =

⁄

PR

1
2JflF V̨ · V̨ dvR

=
⁄

PR

1
2flFR

V̨ · V̨ dvR = K(PR) .

(4.75)

- U(P): the internal energy in the reference configuration reads [28]

U(P) =
⁄

P
u J dvR =

⁄

PR

uR dvR = U(PR) . (4.76)

- Wu(P): the mechanical external power in the reference configuration
reads [28]

Wu(P) =
⁄

ˆPR

J� : d dvR + d
dt

⁄

PR

1
2JflF V̨ · V̨ dvR

=
⁄

ˆPR

J� : dF

dt
F≠1 dvR + d

dt

⁄

PR

1
2flFR

V̨ · V̨ dvR

=
⁄

ˆPR

J�F≠T : dF

dt
dvR + d

dt

⁄

PR

1
2flFR

V̨ · V̨ dvR

=
⁄

ˆPR

P : dF

dt
dvR + d

dt

⁄

PR

1
2flFR

V̨ · V̨ dvR

= W
int

u
(PR) + d K(PR)

dt
.

(4.77)

- Qu(P): using the divergence theorem, the thermal (non-mechanical)
power reads [28]

Qu(P) =
⁄

PR

Jsq dvR ≠

⁄

ˆPR

q̨ · JF≠T
N̨ daR

=
⁄

PR

sqR
dvR ≠

⁄

ˆPR

JF≠1
q̨ · N̨ daR

=
⁄

PR

sqR
≠ Div

Ë
Q̨

È
dvR = Qu(PR) .

(4.78)

- Tu(P): using the divergence theorem and the mass balance equation, the
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power due to mass transfer reads [28]

Tu(P) =
⁄

PR

u
µ

G
JsG dvR +

≠

⁄

ˆPR

u
µ

F
h̨F · JF≠T

N̨ + u
µ

G
h̨G · JF≠T

N̨ daR

=
⁄

PR

u
µ

G
sGR

dvR ≠

⁄

ˆP

u
µ

F
H̨F · N̨ + u

µ
G

H̨G · N̨ daR

=
⁄

PR

u
µ

G
sGR

≠ Div
Ë

u
µ

F
H̨F

È
≠ Div

Ë
u
µ

G
H̨G

È
dvR

=
⁄

PR

u
µ

G
sGR

≠ Grad [ u
µ

F
] · H̨F ≠

u
µ

F
Div

Ë
H̨F

È
+

≠ Grad [ u
µ

G
] · H̨G ≠

u
µ

G
Div

Ë
H̨G

È
dvR

=
⁄

PR

(u
µ

G
≠

u
µ

F
) w

(4.38)
R

+ u
µ

G

ˆcGR

ˆt

≠ H̨G · Grad [ u
µ

G
] + u

µ
F

ˆcFR

ˆt
≠ H̨F · Grad [ u

µ
F

] dvR

= Tu(PR) .

(4.79)

Considering an arbitrary material region PR, the referential global energy balance
reads [28]

d K(PR)
dt

+ d U(PR)
dt

= Wu(PR) + Qu(PR) + Tu(PR) . (4.80)

The individual contributions read

d K

dt
= d

dt

⁄

PR

1
2flFR

V̨ · V̨ dvR, (4.81a)

d U

dt
=

⁄

PR

d uR

dt
dvR , (4.81b)

Wu =
⁄

ˆPR

P : dF

dt
dvR + d

dt

⁄

PR

1
2flFR

V̨ · V̨ dvR , (4.81c)

Qu =
⁄

PR

sqR
≠ Div

Ë
Q̨

È
dvR , (4.81d)

Tu =
⁄

PR

(u
µ

G
≠

u
µ

F
) w

(4.38)
R

+ u
µ

G

ˆcGR

ˆt
(4.81e)

≠ H̨G · Grad [ u
µ

G
] + u

µ
F

ˆcFR

ˆt
≠ H̨F · Grad [ u

µ
F

] dvR ,

where ˙̨
V represents the referential velocity, uR the internal energy density per unit

volume, sqR
the heat source per unit reference volume and unit time generated
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into region PR of the body, Q̨ the heat flux vector per unit reference surface
area and unit time and N̨ the outward unit normal to the reference surface. H̨a

and sGR
are defined in paragraph 4.5.1.1 and u

µ
a

denotes the change in specific
energy provided by a unit supply of moles of a-species [6, 28].

The referential global energy balance eventually takes the form

⁄

PR

d uR

dt
dvR =

⁄

PR

P ·
dF

dt
+ sqR

≠ Div
Ë

Q̨

È
+ (u

µ
G

≠
u
µ

F
) w

(4.38)
R

(4.82)

+ u
µ

G

ˆcGR

ˆt
≠ H̨G · Grad [ u

µ
G

]

+ u
µ

F

ˆcFR

ˆt
≠ H̨F · Grad [ u

µ
F

] dvR .

4.7.2 Entropy imbalance

The first law of thermodynamics rules the energy transformation within a
thermodynamic process, but it does not consider the direction of the energy
transfer. To fill this gap, the second law of thermodynamics (entropy imbalance),
which governs the direction of an energy transfer process, is discussed. The
entropy per unit current and reference volume

÷R = ÷R(X̨, t) or ÷ = ÷(x̨, t)

is introduced as a fundamental state variable, that can be viewed as the quan-
titative measure of microscopic randomness and disorder and whose physical
interpretation is provided by the statistical mechanics.

4.7.2.1 Entropy imbalance in the current configuration

Consider an arbitrary spatial region P µ �(t), the di�erence between the
change in the system’s total entropy and the rate of entropy input determines
the total entropy production per unit of time, which represents the current global
entropy imbalance. It reads

d S(P, t)
dt

≠ Q÷(P, t) ≠ T÷(P, t) Ø 0 , (4.83)

where S(P, t) represents the net internal entropy, Q÷(P, t) the entropy per unit
time due to heat transfer and T÷(P, t) the entropy per unit time due to mass
transfer. The relation defines a trend in time describing the direction of the
energy transfer: it postulates the irreversibility of thermodynamic processes,
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which entails the increase in entropy in irreversible processes and a balance of
entropy in reversible processes (the production of entropy is never negative) [28].

The individual contributions read

d S

dt
=

⁄

P

d ÷

dt
dv , (4.84a)

Q÷ =
⁄

P

1
T

sq dv ≠

⁄

ˆP

1
T

q̨ · n̨ da , (4.84b)

T÷ =
⁄

P

÷
µ

G
sG dv ≠

⁄

ˆP

÷
µ

G
h̨G · n̨ + ÷

µ
F

h̨F · n̨ da , (4.84c)

where ÷ is a scalar field that represents the internal entropy density per unit
current volume and measures the randomness and disorder and ÷

µ
a

denotes the
change in specific entropy provided by a unit supply of moles of a-species. The
rate of entropy input is provided by the amount of entropy transferred across
the boundary and the entropy produced inside the region, related to the heat
and mass fluxes and the heat and mass production. According to the absolute
temperature definition, it is postulated that the entropy heat fluxes and entropy
heat sources are related to the heat fluxes and the heat sources by the factor 1

T

[28].

4.7.2.2 Entropy imbalance in the reference configuration

Considering an arbitrary material region PR, the referential global entropy
imbalance reads

d S(PR)
dt

≠ Q÷(PR) ≠ T÷(PR) Ø 0 . (4.85)

Using the rules for scalar transformation in 4.2, each of the contributions in eq.
(4.84) can be rewritten in the reference configuration as [28]

d S(PR)
dt

=
⁄

PR

d ÷R

dt
dvR , (4.86a)

Q÷(PR) =
⁄

PR

1
T

sqR
dvR ≠

⁄

ˆPR

1
T

Q̨ · N̨ daR , (4.86b)

T÷(PR) =
⁄

PR

÷
µ

G
sGR

dvR ≠

⁄

ˆPR

÷
µ

G
H̨G · N̨ + ÷

µ
F

H̨F · N̨ daR . (4.86c)

Multiplying eq. (4.85) by T and taking advantage of eq. (4.82) to re-write
the term ≠sqR

+ Div
Ë

Q̨

È
, after some algebra eq. (4.85) in the global form reads
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⁄

PR

T
d ÷R

dt
≠

d uR

dt
+ P ·

dF

dt
+ µG

ˆcGR

ˆt
+ µF

ˆcFR

ˆt
≠ H̨G · Grad [ µG ] +

≠ H̨F · Grad [ µF ] ≠ A
(4.38)

w
(4.38)
R

dvR Ø 0 ,

(4.87)
having defined µa = u

µ
a

≠ T
÷
µ

a
for the a-species and A

(4.38) = µF ≠ µG [6, 28].

4.7.3 Helmholtz free energy

The mathematical description of a thermodynamical process requires the
choice of the independent state variables that are controlled during the process.
The independent state variables imply the choice of the thermodynamical potential
(internal energy, Helmholtz free energy, enthalpy, or Gibbs free energy), that is
obtained through the Legendre transformation.

The specific Helmholtz free energy per unit referential volume is the appropri-
ate thermodynamical potential variable for processes where temperature and the
kinetic variables are the independent variables, so it is a suitable thermodynamic
potential in continuum mechanics 1. It is defined in the state variables caR

, E
and some kinematic internal variable › as

ÂR = uR ≠ T ÷R . (4.88)

Taking advantage of eq. (4.88) and using the derivative of the Helmholtz free
energy with respect to time at thermal equilibrium

d ÂR

dt
= d uR

dt
≠ T

d ÷R

dt
≠

d T

dt
÷R = d uR

dt
≠ T

d ÷R

dt
, (4.89)

we re-write eq. (4.87) as
⁄

PR

d ÂR

dt
≠ S ·

ˆ E

ˆt
≠ µF

ˆcFR

ˆt
≠ µG

ˆcGR

ˆt
+ A

(4.38)
w

(4.38)
R

+

+ H̨G · Grad [ µG ] + H̨F · Grad [ µF ] dvR Æ 0 ,

(4.90)

where an alternative expression for the stress power, with the second Piola-
Kirchho� stress tensor S, is employed [6]. The total time derivative of ÂR =

1State variables are all referential fields. Accordingly, their total and partial derivatives
with respect to time coincide. For this reason, we will use the notation of partial derivative
henceforth for all state variables [6].
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ÂR (cGR
, cFR

,E, ›) reads

d ÂR

dt
= ˆÂR

ˆE

----
cFR

, cGR
, ›

·
ˆE

ˆt
+ ˆÂR

ˆcGR

----
cFR

, E, ›

ˆcGR

ˆt

+ ˆÂR

ˆcFR

----
cGR

, E, ›

ˆcFR

ˆt
+ ˆÂR

ˆ›

----
cFR

, cGR
, E

·
ˆ›

ˆt
.

(4.91)

Substituting eq. (4.91) into eq. (4.90), the Clausius-Duhem inequality arises
⁄

PR

3
ˆÂR

ˆE
≠ S

4
·

ˆE

ˆt
+

3
ˆÂR

ˆcFR

≠ µF

4
ˆcFR

ˆt
+

3
ˆÂR

ˆcGR

≠ µG

4
ˆcGR

ˆt
+

≠ ‰ ·
ˆ›

ˆt
+ H̨G · Grad [ µG ] + H̨F · Grad [ µF ] + A

(4.38)
w

(4.38)
R

dvR Æ 0 ,

(4.92)
which can be localized at X̨ œ PR since it holds for any arbitrary subpart PR

[6, 28].

4.7.4 Intermediate configuration

Recalling eq. (4.2), (4.11) and using the identity P = J�F
≠T , the internal

power in the intermediate configuration can be written as
⁄

PR

S ·
dE

dt
dvR =

⁄

PR

P ·
dF

dt
dvR

=
⁄

PR

P · (dF e

dt
F c + F e

dF c

dt
) dvR

=
⁄

PR

PF c
T

·
dF e

dt
+ F e

T
P ·

dF c

dt
dvR

=
⁄

PR

PF c
T

·
dF e

dt
+ F e

T
PF c

T
· lc dvR

=
⁄

PR

J�F
≠T

F c
T

·
dF e

dt
+ F e

T
J�F

≠T
F c

T
· lc dvR

=
⁄

PC

J
e�F e

≠T
·

dF e

dt
+ J

eF e
T
�F e

≠T
· lc dvc

=
⁄

PC

P e
·

dF e

dt
+ M e

· lc dvc ,

(4.93)
where we have defined

P e = J
e�F e

≠T
= F eSe

, M e = J
eF e

T
�F e

≠T
= CeSe (4.94)

as the first Piola-Kirchho� tensors and the elastic Mandel stress tensor [6].
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Taking advantage of eq. (4.4), (4.6), (4.7), and (4.94), eq. (4.93) becomes

⁄

PC

P e
·

dF e

dt
+ M e

· lc dvc =
⁄

PC

F eSe
·

dF e

dt
+ CeSe

· lc dvc

=
⁄

PC

F eSe
·

dF e

dt
+ CeSe

· lc dvc

=
⁄

PC

Se
· F e

T dF e

dt
+ CeSe

· lc dvc

=
⁄

PC

Se
·

dEe

dt
+ CeSe

· dc dvc

=
⁄

PC

Se
·

dEe

dt
+ 1

3Jc

d J
c

dt
tr [CeSe ] dvc .

(4.95)
where we have defined

Se = J
eF e

≠1
�F e

≠T
(4.96)

as the elastic second Piola-Kirchho� tensors [6].

4.7.5 Thermodynamic restrictions

Since the Clausius-Duhem inequality (4.92) holds for every admissible process,
the following thermodynamic prescriptions in the reference configuration arise
through the Coleman-Noll procedure

S = ˆÂR

ˆE

----
cGR

, cFR
, ›

, (4.97a)

µG = ˆÂR

ˆcGR

----
cFR

, E, ›

, (4.97b)

µF = ˆÂR

ˆcFR

----
cGR

, E, ›

, (4.97c)

and the dissipation inequality in the reference configuration

≠ ‰ ·
ˆ›

ˆt¸ ˚˙ ˝
inelastic

+ H̨G · Grad [ µG ] + H̨F · Grad [ µF ]¸ ˚˙ ˝
mass transport

+ w
(4.38)
R

A
(4.38)

¸ ˚˙ ˝
chemical

Æ 0 (4.98)

holds, where we have denoted

‰ = ≠
ˆÂR

ˆ›
. (4.99)
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The imbalance (4.98) is a sum of two factors products that represent flux and
force quantities. In particular, the flux quantities ˆ›

ˆt
, H̨a and w

(4.38)
R

represent
the viscous tensor flow (or the internal flux variables), the di�usion flow and
the chemical reaction rate, respectively. These fluxes are associated with their
force quantities, called "thermodynamic forces" or "a�nities", that are related
to a gradient of an intensive state variable. In the imbalance (4.98), they are
‰, Grad [ µa ] and A

(4.38) and they represent the thermodynamic driven force
associated with the internal variable › (its energy-conjugate force), the gradient
of the chemical potential and the chemical a�nity of the reaction, respectively.

4.7.5.1 Curie simmetry principle

To establish the phenomenological equations between the independent fluxes
and the thermodynamic forces of the expression (4.98), the Curie symmetry
principle is introduced. This principle is based on the observation that the
fluxes and the thermodynamic forces do not all have the same tensorial character
(scalars, vectors, and tensors of second rank). This means that under rotations and
reflections, the Cartesian components of these quantities transform in di�erent
ways. As a consequence, symmetry properties of the considered material system
may have the e�ect that the components of the fluxes do not depend on all
components of the thermodynamic forces [37]. Thus, it can be shown that fluxes
and thermodynamic forces of di�erent tensorial characters do not couple [37]
(cap 3 sec 2).

So, adopting the Curie principle, inequality (4.98) can be written as

≠‰ ·
ˆ›

ˆt
Æ 0 , (4.100a)

H̨F · Grad [ µF ] + H̨G · Grad [ µG ] Æ 0 , (4.100b)

w
(4.38)
R

A
(4.38)

Æ 0 , (4.100c)

The inequality (4.100c) is a priory satisfied by the mass action law (4.64) [6].

4.7.5.2 Onsager reciprocal relations

To satisfy the inequality (4.100b), a phenomenological approach is normally
adopted, in which a functional form is postulated and the parameters appearing in
it are obtained by fitting to experimental measurements. The simplest possibility
is to assume a linear relation between the arguments, so in general, it reads

Ji = LijYj , (4.101)
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where Ji represents the fluxes and Yj the forces. The entries of the matrix L

are called the phenomenological coe�cients [33]. To respect the imbalance in eq.
(4.100), the matrix L must be positive definite, which imposes constraints on its
coe�cients. Moreover, for systems close to equilibrium the phenomenological
coe�cients matrix must be symmetric, so

Lji = Lij .

This is known as the "Onsager reciprocal relation" and it is related to the
property of "time reversal invariance" on phenomenological equations of individual
particle motion. This property of "time reversal invariance" expresses the idea
that the mechanical equations of particle motion are symmetric with respect to
time, which implies that the particles retrace their former paths if all velocities
are reversed [37].

In this specific case, the flows of G-actin monomers and F-actin network,
H̨G and H̨F , are linearly correlated to the gradient of their chemical potentials,
Grad [ µG ] and Grad [ µF ], as follows

H̨G = ≠MGR
Grad [ µG ] , (4.102a)

H̨F = ≠MFR
Grad [ µF ] , (4.102b)

where MGR
and MFR

are positive definite mobility tensors of the monomeric
G-actin and the network of F-actin, respectively [6]. They are taken as

MGR
(cGR

) = u|
GR

c
max

GR
ËGR

(1 ≠ ËGR
) 1 , (4.103a)

MFR
(cFR

) = u|
FR

c
max

FR
ËFR

(1 ≠ ËFR
) 1 , (4.103b)

with u|
GR

> 0 and u|
FR

> 0 the mobilities respectively of the monomeric G-actin
and the network of F-actin [6]. The mobilities represents the average velocity
when applying a force of 1 N

mol and it is assumed not to change throughout the
time [6]. It follows that the two phases representing the null concentration and
the saturation limit, caR

= 0 and caR
= c

max

aR
(saturation limit), have vanishing

mobility [6]. More complex laws, of Maxwell-Stefan type [38], can be used for
the G and F-actin flows in place of (4.102) [6].

Following (4.99) and the Onsager reciprocal relation for the inelastic internal
entropy production, a positive definite operator L is chosen, in such a way that

� = L
ˆ›

ˆt
. (4.104)
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4.8 Constitutive theory
The Helmholtz free energy density ÂR can be represented by an additive

decomposition

ÂR(cGR
, cFR

,E, ⇠) = Â
diff

R
(cGR

, cFR
) + Â

el

R
(cFR

,E) + Â
in

R
(cFR

,E, ⇠) , (4.105)

which separates the di�usive contribution Â
diff

R
, the elastic contribution Â

el

R
, and

the inelastic counterpart Â
in

R
[6].

4.8.1 Mechanical contribution

Following [28], we define visco-elastic materials based on the multiplicative
decomposition (4.15), using tensors Ee

v and Ee
i . Specifically, the free energy

for visco-elastic materials is defined as follows

Â
el

R
(cFR

,E) + Â
in

R
(cFR

,E, ⇠) = Â
el,vol

R
(cFR

,Ee
v

) + Â
el,iso

R
(cFR

,Ee
i

)

+ Â
in

R
(cFR

,Ee
≠ ⇠) ,

(4.106)

where Ee depends on E via eq. (4.8) [6]. Considering the rheological model of
Maxwell, for which we refer to [27] or [28], the inelastic part of the free energy is
defined in such a way that

ˆÂ
in

R

ˆE
= ≠

ˆÂ
in

R

ˆ⇠
. (4.107)

Provided that the above holds, the selection for Â
el

R
and Â

in

R
is arbitrary [6].

The elastic reversible behavior occurs once the viscous e�ects vanish (ideally at
t æ Œ ) and is described by Â

el

R
[6]. The inelastic free energy accounts for the

non-equilibrium response due to viscosity [6]. By thermodynamic restrictions
(4.97a), (4.100a), (4.99) and identity (4.107), the following identities hold

� = ≠
ˆÂ

in

R

ˆ⇠
= ˆÂ

in

R

ˆE
, (4.108a)

S = ˆÂ
el

R

ˆE
+ � . (4.108b)

According to eq. (4.108b), tensorial internal forces � can be interpreted as a
non-equilibrium stress tensor of second Piola-Kircho� kind, that accounts for the
viscous response [6].
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4.8.2 Chemical potentials

The di�usive contribution of the Helmholtz free energy is inferred from sta-
tistical mechanical theory. In particular, the two-state system model, which is
one of the simplest statistical mechanical models that describes a wide variety of
physical phenomena at a basic level, is applied to identify the function density
of microstates of the a-species �a. Taking advantage of Stirling’s approxima-
tion, the combination formula for the potential conformations of actin protein
concentrations inside a cell reads

�a =
#

Ë
Ëa

a
(1 ≠ Ëa)(1≠Ëa)$≠NAc

max

a
, (4.109)

where NA is the Avogadro’s number and a = G-actin, F-actin. By means of the
Boltzmann equation, it is obtained

÷
diff

a
=kB ln �a

=kB ln
#

Ë
Ëa

a
(1 ≠ Ëa)(1≠Ëa)$≠NAc

max

a

= ≠ kBNA c
max

a

!
Ëa ln[Ëa] + (1 ≠ Ëa) ln [1 ≠ Ëa]

"
,

(4.110)

where kBNA = R.
Following [39], the di�usive contribution of the Helmholtz free energy for the

continuum approximation of mixing is

Â
diff

R
(cGR

, cFR
) =µ

0
GR

≠ T÷
diff

GR
+ RTc

max

GR
◊GR

(1 ≠ ◊GR
)‰+ (4.111)

+ µ
0
FR

≠ T÷
diff

FR
+ RTc

max

FR
◊FR

(1 ≠ ◊FR
)‰ ,

where µ
0
a

is the reference value of each chemical potential and ‰ is a real constant
that specifies the energy of interaction among species. Since the contribution of
the entropy mixing is negligible, ‰ is considered null.

Taking advantage of eq. (4.110), the free energy density for the continuum
approximation of mixing reads

Â
diff

R
(cGR

, cFR
) = µ

0
G

cGR
+ (4.112)

+ R Tc
max

GR
[ËGR

ln ËGR
+ (1 ≠ ËGR

) ln(1 ≠ ËGR
)] +

+ µ
0
F

cFR
+

+ R Tc
max

FR
[ËFR

ln ËFR
+ (1 ≠ ËFR

) ln(1 ≠ ËFR
)] .

Using the thermodynamic restrictions (4.97b) and (4.97c) and following the
additive decomposition of the Helmholtz free energy (5.19), the chemical potential
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of species a = G, F can be written as

µG = ˆÂ
diff

R

ˆcGR

, (4.113a)

µF = ˆÂ
diff

R

ˆcFR

+ ˆÂ
el,vol

R

ˆcFR

+ ˆÂ
el,iso

R

ˆcFR

+ ˆÂ
in

R

ˆcFR

, (4.113b)

where mechanical contributions enter only the definition of the chemical potential
of the F-actin network. The volumetric contribution Â

el,vol

R
a�ects chemical

potential µF via the swelling tensor Ee
v , while Ee

i is independent on the
concentration of species [6].

For the simple case of G-actin, the gradient of µG reads

Grad [ µG ] = R T

c
max

GR

1
ËGR

(1 ≠ ËGR
) Grad [ cGR

] , (4.114)

and taking advantage of eq. (4.102a), (4.103a), (4.113a) and (4.114), the Fick’s
constitutive relation is obtained

H̨G = ≠D|
GR

Grad [ cGR
] , (4.115)

where D|
GR

= u|
R

R T represents G-actin di�usivity. Following eq. (5.20), (4.113b)
and (4.114), eq. (4.102b) reads

H̨F = ≠ K|
FR

Grad [ cFR
] ≠ MFR

Grad
C

ˆÂ
el,vol

R

ˆcFR

D
+

≠ MFR
Grad

C
ˆÂ

el,iso

R

ˆcFR

D
≠ MFR

Grad
5

ˆÂ
in

R

ˆcFR

6
,

(4.116)

where K|
FR

is a term that accounts for the F-actin network transport [6].

4.9 Governing equations with boundary condi-
tions

Combining the mass action law and the constitutive equations with the mass
balance of species and the balance of momentum, the equations that govern all
the processes are derived [6]. Taking advantage of eq. (4.64), the transport of
actin is coupled with polymerization and depolymerization reactions in the mass
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balance equations

ˆcGR

ˆt
+ Div

Ë
H̨G

È
+ kfR

ËGR

1 ≠ ËGR

≠ kbR

ËFR

1 ≠ ËFR

= sGR
, (4.117a)

ˆcFR

ˆt
+ Div

Ë
H̨F

È
≠ kfR

ËGR

1 ≠ ËGR

+ kbR

ËFR

1 ≠ ËFR

= 0 (4.117b)

with H̨G and H̨F from eq. (4.115) and (4.116) [6]. The balance of linear
momentum (4.55) can be specified as

Div [F S ] + B̨ = d flFR

˙̨‰
dt

, X̨ œ �R , (4.118)

where the second Piola-Kirchho� stress emanates from (4.97a) and

F = ( 1 + cFR
�F ) 1

3 F e
. (4.119)

Boundary conditions along Neumann boundaries ˆ
N �R read

H̨G · N̨ = hGR
X̨ œ ˆ

N �R , (4.120a)

H̨F · N̨ = hFR
X̨ œ ˆ

N �R , (4.120b)

P N̨ = ˛
T X̨ œ ˆ

N �R , (4.120c)

and Dirichlet boundary conditions along ˆ
D�R are

cGR
= cGR

X̨ œ ˆ
D�R , (4.121a)

cFR
= cFR

X̨ œ ˆ
D�R , (4.121b)

Ų(X̨, t) = ˛
U X̨ œ ˆ

D�R . (4.121c)

The associated initial conditions of eq. (4.117) for concentrations, cGR
(X̨, t = 0)

and cFR
(X̨, t = 0), as well as for displacements and velocities in eq. 4.118,

Ų (X̨, t = 0) and ˙̨‰ (X̨, t = 0), are imposed [6, 32, 40, 39, 37, 41, 24, 33].

4.10 Models assumptions
We verify the consistency of the chemo-mechanical engine depicted in the

former sections on the motion of non-flagellated bacteria through the cytosol.
Pathogens ABM has been largely investigated in the literature [42, 43, 7, 44, 45, 8],
but still some of the material parameters required by our model appear not to
be currently available. Hence, there is room for improvement in establishing a
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clearer connection between the obtained outcomes and experimental evidence.
For this sake, we opened an experimental campaign to validate the model against
real bacteria: outcomes will be published [6].

In this section, we summarize the model assumptions that we have taken into
account, and In the next section, we limit ourselves to two proof of concepts,
with experimental data summarized in the tables.

Since the internal generation of G-actin is negligible, we take the source
term of G-actin as null, i.e. sGR

= 0. Moreover, since G-actin and F-actin
concentrations are far from saturation, we consider a dilute solution and the
mass action law (4.64) becomes

w
(4.38)
R

= kf cGR
≠ kb cFR

.

The governing equation of linear momentum (4.118) for pathogens motility can
be rephrased as

Div [F S ] + B̨ = MF

d cFR

˙̨‰
dt

, (4.122)

with MF representing the molar mass of the F-actin network. We assume that
MF is small so that the inertial e�ects are second-order and can be neglected [6].

Therefore, taking advantage of all previous assumptions, the set of balance
equations (4.117) and (4.118) for the case of ABM of a bacterium is rewritten as

ˆcGR

ˆt
+ Div

Ë
H̨G

È
+ kf cGR

≠ kb cFR
= 0 , (4.123a)

ˆcFR

ˆt
+ Div

Ë
H̨F

È
≠ kf cGR

+ kb cFR
= 0 , (4.123b)

Div [ P11 (F11) ] + B̨ = 0 . (4.123c)

Bacteria associated with actin comet tails move very rapidly within the host
cytoplasm, at rates of up to 1 µm/s [8]. Considering the bacterium speed, we
assume that viscous e�ects do not have su�cient time to develop in the actin
comet tail, even if in reality some cross-link rearrangement can occur. For this
reason, tensorial internal forces � are null and eq. (4.116) becomes

H̨F = ≠K|
FR

Grad [ cFR
] ≠ MFR

Grad
C

ˆÂ
el,vol

R

ˆcFR

D
≠ MFR

Grad
C

ˆÂ
el,iso

R

ˆcFR

D
.

(4.124)
As a simplification, we consider an elastic strain-energy function Âe for
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Saint-Venant materials in the intermediate configuration

Âe = ⁄

2 tr [Ee ]2 + GEe
· Ee

. (4.125)

Using equations (4.9), (4.8) and (4.97a), together with volumetric transfor-
mation of the Helmholtz free energy

Â
el

R
= J

c
Âe ,

we can derive the stress tensor S as

S = ˆÂR

ˆE

----
cGR

, cFR
, ›

= ˆ( J
c

Âe )
ˆE

----
cGR

, cFR
, ›

(4.126)

= J
c

ˆÂe

ˆEe

ˆEe

ˆE

----
cGR

, cFR
, ›

= J
c

1/3
Se

,

with Se defined as

Se = ˆÂe

ˆEe
= ⁄ tr [Ee ] 1+ 2 GEe

. (4.127)

We expect that the material properties of the F -actin network would depend
on cF (G(cFR

), ⁄(cFR
)). According to [46, 47], "the mechanics of the actin

network is defined by its mesh size, that is variously taken as the spacing between
actin filaments inside the network or the distance between fixed crosslink points".
There is evidence that the mesh size strongly a�ects the elastic modulus [48]. We
leave the modeling of this behavior to further studies. In this note, we assume
that all material parameters are independent of the actin network density and
we take them as constant. Accordingly, eq. (4.124) becomes

H̨F = ≠K|
FR

Grad [ cFR
] ≠ MFR

Grad
5

ˆÂ
el

R

ˆcFR

6
. (4.128)

The cytoplasmatic fluid in which the F-actin network is immersed is accounted
for through external viscous drag shear forces acting on the actin comet tail. In
one-dimensional problems, those shear forces become bulk forces B̨. Experimental
observations [10] of the Listeria monocytogenes moving through the fluid show
that turbulence e�ects can be neglected and it can be considered a purely
laminar Stokes’ drag. The bulk forces due to the viscous drag are thus taken as
proportional to velocity

B = ≠‹ U̇1 , (4.129)
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where ‹ generally depends on the material properties, the geometry of the object,
and the properties of the fluid. In a first approximation, we take ‹ as a constant
[6].





Chapter 5

Experimental data,
numerical simulations and
results

In this chapter, we provide essential experimental data for the pathogens
ABM models, sourced from the literature. Then, the proof of concepts that
are inherited from [6], "Actin based motility unveiled: How chemical energy is
converted into motion, J MECH PHYS SOLIDS" and from [25], "Continuum
multi-physics modeling of cell and bacteria motility, submitted" are provided.
The two models described in these papers di�er in the definition of the signal
and the Helmholtz free energy but they both descend from the model discussed
in chapter 4.

5.1 Experimental data
In the current section, we summarize the parameters required for the multi-

physics model introduced in chapter 4. Unfortunately, it is not possible to carry
out a single experiment that validates the model, due to the lack of laboratories
available, but a profound literature research is performed and the majority of the
constitutive parameters are inferred from previous experiments. Some of these
experiments do not show the same results, so it has been our concern to share
all the outcomes in the literature, even if they do not correspond.

Molar volume. In [49], the changes in molar volume of the actin molecule

71
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during Mg2+-induced polymerization are measured. Actin in monomeric form
has a molar volume of 32.2 + 0.2 l

mol . As a reflection of a Mg2+ increment and a
consequent polymerization of actin, the molar volume of actin decreases sharply
by 0.72 l

mol . This result does not agree with two other papers cited in [49],
where it reported a volume increment of 391 and 63 ml

mol . Moreover, here it is not
discussed the molar volume of the F-actin network, but of the single filament.

Di�usivity. The reported G-actin di�usion coe�cient in the cytoplasm
ranges from 3 to 30 µm2

/s [50].
Reaction rate parameters. The parameters of the chemical reaction

between G-actin and F-actin illustrated in [51], [52] and [18] are introduced.
In [51], the polymerizing actin filament is modeled as an elastic rod whose

length grows by the addition of monomers at the tip at a rate kf M [s≠1]
and shortens by losing subunits at a rate kb [s≠1], where kf [s≠1

µM≠1] is the
polymerization rate and M [µM] the local molar concentration of monomers
near the growing tip. The reported polymerization and depolymerization rate
parameters are kf = 11 s≠1

µM≠1 and kb = 1 s≠1, respectively, and the local
molar concentration of monomers near the growing tip is M = 10 ≠ 50 µM.

In [52], fragments of fish epithelial keratocytes are used to characterize the
actin turnover and the spatiotemporal lamellipodia actin organization. Four
di�erent species are taken into account: polymerizable monomers (g), non-
polymerizable monomers (G), oligomers (f), and network actin (F). It is assumed
that network actin disassembles into oligomers, which break up into monomers,
which in turn can switch between a polymerizable and a non-polymerizable form
[52]. The average concentrations for the four subpopulations (F, f, G, and g) are
determined based on their results and the assumption that the assembly rate of
polymerizable monomers in vivo is similar to the rates measured in vitro [52].
Because it is known the amount of filamentous actin in absolute numbers, the
concentrations of the four actin subpopulations are F ¥ 800 µM, f ¥ 400 µM,
G ¥ 1200 µM, and g ¥ 20 µM. The e�ective reaction rate parameters are not
directly measured, except for the network disassembly (r), which is r ¥ 0.25 1

s .
The other rates, namely the e�ective reaction rates for oligomer disassembly
(c), monomer assembly (a), and the transitions between polymerizable and non-
polymerizable monomers, b and k, are inferred from flux balance analysis and the
assumption that the rate of actin-thymosin dissociation, assumed to mediate the
transition of monomers from the non-polymerizable to the polymerizable pool, is
the same as that measured in vitro [52]. At steady state, the number of actin
subunits per unit time transitioning from the network into oligomers, rF , has to be
equal to the number of subunits flowing from oligomers to monomers, cf , as well



5.1 Experimental data 73

as to the number of monomers assembling back into the network, as [52]. Thus,
rF = cf = ag, so that, c = rF/f ¥ 2r ¥ 0.5 1

s , and a = rF

g
¥ 40r ¥ 10 1

s [52].
The transition rates between polymerizable and non-polymerizable monomers
should similarly be related at steady state by a flux balance relation: —g = kG

[52]. To specify these transition rates separately, it is introduced a second model
assumption that the rate of actin-thymosin dissociation (which is assumed to
mediate the transition of an actin subunit from the non-polymerizable monomer
pool to the polymerizable one) is the same as that measured in vitro, so that
k ¥ 2 1

s [52]. In this case, — = kG

g
¥ 120 1

s [52].
So, the reaction rate parameters used in [52] are

- r ¥ 0.25 1
s

- c = rF

f
¥ 0.5 1

s

- a = rF

g
¥ 10 1

s

- — = kG

g
¥ 120 1

s

- k ¥ 2 1
s

In [18], the "elastic ratchet model" of Mogilner and Oster is extended to
incorporate the transient binding at the actin/cell interface. In order to solve
the dynamic equations for the numbers of actin filaments near the surface, the
nucleation rate of attached filaments is estimated as n = 10 (100) filaments

s and
the free dissociation rate is estimated as ”0 ¥ 0.5 1

s .
Depolymerization. The rate of filament depolymerization in the comet tail

is independent of either position in the tail or bacterial speed, and the filaments
have very short half-lives, of the order of 30 seconds [8]. According to [51], the
approximate length of actin comet tail is l ¥ 10 µm.

F-actin network mechanical parameters. Following [19], Young’s mod-
ulus of the actin comet tail ranges from Y = 103 to 104 Pa. Consistently with
elasticity measurements on fibroblast actin cortex, which showed that the Poisson
ratio is ‹ ≥ 0.4, it can be assumed that the tail is incompressible, i.e, that
the volume of a material element is conserved under deformation (Poisson ratio
‹ = 1

2 ) [19].
Following the ranges of values in [53], the actin polymeric network of lamellipo-

dia can be characterized by Young’s modulus E = 0.50 kPa and a shear modulus
G = 0.20 kPa.

Cytoplasm According to [51], the viscosity of fluid component of cytoplasm
is taken as ‚ = 0.03 poise.
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Figure 5.1: Schematic representation of ABM model [6]. Figure from [6].

5.2 Mechanical and entropic nature of the chem-
ical potential: first model

This section is adapted from [6], "Actin based motility unveiled: How chemical
energy is converted into motion, J MECH PHYS SOLIDS". The proof of concept
represents the biological process of pathogens ABM.

5.2.1 Model assumptions

In the suspended resting state, the actin monomers are immersed in the
cell cytosol. After the pathogen enters the cytosol, the polymerization of actin
monomers at the surface of the bacterium tail generates the actin comet tail.
Neglecting the curvature of the bacterium trajectory and considering that the
actin comet tail extends mainly along one direction, we simplify the ABM of the
bacterium as a one-dimensional problem.

Signalling. As we previously mentioned, the polymerization of G-actin is
induced by a cascade of signaling pathways triggered by a stable protein on
the surface of the bacterium. The precise details of the signaling processes are
ignored. Rather, the activity that triggers the formation of the actin comet
tail is considered via an activation signal, defined in the reference configuration,
constantly emitted at the bacterium tail. Following eq. (4.66), we define the
signal C(X̨, t) as

C(X) = – ·
X ≠ ssignal

¸
· H(X ≠ ssignal) · H(sbase ≠ X) , (5.1)

where – is a parameter that is related to the signal strength, sbase is the position
of the bacterium tail and ¸ = sbase ≠ssignal is the length of influence of the signal
(see figure 5.1). The bacterium tail is located by definition as the first position
from the right in which the F-actin network concentration is greater than 0. At
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initial time t = 0 s, it is set to sbase = 10 µm.

5.2.2 Constitutive parameters

parameter symbol value units ref

Forward reaction rate parameter k
ú
f

10.00
#
s≠1$

[52]

Backward reaction rate parameter k
ú
b

0.25
#
s≠1$

[52]
Delay time · 30.00 [s] [8]
Length of influence of the signal ¸ 1.00 [µm] arb
Signal intensity parameter – 0.002 [≠] arb

G-actin di�usivity D|
GR

3.00
#
µm2

· s≠1$
[50]

F-actin network di�usivity K|
FR

0.01
#
µm2

· s≠1$
arb

Equilibrium temperature T 310.15 [K] [54]

Gas constant R 8.31
#
J · K≠1

· mol≠1$
-

F-actin network Young Modulus E 500.00 [Pa] [53]
F-actin network Shear Modulus G 200.00 [Pa] [53]

Molar volume of G-actin ÊG 32.20
#
l · mol≠1$

[49]

Molar volume of F-actin network ÊF 58.00
#
l · mol≠1$

arb

Viscous constant ‹ 3.00 · 10≠3 [Pa · s] [51]

G-actin initial concentration cGR
(X, 0) 2420.00 [µM] [52]

F-actin network initial concentration cFR
(X, 0) 0.00 [µM] -

Initial displacement U1(X, 0) 0.00 [µm] -

Table 5.1: Material parameters and other data for the numerical simulations [6].

The parameters chosen for numerical simulations are summarized in Table
5.1, together with bibliographic references. The forward reaction constant in eq.
(4.66) has been taken from [52] and amounts at k

ú
f

= 10.00 s≠1. The backward
reaction rate parameter has been set to k

ú
b

= 0.25 s≠1, consistent with the severing
parameter r in [52]. The average lifetime of actin filaments is · = 30 s seconds in
actin comet tails [8], while it ranges from 20 seconds to 2 minutes in lamellipodia.

The di�usivity of G-actin is assumed to be D|
GR

= 3.00 µm2s≠1, consistent
with the values reported in [50] that range from 3 to 30 µm2s≠1 . The transport
parameter of the F-actin network K|

FR
is supposed to be orders of magnitude

smaller than the G-actin counterpart. The length of influence of the signal
¸ = 1.00 µm, the signal strength – = 0.002 and K|

FR
= 0.01 µm2s≠1 have been

calibrated in order to obtain a final actin comet tail length of 10 µm, as described
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in [51].
The equilibrium temperature is assumed to be T = 310 K [54]. In accordance

with [53], the actin polymeric network is characterized by a Young’s modulus
E = 0.50 kPa and a shear modulus G = 0.20 kPa. The molar volume of G-actin
has been measured in [49] as 32.20 ± 0.2 lmol≠1. The cytosol viscosity is taken
as ‹ = 3.00 · 10≠3 Pa · s, consistent with [51]. The molar volume of the F-actin
network is calibrated to obtain a bacterium velocity of about 1 µms≠1.

While significant e�ort is invested in proposing appropriate values for model
parameters in numerical results, the associated uncertainties are broad. Neverthe-
less, since the model is at a preliminary step, no uncertainties quantifications or
sensitivities analyses have been done. These detailed investigations are deferred
to a more mature phase of the model.

5.2.3 Governing equations and boundary conditions

With F c defined as

F c =
C

J
c

1
3 0 0

0 1 0
0 0 1

D
, (5.2)

the governing equations for the problem in hand read

ˆcGR

ˆt
≠

ˆ

ˆX

5
D|

GR

ˆcGR

ˆX

6
+ kf cGR

≠ kb cFR
= 0 , (5.3a)

ˆcFR

ˆt
≠

ˆ

ˆX

5
K|

FR

ˆcFR

ˆX

6
+

+
K|

FR
�F (G + ⁄

2 )
4 R T

ˆ

ˆX

C
cFR

ˆ

ˆX

5
3

3
J

Jc

44
≠ 2

3
J

Jc

42 6D
+ (5.3b)

≠ kf cGR
+ kb cFR

= 0 ,

ˆ

ˆX

5
J

c
≠1!

1 + ˆU1
ˆX1

" 3
J

c
≠2!

1 + ˆU1
ˆX1

"2
≠ 1

46
≠

‹

G + ⁄

2

ˆ U1
ˆt

= 0 , (5.3c)

with J
c from eq. (4.60).

At the initial time t = 0 s, we assume that: i) the displacements vanish
throughout the stress-free body

U1(X, 0) = 0 ; (5.4)
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ii) the G-actin concentration is uniform1 and that no F-actin network exists

cGR
(X, 0) = 2420 µM , (5.5a)

cFR
(X, 0) = 0 µM . (5.5b)

The cellular domain boundaries are defined on a = 0 µm and b = 52 µm.
The boundary conditions for the actin comet tail are prescribed on its front,
sbase, and its back, stail, taken as the first position from the left in which the
F-actin network concentration is greater than 0. The concentration of G-actin
is considered to be constant on the boundaries, in accordance with the initial
condition

cGR
(a, t) = cGR

(b, t) = cGR
(X, 0) ’t œ [ 0, tend ] . (5.6)

We consider a zero flux of F-actin network across the cell boundaries

hFR
(a, t) · nR = hFR

(b, t) · nR = 0 ’t œ [ 0, tend ] . (5.7)

The mass of the bacterium is considered to be negligible, therefore at sbase a
null Neumann condition is imposed. On the back boundary of the actin comet
tail, bacterium displacements vanish coherently with a steady cellular cytosol, i.e.

U1(stail, t) = 0 ’t œ [ 0, tend ] , (5.8a)

P11(sbase, t) · nR = 0 ’t œ [ 0, tend ] . (5.8b)

5.2.4 Numerical simulations

The strong di�erential form equations (5.3) require the existence of the second
order derivative and are defined at a continuum level, namely they must hold for
every singular point in the domain �R (they need pointwise condition). Generally,
partial di�erential equations can not be solved analytically and the requirements
for di�erentiability of the solution are too strong. So, the weak formulation of
the di�erential problem is usually employed, which is an alternative formulation
of the problem that allows for reducing the order of the derivation [55].

The weak formulation entails
1Data of [52] allow to establish the initial concentration of G-actin, taken as the sum of the

four actin subpopulations concentrations (F = 800 µM, f = 400 µM, G = 1200 µM, g = 20 µM,
see [52]).
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- a multiplication of the equations by arbitrary test functions that are homo-
geneous at the Dirichlet boundaries [55];

- an integration upon the domain �R;

- a reduction of the order of derivation from a second-order di�erential
problem to a first-order one, to reduce the regularity.

We start by multiplying equations (5.3) by arbitrary test functions µ̂G, µ̂F , ˆ̨v
and integrating upon the domain �R, we obtain
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We integrate by parts using the Gauss theorem, with the purpose of eliminating
the second derivatives and imposing a lower regularity on the solution. We obtain
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˛
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where boundary conditions (4.120) are used in the integrals on the boundaries.
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Taking advantage of the boundary conditions values, the equations (5.10)
read
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Even though the first-order derivative of HFR
can be reduced by applying the

integration by parts, its constitutive definition contains a second-order derivative.
To avoid this problem, we introduce a new variable � (cFR

, U1) defined as

� ≠ –(cFR
, U1) = 0 , with – =

5
3

3
J

Jc

44
≠ 2

3
J
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42 6
, (5.12)

which is approximated as an explicit degree of freedom. Eq. (5.12) is then added
to the set of governing equations (5.11) for the numerical solution of the problem,
so the final weak form of the governing equations read
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where E|
FR

stands for

E|
FR

=
K|

FR
�F (G + ⁄

2 )
4 R T .

5.2.4.1 Finite element method and finite di�erence scheme

To solve the problem numerically, we take advantage of two di�erent methods
to discretize the problem in space and time: the Finite Element Method for the
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space and Finite Di�erence Scheme for time.

5.2.4.1.1 Finite element method Speaking of space discretization, we
use the finite element method by projecting the weak formulation to a finite-
dimensional subspace. This means that we have finite (discrete) sets of nodes
that substitute the infinite number of points of the continuum �R. Following
the classical Bubnov-Galerkin method, the same projection is applied to both
test functions (µ̂G, µ̂F , ˆ̨v) and the field variables (cGR

, cFR
and U1). The

finite discretization implies an interpolation between nodal unknowns and it
is taken as linear both for test functions and field variables. We make use of
isoparametric finite elements, namely we apply the same interpolation scheme
for the coordinates X and the field variables.

Following the previous assumptions, the interpolation representation into the
discretized weak-form field reads
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ŵ

T

V =
2ÿ

I,K,L,E=1

S

U
NIG

NKF

NLu

NE‘

T

V and

S

U
cGR

cFR

U1
�

T

V =
2ÿ

J,H,M,N=1

S

WU
NJG

cGJ
(t)

NHF
cFH

(t)
NMu

UM (t)
NN‘

�N (t)

T

XV .

This is the semi discretized expression (only in space) of the weak form in
the case of linear elements.

5.2.4.1.2 Finite di�erence scheme Speaking of time discretization, we
make use of the finite di�erence method. For the mean value theorem, it exists a
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certain time t = ÷ between t
m and t

m+1 such that

ˆca
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|÷ = c
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a

≠ c
m
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�t
. (5.15)

where �t = t
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≠ t
m. Consequently, the concentration can be defined as
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|÷(÷≠t

m) = c
m

a
(1≠◊)+c

m+1
a

◊ , with ◊ = ÷ ≠ t
m

�t
. (5.16)

So, the time derivatives in (5.14) are replaced by suitable di�erence quotients
of (5.16) and an implicit scheme (Backward Euler FDM, with ◊ = 1) has been
set with a uniform time increment of 1000 time steps. Since the finite di�erence
scheme method does not work for the equation of linear momentum balance (it
results to be mesh-dependent), we make use of a Newton-Raphson scheme in
which an initial guess for displacement is proposed, coming from the solution
at the previous time step (or the displacement due to the swelling distortion
only). Then, we obtain the velocity and we iterate until we come up with the
convergency of the solution, which is dictated by the tolerance of the residual R.
The residual comes out from the di�erence between the displacement solution
at the current time step and the displacement solution at the previous time
step. Moreover, we make use of the mass lumped matrix for mass matrices. The
mass-lumping technique allows writing the mass matrix in a diagonal form (not
in a tridiagonal form), called condensed or lumped matrix form, which allows not
to invert the matrix and not to reduce the accuracy of the method [55].

A Newton-Raphson integration scheme has been implemented to solve the
non-linear system of equations at each time step. The geometry is tessellated
using 26000 isoparametric. The choice of time step and finite elements size is
dictated by the convergence of the solution, so that the relative error between
the solutions with di�erent time step and finite elements size is less than 10≠2.
Outcomes have been obtained by coding the numerical strategies described above
in MATLAB, without relying on level-set moving boundary tracking methods.

5.2.5 Results and discussion

G and F-actin network concentrations distributions. In figure 5.2 the
concentration of the G-actin and F-actin network are plotted several times.

At initial time, the concentration of G-actin is uniform and the concentration
of the polymerized network is null throughout the domain. The bacterium tail is
located out to sbase = 10 µm and so is the signal.

At time t = 3 s, an incipient F-actin network develops in proximity to the
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Figure 5.2: Concentrations of monomer actin and actin network at time t = 3 s,
t = 29 s, t = 65 s, t = 99 s [6] in the cell. At initial time, the bacterium tail is
located out to sbase = 10 µm and so is the signal. At time t = 3 s, an initial F-
actin network develops in proximity to the signal, while the G-actin concentration
decreases. At time t = 29 s, the comet tail is almost completely formed. The
polymerization of the F-actin network moves the bacterium rightward, where
the G-actin reaches a minimum. The F-actin network does not depolymerize,
yet, since t < · . At time t = 65 s, the depolymerization is in place and the actin
comet tail is divided into two parts: the head and the back. As time passes, the
length of the actin comet tail and the processes described above become steady.
Figure from [6].

signal (see the continuous line in figure 5.2), while the G-actin concentration
decreases (see the continuous line in figure 5.2). Filaments polymerize at the
bacterial surface to generate force. Far from there, the concentration profiles are
unaltered.

At time t = 29 s, the comet tail is almost completely formed. The dot-dashed
line in figure 5.2 shows how the network concentration reaches the maximum
value 122.28 µM, increasing sharply at the leading edge of the bacterium tail.
The polymerization of the F-actin network moves the bacterium rightward, where
the G-actin reaches a minimum (see figure 5.2). The F-actin network does not
depolymerize, yet, since t < · .

At time t = 65 s, the depolymerization is in place and two parts of the actin
comet tail can be devised consistent with the picture in figure 5.1. The head,
close to the signal, is characterized by a dense network of filaments, some of
which have just been polymerized. The back consists of depolymerizing filaments
whose lifetime has been exceeded. The depolymerization of the F-actin network
in turn induces an increment of G-actin monomers, whose concentration exceeds
the initial value at some locations.

As time passes, the length of the actin comet tail and the processes described
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above become steady. A snapshot at time t = 99 s is depicted in figure 5.2. The
bacterium moves rightward at a constant velocity.

Displacements and Stresses. Figure 5.3 plots the displacement field U1 (X)
at several times. The plots reveal that the polymerization of G-actin into the
F-actin network causes a swelling distortion in the domain, which is opposed by
the viscous cytosol resistance. The displacements rise as the comet tail develops
in time, with a transient process (see U1 (X) at t = 3 s) until becoming stationary
(see U1 (X) at t = 99 s).

Figure 5.3 plots also the stress P11 (X) at several times. From t = 0 s to
t = 29 s the F-actin network is forming and no depolymerization occurs. The
body is swelling and the external drag viscous forces cause a compressive state
in the F-actin network domain. After t = · the F-actin network depolymerizes
at the back of the actin comet tail, displacements become nearly stationary in
time and so do the stresses. The body is swelling at the front of the actin comet
tail, where a new F-actin network is forming, and it is shrinking at the back of
the actin comet tail, where filaments depolymerize. The external forces cause a
compressive state in the polymerized part of the body and a tensile state in the
depolymerized part.

5.2.6 Concluding remarks

A bio-chemo-mechanical model for ABM of biological systems has been
presented. It entails an interaction among external signaling, the elastic response
of the polymerized actin network, and the kinetics of the chemical reaction
between the monomeric form of G-actin and the network of F-actin. In the
proof of concept, it has been shown that the model captures the general features
of pathogen motility observed in experimental studies, including the signal
dependence of polymerization of the F-actin network on the bacterium tail and
the F-actin network distribution during pathogen motility.

The model is characterized by some features and assumptions. As highlighted
in figure 3.2, filaments in the F-actin network do not seem to be aligned to a
preferential direction, rather they form a matrix of arbitrarily oriented strands:
fibers perpendicular to the tail direction are visible even in the depolymerized
zone. For this sake, we did not account for anisotropy in the multiplicative
decomposition of the deformation gradient - see eq. (4.2). The comet tail
evolution is dictated by the motion of the signal, emitted at di�erent positions in
time.



5.2 Mechanical and entropic nature of the chemical potential: first
model 84

Figure 5.3: Displacements and stresses of actin network at time t = 3 s, t = 29 s,
t = 65 s, t = 99 s [6]. From time t = 0 s to t = 29 s, the F-actin network undergoes
formation without any depolymerization occurring. During this period, the body
expands while external viscous drag forces induce compression within the domain
of the F-actin network. Upon reaching time t = · , depolymerization of the
F-actin network initiates at the rear of the actin comet tail. Displacements
then approach a state of near-stationarity over time, along with stress levels.
Simultaneously, the body continues to expand at the front of the actin comet
tail, where a new F-actin network forms, while contracting at the tail’s rear,
where filaments depolymerize. External forces induce a compressive state in
the polymerized part of the body and a tensile state in the depolymerized part.
Figure from [6].

We assumed that the maximum number of molecules per unit volume is
invariant, i.e. that species in the body occupy a fixed volume and can relocate in
eventual volume expansions of the hosting material. The main consequences of
this assumption have been discussed in [34].

The governing equations depicted in section 4.9 hold for any specification of
the Helmholtz free energy. In the model of bacterial pathogens motility developed
in section 4.10 we considered an elastic strain-energy function of Saint-Venant
kind, without cross-link protein rearrangement in view of the “high” speed of
bacteria in the host cytoplasm. In reality, cross-link reorganization can occur
in pathogens and certainly takes place in cellular motility. More sophisticated,
statistically-based continuum theories can be invoked to capture the consequent
rate-dependent behavior of the F-actin network upon mechanical loading [56, 57].
While the consistency of the chemo-mechanical motor has been verified for
bacterial pathogen motility, we limited ourselves to the assumption of material
parameters independent of F-actin concentration. To account for the role of
concentration in the sti�ness of the F-actin network [53], further work will be
implemented.

The model shall be extended also to account for additional phenomena, such
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as bacteria invasion of neighboring cells. Cell-to-cell spread via protrusion- and
vesicle-mediated transfer can be included by adding models that couple ABM
of intracellular bacterial pathogens with the resistance of the membrane, which
depends on the tra�cking of tension-regulating proteins [7]. Such developments
of the model permit a complete picture of the life cycles of intracellular bacteria
that harness ABM.

Moreover, the same polymerization motor can be adapted to describe cellular
motility, in angiogenesis or tumor metastasis. The actin polymerization motor
operates both in lamellipodia and filopodia at the cellular leading edge. In this
case, the model has to take into account all mechanically significant cellular
structures involved in the motility, e.g., stress fibers, focal adhesions, microtubules,
as well as substrate-cell interactions.

The model can be used to address one of the key challenges in cell biomechanics,
namely how to measure the mechanical behavior of pathogens and cells during
ABM. Because the model captures the reorganization of the actin network in
response to an external stimulus, it can be used as a framework to design and
interpret tailored experiments.

5.3 Mechanical nature of the chemical potential:
second model

This section is adapted from [25], "Continuum multi-physics modeling of cell
and bacteria motility, submitted". The proof of concepts is designed to represent
the

- pathogens ABM;

- behavior of actin network growth discussed in 1.3, that comes from [5].

5.3.1 Model assumptions

Signalling. As stated, all biological and biochemical events that trigger actin
nucleation, branching, and cross-linking have been wrapped in the activation
signal function C = C(x̨, t), which localizes the signaling in (4.66) to the places
in the current configuration where the protein ActA is located, such as the
bacterium surface. We take C(x̨, t) to vanish everywhere but in a domain

Vs = {x̨ œ cytosol : inf
x̨bœˆb

||x̨ ≠ x̨b(t)|| Æ ¸} (5.17)
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with characteristic length ¸ about the nucleation surface ˆb, where it holds

C(x̨, t) = inf
x̨bœˆb

||x̨ ≠ x̨b(t)||
¸

Æ 1 . (5.18)

Di�erently from [6], the signal depends on x̨ in order to maintain a constant
length ¸ in the current configuration.

Helmholtz free energy. The Helmholtz free energy density is defined via
an additive decomposition
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R
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, E) , (5.19)

which accounts for the entropic and the mechanical contributions.
Di�erently from [6], the entropic free energy does not involve the F -actin

network concentration. This choice has a fundamental consequence: the chemical
potential µF in (4.97c) is not entropic in nature, it is solely due to the mechanics
of protrusion via the swelling tensor defined in (4.3). The same interpretation
applies to the mass flux H̨F in (4.102b).

The entropic free energy density
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where R is the gas constant, T is temperature, c
sat

GR
is the saturation limit for

the actin monomers, which is inferred from statistical mechanics [39].
Experimental evidence in ABM shows a large spectrum of F -network velocities.

The adsorption of ActA onto an Atomic Force Microscopy (AFM) cantilever
beam [5] promoted a F -network development at about 1 nm/s. Bacteria ABM
turns out to be much faster in the host cytoplasm, at rates of up to 1 µm/s
[8]. The biological motivations of these 3 orders of magnitudes deserve further
studies. Considering the speed of bacteria in the host cytoplasm, viscous e�ects
do not have su�cient time to develop, even though in reality some cross-link
rearrangement can occur. Accordingly, we derive the mechanical free energy
density from an elastic material, i.e.
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and Â
el

R
= 0 at vanishing Ee. Easy algebra shows that, in view of (4.97), (5.19),
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and (5.21),
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5.3.2 Constitutive parameters

parameter symbol value units ref

Forward reaction rate parameter k
ú
f

10.00
#
s≠1$

[52]

Backward reaction rate parameter k
ú
b

0.25
#
s≠1$

[52]
Delay time · 30.00 [s] [8]
Length of influence of the signal ¸ 1.00 [µm] arb

G-actin di�usivity D|
GR

3.00
#
µm2

· s≠1$
[50]

Equilibrium temperature T 310.15 [K] [54]

Gas constant R 8.31
#
J · K≠1

· mol≠1$
-

F-actin network Young Modulus E 1 ≠ 10.00 [kPa] [19]
F-actin network Poisson ratio v 0.4 [≠] [19]

Molar volume of G-actin ÊG 32.20
#
l · mol≠1$

[49]

Molar volume of F-actin network ÊF 58.00
#
l · mol≠1$

arb

Viscous constant ‹ 3.00 · 10≠3 [Pa · s] [51]

G-actin initial concentration cGR
(X, 0) 2420.00 [µM] [52]

F-actin network initial concentration cFR
(X, 0) 0.00 [µM] -

Initial displacement U1(X, 0) 0.00 [µm] -

Table 5.2: Material parameters and other data for the numerical simulations.

The parameters chosen for numerical simulations are summarized in Table
5.2, together with bibliographic references. The forward reaction constant k

ú
f

=
10.00 s≠1 in (4.66) has been estimated for bacteria in [52]. The backward reaction
rate parameter has been set to k

ú
b

= 0.25 s≠1, consistent with the severing
parameter r in [52]. The rate of filament depolymerization in the actin comet tail
is independent of the position in the tail and the bacterial speed. According to [8],
filaments have a half-life in the order of · = 30 s. The G-actin di�usion coe�cient
in the cytoplasm D|

GR
= 3.00 µm2s≠1 has been reported in [50]. According to

[51], the approximate length of the actin comet tail is l ¥ 10 µm, while the
influence lengthscale of the signal is taken as a constant ¸ = 1.00 µm. Actin
in monomeric form has a molar volume of 32.2 l

mol , according to [49]. The
equilibrium temperature is assumed to be T = 310 K [54]. Following [19], the
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Young’s modulus of the actin comet tail ranges from 1 ÷ 10 kPa. Elasticity
measurements on the fibroblast actin cortex showed that the Poisson ratio is
about 0.4 [19]. According to [51], the viscosity of the fluid component of cytoplasm
is taken as ‹ = 0.03 poise.

While significant e�ort is invested in proposing appropriate values for model
parameters in numerical results, the associated uncertainties are broad. Neverthe-
less, since the model is at a preliminary step, no uncertainties quantifications or
sensitivities analyses have been done. These detailed investigations are deferred
to a more mature phase of the model.

5.3.3 Governing equations and boundary conditions

With F c defined as
F c = J

c
1
3 1 , (5.24)

the governing equations for the problem in hand read
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with J
c from eq. (4.60).

To have a realistic representation of the actin comet tail, we propose a 2D
model with a domain represented in figure 5.4. At the initial time t = 0 s, we
assume that: i) the displacements vanish throughout the stress-free body

Ų(X̨, 0) = 0 ; (5.26)

ii) the G-actin concentration is uniform and no F-actin network exists

cGR
(X̨, 0) = cG0 , (5.27a)

cFR
(X̨, 0) = 0 µM . (5.27b)
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Figure 5.4: Tessellation of the 2D actin comet tail in the reference configuration.
The tessellated area represents the area of the signal influence.

The boundary conditions for the actin comet tail are prescribed on its front,
the curve \BAC, and its back, the curve \BDC. The concentration of G-actin is
considered constant everywhere, in accordance with the initial condition

cGR
(X̨, t) = cG0 ’t œ [ 0, tend ] , (5.28)

and we consider a zero flux of the F-actin network across the curves \BAC and
\BDC

hFR
(\BAC, t) · nR = 0 ’t œ [ 0, tend ] , (5.29a)

hFR
(\BDC, t) · nR = 0 ’t œ [ 0, tend ] . (5.29b)

Since the actin comet tail is attached to the surface of the pathogens [18],
the displacement of the actin comet tail on the curve \BAC is considered as null,
whereas, on the curve \BDC the cytosol mechanical response is neglected, so

Ų(\BAC, t) = 0̨ ’t œ [ 0, tend ] , (5.30a)

P (\BDC, t) · n̨R = 0̨ ’t œ [ 0, tend ] . (5.30b)

On the referential domain, a signal C(X̨, t) is defined with a maximum value
on the bacterium’s vertical axis and a null value on its sides.
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5.3.4 Numerical simulation

Numerical simulations have been obtained with an in-house code, based on
the high-performance computing open library deal.ii. To this purpose, we used a
semi-discrete Galerkin approximation method approximating the unknown fields
with linear shape functions in space and nodal unknowns that depend solely
on time [34] and tessellated the geometry using isoparametric finite elements.
Proper time-advancing schemes and Newton-Raphson schemes have been set
forth to solve the non-linear system of equations at each time step in a total
Lagrangian framework. The time increment and the number of time steps are
set to 0.05 s and 7200, respectively.

5.3.5 Results and discussion

5.3.5.1 Free expansion without disassembly

Measurements of F-actin growth in a di�erential AFM assay were performed in
[5]. The Listeria nucleation promotion factor, ActA, was non specifically adsorbed
onto one cantilever, initiating the formation of a branched actin network between
the cantilever and a nearby surface. Network growth was monitored through
epifluorescence imaging of labeled actin. Allowing the growing actin network to
deflect the cantilever, a compressive state is induced in the F-actin network. The
relationship between the F-actin growth velocity and the compressive forces was
measured and reported in [5].

Before entering a stalled phase, the network length increases in a load-
independent way. Although velocities (85 ± 68 nm min≠1) varied significantly
among trials, it is logical to believe that their trend - as depicted in figure 1.6
- will remain unaltered at small loads, ideally at no loads whatsoever. Such a
condition indeed occurs when the branched actin network is not yet in contact
with the glass surface and it develops without mechanical opposition. In view of
(5.23),

Grad [ µF ]|Ee=0 = 0 , (5.31)

whence

- the flux H̨F vanishes;

- the reference configuration is unaltered in time;

- the mass balance (4.45b) becomes an ordinary di�erential equation in time.
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If G monomers are replenished at infinite velocity in the current configuration,
i.e., cG = c

0
G

, and disassembly is neglected, eq.(4.45b) simplifies as
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Consider (5.32) and a fixed location x̨ at which C(x̨, t) = 1 at all times. It
holds
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Under free expansion conditions, J = J
c and
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Eq. (5.33) thus becomes at a fixed location x̨
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(1 ≠ �F cF ) . (5.34)

At all places x̨ in which C(x̨, t) = 1 at all times, cF yields

cF (x̨, t) =
exp [ k
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f

c
0
G

�F t] ≠ 1
�F

exp [≠ k
ú
f

c
0
G

�F t] . (5.35)

The result is obtained by directly integrating the ordinary di�erential equation
(5.34) with homogeneous initial conditions for cF (x̨, 0) = 0 at time t = 0 and at
given location x̨.

Figure 5.5 plots the concentration of F-actin network obtained by eq. (5.35)
at di�erent values of �F and k

ú
f
. Accordingly,

- cF is limited and its asymptotic value is cŒ = 1/�F . For example, for
k

ú
f

= 0.05 and �F = 0.125, the asymptotic value cŒ is 8 mol
m3 ;

- the higher k
ú
f

c
0
G

�F > 0 the faster the convergence to such equilibrium
condition, in the sense dcF

dt
= 0. For example, for �F = 0.25, cF converges

to cŒ faster if k
ú
f

= 0.5 than k
ú
f

= 0.05 (see figure 5.5).

The limit concentration cŒ is the uniform concentration of F-actin in stress-
free conditions. In view of (5.18), at all places x̨ in which C(x̨, t) < 1 the
homeostatic concentration cŒ is an upper bound for cF .

The referential concentration can easily be inferred from

cFR
(X̨, t) = J

c
cF (x̨(X̨, t), t) ,
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Figure 5.5: Transient evolution of cF in time, for di�erent values of �F and
k

ú
f
, at c

0
G

= 2.42 moles m≠3. The concentration of F-actin network is limited,
so for k

ú
f

= 0.05 and �F = 0.125, the asymptotic value is 8 mol
m3 ; for k

ú
f

= 0.05
and �F = 0.25, the asymptotic value is 4 mol

m3 ; for k
ú
f

= 0.05 and �F = 0.5,
the asymptotic value is 2 mol

m3 ; for k
ú
f

= 0.05 and �F = 1, the asymptotic value
is 1 mol

m3 . The higher k
ú
f

c
0
G

�F is, the faster the convergence to the equilibrium
condition is. For example, for �F = 0.25, cF converges faster if k

ú
f

is higher.
Figure from [25].

i.e.,

cFR
(X̨, t) = cF
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(5.36)

showing that cFR
is unbounded as cF æ cŒ. Furthermore, in view of (4.3) the

hypothesis of free expansion implies
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upon simple boundary conditions on displacements. Accordingly

- the F -network growth velocity is achieved at the length-scale ¸ > 0, where
it holds vF := ¸ k

ú
f

c
0
G

�F /3;

- the pull-back of the length-scale ¸ in the reference configuration becomes
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smaller and smaller with time, for being

Xi|¸ = ¸ exp [≠ k
ú
f

c
0
G

�F t /3 ] (5.40)

eventually generating a boundary-layer problem, which may justify interface-
based approaches as the ones in [58, 59].

5.3.5.2 The influence of mechanics on the F-actin growth

Free expansion is an extremely rare event. In cellular motility, the cytoskeletal
structure mechanically deforms to transmit forces to the extracellular matrix by
means of focal adhesions. In bacteria motion, the viscous drag of the cytosol is a
necessary constraint for the motility as well as a source of stress in the network
[6], acting against external forces that resist the forward progress of the pathogen.

Mechanical stresses may foster a reorganization of actin filaments and their
cross-linkers in the network, thus allowing cF (x̨, t) to overcome the homeostatic
limit cŒ even when the signaling function is below the unit, as per (5.18).
This speculation is confirmed by numerical simulations, obtained upon the
implementation of the weak form of the governing equations in a finite element
code, via the high-performance computing open library deal.ii [61].

According to the findings in [62], the tail is firmly attached to the bacterium.
A full restraint imposed at the bacteria surface to the F -network promotes the
evolution of a stress field, as depicted in figure 5.6, which in turn a�ects the
concentration cF . Figure 5.6a shows that the formation of the comet tail agrees
well with the images of actin polymerization in Listeria monocytogenes provided
in [60, 19]. Figure 5.6b depicts actin concentration evolution in time at point A
in the free expansion case and on the bacterium surface. As already explained,
mechanical stresses allows cF (x̨, t) to overcome the homeostatic limit cŒ, which
is 4 mol

m3 for k
ú
f

= 0.05 and �F = 0.25.

5.3.6 Concluding remarks

A chemo-transport-mechanics model for ABM has been formulated with
a rigorous thermodynamic approach. The fundamental idea is to associate a
volumetric increment to the organization of G-actin monomers into the F-network
in the cytosol. Being aware that further improvements are necessary, we believe
that our conceptual framework paves the way to quantitative investigations, which
can help interpret biochemical experimental outcomes and address key challenges
in cellular mechanobiology, such as tumor metastasis which, in view of their
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Figure 5.6: Simulation of the actin comet tail (colored) in Listeria monocytogenes
(gray). a) Mises stress: the formation of the comet tail agrees well with the
images of actin polymerization in Listeria monocytogenes provided in [60, 19].
b) Actin concentration evolution in time at point A in the free expansion case
and on the bacterium surface. Mechanical stresses allows the F-actin network
concentration to overcome the homeostatic limit cŒ. Figure from [25].

timescale, can hardly be followed in vivo.
The model is characterized by several assumptions and limitations. We

delay to further studies the multi-scale and multi-physics description of the
energetics of the nucleation, polymerization, and branching of actin filaments
into the F-network. All biological events have been condensed into a single
signal, which entails the activity of the ActA protein at the nucleation loci.
Since the distribution of filaments in the lamellum and in the actin comet tail
does not show a preferential direction [63, 64], we have chosen the volume as
the mechanical descriptor of swelling, with no account of anisotropy in the
multiplicative decomposition of the deformation gradient.

Further developments, such as a careful investigation of the mechanobiology
of the membrane resistance, are required to simulate the cellular motility [65],
the cell-to-cell spread of bacteria via protrusion- and vesicle-mediated transfer,
the life cycles of intracellular bacteria that exploit ABM [20].

The model welcomes any specification of the Helmholtz free energy. Since
the focus of this note was the ABM engine, we arbitrarily and simplistically
considered elastic strain energy of Saint-Venant kind in the numerical simulations.
Viscosity was purposely neglected since it was argued that the cross-linking
rearrangement in the F -actin network has insu�cient time to develop [46]. We
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also neglected the dependence of material parameters on F -actin concentration,
even if we are well aware that the mechanical behavior of the network changes
during the network evolution [5]: devoted studies are required to capture the
complex response of the network to external loads.
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Chapter 6

Cells biological background

This chapter presents the topic of cell ABM by first introducing the internal
organization of cells and cell-ECM interaction. Then, an overview of cell migration
is put in place and a specific case of keratocyte motility is provided. Some data
on the Lamellipodia Actin Network are shown at the end of the chapter.

6.1 Internal organization of the cell

6.1.1 Membrane structure

Cell membranes are crucial for cell life [4]. The plasma membrane serves as
a barrier, enclosing the cell, delineating its boundaries, and upholding crucial
distinctions between the cytosol and the extracellular environment. Within
eukaryotic cells, various membranes, such as those of the nucleus, endoplasmic
reticulum, Golgi apparatus, mitochondria, and other membrane-bound organelles,
maintain distinct di�erences between their contents and the cytosol. Specialized
membrane proteins regulate ion gradients across membranes. These gradients,
in turn, serve various functions: they aid in ATP synthesis, facilitate the trans-
portation of specific solutes across the membrane, and in specialized cells like
nerve and muscle cells, contribute to the generation and transmission of electrical
signals. Moreover, the plasma membrane in all cells harbors proteins that act as
receptors for external signals. These receptors function as sensors, enabling the
cell to modify its behavior in response to environmental cues, including signals
from neighboring cells. They facilitate the transmission of information across the
membrane, rather than molecules, shaping the cell’s responses.

The structure of biological membranes, despite their diverse functions, shares

99
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Figure 6.1: Lipid and protein constituents in a cell membrane [4]. Figure from
[4].

a common overall organization: they comprise an ultra-thin layer composed
of lipid and protein molecules predominantly fastened together by noncovalent
interactions. These membranes are dynamic and fluid, allowing most of their
molecules to move within the membrane plane. The lipid molecules are shaped as
a continuous double layer with a thickness of 5 nm. This lipid bilayer provides the
basic fluid structure and acts as a relatively impermeable barrier that prevents
the passage of most water-soluble molecules (see figure 6.1) [4].

Many membrane proteins traverse this lipid bilayer and facilitate various
functions of the membrane, including the transportation of specific molecules
across it and membrane-associated reactions such as ATP synthesis. In the
plasma membrane, certain transmembrane proteins act as structural connectors,
linking the cytoskeleton through the lipid bilayer to either the extracellular matrix
or an adjacent cell. In addition, others function as receptors to perceive and
convert chemical signals from the cell’s environment.

To function and interact properly with its environment, cells need all these
kinds of membrane proteins. About 30% of the proteins encoded in an animal’s
genome are membrane proteins [4]. To better understand their function and role,
in this section, we go deep into the knowledge of the structures and organizations
of the two main constituents of membranes, the lipids and the proteins [4].

6.1.1.1 The lipid bilayer

The lipid bilayer is the basic structure of all cell membranes [4]. Its two-layer
structure is solely a result of the unique characteristics of the lipid molecules, which
naturally come together to form bilayers, even under basic artificial conditions.



6.1 Internal organization of the cell 101

[4].
Around 1970, researchers first discovered that individual lipid molecules

possess the capability to move freely within the lipid bilayer’s plane. This
revelation emerged from experiments involving synthetic (artificial) lipid bilayers,
crafted as spherical vesicles known as liposomes, or in the form of planar bilayers
formed across an aperture in a barrier between two aqueous compartments or on
a solid surface [4].

These studies established that the lipid component of a biological membrane
represents a two-dimensional liquid, enabling the constituent molecules to move
laterally. Under typical circumstances, individual phospholipid molecules remain
confined within their respective monolayers, posing a challenge to their synthesis.
Phospholipid molecules are primarily synthesized in the cytosolic monolayer
of the endoplasmic reticulum membrane. However, for the formation of new
lipid bilayers, these newly synthesized molecules must promptly migrate to the
noncytosolic monolayer. This migration hurdle is resolved through specialized
membrane proteins known as phospholipid translocators or flippases. These
proteins catalyze the swift flip-flop movement of phospholipids from one monolayer
to the other [4].

Despite the fluidity of the lipid bilayer, liposomes do not spontaneously
fuze when suspended in water. This lack of fusion is due to the binding of
water molecules by the polar lipid head groups, which need to be displaced
for the bilayers of the two di�erent liposomes to merge. The hydration shell
that maintains the separation of liposomes also serves to insulate the numerous
internal membranes within eukaryotic cells, preventing uncontrolled fusion and
thereby upholding the compartmental integrity of membrane-bound organelles.
All instances of cell membrane fusion are orchestrated by tightly regulated fusion
proteins, which bring suitable membranes into proximity, expelling the water
layer that keeps the bilayers apart [4].

6.1.1.2 Membrane proteins

While the lipid bilayer forms the fundamental structure of biological mem-
branes, the membrane proteins primarily execute the specific functions of the
membrane, thereby bestowing each type of cell membrane with distinctive func-
tional properties. Accordingly, the amounts and types of proteins in the membrane
are highly variable. In the myelin membrane, which primarily functions as elec-
trical insulation for nerve cell axons, protein makes up less than 25% of the
membrane mass. In contrast, membranes involved in ATP production, such as
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the internal membranes of mitochondria and chloroplasts, have approximately
75% protein content. A typical plasma membrane falls in between, with proteins
constituting approximately half of its mass. However, due to the smaller size of
lipid molecules compared to proteins, there are always many more lipid molecules
than protein molecules in cell membrane, around 50 lipid molecules for each
protein molecule in membranes that are 50% protein by mass. The structure and
association of membrane proteins with the lipid bilayer vary widely, reflecting
their diverse functions [4].

Communication among cells in multicellular organisms occurs primarily
through extracellular signaling molecules. Some of these signaling molecules op-
erate over long distances, transmitting signals to cells situated far away, whereas
others specifically target nearby neighboring cells. In multicellular organisms,
most cells both release and receive these signals. The reception of these signals
depends on receptor proteins, typically on the cell surface, that interact with the
respective signal molecules. This interaction activates the receptor, initiating one
or more intracellular signaling pathways or systems within the cell. These signal-
ing systems rely on intracellular signaling proteins, which process the received
signal within the recipient cell and transmit it to the appropriate intracellular
targets [4].

6.1.2 Cytoskeleton

For cells to operate properly, they must perform several functions. They
have to manage and change their shape to grow, divide, and adapt to multiple
circumstances. They must rearrange their internal components to be correctly
shaped, robust, and internally structured. They must move from place to place,
interacting mechanically with each other and with their environment. These
spatial and mechanical functions depend on a remarkable system of filaments
called the cytoskeleton [4].

The cytoskeleton’s varied functions depend on the behavior of three families
of proteins filaments, actin filaments, microtubules, and intermediate filaments
(figure 6.2) [4]. Each type of filament has distinct mechanical properties, dynamics,
and biological roles, but all three cytoskeletal filament systems share certain
fundamental features [4] and must normally function collectively to give the cell
its strength, its shape, and its ability to move.

The spatial organization and mechanical properties of cells are influenced by
these three primary families of filaments. Actin filaments play a crucial role in
shaping the cell surface, facilitating whole-cell movement, and driving cell division.



6.1 Internal organization of the cell 103

Figure 6.2: (a) A cell in culture has been fixed and labeled to show its cytoplasmic
arrays of microtubules (green) and actin filaments (red) [4]. (b) This dividing
cell has been labeled to show its spindle microtubules (green) and surrounding
cage of intermediate filaments (red). DNA in both cells is labeled in blue [4].
Figure from [4].

Microtubules, on the other hand, determine the positions of membrane-enclosed
organelles, oversee intracellular transport, and form the mitotic spindle responsible
for segregating chromosomes during cell division. Intermediate filaments primarily
contribute to the mechanical strength of the cell.

All of these cytoskeletal filaments interact with numerous accessory proteins
that regulate and connect filaments to other cellular components and to each
other. These accessory proteins play a critical role in the controlled assembly of
cytoskeletal filaments in specific locations. Among these accessory proteins are
the motor proteins, remarkable molecular machines capable of converting the
energy derived from ATP hydrolysis into mechanical force. These motors can
either move organelles along the filaments or act to move the filaments themselves
(see figure 6.3).

6.1.2.1 Actin filaments

The actin cytoskeleton is involved in a wide array of functions across various
cell types. Actin filaments, which are described as semi-flexible, typically form
dendritic or cross-linked structures. These filaments, which are semi-flexible
polymers, experience bending due to thermal fluctuations, thereby o�ering
increased resistance to forces that stretch the filament. Actin itself is known
to be the most dynamically changing protein within the cytoskeleton, capable
of substantial structural alterations over a period of minutes, a property that
significantly impacts cell shape. In addition, actin plays multiple roles in cell
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Figure 6.3: Organizational structures of actin, microtubules, and intermediate
filaments inside of a cell [2]. Figure from [2].

motility: it contributes to the formation of protrusive structures in the direction of
motion, such as filopodia, lamellipodia, and blebs, while also ensuring mechanical
stability and contractility through stress fibers and the cell cortex [2].

6.1.2.1.1 Lamellipodium The lamellipodium, illustrated in figure 6.3, is
a flat, sheet-like structure comprising a network of cross-linked actin filaments.
Most of these filaments align within a plane parallel to the solid substrate.
Lamellipodium plays a crucial role in cell movement, primarily forming through
the polymerization of actin at the leading edge of the cell. Simultaneously, at the
rear of the lamellipodium, ADF/cofilin aids actin depolymerization, replenishing
the G-actin pool. This continuous process of (de-)polymerization across the
network creates a treadmill e�ect and a retrograde flow of actin within the
cell. This phenomenon is accentuated in certain cell types by myosin-induced
depolymerization at the rear of the lamellipodium. Any flow generated by the
contraction of the rear, facilitated by stress fibers, induces a flow in the opposite
direction [2].

The forces produced by actin polymerization within the lamellipodium can
reach values on the order of a few hundred piconewtons per micrometer. The
crucial element in lamellipodium formation is the inherently inactive Arp2/3
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complex, which is activated by the Scar/WAVE complex through a process
initiated by the small Rho GTPase Rac1. The Arp2/3 complex nucleates a new
actin filament at the site of existing filaments [2].

In a three-dimensional setting, N-WASP (in contrast to WAVE) triggers
the activation of Arp2/3, and Rac1 is not prominently concentrated at the
leading edge of the cell. The extension of actin is further eased by the presence of
Ena/VASP family members gathering at the tip of the lamellipodium, encouraging
additional actin elongation and hindering capping. Despite the active Arp2/3
complex, it is essential to have a capping protein to regulate the elongation of
individual filaments. This ensures their e�ectiveness and prevents them from
bundling with other uncapped filaments or collapsing under stress [2].

For the formation of a stable dendritic network, proteins such as cortactin
cross-link the filaments. To prevent constant lamellipodium growth, a negative
feedback loop is crucial. Arpin, a protein that inhibits Arp2/3 activity in the
lamellipodium, possibly recruited by Rac1, could play a role in this feedback loop.
Therefore, it is reasonable to suggest that the activation of Rac1 initiates the
growth of lamellipodium by quickly recruiting Arp2/3 and promoting subsequent
actin polymerization. Subsequently, it inhibits further growth through the
recruitment of arpin. However, empirical evidence for this hypothesis is currently
lacking, and a high turnover rate of arpin or a significantly higher concentration
may be required to deactivate Arp2/3 [2].

Despite the influence of actin dynamics, the lamellipodium is also impacted
by the cell membrane and its surface tension. Higher membrane surface tension
results in more oriented actin filament polymerization, while lower tension leads
to more protrusions, likely associated with the finite forces generated by the
lamellipodium. Regarding the mechanical properties of the lamellipodium, it is
worth noting the presence of myosin at the rear, explaining the lamellipodium’s
elasticity on short time scales and viscosity on long time scales [2].

Arp2/3 facilitates the connection of actin filaments in the lamellipodium,
forming a dendritic structure. Intriguingly, an examination of cell speed in
relation to actin orientation in the lamellipodium shows that faster cells tend
to have filaments that are not precisely aligned toward movement. In contrast,
slower movement is associated with parallel filament orientation [2].

6.1.2.1.2 Lamellum The lamellum is positioned behind the lamellipodium
and is typically the widest structure in motile cells, often spanning 10-15 µm in
width. Comprising primarily condensed linear actin bundles, the actin filament
network within the lamella is notably more stable and less dynamic than that of
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the lamellipodia. In addition, the lamellum may possess resistance to compression.
It is characterized by more robust and mature adhesion sites, and it also contains
myosin II, a motor protein crucial for cell motility. The lamellum is a flat
structure. This shape is attributed to the collaboration of the transverse arcs
with the dorsal SFs. Dorsal SFs act as struts connecting the ventral adhesions
with the dorsal contractile actin network. The contraction of transverse arcs
generates tension on dorsal SFs, which causes them to pivot, thereby flattening
the lamellum [66].

6.1.2.1.3 Filopodium Filopodia, a structure associated with cell motility,
are present in neurons but do not seem to be essential for migration because rapidly
moving corneal keratocytes lack filopodia in two dimensions. The forces generated
by filopodia are considerably smaller than those produced by lamellipodium.
However, in certain systems, such as three-dimensional environments, filopodia
may play a role in cell migration [2].

Filopodia are characterized by parallel actin bundles with their positive ends
pointing toward the cell membrane. This alignment is set in place by formins,
such as FMNL2 and Ena/VASP, which can sustain extended actin polymerization.
Certain forms, such as mDia2, can be triggered by the small GTPase Cdc42.
Cdc42 also has the capacity to activate N-WASP and, in turn, Arp2/3, resulting
in the formation of filopodia [2].

According to a widely accepted model, the initiation of filopodia involves
actin polymerization in the presence of activated Arp2/3 and the absence of
capping proteins. This process leads to the formation of actin bundles. However,
Arp2/3 does not appear to be essential for filopodia initiation in adherent cells.
An alternative model proposes that filopodia initiation occurs through clusters
of activated forming in close proximity to the plasma membrane. These clusters
nucleate and elongate actin filaments, contributing to the formation of filopodia.
In both scenarios, the development of "mature" filopodia involves additional
elongation facilitated by forming (such as mDia2) and Ena/VASP, alongside
stabilization and bundling facilitated by cross-linkers like fascin [2].

In addition to their function in cell movement, filopodia play a crucial role in
initiating cell-cell contacts, transmitting signals between cells, and responding
to the mechanical characteristics of their environment. Interestingly, when
filopodia retract toward the cell, myosins II, V, and VI do not play a role in
this process. This implies that the dynamics of filopodia are solely governed by
(de-)polymerization of actin and alterations in the cell cortex [2].
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Figure 6.4: Di�erent types of stress fiber in migrating cells. The illustration of
these stress fibers in mobile cells is shown from both a top view (a) and a side
view (b) [66]. Figure from [66]

6.1.2.1.4 Stress fibers Another category of actin-related structures is stress
fibers (see figures 6.3 and 6.4), which are not found in either filopodia or the
lamellipodium [2]. These actomyosin bundles are pronouncedly established in
fibroblasts, endothelial cells, smooth muscle, and distinct cancer cell lines [67].
In non-motile cells, the stress fibers are rather thick and stable compared with
highly motile cells, in which the stress fibers are less pronounced, deceased in
numbers, thinner, and can more easily undergo dynamical remodeling [67].

Stress fibers are composed of bundles of anti-parallel actin filaments containing
myosin II or parallel filaments (see figure 6.5). These fibers are made up of bundles
consisting of 10-30 actin filaments interconnected by cross-linking proteins, such
as –-actinin, arranged bipolar. They form contractile actomyosin bundles that
connect to focal adhesions. These adhesions serve as links through which the entire
actin cytoskeleton connects to the extracellular matrix. In many animal cells,
contractile stress fibers play a significant role in enhancing the cell’s contractility
[2].

In addition to actin and myosin, stress fibers contain actin-binding proteins
and focal adhesion-associated proteins that bind and unbind rapidly. Various
molecules, including cross-linkers like –-actinin, are present within stress fibers.
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This protein not only stabilizes the bundle but also interacts with kinases and
signaling proteins, acting as a mediator in signaling processes. Stress fibers may
also contain other cross-linkers like fascin, filamin, and paladin although their
specific roles, especially beyond bundling, remain unclear. One hypothesis sug-
gests that these proteins form a foundation for regulating cytoskeletal dynamics.
For instance, paladin interacts with profilin and VASP, indicating a potential
role in modulating cytoskeletal dynamics. Additional molecules, including those
from the calponin, tropomyosin, caldesmon family, and others, are present in
stress fibers and are suggested to participate in the regulation of the cytoskeleton
and/or stress fibers [2, 67].

The formation of stress fibers is directly linked to the activation of the formin
mDia1 and the small Rho GTPase RhoA, which in turn activates ROCK. Formin
facilitates sustained actin polymerization of parallel filaments, which is essential
for the formation of dorsal stress fibers. Conversely, ROCK activates LIM kinase
(LIMK), inhibiting ADF/cofilin-induced filament severing. Furthermore, ROCK
activates myosin, facilitating the formation of stress fibers. The coordinated
actions of both ROCK and formin mechanisms are essential for developing
contractile stress fibers. In contrast, two other Rho GTPases, Cdc42 and Rac1,
play more indirect roles by inducing lamellipodial growth through Arp2/3 (Rac1)
and promoting filopodia formation through the formin mDia2 (Cdc42). The
collapse of both types of filaments can act as seeds for the formation of either
transversal or ventral stress fibers [2, 67].

6.1.2.1.4.1 Di�erent stress fibers types Stress fibers display consid-
erable diversity in their morphology, interactions with focal adhesion proteins,
and molecular characteristics. Consequently, they are classified into at least
four distinct types: the perinuclear actin cap, transverse arcs/stress fibers, and
dorsal and ventral stress fibers (see figure 6.4). Among these types are three
classes of contractile stress fibers-ventral, transverse, and the perinuclear actin
cap-identified by the presence of myosin II along the fibers [2].

Each of these contractile stress fiber types relies significantly on the presence
and activity of myosin, and thus, on tension. Inhibiting myosin results in the
disassembly of these stress fibers. The spacing of myosin II can undergo changes
over time, underscoring that contractile stress fibers are dynamic structures with
non-uniform mechanical properties. Measurements indicate that stress fibers
display a sti�ness of approximately 12 kPa. Disruption of myosin in stress fibers
decreases the elastic modulus to 8 kPa, underscoring the vital role of myosin II
in contractile stress fibers [2].



6.1 Internal organization of the cell 109

Figure 6.5: F-actin stress fibers [67]. Figure from [67].

Dorsal stress fibers Dorsal stress fibers, unlike other stress fiber types,
typically lack myosin II and are anchored at their distal ends to focal adhesions.
The absence of myosin directly results in the non-contractile nature of the dorsal
stress fibers.

The precise organization of actin filaments in dorsal stress fibers is still elusive
[67]. However, they display a structurally related so-called "graded polarity" of
their bundles, as the distal ends consist of unipolar actin filaments with rapidly
growing barbed ends facing the cell periphery, whereas the more proximal parts
of the actin bundle consist of actin filaments with mixed polarity [67]: it is
proposed that these fibers are composed of fast-growing (+)-ends oriented toward
the cell periphery, while the more distant parts comprise actin filaments with
mixed polarity. Additionally, it appears that both paladin and Rac1 play crucial
roles in the formation of dorsal stress fibers. Paladin facilitates fiber assembly by
recruiting VASP [2].

Functionally, dorsal stress fibers appear to serve as a platform and anchoring
point for the assembly of other stress fiber types while also establishing a con-
nection to focal adhesions. It is suggested that dorsal stress fibers are formed
through actin polymerization at small adhesions developed behind the leading
edge and are stabilized during the retraction phases of the lamellipodium by
connecting to emerging transverse stress fibers. As the cell front extends away
from the adhesion point, dorsal stress fibers elongate [2, 67].

Trasversal stress fibers Transverse arcs are curved bundles of actin filaments
displaying a periodic alpha-actinin-myosin pattern, characteristic of contractile
actomyosin bundles [67]. Positioned perpendicular to the ventral stress fibers,
these structures depend on Arp2/3 for their formation and originate behind the
lamellipodium. They arise from a combination of short myosin filaments and
actin filaments generated at the leading edge by the Arp2/3 complex. These
fibers form when the dendritic network collapses and is restructured by myosin
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[67, 2].
Simulations exploring the ability of myosin to generate contractile structures

suggest that the presence of both myosin and actin is su�cient to create en-
ergetically favorable anti-parallel/contractile bundles. Another source of both
transverse fibers is the collapse of filopodia, which acts as a seed for stress fiber
formation. Unlike arcs, which do not directly bind to focal adhesions, they trans-
fer contractile force to the surrounding microenvironment through connections
with dorsal stress fibers. A key characteristic of transverse arcs in migrating cells
is their ability to flow from the cell’s leading edge toward the cell’s interior center,
a phenomenon known as retrograde flow, which is believed to be facilitated by
the continuous contraction of the arcs [67, 2].

Trasversal stress fibers and Lamella: are there any di�erences
between them? In migrating cells, the lamella can be synonymous with the
transverse arc network, as both structures (the lamella and the transverse arcs)
contain condensed actin bundles and can undergo retrograde flow toward the
cell’s center [67]. Additionally, both the lamella and transverse arcs share similar
protein compositions, such as tropomyosins, which are minimally present in
the lamellipodium but are highly detectable in the lamella and transverse arcs.
Furthermore, both the arcs and the lamella emerge through the condensation of
actin filaments from the lamellipodium into arc-shaped actin bundles oriented
parallel to the cell’s edge.

Ventral stress fibers Ventral stress fibers are contractile actomyosin bundles
oriented parallel to the direction of cell motion. They are connected to focal
adhesions at both ends, making them a major component of the contractile
machinery in many interphase cells [67]. Despite their prominence, transversal
stress fibers can also contribute to overall contractility through their connection
to dorsal stress fibers [2]. Typically situated at the posterior parts of the cell,
ventral stress fibers, due to their location and orientation, play a role in rear
contraction and are thus associated with cell motility [2]. Ventral stress fibers
commonly develop from the fusion of each end of an arc with a dorsal stress
fiber. The annealing of two dorsal stress fibers growing from opposite sides of a
cell can also give rise to ventral stress fibers, both anchored at each end by focal
adhesions [66].

Purinuclear actin caps The perinuclear cap represents a form of stress
fibers positioned above the nucleus, which influences its shape. It is suggested to
act as a mechanical link between the nucleus and the rest of the cell, potentially
contributing to structural support and integrity. Identified as an actin-based
assembly composed of fibers over the cell nucleus and connected to the nucle-
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oskeleton, the perinuclear actin cap primarily regulates nuclear shape during cell
migration [2].

Furthermore, perinuclear actomyosin fibers may serve as mechanotransducers
that transmit forces from the cellular microenvironment to the cell nucleus. Cer-
tain stress-fiber-like structures are connected to the nuclear membrane through
specific membrane proteins, stabilizing the precise position of the nucleus. Anal-
ogous to the connections between canonical stress fibers and the extracellular
matrix via focal adhesions, a subset of stress fibers appears to be mechanically
linked to nuclear membrane proteins, facilitating nuclear movement during overall
cellular migration [67].

6.1.2.1.5 Actin cortex and blebs The actin cortex, a cytoplasmic structure
bordering the plasma membrane, constitutes a contractile actin arrangement. This
cortex is a few hundred nanometers thick and comprises a combination of filament
bundles and cross-linked filaments. It features a mesh size of approximately 50-150
nm, a thickness ranging from 50 to 100 nm, and a distance to the cell membrane
of less than 20 nm. While the meshwork of the cortex appears predominantly
isotropic and aligned parallel to the plasma membrane, some filaments are also
oriented perpendicular to the membrane [2, 67].

In addition to actin filaments, the cortex encompasses a diverse array of
components, including cross-linkers (e.g., fascin, actinin, filamin), myosin, proteins
that regulate actin turnover (profilin, cofilin), capping proteins, proteins from the
ERM family (ezrin, radixin, moesin), nucleating factors (Arp2/3, formin mDia1),
and signaling molecules such as RhoGTPases, RhoGEFs (guanine exchange
factors), and RhoGAPs (GTPase activating proteins). Arp2/3 and mDia1 play
crucial roles in the generation of cortical F-actin, with ERM proteins serving
as connectors between the cortex and the membrane. They transmit the forces
exerted on the membrane, thereby influencing cell shape [2, 67].

Depletion of cofilin-1 or capping proteins in HeLa cells leads to an augmented
cortex thickness but diminished tension, indicating the involvement of actin-
regulating proteins in cortical tension. The mechanical characteristics of the
cortex dictate how cells undergo deformation in response to external forces. On
timescales shorter than the demodulation time of the cortex, it demonstrates
elastic behavior, showcasing a cell type-dependent elastic modulus ranging from
a few hundred to thousands of pascals [2, 67].

Over extended timescales (>1 min), the cortex exhibits viscous behavior
attributed to its adaptation to external forces through actin modulation, dis-
sociation, and the (un-)binding of cross-linkers. If myosin is activated, the
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turnover times of the cortex can be further reduced, potentially involving direct
disassembly or enhanced actin breakage [2].

The tension of the cortex, a critical property on both local and global scales,
plays a pivotal role in regulating the cell shape of individual cells and tissues.
Studies suggest that cortex tension is contingent on myosin activity and actin
polymerization, where elevated myosin activity coupled with diminished actin
polymerization results in heightened cortex tension levels. Conversely, lower
cortex tension is associated with heightened cell protrusive activity, indirectly
influencing cell motility [2, 67].

Localized decreases in cortex tension or cortex-membrane adhesion, and dis-
ruptions in the cortex, can result in blebs-distinct membrane protrusions initially
lacking actin content. Blebs can form because of any form of cortex weakening or
loss of cortex-membrane adhesion when a specific internal hydrostatic pressure
threshold is exceeded. Although localized myosin contractions that promote
cortex tearing or elevate local intracellular pressure are considered primary causes
of blebbing, other mechanisms are also under discussion as potential contributors
[2, 67].

The activation of myosin through ROCK or MLCK is su�cient to trigger
bleb formation. The progression of a bleb can be characterized by three stages:
initiation, growth, and retraction. In the initial phase, emerging blebs lack actin
content, but as the bleb expands, the actin cortex reassembles at the plasma
membrane. This reassembly arrests further bleb growth, ultimately leading to
complete restoration, where the generated contractile forces eventually retract
the bleb from the membrane [2].

It is crucial to note that bleb retraction is not always universal. In certain
motile cells, blebs are stabilized and used as an alternative or supplementary
method of migration. Actomyosin-induced pressure expands blebs for 5-30
seconds, causing cytosol to flow into the bleb and a simultaneous increase in
surface area. This surface area increase is facilitated by the flow of lipids resulting
from the tearing of the membrane from the actin cortex. The maximum size of a
bleb is determined by the initial growth rate and the duration for the cortex to
re-polymerize, both contingent upon cortex tension levels [2].

The notion that tension hinders bleb expansion is supported by the idea that
the necessary membrane unfolding acts as a resistance to bleb growth, thereby
slowing it down. Once fully matured, the cortex is reconstituted, and if the bleb
lacks stabilization through adhesions, it is retracted by the re-established cortex
through myosin-induced contraction [2].
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6.1.2.2 The microtubules

Microtubules, intricate structures composed of tubulin protein polymers,
exhibit greater structural complexity than actin filaments. A microtubule is a
hollow cylindrical assembly formed by 13 parallel protofilaments, each consisting
of –-tubulin and —-tubulin heterodimers stacked head to tail and folded into a
tube. Despite their complexity, microtubules are dynamic and play diverse roles
within the cell [4].

Microtubules act as essential tracks for cellular transport, contributing to
spindle positioning during mitosis, cell migration, and the regulation of cell shape.
Although most cell types may not directly engage in mechanical activities, there
is a growing consensus that microtubules influence cell shape and migration by
regulating the balance between RhoA and Rac1. Despite their relative sti�ness
compared with actin, microtubules can generate forces up to 3-4 pN during
polymerization, allowing them to deform membranes and resist compressional
forces. They function as load-bearing fibers in living cells, and their load-bearing
capacity increases linearly with the number of microtubules per bundle. However,
the load-bearing capacity of microtubules is limited, and compressional loads can
induce catastrophe events, particularly at the cell edge [2].

Microtubules also contribute to force generation during the shrinkage phase.
When the GTP cap is lost, microtubule protofilaments lose their lateral connection
with neighboring protofilaments, forming ring-like shapes. If cargo remains
attached during this process, a single microtubule can exert forces of up to 30-65
pN, surpassing the pushing force. Moreover, microtubules play a crucial role
in the separation of chromosomes during cell division, where depolymerization
generates the necessary forces to separate sister chromatids [2].

The relationship between microtubules and actin is intricate. While micro-
tubules can locally regulate and be regulated by RhoGTPases and focal adhesions,
certain molecules interact with both microtubules and actin. For example, APC
(adenomatous polyposis coli) stabilizes microtubules and initiates actin filaments.
Formin mDia1 supports actin nucleation, and mDia2, another formin, not only
promotes actin nucleation but also stabilizes microtubules independently of its
nucleation role. Cross-linkers like MACF1 and Arg connect actin and microtubule
filaments, highlighting the intricate and coordinated interplay between the actin
and microtubule cytoskeletons [2].
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6.1.2.3 Intermediate filaments

Intermediate filaments, the third major cytoskeletal type, are exclusive to
certain metazoans like vertebrates, nematodes, and mollusks. They are notably
absent in animals with rigid exoskeletons, such as arthropods and echinoderms,
and are more prevalent in organisms subject to mechanical stress, contributing
to the mechanical strength of tissues [4]. This suggests a role for intermediate
filaments in providing structural support, particularly in animals with softer
anatomy.

Intermediate filaments, organized by a diverse set of proteins encoded by at
least 70 genes, form filaments with a diameter of 10 nm and are classified into five
classes based on structure and sequence homology [2]. These filaments exhibit
flexibility, characterized by a persistence length of less than 1 µm, and exhibit
strain hardening with an increasing elastic modulus upon deformation. Their
elastic properties significantly contribute to the overall viscoelastic response of
cells, as observed in both measurements and simulations [2].

Despite their role as mechanical bu�ers and organelle anchors, intermediate
filaments are dynamic components of the cytoskeleton with diverse functions
in apoptosis, migration, and adhesion. They interact with other cytoskeletal
elements, such as actin and microtubules, through a complex network. Post-
translational modifications and the involvement of plakin proteins contribute to
the regulation of intermediate filament assembly and function. Transport along
actin or microtubule structures, facilitated by molecular motors like kinesin,
dynein, or myosin, demonstrates the interdependence between intermediate
filaments and other cytoskeletal components. The intricate interplay between
intermediate filaments and the actin or microtubule cytoskeletons is evident in
their mutual orientation and the influence of one on the transport dynamics of
the other [2].

Intermediate filaments also interact with various cellular structures, including
(hemi-)desmosomes and focal adhesions. These interactions, facilitated by proteins
like plectin or integrins, contribute to the reinforcement of actin and focal
adhesions. The connection between intermediate filaments and the nucleus
through the LINC complex at the nuclear membrane is crucial for maintaining
force transmission and nuclear positioning. Depletion or mutations in intermediate
filament proteins, such as nestin, vimentin, and GFAP, impact nuclear dynamics,
chromatin organization, and gene expression, highlighting their role as passive
mechanotransducers in controlling cellular functions [2].
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Figure 6.6: Active integrin molecule subunit structure, linking extracellular
matrix to the actin cytoskeleton [4]. Figure from [4].

6.2 Cell and ECM interactions
The extracellular matrix (ECM) is a vital component of tissues and consists

of an intricate network of macromolecules, including proteins and polysaccharides
secreted and assembled around cells. Although the classes of macromolecules
in the ECM are similar across various animal tissues, the di�erent relative
amounts and organization of these molecules create diverse materials with unique
properties. For instance, the ECM can become rigid and calcified, as seen in
bone or teeth, or form transparent structures such as the cornea. It also provides
rope-like strength in tendons and comprises jelly-like substances in organisms
such as jellyfish. Additionally, the ECM can create the rigid carapace found in
beatles or lobsters [4].

The interplay between cells and the ECM is a crucial component of many
biological processes. The ECM plays an active role in regulating the behavior
of cells that come into contact with it, reside within it, or move through its
structures. Its impact on cells extends across various cellular activities such as
survival, development, migration, proliferation, morphology, and function. In
return, cells possess the ability to produce, structure, and break down the ECM
[4, 68].

The interplay between cells and the ECM is a crucial component of many
biological processes. The ECM plays an active role in regulating the behavior
of cells that come into contact with it, reside within it, or move through its
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structures. Its impact on cells extends across various cellular activities such as
survival, development, migration, proliferation, morphology, and function. In
return, cells possess the ability to produce, structure, and break down the ECM
[4, 68].

This bidirectional relationship is largely mediated by transmembrane cell
adhesion proteins that act as receptors for the ECM. These receptors play a
pivotal role in facilitating the connection between cells and the ECM, enabling a
diverse array of cellular functions and behaviors [4, 68].

Receptor dynamic along cell membrane is a key factor in several biological
phenomena, such as angiogenesis, tumor metastasis, endocytosis, and exocytosis.
Angiogenesis is a multistep process in which cells are a�ected by several extracel-
lular stimuli, including growth factors, extracellular matrix, and parenchymal
and stromal cells. In this process, growth factor receptors as well as adhesion
receptors convey the extracellular signaling in a coordinated intracellular pathway
promoting cell proliferation, migration, and their reorganization in active vessels
[69].

The ECM’s e�ects on cells encompass not only structural support but also
signaling and mechanical cues that modulate and direct cellular behavior in di�er-
ent physiological contexts. Similarly, cells actively contribute to the composition
and organization of the ECM, resulting in a dynamic and reciprocal relationship
between cells and their extracellular environment [4, 68].

The interaction between cells and the ECM is intricate and highly influential
in cellular behavior. The proteins that serve as receptors for the ECM do not
just mechanically link the matrix outside the cell to the cytoskeleton inside, but
they also play an active role in determining a wide range of cellular functions.
These matrix receptors, especially integrins, are essential in the interactions
of epithelial cells with the basal lamina below them and in the interactions of
connective-tissue cells with the matrix surrounding them [4, 68].

These receptors for the extracellular matrix vary in type and function. Es-
sential among them are integrins, which are the main receptors on animal cells
for binding to most ECM proteins (see figure 6.6). Integrins, similar to cad-
herins and other key components of the basal lamina, are crucial in the basic
architecture of multicellular organisms. They belong to a substantial family of
similar transmembrane adhesion molecules and possess a remarkable ability to
relay signals in both directions across the plasma membrane. When a matrix
component binds to an integrin, it can transmit a signal into the interior of the
cell, and conditions within the cell can, in turn, influence the binding of the
integrin to the matrix [4, 68].
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Integrins are a family of cell adhesion receptors that support and modulate
several cellular functions required for tumor metastasis. They can directly
contribute to the control and progression of metastatic dissemination. During
tumor development, changes in this family of receptors impact the ability of tumor
cells to interact with their environment and enable metastatic cells to convert to
a migratory and invasive phenotype. Integrins regulate each step of metastasis
and a�ect tumor cell survival and interaction with changing environments during
transit from the primary tumor to distant target organs [70].

Receptor-mediated endocytosis is a process by which cells absorb metabolites,
hormones, proteins - and, in some cases, viruses - by the inward budding of the
plasma membrane (invagination). This process forms vesicles containing the
absorbed substances and is strictly mediated by receptors on the surface of the
cell [71].

This bidirectional signaling enables the integrins to convey information from
the external environment to the cell interior and vice versa and allows the
cell to dynamically respond and adapt to changes in its surroundings. This
communication facilitates the regulation of diverse cellular processes based on
the cues received from the extracellular matrix [4, 68].

Integrins directly participate in binding to ECM ligands, such as RGD ligands.
They establish connections with the cytoskeletal sca�old through various interme-
diary adaptor proteins, creating multiple points for the regulation and control of
integrin adhesion. Di�erent micrometer-scale multi-protein complexes facilitating
cell-ECM adhesion are acknowledged, usually establishing links between integrins
bound to the ECM and the actin cytoskeleton or intermediate filaments. These
connections encompass unique configurations of various adaptor and signaling
proteins [68].

Applied tension to an integrin can tighten its grip on both intracellular and
extracellular structures. Conversely, the loss of tension can loosen its hold, causing
molecular signaling complexes to disassemble on either side of the membrane. In
this manner, integrins play a dual role: not only transmitting mechanical and
molecular signals and converting one type of signal into the other. Integrins,
among other transmembrane cell adhesion proteins, play a role that extends
beyond simple attachment. These proteins can also activate intracellular signaling
pathways, thereby regulating various aspects of a cell’s behavior according to
the nature of the surrounding extracellular matrix and the state of the cell’s
attachments to it [4].

For many types of cells, growth or proliferation does not occur in culture
unless they are firmly attached to the extracellular matrix. Even with nutrients
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and soluble growth factors available in the culture medium, certain cells, such
as epithelial, endothelial, and muscle cells, require attachment for their survival.
Loss of contact with the extracellular matrix leads these cells to undergo a
self-destructive process called apoptosis [4, 68].

This dependence of cell growth, proliferation, and survival on attachment to
a substratum is known as "anchorage dependence". Integrins, along with the
intracellular signals that they generate, play a pivotal role in this anchorage
dependence. Disruptions or mutations that override this control mechanism,
allowing cells to detach or escape from anchorage dependence, are observed in
cancer cells and contribute significantly to their invasive behavior. This is one
of the critical ways in which cancer cells deviate from the normal constraints of
cellular behavior and is a significant factor in their ability to spread and invade
surrounding tissues [4, 68].

6.2.1 Integrins

Integrins, despite their numerous variations, adhere to a common structural
blueprint. Each integrin molecule consists of two glycoprotein subunits, known
as – and —, which are non-covalently associated. These subunits traverse the
cell membrane and feature short intracellular C-terminal tails and extensive
N-terminal extracellular domains. Extracellular domains specifically bind to
amino acid sequences in extracellular matrix proteins or, in certain cases, on the
surfaces of other cells [4].

In humans, there are 24 types of integrins, resulting from the combination of
products from 8 di�erent —-chain genes and 18 di�erent –-chain genes. Integrin
dimers, formed by these combinations, exhibit diverse properties and functions.
The same integrin molecule in various cell types can display distinct ligand-
binding specificities, suggesting the influence of additional cell-specific factors in
modulating integrin activities [4].

The intracellular region of integrin dimers forms a connection with the cy-
toskeleton by binding to a complex of various proteins. In most human integrins,
this linkage is established with actin filaments and involves proteins assembling at
the short cytoplasmic tails of the integrin subunits. Talin, an abundant adaptor
protein, is often involved in this linkage, although several other proteins also
contribute. Similar to cadherin-mediated cell-cell junctions, the cell-matrix junc-
tions formed by integrins exhibit variability in size, appearance, and duration.
These junctions can range from small, transient structures to large, enduring
complexes [4].
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Focal adhesions, for example, represent larger and more prominent cell-matrix
junctions. They form when fibroblasts establish robust attachments to a rigid
surface. Myotendinous junctions are another example, linking muscle cells to
tendons and facilitating the transfer of force between these tissues for e�cient
functioning [4].

6.2.1.1 Active and an inactive integrin

The dynamic nature of cell migration and the interactions between cells
and their extracellular environment, particularly the extracellular matrix, rely
on the intricate and timely modulation of attachments. Cells like fibroblasts,
macrophages, or epithelial cells must rapidly regulate their connections with the
extracellular matrix to migrate e�ectively [4].

Integrin molecules, as key mediators of these attachments, cannot function as
rigid, unchangeable structures. Instead, they need the capacity to switch between
active and inactive states. In their active state, integrins readily engage in
connections, facilitating attachment and migration. Conversely, in their inactive
state, they refrain from binding. This ability to dynamically control their activity
is crucial for cells to e�ciently and precisely regulate their interactions with
the extracellular matrix while navigating through various tissues and locations
[68, 4].

Structural studies using techniques such as electron microscopy and X-ray
crystallography have revealed that integrins have multiple structural conforma-
tions, reflecting di�erent states of activity. Integrins exhibit distinct shapes
depending on their activity level. In the inactive state, the external segments of
the integrin dimer are tightly folded into a compact structure. In this confor-
mation, the cytoplasmic tails of the dimer are hooked together, restricting their
interaction with cytoskeletal adaptor proteins [4].

In contrast, in the active state, the integrin subunits become disengaged at
the membrane, exposing the intracellular binding sites for cytoplasmic adaptor
proteins. At the same time, the external domains of the integrin unfold and
extend, resembling a pair of legs. This extension exposes a high-a�nity binding
site for matrix proteins at the subunit tips. The transition from an inactive to
an active state entails a significant conformational change that reveals both the
external and internal ligand-binding sites at the ends of the integrin molecule.
This structural transformation e�ectively links external matrix binding with
internal cytoskeleton linkages [68, 4].

Switching between inactive and active states is regulated by various mecha-



6.2 Cell and ECM interactions 120

nisms depending on the cell’s needs. Activation can occur through an "outside-in"
mechanism, in which the binding of an external matrix protein, such as the
RGD sequence of fibronectin, induces certain integrins to transition from the
low-a�nity inactive state to the high-a�nity active state. The process can also
operate in reverse, working from inside to outside. This "inside-out" integrin
activation typically relies on intracellular regulatory signals that enhance the
ability of talin and other proteins to interact with the — chain of the integrin.
Talin competes with the integrin – chain for its binding site on the tail of the —

chain. Consequently, when talin binds to the — chain, it obstructs the intracellular
–-— linkage, enabling the two legs of the integrin molecule to separate [68, 4].

6.2.1.2 Integrins cluster

Integrins, similar to other cell adhesion molecules, distinguish themselves
from cell-surface receptors for hormones and other extracellular soluble signal
molecules by typically binding their ligands with lower a�nity. Upon activation,
integrins cluster together, forming a dense plaque in which numerous integrin
molecules anchor to cytoskeletal filaments. This resulting protein structure can
be remarkably large and complex, as exemplified by the focal adhesion created
by a fibroblast on a fibronectin-coated surface culture dish [4].

The formation of mature cell-matrix junctional complexes relies on the re-
cruitment of numerous sca�olding and signaling proteins. While talin is a major
component of many cell-matrix complexes, several other proteins make significant
contributions. Integrin-linked kinase (ILK) and its binding partnerspinch and
parvin, which form a trimeric complex, serve as an organizing hub at many
junctions. Actin-binding proteins such as vinculin, zyxin, VASP, and –-actinin
promote the assembly and organization of actin filaments in cell-matrix junctions.
Focal adhesion kinase (FAK) is another integral element in numerous cell-matrix
junctions. It interacts with multiple components within these junctions and plays
a pivotal role in cellular signaling processes [4].

Integrin adhesion complexes (IACs) can be categorized on the basis of various
criteria such as their size, composition, organization, lifetime, localization, and
function. In certain instances, di�erences among these categories may represent
distinct steps in the maturation process, whereas in others, they may denote
more specialized or cell type-specific structures. This is a list of di�erent types
of adhesions:

- Nascent adhesions: these are the initial adhesion structures that become
noticeable during lamellipodial extension. They form at the cell edge,
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containing approximately 50 integrins and having a diameter of less than
0.5, µm. In addition to integrin, these structures are enriched with kindlin,
talin, focal adhesion kinase (FaK), paxillin, and –-actinin. Nascent adhe-
sions are transient, with the possibility of either disassembling or maturing
into larger focal complexes;

- Filopodia-tip adhesions: these are small Integrin Adhesion Complexes
(IACs) consisting of a distinctive subset of adhesome proteins. They are
enriched in myosin X and di�er from other adhesions. When stabilized,
filopodia-tip adhesions have the potential to develop into nascent adhesions
and further mature into focal adhesions (FAs);

- Focal complexes: these are small (less than 1µm) dot-like adhesions that
form at the transition zone between the lamellum and lamellipodium. These
structures contain core Integrin Adhesion Complex (IAC) components, link
to the actin cytoskeleton, and strengthen in response to forces.

- Fas: these are the most extensively studied and well-characterized adhesions.
Focal Adhesions form as focal complexes mature in response to increased
forces applied from actomyosin contractility or external forces. The recruit-
ment of additional Integrin Adhesion Complex (IAC) proteins in response
to force enhances the association between integrin and actin, leading to
the assembly of ordered elongated structures with sizes of approximately
2 ≠ 5µm.

- Fibrillar adhesions: these can result from further maturation of Focal
Adhesions (FAs) in certain cell types, such as fibroblasts. Fibrillar adhesions
are characterized by long, thin, or beaded structures located centrally. They
vary in length (approximately 1 ≠ 10µm) and are distinguished by the
enrichment of the ECM protein fibronectin, its receptor –5—1 integrin, and
the cytoplasmic actin-binding protein tensin. Integrins in fibrillar adhesions
play a role in mediating fibronectin fibrillogenesis, contributing to ECM
remodeling [68].

The maturation of integrin adhesion complexes (IACs) is significantly influ-
enced by various factors such as cell type, the contractility of the cell, and the
composition and sti�ness of the ECM substrate. The formation of adhesions is
typically followed by their disassembly, which can be driven by several processes.
These include local inhibition of the contractility that is usually responsible for
driving adhesion IAC maturation, localized proteolysis of ECM components that
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integrins bind to, and local endocytosis of integrins present on the cell surface
[4, 68].

Microtubule targeting of IACs can drive these processes, thereby initiating
adhesion turnover. Remodeling of adhesions allows the cell to sense and respond
to alterations in the local extracellular mechanical environment. For instance,
cells can adjust their migration speed or direction in response to changes in
ECM organization. Moreover, part of the cellular response involves feedback
regulation of adhesion dynamics, enabling the cell to adapt flexibly to changes in
its environment [68].

6.2.2 Cell-matrix adhesions mechanosensitivity

The ability of cell-matrix junctions to detect and respond to mechanical forces
is crucial for various cellular functions. When cells adhere to a sti� matrix that
resists pulling forces, cell-matrix junctions can sense the increased tension. In
response, these junctions recruit additional integrins and associated proteins,
reinforcing their structure to withstand elevated tension. Conversely, when cells
attach to a less rigid matrix, reduced tension leads to a less robust cellular
response. This mechanosensing mechanism allows cells to adapt to the varying
sti�ness of extracellular matrices in di�erent tissues [4, 68].

Talin, a key player in cell-matrix junctions, exemplifies how mechanical force
influences protein structure and function. The C-terminal tail domain of talin
contains binding sites for vinculin, an actin-regulatory protein. These binding
sites are initially hidden within folded protein domains but become exposed
when the protein is stretched. As actin filaments are pulled by myosin motors,
generating tension, the talin rod is stretched, exposing vinculin-binding sites.
Vinculin molecules recruited in this process organize additional actin filaments,
reinforcing the junction and increasing its strength [4, 68].

Mechanical force plays a central role in influencing the dynamics of integrin
adhesion complexes (IACs). Cellular forces generated by actin polymerization and
myosin II contractility are transmitted to integrins through key adaptor proteins
within IACs. Traction force, transmitted through integrins to the extracellular
matrix (ECM), drives various cellular processes, including cell shape changes,
migration, rigidity sensing, and ECM remodeling [4, 68].

The mechanosensitivity of Integrin Adhesion Complexes (IACs) is an intricate
process that involves various aspects of their structure, function, and regulation.
This encompasses variations in IAC lifetime during adhesion formation, matura-
tion, remodeling, and turnover. Alterations in the movement and interactions of
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individual integrin-associated complex (IAC) molecules take place in response
to the recruitment of new binding partners, post-translational modifications,
changes in the membrane environment, and mechanical deformations. The inter-
play of molecular dynamics, conformational changes, transient force-regulated
protein interactions, and intracellular transport collectively contribute to the
mechanosensitivity of IACs [4, 68].

6.2.2.1 Single-molecule dynamics within adhesions

Single-molecule tracking studies have provided valuable insights into the
dynamics of integrins within Integrin Adhesion Complexes (IACs). Contrary to
expectations, these studies reveal that both immobilized integrins are present
outside IACs, and di�usive integrins can be found inside IACs, highlighting the
heterogeneity in the behavior of integrins [68].

Longer timescale single-molecule tracking further demonstrates that integrins
exhibit repeated entry and exit from Focal Adhesions (FAs). They undergo
transient arrests mediated by both the ECM and cytoskeleton, both inside and
outside FAs. Notably, integrins are arrested approximately 80% of the time
within adhesions, compared to around 50% of the time outside adhesions. This
indicates that the dynamics of integrins within IACs significantly di�er from
those outside, emphasizing the unique behavior of integrins within the context of
adhesion complexes [68].

The exploration of single-molecule probes for signaling molecules, such as Src,
represents a promising advancement in connecting nanoscale dynamics within
IACs to broader cellular functions. This innovative approach to single-molecule
investigation is expected to provide crucial insights into the behavior of signaling
molecules within IACs and their impact on cellular functions at a larger scale
[68].

6.2.2.2 Temporal responses of adhesions to applied forces.

Experiments involving the acute application of external force provide valuable
insights into how the Integrin Adhesome Complex (IAC) dynamics respond
to mechanical stimuli. While extended periods of mechanical factors lead to
the orchestrated adjustment of IAC assembly and disassembly, resulting in
cytoskeletal reorganization and changes in cell shape and migration paths, short
timescales reveal rapid strengthening of cell-ECM adhesion with sub-second
response times [68].

Single-cell force spectroscopy has demonstrated that at shorter timescales,
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cell-ECM adhesion can be rapidly strengthened. This rapid response, occurring
within seconds, involves a subset of IAC components such as integrin, talin,
kindlin, FAK, Src, Arp2/3, and mDia1 formin. The exact mechanisms and
structures involved in this rapid response, which occurs faster than visible IAC
maturation, are not fully understood. It has been suggested that pre-existing
IAC structures, potentially corresponding to immobilized integrins outside IACs,
play a role in these rapid responses [68].

The introduction of a substrate stretching platform compatible with super-
resolution microscopy (SRM) has o�ered insights into the intricate responses
of cells to acute force application. This includes the displacement of the actin
cytoskeleton and the elastic deformation of proteins in Focal Adhesions (FAs).
Notably, the extent of actin cytoskeleton displacement exceeds the deformation of
the substrate, and this overcompensated actin motion is shown to be dependent
on myosin II. However, the specific functional roles and underlying mechanisms
are not fully understood [68].

6.3 Cell migration
A critical property of cells is their capacity to move, particularly notable

in scenarios such as immune cells pursuing pathogens, wound closure, or the
metastasis of tumor cells [2, 46].

Cell crawling, a fundamental behavior across various organisms and cell
types, facilitates movement over surfaces. Predatory amoebae use this mode of
locomotion to continuously search for and consume food, often preying on smaller
organisms like ciliates and flagellates. In animals, most cell movement happens
through crawling, except for sperm, which swims. During embryonic development,
cell migration is pivotal in shaping the body’s structure. For instance, neural
crest cells in vertebrates migrate long distances within the embryo, playing a
vital role in creating various tissues and organs [2].

Crawling is essential for constructing the nervous system. Actin-rich growth
cones guide developing axons toward their eventual synaptic targets, guided by
various signaling cues. In adult organisms, various cell types exhibit crawling
behavior: macrophages and neutrophils crawl to sites of infection to eliminate
foreign agents, osteoclasts tunnel into the bone for its continuous remodeling
and renewal, fibroblasts move through connective tissues to aid in repair, and
intestinal epithelial cells migrate up the sides of intestinal villi to replace lost
absorptive cells [2].

Unfortunately, this cellular movement is also linked to the progression of
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Figure 6.7: Modes of migration in 3D [67]. Figure from [67].

cancer. Cells from a primary tumor often invade neighboring tissues, travel
through blood vessels or lymph vessels, and establish secondary tumors in
di�erent parts of the body in a process known as metastasis [2].

6.3.1 Cell migration phases

A motile cell’s net movement is orchestrated by a multitude of interdependent
processes, primarily actin-dependent. These processes involve

- protrusion: formation of protrusions in the direction of motion, in which
the plasma membrane is pushed out at the front of the cell;

- attachment: subsequent adhesion to the substrate, in which the actin
cytoskeleton connects across the plasma membrane to the substratum;

- traction: loss of adhesion on the rear of the cell, followed by rear-contraction,
in which the bulk of the trailing cytoplasm is drawn forward [67].

Coordination of cellular events is crucial for e�ective cell migration. The
intricate timing and synchronization of these processes determine the e�ciency
and directionality of cell movement. As mentioned, if the cell fails to complete
the maturation of adhesions at the leading edge, an increase in contractile
forces may result in the premature rupture of these nascent adhesions. This
untimely detachment can hinder productive cell movement, ultimately leading
to the loss of directionality or e�ciency in migration. Coordination in the



6.3 Cell migration 126

spatiotemporal regulation of these processes is vital to ensure successful and
directed cell migration.

Cells have evolved two distinct modes of migration to achieve productive move-
ment and appropriately time migration steps, the amoeboid and mesenchymal
types (see figure 6.7) [2]

- Amoeboid cell migration: it is typical for rounded cells with low adhesion
and high Rho-driven contractility. It involves the protrusion of structures
known as blebs, which regulate cell movement independently of filopodia
and lamellipodium.

- Mesenchymal cell migration: it is characterized by strong adhesion and
Rac1-induced protrusions, reflecting the mutual negative regulation of Rac1
and RhoA [2]. It is governed by subcellular structures such as filopodia and
the lamellipodium, while stress fibers and cortex ensure mechanical stability
and contractility [67]. In some cells, like fish epidermal keratocytes, these
activities occur simultaneously, leading to smooth forward gliding without
significant changes in shape. In contrast, in other cells like fibroblasts, these
activities are more independent, resulting in jerky and irregular locomotion
[67].

6.3.1.1 Protrusion

In mesenchymal motion, the initial step in locomotion involves the protrusion
of a leading edge, often driven by forces generated through actin polymerization
pushing the plasma membrane outward. Various cell types generate di�erent
types of protrusive structures, notably filopodia (also known as microspikes)
and lamellipodia. The distinction between these structures lies primarily in
the organization of actin facilitated by actin-cross-linking proteins (see section
6.1.2.1) [4].

The lamellipodium, found in epithelial cells, fibroblasts, and certain neurons,
stands out as a primary force-generating cell structure, capable of producing
pushing forces of up to 35 nN, as observed in extreme cases such as fish keratocytes.
To generate these forces, actin undergoes local polymerization at the cell front
facilitated by Arp2/3 and depolymerization at the back of the lamellipodium
through ADF/cofilin activity (see figures 6.8 and 6.9). Interestingly, forming
such as FMNL2 or FMNL3 appear to contribute to lamellipodial extension
independently of Arp2/3 complex incorporation and, in certain cell types, act as
primary sources of lamellipodial protrusion forces. The protein Arpin inhibits
the activity of Arp2/3, introducing pause phases in lamellipodial extensions and
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Figure 6.8: A model for actin filament assembly and disassembly at the leading
edge [72]. Figure from [72].

leading to less directed motion. The continuous (de-)polymerization of actin
creates a treadmilling e�ect, generating forces and a retrograde flow of actin [2].

Stress fiber contraction creates a flow that moves actin toward the cell front,
going in the opposite direction of the retrograde flow. To secure the lamellipodium
and avoid retraction caused by actin cortex tension, it is essential to establish
new contacts between the cell and the extracellular matrix (ECM). Broadly,
as the lamellipodium extends, new adhesions emerge, potentially developing
into focal adhesions or breaking apart. Rac1 oversees the creation of these
nascent adhesions, while RhoA and myosin II-induced contractility dictate their
maturation. These sites serve as anchors for stress fibers, generating tension and
influencing the composition of focal adhesions. The precise mechanism of actin
nucleation in focal adhesions remains only partially elucidated, with formins like
FHOD1 or mDia1 considered to be involved. Conversely, the genesis of nascent
adhesions is believed to rely on Arp2/3 activity in the lamellipodium, attributed
to its interaction with vinculin and focal adhesion kinases (FAK). Despite this,
the lamellipodium is not indispensable for migration. Certain cell types, such
as fibroblasts and melanoblasts, can move without the involvement of Rac and
Arp2/3, although the speed of migration is notably slower [2].

Without the lamellipodium, these cells use filopodia or other pseudopods,
which are likely dependent on formins, for migration. Filopodia, observed in
the migrating growth cones of neurons and certain fibroblasts, are essentially
one-dimensional in structure. Filopodia comprise a core of extended, bundled
actin filaments, resembling those found in microvilli but characterized by being
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Figure 6.9: The model illustrates the protrusion of the actin meshwork at the
leading edge, depicting two distinct time points during the progression of the
lamellipodium [4]. Figure from [4].

longer, thinner, and more dynamic. To facilitate e�ective movement, it is
crucial to confine actin polymerization to a specific zone. Hence, we assume
that Rac1 is active only in specific local areas. The activation of Rac1 in these
locales is thought to occur through Cdc42-induced pathways and microtubule
capture at the leading edge, leading to localized RacGEF activation and vesicle
supply. Alternatively, another mechanism might involve the Rho/ROCK pathway
and actomyosin contractility, which hinders lamellipodium formation across
multiple cell regions. This concept is supported by the observation of either
multiple or larger lamellipodia following the inhibition of Rho or ROCK activity.
This underscores the importance of maintaining a delicately balanced dynamic
equilibrium between contractile and expansive forces. While RhoA/ROCK is
active at the cell front, excessive activity hampers lamellipodium-based migration
by inducing the retraction of the lamellipodium [2, 4].

Invadopodia and their counterparts, podosomes, constitute a distinct category
of actin-rich protrusions. These structures project in three dimensions and play
a pivotal role in facilitating cell penetration through tissue barriers, particularly
evident when metastatic cancer cells invade the surrounding tissue. Invadopodia
share numerous actin-regulatory components with filopodia and lamellipodia, and
they are also implicated in extracellular matrix degradation. The degradation
process involves the transport of vesicles containing proteases responsible for
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breaking down the matrix [4].

The second model of cell migration, termed blebbing, is evident in diverse cell
types such as amoebae, tumor cells, neutrophils, and primordial germ cells.
This migration mode is commonly observed in cells with minimal or weak
adhesion, those navigating through a three-dimensional matrix, or in constrained
environments. Additionally, it occurs when cells are cultured on a flexible
extracellular matrix substratum. Blebs emerge when the plasma membrane
locally separates from the underlying actin cortex, enabling cytoplasmic flow
to exert pressure on the membrane, causing it to protrude outward and extend.
The formation of blebs is contingent on the hydrostatic pressure within the
cell, generated by the contraction of actin and myosin assemblies. After the
extension of blebs, actin filaments reassemble on the bleb membrane, giving
rise to a new actin cortex. Following this, myosin II is recruited, and the
contraction of actin and myosin facilitates the retraction of membrane blebs.
Alternatively, the generation of new blebs from existing ones can contribute to
cell migration. Activation of RhoA locally, which induces myosin activation,
results in heightened contractility, generating hydrostatic pressure and initiating
bleb formation through hydrostatic flow. Similar to mesenchymal motion, cells
employing blebbing for migration typically follow a process of "attaching" the
newly formed bleb to the surroundings and "detaching" the cell rear, as proposed
by most models [2, 4].

The blebbing mode of cell migration is marked by low cell adhesion and
elevated cortex contractility, which promotes ameboid motion. The attachment
of blebbing cells to their surroundings employs mechanisms such as "chimneying",
which depends on forces perpendicular to the direction of motion and operates
independently of specific adhesion molecules. An alternative model proposes
that forces are transmitted through cell-substrate intercalations. In this scenario,
when blebs extend and create protrusions at the side of the cell that fit into gaps
in the substratum, the contractility of the reestablished cortex can generate a
net force, pulling the cell body [2].

The initiation and growth of blebs are primarily regulated by myosin contrac-
tility and the link between the actin cortex and the membrane. In carcinoma cells
using blebbing for migration, there is an increased level of the actin-membrane
cross-linker ezrin at the cell’s rear, whereas it is reduced at the front. Adjusting
the levels of other ERM (ezrin-radixin-moesin) proteins similarly influences both
bleb formation and bleb-induced migration [2].

The cell membrane’s constrained stretchability, approximately 4%, is a crucial
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factor that restricts the extension of blebs and their migratory capabilities. Blebs,
lacking endosomes, are believed to facilitate expansion through the localized
unfolding of the membrane. Bleb expansion surpasses the speed of lamellipodial
growth, can occur in diverse directions, and, owing to the absence of the cortex,
can inherently adapt to three-dimensional environments. As a result, blebs
may have a pivotal role in intricate three-dimensional (in vivo) settings where
lamellipodial extension faces impediments [2].

6.3.1.2 Attachment

The actin filament polymerization generates protrusive forces at the leading
edge of a migrating cell, and these forces are then transmitted to the underlying
substratum, driving the cell’s motion. Coordination of protrusion at the front
and contraction at the rear of the cell is essential for e�ective cell migration. The
leading edge advances by creating membrane protrusions, followed by adhesion to
the substratum. Meanwhile, at the rear, the cell body follows due to contraction
coupled with de-adhesion. This interplay of actin polymerization, dynamic
adhesions, and myosin contraction ensures precise regulation of migration in
both space and time [4]. Myosin II operates in at least two ways to assist
cell migration. The first is by helping to connect the actin cytoskeleton to the
substratum through integrin-mediated adhesions. The tension at attachment
sites, crucial for the maturation of these sites into focal adhesions, is generated by
the combined forces of actin polymerization and myosin activity. Focal adhesions
are dynamic assemblies of structural and signaling proteins that establish a
connection between the migrating cell and the extracellular matrix. Another
mechanism involves bipolar myosin II filaments, which connect with the actin
filaments at the rear of the lamellipodium and reorient them. This sarcomere-like
contraction shifts its orientation from nearly perpendicular to the leading edge
to almost parallel to it. This contraction, reminiscent of a sarcomere, hinders
protrusion and squeezes the sides of the advancing lamellipodium, aiding in the
gathering of the cell’s sides as it moves forward. The actin-mediated protrusions
at the leading edge of a cell are dependent on robust interactions between the
actin network and focal adhesions, which anchor the cell to the substrate (see
figure 6.10). Disengagement of these interactions can cause retrograde flow, where
the actin network, under the pressure of polymerization and myosin-dependent
contraction, moves backward [4].

Cells exert traction forces on the substratum when they move, and this can
be quantified by observing the deflection of tiny flexible posts on a surface. In
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Figure 6.10: The regulation of cell-substratum adhesion at the leading edge
of a migrating cell encompasses several crucial steps: (A) Actin monomers
assemble at the leading edge and transmembrane integrin proteins (blue) help
form focal adhesions; (B) Actin filament is driven rearward without an interaction
between filaments and focal adhesions. Myosin motors (green) also contribute
to filament movement. (C) Actin-binding adaptor proteins (depicted in brown)
interact with integrins, establishing a connection between the actin cytoskeleton,
that is polymerizing at the leading edge, and the substratum. Subsequently,
myosin-mediated contractile forces are conveyed through focal adhesions, creating
traction on the extracellular matrix [4]. Figure from [4].
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an organism, most moving cells traverse a semi-flexible extracellular matrix
substrate, which can be molded and reorganized by these cellular forces. On the
other hand, external mechanical tension or stretching applied to a cell triggers
the assembly of stress fibers and focal adhesions, enhancing its contractility. This
reciprocal mechanical interplay between cells and their physical environment is
believed to contribute to the organization of vertebrate tissues, even though its
mechanisms are not fully understood [4].

6.3.1.3 Traction

For e�cient cell migration, the cell rear plays a critical role by contracting.
Actin structures employ myosin to generate active contractions by sliding anti-
parallel actin filaments against each other, thereby creating contractile forces
when the filaments are anchored. Stress fibers are usually directly linked to focal
adhesions, e�ectively connecting the cell to the ECM. Notably, the formation and
maturation of focal adhesions are influenced by stress, where inhibition of myosin
II-generated contractility can decrease the size of focal adhesions, while external
tension tends to favor their maturation. This dynamic interplay between cellular
tension, focal adhesions, and actomyosin contractility is crucial for regulating
cell motility and adhesion to the extracellular matrix [2].

Moreover, the forces exerted on focal adhesions can induce conformational
changes in mechanosensitive proteins present within these adhesions, such as —-
integrins or talin. This phenomenon enables stress fibers to translate mechanical
signals into chemical cues, thereby a�ecting the maturation and turnover of focal
adhesions. As a result, dorsal stress fibers contribute to the maturation of focal
adhesions through tension at the leading edge, whereas ventral stress fibers play
a role at the trailing edge. Despite their significance in cell adhesion, the role
of stress fibers during cell migration remains poorly understood, particularly
because they are absent in many rapidly migrating cells, such as leukocytes and
Dictyostelium discoideum amoeba as well as in cells embedded in soft three-
dimensional matrices [2].

Consequently, stress fibers, while being essential for certain cellular functions,
may not always promote migration. Their slow turnover and contractile nature
could inhibit cell motion under certain circumstances. The importance of stress
fibers could be associated with their functions in deforming the ECM, stabilizing
focal adhesions, and generating tension for rear contraction inside the cell. In
terms of migration, the contractile forces generated by ventral stress fibers
appear crucial for the disassembly of posterior adhesions and for inhibiting rear
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protrusions [2].
The degree of stress fiber contractility is a tightly regulated process that

should be precisely balanced. Excessive activation of RhoA, a key regulator of
actomyosin contractility, can inhibit cell migration by increasing contractility,
whereas inhibition of contractility via Rho-associated protein kinase (ROCK)
inhibition can enhance motility in specific cell types under particular conditions.
Rear retraction using stress fibers aligns with the concept of an adhesion gradient,
with less adhesion at the cell rear [2].

In summary, force generation for cell motility primarily arises from structures
such as the lamellipodium, filopodia, and blebs, whereas contractile structures
such as stress fibers or the actin cortex mainly facilitate rear contraction in
migrating cells. The intricate interplay between these actin-based structures is
pivotal for governing the intricate process of cell migration [2].

6.3.2 Cell polarization

Cell migration is a highly orchestrated process that involves cellular elements
working in synchrony across the length of the cell. The cytoskeleton plays a
central role in this process, not only in generating local movements such as cell
protrusion and retraction but also in managing the overall cell shape, organization,
and mechanical characteristics across considerable cellular distances, which can
span tens of micrometers in animal cells. This enables the coordination and
communication necessary for directional migration, ensuring that the front and
back ends of the cell maintain their distinct functions and structures [4].

In various scenarios, including but not limited to cell migration, extensive
cytoskeletal coordination manifests as the establishment of cell polarity. In this
process, a cell constructs di�erent structures with distinct molecular components
at its front versus its back, or at the top versus the bottom. The initiation of cell
locomotion necessitates the initial polarization of the cell to orient it in a specific
direction. Precisely regulated cell polarization processes are essential not only
for directed cell migration but also for oriented cell division within tissues and
the formation of coherent, organized multicellular structures. Our understanding
of the molecular foundations of cell polarity has largely originated from genetic
studies in yeast, flies, and other model organisms. Although the mechanisms
driving cell polarity in vertebrates are just beginning to be unraveled, it is evident
that the cytoskeleton plays a central role, and many of the molecular components
involved have been evolutionarily conserved across various species [4].

The establishment of diverse types of cell polarity depends on the localized
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regulation of the actin cytoskeleton by external signals. These signals commonly
converge on a group of closely related monomeric GTPases within the cell,
which are members of the Rho protein family-namely, Cdc42, Rac, and Rho.
Similar to other monomeric GTPases, the Rho proteins act as molecular switches,
undergoing transitions between an active GTP-bound state and an inactive GDP-
bound state. Activation of Cdc42 on the inner surface of the plasma membrane
triggers actin polymerization and bundling, leading to the formation of filopodia.
Conversely, activation of Rac induces actin polymerization at the cell periphery,
promoting the development of sheet-like lamellipodial extensions. Activation
of Rho triggers both the bundling of actin filaments with myosin II filaments,
forming stress fibers, and the clustering of integrins and associated proteins,
leading to the creation of focal adhesions. These complex structural changes
result from the fact that each of the three molecular switches-Cdc42, Rac, and
Rho-has numerous downstream target proteins that impact actin organization
and dynamics [4].

Activated Cdc42 target members of the WASp (Wiskott-Aldrich Syndrome
protein) family. Individuals deficient in WASp may experience Wiskott-Aldrich
Syndrome, a severe immunodeficiency condition characterized by abnormal ABM
in immune system cells and impaired platelet formation. While WASp is primarily
expressed in blood cells and immune system cells, other more widely expressed
variants enable activated Cdc42 to promote actin polymerization in various cell
types. WASp proteins can exist in both inactive folded and activated open
conformations. When associated with Cdc42-GTP, the open form of WASp is
stabilized, allowing it to bind to the Arp2/3 complex and significantly boost its
actin-nucleating activity. Consequently, the activation of Cdc42 increases actin
nucleation [4].

Rac-GTP similarly activates members of the WASp family. Moreover, it en-
hances the cross-linking activity of the gel-forming protein filamin and suppresses
the contractile activity of the motor protein myosin II. This dual action stabilizes
lamellipodia and hinders the formation of contractile stress fibers [4].

Rho-GTP targets a distinct set of proteins. Instead of activating the Arp 2/3
complex to build actin networks, Rho-GTP activates formin proteins, promoting
the construction of parallel actin bundles. Simultaneously, Rho-GTP activates
a protein kinase that indirectly inhibits the activity of cofilin, resulting in the
stabilization of actin filaments. The protein kinase activated by Rho-GTP also
inhibits a phosphatase that acts on myosin light chains. This inhibition increases
the overall phosphorylation of myosin light chains, boosting the activity of
contractile myosin motor proteins in the cell. This enhancement contributes to
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the formation of tension-dependent structures, such as stress fibers [4].
The interplay between the Rac and Rho pathways is crucial for certain cellular

processes. In specific cell types, Rac-GTP activates Rho at a slower rate than
its activation of the Arp2/3 complex. This temporal distinction enables cells to
initiate the construction of a new actin structure through the Rac pathway and
subsequently use the Rho pathway to induce contractility and generate tension
within this structure. A common situation where this process occurs is in the
establishment and reinforcement of cell-cell contacts [4].

The sequential activation of Rac and Rho plays a pivotal role in preserving
significant di�erences between the leading cell front and the trailing cell rear
during migration. The e�ective communication and coordination between these
pathways contribute to the distinct functions carried out by the front and rear of
a migrating cell. This coordination is essential for the orchestrated and e�cient
movement of the cell [4].

6.3.3 Cell chemotaxis

Chemotaxis, the directed movement of cells in response to chemical gradients,
involves the migration of cells toward or away from a particular chemical stimulus.
This process is mediated by external signals that influence the organization of
the cell’s motility apparatus, typically acting through proteins within the Rho
family. One extensively studied instance is the chemotactic movement observed
in certain white blood cells, particularly neutrophils, which are attracted to the
site of bacterial infection. The cells navigate along the chemical gradient, moving
in the direction of the signal to reach the source of the infection [4].

Receptor proteins on the surface of neutrophils enable them to detect extremely
low concentrations of N-formylated peptides, which are derived from bacterial
proteins (as prokaryotes initiate protein synthesis with N-formylmethionine).
Through these receptors, neutrophils are directed to bacterial targets, relying
on their capacity to discern a mere 1% di�erence in the concentration of these
di�usible peptides on one side of the cell compared with the other. This high
sensitivity enables precise guidance of neutrophils toward bacterial sources [4].

In scenarios such as the chemotaxis of neutrophils toward N-formylated
peptides or the chemotaxis of Dictyostelium amebae toward cyclic AMP, the
binding of the chemoattractant to its G-protein-coupled receptor triggers the
activation of phosphoinositide 3-kinases (PI3Ks). These enzymes generate a
signaling molecule, PI(3, 4, 5)P3, which in turn activates Rac GTPase. Activated
Rac then stimulates the Arp2/3 complex, leading to lamellipodial protrusion.



6.4 Su�ciency of lamellipodia in motility: the keratocyte emblematic
cases 136

This series of events is critical for directed cell movement in response to specific
signals. Through an unknown mechanism, the accumulation of the polarized actin
web at the leading edge results in a local enhancement of PI3K activity, creating
a positive feedback loop that strengthens the induction of protrusion. The
PI(3, 4, 5)P3 molecule, which activates Rac, cannot di�use far from its synthesis
site because it is rapidly converted back into PI(4, 5)P2 by a constitutively
active lipid phosphatase. Concurrently, binding of the chemoattractant ligand
to its receptor activates another signaling pathway that activates Rho and
enhances myosin-based contractility. These coordinated processes contribute to
the dynamic regulation of cell movement in response to external cues [4].

The regulation of cell migration frequently entails an antagonistic interplay
between Rac and Rho activation, with Rac predominating at the front of the
cell and Rho dominating at the rear. This dynamic balance enables the cell to
sustain functional polarity, facilitating forward protrusion at the leading edge
and rearward contraction. The coordinated activity of Rac and Rho is essential
for the intricate and controlled process of cell movement [4].

Additionally, non-di�usible chemical cues anchored to the extracellular matrix
or cell surfaces play a crucial role in directing cell movement. Upon activating
their receptors, these cues enhance cell adhesion and promote directed actin
polymerization. Long-range cell migrations in animals, such as neural crest
cell migration and the navigation of neuronal growth cones, typically rely on
a combination of di�usible and non-di�usible signals to guide and direct the
migrating cells or growth cones to their intended destinations. This intricate
interplay of signals contributes to the precision and e�ectiveness of cellular
movements in complex biological processes [4].

6.4 Su�ciency of lamellipodia in motility: the
keratocyte emblematic cases

Lamellipodia have been extensively studied in the epithelial cells of the
epidermis of fish and frogs, specifically in cells known as keratocytes because of
their abundant keratin filaments (see figure 6.11). These epithelial cells typically
form a protective layer covering the animal and are specialized for rapid wound
closure, exhibiting remarkable movement rates of up to 30 µm/min. In culture
as individual cells, keratocytes adopt a distinctive morphology characterized by
a massive lamellipodium and a small, trailing cell body that is not attached to
the substratum [4].
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Figure 6.11: Structured illumination micrograph of a keratocytes [17]. Figure
from [17].

The coordinated orchestration of these multiple cellular activities, such as
actin filament assembly at the leading edge for membrane propulsion, coupled
with the assembly and disassembly of adhesions at the rear, is essential for smooth
cell movement. This synchrony in cellular actions allows both sides of the cell
to progress uniformly, enabling a straight path of movement. Moreover, the
balancing act of extending the front while retracting the rear in unison permits
the cell to move forward without undergoing significant changes in size [4].

The dynamic behavior of actin filaments in the lamellipodia of keratocytes
is quite fascinating (see figures 6.12 and 6.13). They move forward as a unified
structure, but the actin filaments within them exhibit an intriguing pattern.
While the lamellipodia are progressing, the actin filaments themselves remain
largely fixed in relation to the substratum. Their orientation predominantly sees
the plus ends oriented toward the leading edge, and the minus ends often connect
to the sides of other actin filaments, contributing to the construction of the two-
dimensional meshwork. This collective actin meshwork undergoes a phenomenon
akin to treadmilling, where the assembly transpires at the front of the lamellipodia
while disassembly occurs at the rear [4]. Keratocytes follow a distinct set of
steps in their motility, adhering to the fundamental mechanisms of actin-based
cell movement shared by various animal cells as well as numerous eukaryotic
unicellular organisms such as amoeba. Initially, the cell establishes polarity, which
essentially means di�erentiating between its front and back. It then extends
the leading edge, where the force for extension is believed to be driven by actin
polymerization itself. As it extends the new leading edge, it simultaneously forms
new adhesions to its substrate. Simultaneously, the cell contracts its rear to
propel the cell body forward and subsequently retracts and disassembles the



6.4 Su�ciency of lamellipodia in motility: the keratocyte emblematic
cases 138

Figure 6.12: Migratory keratocytes from a fish epidermis. (A) Light micrographs
of a keratocyte in culture, taken about 15 seconds apart. (B) Keratocytes observed
by scanning electron microscopy. (C) Distribution of cytoskeletal filaments in
this cell. Actin filaments (red) fill the large lamellipodium and are responsible
for rapid cell movement. Microtubules (green) and intermediate filaments (blue)
are restricted to regions close to the nucleus [4]. Figure from [4].

adhesions at the back to allow continued movement. This coordinated series of
actions enables the cell’s forward migration while maintaining its overall structure
and integrity [4].

The sustained unidirectional motion facilitated by lamellipodia is believed
to depend on the collaboration and mechanical integration of various factors.
Filament nucleation is concentrated at the leading edge, where new actin filament
growth predominantly takes place, propelling the plasma membrane forward.
Conversely, filament depolymerization is mainly observed at sites positioned
well behind the leading edge. This coordinated regulation of filament dynamics
contributes to the e�ective and directional movement of the cell. Cofilin exhibits
cooperative and preferential binding to actin filaments containing ADP-actin
(the D form). Consequently, the new T-form filaments generated at the leading
edge, with a high ATP content, should be resistant to depolymerization by cofilin.
As these filaments age and ATP hydrolysis progress, cofilin becomes e�cient at
disassembling the older filaments. This delayed ATP hydrolysis by filamentous
actin is considered the foundation for a mechanism that maintains an e�cient,
unidirectional treadmilling process in the lamellipodium. It also elucidates the
intracellular movement of bacterial pathogens such as Listeria [4].

In summary, these are the most important processes for keratocyte motility:



6.4 Su�ciency of lamellipodia in motility: the keratocyte emblematic
cases 139

- Chemical reaction between ligands and receptors creates complexes (see
figure 6.11: adhesions in blue). Cell adhesion to the extracellular matrix
enables the generation of traction so that the cell can move forward;

- External signals at the leading edge trigger the polymerization of G-actin
into F-actin (see figure 6.11: F-actin in green). Actin filaments push against
the membrane just a few microns back from the plasma membrane at the
very leading edge;

- Complexes activate myosin (see figure 6.11: myosin in red);

- Myosin allows the clusterization of complexes;

- Myosin causes reorganization of the F-actin network and contraction of
the network. The actin filament branched network is primarily oriented
toward the front of the cell, and in the back of the cell the filaments are
rearranged to form parallel bundles that are being re-organized by myosin;

- The tension at the back of the cell created by the myosin breaks the network,
causing the F-actin network to depolymerize. This tension probably breaks
also the bond between integrin and receptors.

This cell follows the same general steps of actin-based cell motility, e.g., external
signaling, extension of the leading edge (driven by actin polymerization itself),
new adhesion formation at the leading edge, contraction of the rear, etc., without
the use of other actin structures, such as stress fibers or filopodia.

6.4.1 Load adaptation of the lamellipodia actin networks

As previously explained, actin polymerization is a force-dependent process.
To quantitatively examine how protruding actin networks respond to varying
forces, in [73] a combination of quantitative light and electron microscopy is
used to describe geometric and density changes of lamellipodial actin in fish
keratocytes under varying load regimes. Then, a stochastic model that elucidates
how the network structure geometrically adapts to counter-forces is presented.

6.4.1.1 Polymer network

Every filament originates from a nucleation event, catalyzed by various
molecular machines, with the most prominent being forming and the Arp2/3
complex. Formins facilitate de novo linear nucleation, whereas the Arp2/3
complex binds to an existing filament and generates a new filament at a 70¶ angle.
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Figure 6.13: Schematic diagram for myosin II-driven actin network disassembly.
Left-hand side: distribution of actin network flow (yellow arrows), net assembly
(purple), and net disassembly (green). Right-hand side: distribution and organi-
zation of F-actin (gray) and myosin II (red) [17]. Figure from [17].

Elongation, which is the addition of new monomers to the growing (barbed) end
of the filament, is primarily mediated by forming or proteins of the VASP family.
Both nucleation and elongation are enhanced at the membrane interface, where
growing filaments are protected from capping proteins. Capping proteins, under
normal circumstances, terminate filament elongation by sealing the filament’s
barbed end [73].

Arp2/3-dependent actin polymerization is a force-sensitive process, as demon-
strated in vitro. Increasing the mechanical load on a protruding reconstituted
network leads to a higher network density. This indicates that the network struc-
ture can adapt to ambient mechanical conditions and support force generation
and mechanical resilience under varying loads. The adaptation is partially medi-
ated by the di�erential force sensitivities of nucleation, elongation, and capping,
resulting in enhanced branching under higher loads. However, these kinetic e�ects
only partially explain the changes in network density, and there is speculation
that the remaining adaptation may be mediated by spatial rearrangements of
the network [73].
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6.4.1.2 Correlation of actin density temporal fluctuations at the lead-
ing edge with projected cell area and protrusion speed

Single keratocytes expressing the actin reporter lifeact:GFP with a high
spatiotemporal resolution during the migration on a planar surface are observed,
and fluctuations in actin network dynamics and density together with protrusion
speed and morphological parameters are monitored. It comes out that

- the projected area of a keratocyte typically fluctuates ± 5% around a
baseline. This result, confirmed by previous research, is consistent with
the known discovery of a lack of major membrane reservoirs in kerato-
cytes, which, if present, could be involved in mechanical stretching and
consequently in drastic changes in the projected area;

- the lifeact:GFP intensity fluctuations within a ≥ 1µm broad zone behind
the leading front varies ± 20%.

The two results are strongly correlated: the normalized temporal fluctuations in
the projected cell area and lifeact:GFP intensities exhibit cross-correlation peaks
between 0.6 and 0.7 at a time lag of zero. The same correlation is observable
in actin: GFP-expressing keratocytes but not when the plasma membrane is
uniformly labeled.

Correlation analysis of consecutive 1-mm broad lamellipodial regions revealed
that the time delay between correlation peaks increased with the distance between
the measured regions. Dividing the respective lag times at the speed of each cell
yields distances matching those between adjacent lamellipodial regions [73]. This
means that

- keratocytes exhibited minimal retrograde flow of actin in relation to the
substrate;

- temporal fluctuations of actin density arise at the leading edge and propa-
gate rearward [73].

Through optical flow analysis at each pixel along the cell front, the protrusion
speed is measured. This speed exhibits a negative correlation with both the
projected cell area and lifeact:GFP intensity. Specifically, the protrusion speed
shows a negative cross-correlation peak between -0.3 and -0.4 at time lag zero.
Lifeact:GFP intensities are similarly co-fluctuating with area changes when
corrected for fluctuations in protrusion speed. These analyses provide insights
into the dynamic relationship between protrusion speed, cell area, and actin
dynamics at the cell front [73].
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These results indicate that keratocytes migrate slower and produce denser
actin networks during intervals when their projected area is larger.

6.4.1.3 Lamellipodial response to altered load

Following the intuition that the change in projected cell area might correspond
to changes in membrane tension, the relationship between actin network density
and membrane tension is investigated by forcedly changing the membrane tension.

First, the membrane tension is increased using a micropipette. Because the
membrane tension equilibrates almost instantaneously over the entire cell, the
lateral tension at the lamellipodial tip can be tuned. Four di�erent vacuum levels
are applied ranging from -10 to -40 mbar to increase the membrane tension, and
it is found that

- Aspiration increases the lifeact:GFP signal concomitant with a moderate
decrease in protrusion speed;

- Actin density and protrusion speed are dependent on the applied vacuum;

- The cell continues to protrude during aspiration, demonstrating that the
increase in tension is below the stall force of the lamellipodium.

This suggests that an increase in membrane tension induces an increase in network
density.

To reduce membrane tension, the researchers employed two distinct ap-
proaches. First, the formation of tethered trailing edges is used on adhesive
substrates, leading to tension release upon detachment from the substrate. Lamel-
lipodial actin responds to decreased membrane tension by reducing the network
density. Second, the cells are subjected to cycles of altered osmolarity. Increasing
osmolarity (resulting in water e�ux and cell shrinkage) is accompanied by a
decrease in the lifeact:GFP signal, and this e�ect is reversed when water is added
(water influx and cell swelling). The data demonstrate that lamellipodial actin
dynamically responds to changes in membrane tension by adjusting its density,
which increases following an increase in tension and decreases following a decrease
in tension [73].

6.4.1.4 Network filament re-orientation

As revealed by three-dimensional electron microscopy in a steady-state mi-
grating keratocyte, nucleation, capping, and elongation collectively generate an
expanding network. This network exhibits a canonical branch geometry, which is
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dictated by the 70¶ branch structure of the Arp2/3 complex. The intricate coor-
dination of these processes contributes to the dynamic and organized architecture
of the actin network in migrating cells [73].

Following an increase in membrane tension, filament density markedly in-
creases. This elevation in filament density is accompanied by an increase in the
0¶-20¶ and 50¶-70¶ fraction of filament angles, whereas filaments at intermediate
angles of 20¶-50¶ increases only moderately. These findings indicate that an
increase in membrane tension induces an augmentation in network density and a
change in geometry, with filaments growing at steeper angles toward the plasma
membrane at higher membrane tensions [73].

In contrast, a decrease in membrane tension induced by mechanically detaching
one side of a cell with a micropipette leads to a sharp drop in filament density
and a configuration dominated by filaments growing perpendicularly (0¶) to the
membrane. This shift in network geometry results from the selective elimination
of filaments: in the transition zone, the rate of filament survival strictly depends
on filament orientation, with filaments at a higher angle being preferentially
eliminated, while low-angle filaments have a higher rate of survival. These findings
demonstrate that a decrease in membrane tension causes a reduction in network
density and a change in geometry, with more filaments growing perpendicularly
to the plasma membrane [73].





Chapter 7

A model for Cells ABM

The response of cells during ABM is dictated by several multi-physics events,
which are triggered by extracellular cues and occur at di�erent time scales. For
this sake, it is not completely appropriate to provide a cell with classical notions
of the mechanics of materials, as for “rheology” or “mechanical response”. Rather,
a cell is an alive system with constituents that show a reproducible response,
as for the contractility for single stress fibers or the mechanical response of a
biopolymer actin network, but that reorganize in response to external cues in a
non-exactly-predictable and reproducible way [26].

Whereas uncountable papers have been published on the biology of cell spread-
ing, ABM, and the relocation of proteins on advecting lipid membranes, the math-
ematical modeling definitely lags behind experiments and overall received much
less attention. Although nowadays a widespread literature in mechanobiology
exists [74], cell ABM and protein interaction with the reorganizing cytoskeleton
in the biological phenomena mentioned above is still an ongoing research topic,
let alone the formulation of e�cient algorithms and computational solvers for
three-dimensional simulations [75, 26].

In this chapter, we attempt to define a general multi-physics scheme for
modeling cells ABM and relocation of proteins on advecting lipid membranes,
being inspired by [6], "Actin based motility unveiled: How chemical energy is
converted into motion, J MECH PHYS SOLIDS", by [76], "Modeling Receptor
Motility along Advecting Lipid Membranes, MEMBRANES", by [26], "Modeling
cells spreading, motility, and receptors dynamics: a general framework, ACTA
MECH SINICA", by [34], "Chemo-transport-mechanics in advecting membranes,
INT J ENG SCI", by [77], "A model for the contractility of the cytoskeleton
including the e�ects of stress-fiber formation and dissociation, P R SOC A" and
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by [78], "Matching material and cellular timescales maximizes cell spreading on
viscoelastic substrates", PNAS.

Driven by the desire for completeness, we show several models, derived either
from the existing literature or from original contributions, that describe di�erent
aspects of cells ABM, but refer to di�erent types of cells and are not correlated
in some cases, as described afterwards.

7.1 Existing literature models
Uncountable papers have been published on the ABM biology, whereas few

mathematical models provided insights into ABM mechanisms [79, 80, 81, 82, 83,
84, 36, 85, 77, 85, 86, 87, 88, 89, 73, 89, 52, 84, 90, 91, 92, 93, 77, 94, 95, 96, 97, 98,
99, 54, 100, 101, 102, 103, 104, 105, 106, 57, 56, 107, 108, 109, 110, 111, 112, 113,
114, 115, 116, 26, 117, 118, 78, 119, 122, 124, 125, 120, 121, 123, 126, 127, 128].

In recent years there have been several notable publications that propose
models for substrate-cell interactions [120, 78], for studying spatial actin densities
[52], for the simulations of the dynamic behavior of actin-based cytoskeletal
networks [121] and for coupling mechanisms of cell adhesion, contraction and
spreading [102]. We present here a few of them.

7.1.1 Mechanical evolution of cell internal structures

Lamellipodia protrusion dynamics is modeled in [122] through a microscopic
physicochemical computational framework, which accounts for the biochemical
regulation processes and the interactions between actin filaments and the flex-
ible lipid membrane. A profound investigation is carried out on how growing
filaments generate forces to push the membrane, concluding that polymerizing
actin filaments apply the needed force on the membrane, pushing it forward. The
interactions between the cytoskeleton and the membrane are modeled by a steric
repulsion between the membrane and the actin filaments. Such an approach
di�ers drastically from the one pursued in the present thesis since it takes into
account the microscopic behavior of F-actin network.

A triangulated membrane model is proposed more recently in [123], accounting
for membrane-filaments interactions and membrane’s elastic properties. Ni and
Papoian develop an excluded volume interaction via repulsion between the
filament’s tip and a meshwork triangle, where essentially every point on the
surface of the membrane interacts with the tip. This notion, named as responsible
for cell motility, di�ers from the hypothesis of the present thesis, which attributes
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the motion to a volumetric expansion.
A mechanochemical model is recently presented by Murphy et al [128], who

consider the actin filament network as a viscoelastic and contractile gel. The
mechanical properties are modeled by a force balancing equation for the dis-
placements, while the pressure and contractile forces are driven by actin and
myosin dynamics, in turn depicted by a system of reaction-di�usion equations on
a moving cell domain. Such an approach shows similarities to the one pursued in
the present thesis.

In [73] a two-dimensional (2D) stochastic model of lamellipodial network
growth is formulated. It considers filament elongation and Arp2/3-mediated
nucleation at the leading front. Elongation is halted by capping whenever fila-
ments detach from the membrane, leaving the zone where they are protected
from capping by elongation factors such as VASP or forming. Filaments exert a
force on the membrane, propelling it forward based on a force-velocity relation
influenced by thermal fluctuations. In this context, the network geometry gov-
erns that increased protrusion velocity (resulting from decreased load) rapidly
decreases filament density in an angle-dependent manner. Such an approach
di�ers drastically from the one pursued in the present thesis since it takes into
account the microscopic behavior of actin.

In [52], a 1D reaction-di�usion-drift model is introduced to study the spatial
actin densities. The model incorporates the measured rearward drift of the actin
network (V) and di�usion of oligomers (Df ) and monomers (D). The model
equations’ numerical solution gives the spatial distributions of the network actin,
the di�usible oligomers, and the polymerizable and non-polymerizable monomers
along the anterior-posterior direction. The main model prediction is that the
steady-state density of di�usible actin is nearly uniform. Such an approach shows
similarities to the one pursued in the present thesis, but it does not model the
pushing network mechanisms.

Carlsson [124, 125] develops a stochastic simulation method to study the
growth of branched networks against rigid obstacles. Rubinstein et al. [126]
perform multiscale, two-dimensional numerical modeling of a crawling cell us-
ing a finite element approach. Atilgan et al. [127] perform theoretical and
computational studies of the morphology of the lamellipodium.

In [90], a model of actin network treadmilling in an inextensible membrane
bag is introduced. It provides a simple biochemical and biophysical basis for
the observed morphology and behavior of motile cells. This study emphasizes
the crucial regulatory function of membrane tension in determining cell shape.
The assembly of actin at the leading edge and its disassembly at the rear are
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both influenced by the forces exerted on the actin network by the membrane.
Furthermore, because membrane tension remains constant along the cell boundary,
it e�ectively links processes such as protrusion and retraction that occur in
spatially distinct regions of the cell.

In [89] a specific approach to understanding how cells sense mechanical forces
and generate force during contraction is outlined. A formulation involving a
mixture of fluids, solids, and solutes is presented considering four key compo-
nents for cell contraction: the cytoskeleton, cytosol, SF (stress fibers), and actin
monomers, along with their interactions. The model incorporates the interplay
between mechanical and chemical factors in several ways: (a) a mechano-sensitive
process involving the formation and dissociation of an anisotropic SF network,
described by the exchange of mass between actin monomers and polymers, (b) a
bio-mechanical model for SF contraction that captures established length-tension
and velocity-tension relationships seen in muscle cells, and (c) a convection/di�u-
sion description for the movement of fluid and monomers within the cell. The
numerical investigations demonstrate that this multiphasic model e�ectively cap-
tures how cell contraction depends on the sti�ness of the mechanical environment
and accurately represents the development of an organized SF network observed
in contracting fibroblasts.

Deshpande and co-workers propose a bio-mechanical model, widely used later
on, to couple cell contractility with focal adhesions (FAs) [84, 36, 77, 85]. The
mechano-sensitive properties of FAs are modeled in a continuum framework,
wherein the cytoskeletal contractile forces generated by stress fibers (SFs) drive
and stabilize the assembly of the FA complexes. The model accounts for the
di�usion of low-a�nity integrins along the cell membrane and predicts di�erent
levels of concentration of FAs. Simulations replicate high concentrations of FAs
around the periphery of the cell, the increment of FAs at decreasing cell size,
and the decrease in intensity of FAs if cell contractility is curtailed. Stemming
from this framework, a signaling model is devised based on the generation of
IP3 molecules during the FA growth [91], predicting the range of IP3 di�usivities
at which the SF activation signal is spatially uniform. The model [84] is also
employed for investigating the role of actin cytoskeleton in compression and cell
adhesion [86, 87], and to account for the feedback between intracellular signaling,
FA formation, and SF contractility in the osteoblasts response on a grooved
substrate [92]. Simulations reveal the presence of stretched SF dominant bundles
during compression for polarized and axisymmetric spread cells. Round cells
are predicted to have fewer SFs and a lower resistance to compression. Highly
contractile cells are revealed to provide greater resistance to compression using
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dominant circumferential SFs [86]. Supported by experimental observations,
the substrate-dependent response of contractile cells with no predefined SF or
FA arrangement is predicted. SF contractility is found to a�ect the substrate-
dependent response of cells, including changes in nuclear stress and cell tractions.
An increment in SF and FA formation is numerically predicted for sti�er substrates
[87]. In [92], it is shown that the cell orientation is governed by the di�usion
of signaling proteins activated at FA sites on the ridges. The responsiveness
of osteoblasts to the topography of substrates is rationalized by the model.
Broadening [84, 92], a non-local finite element setting is implemented in [93]
to study the competition between cytoskeletal and passive elastic free energies
as a driving mechanism in cell spreading. As experimentally observed, a high
concentration of aligned SFs along free edges corresponds to a state with low free
energy. McMeeking and Deshpande [134], while summarizing previous models
[36, 77], presents a bio-chemo-mechanical model implemented in a finite element
code for simulating in-vitro cell behavior. They target contractility, adhesion,
signaling, cytoskeleton formation, and remodeling.

A coupled formulation of chemo-di�usive integrins with cytoskeleton, under-
lying cell contraction and spreading is proposed in [102]. In agreement with
experimental observations, numerical simulations suggest that substrate sti�ness
and chemistry strongly a�ect cellular contraction and spreading. The relevant
role of mechanics in the contraction, adhesion, and spreading of adherent cells is
highlighted.

7.1.2 Receptors motility and cell-susbtrate interaction

Mounting evidence has demonstrated that cells can sense and react to the
physical properties of the extracellular matrix (ECM), an ability that plays a key
role in processes such as cell migration [142, 143, 144], spreading [145, 146], and
proliferation [147, 148, 149, 78]. It is commonly believed that focal adhesions
(FAs), which anchor the cell to the ECM as well as serve as hubs for the
exchange of biological and mechanical stimuli [150, 151], are responsible for such
mechanosensitivity of cells [78].

As already explained in chapter 6, focal adhesions are the result of a complex
maturation, that is generated by the interaction between integrins on the ECM
and moving receptors on the cellular membrane. In the following paragraphs,
we illustrate several continuum and probabilistic models, coming from [76],
"Modeling Receptor Motility along Advecting Lipid Membranes, MEMBRANES"
that describe receptors motility along advecting lipid membranes and ECM-cell
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interaction. Because of the huge amount of publications in this realm, we cannot
aim at being exhaustive, but we claim that sharing the partially existing literature
on this topic is essential for a better understanding of the mechanisms underlying
the cell ABM.

7.1.2.1 Continuum models for receptor motility

Mikucki and Zhou [167], using an energetic variational principle on advect-
ing membranes derive a curvature-driven transport equation, relating molecule
concentrations to a gradient flow governed by the drift-di�usion equation. They
predict the molecular localization on static membrane surfaces at locations with
preferred mean curvatures, and that the generation of preferred mean curvature
drives the molecular localization.

Carotenuto et al. [168] develop a multi-physics approach to investigate
how ligand-receptor interactions along the cell membrane trigger raft formation.
Di�usion and kinetics of binding and unbinding are studied. Understanding
how transporters and active receptors trigger raft formation and clustering is
of paramount relevance in membrane-mediated phenomena such as COVID-19
virus-cell interaction.

A discrete model of chemotaxis, which takes into account possible alterations
in cellular motility, is presented in [99]. A derivation of the Patlak-Keller-Segel
(PKS) model as a continuum limit from the discrete model is shown. Comparisons
between numerical simulations of the discrete model and numerical solutions of
the PKS model are performed, showing an excellent agreement between the two
models.

Based on [178, 179], Gao, Shi and Freund [94] present a receptor-mediated
endocytosis study, considering the role of mobile receptors in wrapping the cell
membrane around a cylindrical or spherical particle coated with immobile and
uniformly distributed ligands. They show the existence of a minimum value of
both particle radius and receptor density below which wrapping cannot take
place. An estimation of the size of the smallest and the largest particles that can
be successfully wrapped is given.

A similar study is performed by Decuzzi and Ferrari [95]. They consider both
elliptical and cylindrical particles, showing how the internalization is a�ected by
size and aspect ratio.

The same model proposed in [94] allows the development of a framework for
modeling uptake and release of nanoparticles in human and animal cells. In that
paper, the mechanics of cell-nanomaterial interactions are investigated, showing
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how nanoparticles enter cells by receptor-mediated endocytosis. Coarse-grained
molecular dynamics is implemented to perform simulations of nanoparticles
interacting with cell membranes [96].

Further works on receptor-driven endocytosis are presented by Wiegold,
Klinge, Gilbert, and Holzapfel [97, 180]. They consider viruses as a substrate
with fixed receptors, whereas receptors of the host cell could relocate on its
membrane. Numerical simulations performed via finite di�erence methods show
a rapid variation of receptors density at the early stage, while approaching a
steady state as time progresses.

Lee et al. [181] propose a finite-di�erence mathematical model to describe
charged receptor transport on the cell membrane, showing the importance of cell
shape in receptor di�usion and in response to an extracellular sinusoidal electric
field. They illustrate how the distribution of receptors may alter transmembrane
potential, and highlight the prominence of cell shape (i.e. of the mechanics that
rule its evolution) in governing interactions between alternating current electric
fields and receptors.

Mac Gabhann and Popel [182] model the e�ect of placental growth factor
(PlGF) on the response of VEGF ligands in pathological angiogenesis. A set of
coupled reaction-di�usion equations describes the secretion, transport, binding,
and internalization of ligands. The presence of PIGF is established to determine a
change in the formation of endothelial surface growth factor-VEGFR1 complexes,
and a less significant increment in the number of VEGFR2 complexes. Similar
equations are used in [183] to study the binding kinetics and signaling pathways
of basic fibroblast growth factor (FGF-2) through a reaction-di�usion model of
in vitro FGF-2 transport and receptor-ligand binding. Based on experimental
results that include degradation of internalized cell surface species, formation
of double triads, and dimerization of FGF-2 ligands, the role of the low-a�nity
heparan sulfate proteoglycans (HSPGs), the identity of the minimal signaling
complex leading to FGF-2 activity, and the importance of FGF-2 dimerization is
pointed out.

Rattanakul, Crooke et al. [184] model the signal transduction pathways involv-
ing G-proteins by including reaction-di�usion equations of various reactants both
inside and on the extra-cellular surface membrane. They investigate the dynamic
and steady-state properties of the model via weakly nonlinear stability analysis,
showing the robust formation of Turing-type patterns under di�erent system
parameters, and discussing theoretical predictions against reported experimental
evidence.

As an extension of [185], Earnshaw and Bresslof use reaction-di�usion equa-
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tions to describe the tra�cking of –-a-3-h-5-m-4-isoxazolepropionic acid receptors
(AMPA-Rs) and to evaluate how lateral di�usion contributes to the strength of
a synapse [186]. They calculate the distribution of synaptic receptor numbers
across the population of spines, determining the e�ect of lateral di�usion on the
strength of a synapse.

Daniels [187] deduces a mathematical expression, in the perturbative deforma-
tion regime, to describe the di�usion-limited reaction rate. The coupling between
the deformation of a curved membrane and the chemical activities along it is
accounted for. The reduction of 20% of the receptor-ligand reaction rate due to
the locally induced membrane curvature is theoretically derived.

7.1.2.2 Statistical models for receptor motility

Kusumi et al. [188] study the relocation of E-cadherin and transferrin receptors
along mouse keratinocyte cell membranes. A compartmentalization of the cell
membrane in small domains, wherein receptors are confined, is suggested as a
consequence of the detection of four types of receptor motion (stationary mode,
simple Brownian di�usion, directed and confined di�usion). This conjecture
arises from the development of a mean-square displacement (MSD) based method
and the experimental comparison between single particle tracking (SPT) and
fluorescence photobleaching recovery (FPR).

In investigating the non-Brownian di�usion of molecules on membranes by
the STP method, Monte Carlo simulations on particles undergoing short-term
confined and long-term hop di�usion within a compartment are performed.
This simulation strategy detects and characterizes the anomalous di�usion by
systematically varying the frame time and rate [189].

By means of a coarse-grained triangular element model, Atilgan and Sun [190]
develop a Monte-Carlo methodology examining the changes in free energy during
membrane shape transitions. They show how a critical value of the concentration
of proteins may bring to the formation of small vesicles, therefore influencing the
topology of the plasma membrane.

Bimolecular Fluorescence Complementation (BiFC)-based approach combined
with Fluorescence Correlation Spectroscopy (FCS) is used to monitor the dif-
fusion of G-protein-coupled receptors oligomers in the plasma membrane [191].
The approach is used for the first time to measure the membrane di�usional
characteristics of adenosine A1 and A2A receptor homo-and heterodimers in
Chinese Hamster Ovary cells, demonstrating the di�erences in di�usivity between
adenosine receptor homo and heterodimers.
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Paszek et al. [192] develop a chemo-mechanical model in which integrin
di�usion, changes in integrin activation status and integrins-ligands interactions
are simulated via Kinetic Monte Carlo (KMC) algorithms. Results show the
mediator role of glycocalyx in integrin-ligand interactions, which are found to
be su�cient to drive integrin clustering even in the absence of cytoskeletal
crosslinking or homotypic integrin-integrin interactions.

Receptor dynamics is also accounted for by Duke and Graham [193] in
reviewing statistical mechanics models for receptor clustering. They account
for cluster generation and discuss the equilibrium thermodynamics of receptors,
ligands, and cytosolic adaptor proteins. The role of adaptor proteins in permitting
cells to exert control on cluster formation, and target clustering at specific
locations on the cell surface is highlighted.

A nanometer-scale mathematical model that couples membrane bending and
long surface molecules (LSMs) compression is presented in [194] to reproduce the
lateral mobility of LSMs by drift-di�usion equations. Size-based segregation of
LSMs from a receptor-ligand complex is proposed as the mechanism of receptor
triggering. Supra-di�usive segregation of LSMs from a single receptor-ligand
complex is found.

The reduced mobility of receptors after aggregation processes on the membrane
is modeled via both standard and density-dependent di�usion equations in [195].
Critical values of the mobility are compared with numerical simulations, showing
that the formation of aggregate is quite influenced by density-dependent di�usion.

Martini et al. [196] study the kinetics of a membrane-integrated protein that
locates at specific binding sites on the genome, and also acts as a transcriptional
activator. Mathematical analysis and KMC simulations of lattice models are
combined with fluorescence-microscopy experiments. CadC (the pH receptor of
the acid stress response Cad system in E. coli) di�usion along membrane and
conformational fluctuations of the genomic DNA are accounted for. They find
that di�usion and captured mechanisms are potentially su�cient, for bacterial
membrane proteins, to establish functional contacts with cytoplasmic targets.

7.1.2.3 Continuum models for cell-substrate interaction

The interplay between cells and the substrate is a crucial component of cell
ABM. Here, we collect some continuum and probabilistic cell-substrate interaction
models that are fundamental for fully describing cell ABM.

Receptor-integrin-mediated cell adhesion is one of the most common and
widely studied mechano-biological processes in cell-substrate interaction. In
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it, receptor motility plays a significant role. To the best of our knowledge,
the pioneering studies of Bell [197] and co-workers [207] paved the way for the
development of multi-physics models in mechanobiology. The receptor density
in receptor-integrin mediated cell-cell adhesion is analyzed in a thermodynamic
framework, investigating the competition between attractive receptor-integrin
and repulsive electrostatic forces. The former is proved to be of greater extent
[197]. An increment of receptor concentration in the adhesion zone is further
proposed as a transduction mechanism for triggering di�erent cellular responses.
Similarly, the redistribution of receptors is viewed as a signal for cell polarization.
Phase transitions occur in cell adhesion, and the stabilization of the cell-cell
contact is achieved by means of cooperative rearrangements of the internal
components 1 of the cells [207]. Goldstein et al. [208] published a theoretical
study of the interaction of low density lipoprotein (LDL) receptors with coated
pits (specialized cell surface structures in which receptors aggregate). They
evaluate the di�usion limits for the forward rate constant of the receptor-integrin
chemical interaction on a human fibroblast, as well as the average time that LDL
receptors spend on the cell surface before being trapped in a coated pit. The
obtained results, in agreement with the experiments, allow them to conclude that
if LDL receptors are inserted at a random position in the cell membrane, they
move driven by pure di�usion before being trapped in coated pits. A further
study [209] finds that how coated pits return to the surface does not a�ect either
the average time that receptors spend on the membrane, nor the forward rate
constant or the fraction of receptors aggregated in coated pits at high values of
the di�usion coe�cient, whereas the e�ect is substantial for "immobile" receptors.

To mimic cell-tissue interaction, the kinetics of cell adhesion due to –IIb —3

integrins and ligands binding, gravitation, Helfrich repulsion are studied in [210]
for a single giant vesicle on a solid substrate. The analysis of the growth of the
adhesion front reveals the prominent role of the receptor-integrin pairs: at high
concentrations, the kinetics of integrin-receptor formation drives the propagation
of the front of (tight) adhesion at constant velocity, whereas small ligand densities
entail a di�usion-limited growth with a square root dependence on the time. The
role of receptor motility on adhesive surface contact is analyzed in the transient
growth of the adhesion zone by Freund and Lin [178]. They assume the flow
of receptors to be proportional to the local gradient in chemical potential and
formulate a continuum model of the adhesion of an initially uniformly curved

1We used literally internal variables. As for other terminology such as plasticity, this one
manifests how very same words have completely di�erent means in mechanics and biology.
Such an outcome of the cultural and historical evolution of the disciplines is a further challenge
in mechanobiology.
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elastic plate to a flat substrate. For very large plates, they solve the problem in
closed form, whereas the necessity of numerical methods emerges for limited size.
Using the same model, Shenoy and Freund [179] investigate the expansion of a
circular adhesion zone when binders (ligands, in this case) density is insu�cient
to overcome the repulsive barrier that resists cell adhesion. They explain the
cross-over e�ect observed in [210] when the densities of ligands and receptors are
equal. Indeed, the growth of the adhesion front radius with a time square root
dependence observed experimentally in [210] is recovered. The radius evolves in
time as

R(t) = 2 a

Ò
D| L t , (7.1)

with t time, D| L ligand di�usivity and a coe�cient depending on the ratio
between the ligand and receptor concentrations, cL and cR; particularly, a assumes
finite values for cL/cR < 1, whereas the square-root growth regime breaks o� for
cL/cR ƒ 1.

Liu et al. [201] extend the former framework [178, 179] and introduce a
so-called traction-separation relation to model cell-substrate interaction. They
provide an additional contribution to the flux of receptors, otherwise governed
by the classic Fick’s law, proportional to the traction component tangent to
the membrane surface, to account for the role of non-specific force as a driving
force for the recruitment of receptors towards the adhesion front. Numerical
simulations via finite-element methods show that the advancing adhesion front
might be stable or unstable, if exposed to small perturbations, as a function of
the membrane shear modulus, the adhesive tractions, and the receptor density.
Instability occurs at high adhesive tractions, soft membranes, or high ligand-
receptor concentrations ratio.

The traction-separation model [201] is extended in [211], performing simu-
lations of biotin receptor - streptavidin ligand binding mediated attachment-
detachment of a red blood cell to a substrate. A surface di�usion model describes
receptors’ motility. The governing equations are implemented in a finite element
scheme, providing results in agreement with experimental data.

Golestaneh and Nadler [82] introduce a spontaneous area dilation to account
for the influence of receptors on cell deformation and adhesion. Similar to the
adhesion-traction model [201, 211], a non-linear receptor-ligand binding force
replicates the charge-induced dipole interactions, while Fick’s law governs the
di�usion of the receptors on the membrane. This study examines the nature of
the coupling between electrostatic adhesive forces and the deformation of particle
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[212] via a non-linear continuum model. A strong coupling is found for small and
moderate membrane deformations.

7.2 Original models and results for cells ABM
The current section aims to illustrate two models that describe some of the cell

internal structures pivotal for ABM. The first one is an original model, inspired
by [6], that describes lamellipodia protrusion in keratocytes. The second one
is a mechanical model coming from the existing literature, that describes the
contractile response of stress fibers in fibroblasts [77], from which we obtained
a numerical result. Even if the role of stress fibers in cell locomotion is still
not clear, the contractility of the F-actin network in cell ABM is essential to
bring forward the cell rear, so we think that a discussion of F-actin network
contractility is needed.

7.2.1 A mechanical model for F-actin network protrusion:
a general framework

The extensive mathematical description made in chapter 4 guides the modeling
of F-actin protrusion, which is summarized here in a shorter shape.

Biopolymers are composed of actin, a protein termed globular or G-actin
in its monomeric form, and F-actin when it forms filamentous polymers - see
Fig. 7.1. In turn, actin filaments can bundle to form stress fibers, or cross-link
to form polymer networks that allow the movement of the cell - see Fig. 7.1.
Polymerization is usually triggered by extracellular signals. In the case of cell
locomotion, for instance, the cell extends finger-like protrusions by which the
cell “feels” the surrounding surface. As extensively explained in section 6.4,
keratocytes can move making exclusively usage of lamellipodia structures. For
this reason, we start by considering the internal organization of this specific
cell, leaving to future analysis the modeling of other cell structures, such as
microtubules, stress fibers, intermediate filaments, etc. So, we propose a chemo-
transport-mechanical model that describes the cell internal structure pivotal
for cell ABM, i.e. F-actin network protrusion. This model provides a unique
continuum mechanical and energetic understanding of cells ABM, examining the
actin polymerization motor from a thermodynamical point of view. It has the
potential, in principle, to provide quantitative results on F-actin and G-actin
concentration variation in cells, and cellular displacements and stresses induced
by F-actin protrusion. Up to now, it neglects the cell-substrate interaction and
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Figure 7.1: F-actin network and its interaction with ECM. (a) F-actin polymer-
ization, triggered by integrin activity. (b) Schematic of the biopolymer network
at the leading edge of a cell. Polymerization is usually triggered by extracellular
signals. Figure from [26].

the mechanical behavior of other cellular internal structures, such as microtubules
and stress fibers.

7.2.1.1 Kinematics

Denote with �(t) a volume that advects, which represents the cell body, and
with ˆ�(t) its surface. A place x̨ œ �(t) is defined as the image of a point X̨ in
a reference configuration �R through a smooth function ‰(X̨, t) termed motion.
As we already explained, we name deformation the snapshot of a motion at a
fixed time t

‰t(X̨) = ‰(X̨, t) .

Following chapter 4.1, the non-symmetric deformation gradient F character-
izes the deformation of the cell in a neighborhood of a point. As we already
explained, we claim that F-actin and G-actin have di�erent partial molar volumes,
with the cross-linked network having a molar volume larger than the monomers’.
In view of this, the deformation gradient is defined as

F = F eF c
, (7.2)

which splits the total deformation gradient into two contributions: a purely
chemical contribution F c and a purely mechanical contribution F e, where

- F c(X̨, t) is the so called polymerization tensor;

- F e(X̨, t) represents the elastic distortion [6].
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Figure 7.2: Schematic representation of cell configuration, where the cell domain
is composed of two parts, as � = �F + �back. ˆ�F represents the cell boundary
part where the signal for actin polymerization and protrusion is emitted. ˆ�F

represents the boundary between the area where F-actin protrudes and the area
where F-actin contracts. ˆ�back represents the cell boundary part where the
F-actin network contracts.

F c(X̨, t) is defined as
F c = ⁄

c 1 , (7.3)

with
⁄

c
> 0 , det [F c ] = J

c = ⁄
c3

,
1
Jc

dJ
c

dt
= 3

⁄c

d⁄
c

dt
, (7.4)

and ⁄
c is the swelling stretch.

By the definition, the right Cauchy-Green tensor yields

C = F TF .

7.2.1.2 Balance laws

Based upon the selection of the mechanisms that are supposed to govern the
structural response of the cell, the balance laws of linear and angular momentum
come out. Literature provides two basic approaches, whether the structural
functions are demanded entirely to the cell membrane [129, 130, 131, 132, 133]
or to the development of a cytoskeletal structure within the bulk of the cell
[77, 36, 84, 93, 85, 91, 87, 86, 103]. The influence of curvature on the elastic
sti�ness of the membrane appears to be related to the size of the cell [82] and
seems to be negligible for keratocyte cells. These two evidences lead us to consider
the reorganization of the cytoskeleton through a network of actin and intermediate
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filaments and microtubules the main responsible for the mechanical response of
keratocyte cells, coupled with a passive behavior dictated by the viscosity of the
cytosol as in [77, 36, 103]. Accordingly, balances of linear and angular momentum
will be formulated for the bulk of the cell rather than the membrane. For
simplicity, we neglect mechanical contributions from the intermediate filaments,
microtubules, and nucleus presence in the cell body, attributing to lamellipodia
the main role in keratocyte motility.

The domain � is assumed to be composed of three species: cytosol, G-actin,
and F-actin. For the sake of simplicity, we do not consider the cytosol passive
behavior, and the mechanical response is only provided by the F-actin network.

All constituent main features are summarized as follows

- Cytosol: it is allowed to flow freely inside the cell domain � and it has a
fluid behavior. It is the hosting material for G-actin only;

- G-actin: it is dissolved in the cytosol and it advects with it. Moreover, it
can di�use inside the cell body � but it does not have a mechanical role;

- F-actin: it forms a 3D network that is attached to an extracellular domain
by integrins. This fact does not prevent the F-actin from flowing: even if
F-actin does not advect with the cytosol, F-actin is permitted to self-di�use.
Moreover, F-actin is considered as an elastic body, that can deform when
it is subjected to external forces. As a first approximation, we neglect the
active contractility of the F-actin network at the rear of the cell and we
ignore the role of ATP. There is no mechanical interaction between the
F-actin network and the cytosol.

7.2.1.2.1 Mass balance Consider a cell �. The mass balance equations of
the G-actin and F-actin network in the current configuration read

d
dt

⁄

P
cG dv +

⁄

ˆP
h̨G · n̨ da +

⁄

P
w

(4.38)
dv = 0 , (7.5a)

d
dt

⁄

P
cF dv +

⁄

ˆP
h̨F · n̨ da ≠

⁄

P
w

(4.38)
dv = 0 . (7.5b)

We can rewrite equations (7.5) as
⁄

P

ˆcG

ˆt
+ div [ cG v̨adv ] dv +

⁄

ˆP
h̨G · n̨ da +

⁄

P
w

(4.38)
dv = 0 , (7.6a)

d
dt

⁄

P
cF dv +

⁄

ˆP
h̨F · n̨ da ≠

⁄

P
w

(4.38)
dv = 0 . (7.6b)
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Figure 7.3: Cell migration representation.

where h̨G is the flux (in moles per unit spatial area per unit time) of G-actin
relative to the cytosol and w

(4.38) is the rate at which G-actin is converted to
F-actin in moles per unit spatial volume per unit time.

The mass flux vector h̨a, expressed in terms of moles per unit area per unit
time, represents the flux of species a out of the surface body ˆP [6]. The flux for
G-actin consists of two contributions, the transport and the advection out of the
body so that h̨G = cG(v̨G ≠ v̨adv). v̨adv represents the advection velocity, namely
the velocity of the cytosol. The species needs to have a di�erent velocity with
respect to the advecting one if it leaves the material. The flux of F-actin, instead,
consists of one contribution due to F-actin self-flow. The network is attached to
the substrate, so it does not advect with the cytosol.

Local form of Balance of Mass. The mass balance equations of species G
and F in the polymerized configuration, schematized in Fig. 7.2, localize as

ˆcG

ˆt
+ div [ cG v̨adv ] + div

Ë
h̨G

È
+ w

(4.38) = 0 x̨ œ � , (7.7a)

ˆcF

ˆt
+ div

Ë
h̨F

È
≠ w

(4.38) = 0 x̨ œ � . (7.7b)

7.2.1.2.2 Balances of momentum Applying the Cauchy’s Stress Theorem
(4.52) and the Divergence Theorem (4.35), the balance of linear momentum in
the current configuration, which are written at points x̨ in the domain �F , read

⁄

P
div [�F ] + b̨ dv = 0 . (7.8)

In the current local form, the balance of linear momentum reads

div [�F ] + b̨ = 0 x̨ œ �F , (7.9)
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with b̨ denoting external body forces per unit current volume in the current
configuration. The external body forces are represented by the interaction
between receptors on the cell membrane and integrins on ECM, which allow the
cell to adhere to the external substrate and to bring its body forward (see section
6.2).

In a one-dimensional setting, the cell interaction with integrins entails volu-
metric forces acting on the cell body, which can be represented with a bed of
springs working in favor of the cell movement. These volumetric forces can be
defined as

b = kC u sgn(u) (7.10)

where kC is proportional to the concentration of complexes (kC Ã cC) and b is
proportional to the sign of u (sgn(u)). This is because complexes generate only
when they are pushed back by F-actin network retrograde flow (figure 7.9), so
negative displacements of springs in a 1D problem are needed. Complexes are
not pushed forward by the F-actin network and they do not work when they are
compressed.

The cytosol is considered an incompressible fluid. So, the balance of linear
momentum for the cytosol reads

⁄

P
div [ v̨adv ] dv = 0 , (7.11a)

⁄

P
grad [ p ] + µ div [ grad [ v̨adv ] ] dv = 0 , (7.11b)

where the first equation represents the fact that the cytosol is an incompressible
fluid and the second one is a Stokes equation. p represents the pressure and v̨adv

is the cytosol velocity.
In the current local form, the balance of linear momentum reads

div [ v̨adv ] = 0 x̨ œ � , (7.12a)

grad [ p ] + µ div [ grad [ v̨adv ] ] = 0 x̨ œ � . (7.12b)

7.2.1.3 Chemical kinetics: mass action

As we already explained, we assume that G-actin is partially transformed
into the F-actin network by reaction (4.38). The rate of this reaction (4.38) is



7.2 Original models and results for cells ABM 162

defined via the law of mass action in the current configuration as

w
(4.38)(x̨, t) = kf

ËG

1 ≠ ËG

≠ kb

ËF

1 ≠ ËF

, (7.13)

with kb and kf the backward and forward reaction rate parameters,

Ëa(x̨, t) = ca(x̨, t)
cmax

a
(x̨, t) with a = G, F , (7.14)

and c
max

a
the saturation limit for every a-species.

We embody all these biochemical signaling pathways in a single signaling
function C in the forward reaction rate parameter kf

kf = C k
ú
f

, (7.15)

where k
ú
f

is a constant and C represents the activation signal that triggers actin
polymerization and network formation [6].

The assumption that both the forward and backward reaction parameters are
volume or surface force-independent is still a simplification of the real process
since the presence of the load force can a�ect both kf and kb [1].

7.2.1.4 Balance equations with boundary conditions

Combining the mass action law and the constitutive equations with the mass
balance of species and the balance of momentum, the equations that govern
all the processes are derived. Taking advantage of eq. (7.13), the transport of
actin is coupled with polymerization and depolymerization reactions in the mass
balance equations

ˆcG

ˆt
+ div [ cG v̨adv ] + div

Ë
h̨G

È
+ kf

ËG

1 ≠ ËG

≠ kb

ËF

1 ≠ ËF

= 0 x̨ œ � ,

(7.16a)
ˆcF

ˆt
+ div

Ë
h̨F

È
≠ kf

ËG

1 ≠ ËG

+ kb

ËF

1 ≠ ËF

= 0 x̨ œ � .

(7.16b)

The balances of linear momentum (7.9) and (7.11) can be specified as

div [�F ] + b̨ = 0 x̨ œ �F , (7.17a)

div [ v̨adv ] = 0 x̨ œ � , (7.17b)

grad [ p ] + µ div [ grad [ v̨adv ] ] = 0 x̨ œ � . (7.17c)
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The boundary conditions are currently under development and will be pre-
sented in subsequent publications.

7.2.1.5 The multiscale scenario of cell viscoelasticity

The cytoskeleton, an interconnected network of regulatory proteins and
filamentous biological polymers undergoes massive reorganization during cell
deformation, especially after cell rolling and adhesion [3, 105] and in mediating,
sensing, and transduction of mechanical cues from the micro-environment [106].
Homogenized models for the mechanical response of a cell shall condense in
e�ective properties

- polymerization/depolymerization of filaments;

- process of cross-linking that determines the architecture of cytoskeletal
filaments;

- passive mechanical properties of the cytosol.

The thermodynamics of statistically-based continuum theories for polymers with
transient networks [57, 56, 107, 89, 108] appear to be a valuable candidate for the
selection of free energies Â

el

R
(cFR

,C) and Â
in

R
(cFR

,E, ⇠). At present, however,
such a comprehensive model has not yet been proposed for the pseudopodia-
driven cell motion. Classical models such as hyperelastic Saint-Venant [135] or
Newtonian viscous fluids [110] eventually surrounded by a hyperelastic, zero-
thickness membrane [111] have been used for the pseudopodia, whereas a very
large amount of literature concerns pseudopod dynamics (see for instance [112] and
the large literature therein) or ameboid motion [113]. Di�erent approaches to cell
motility, as for active gel theory coupled to the classical theory of thin elastic shells,
are also widely used [114] but are not discussed in this thesis. The framework
described herein, including myosin dynamics, and phase transformations between
G-actin and F-actin, has been depicted in a set of publications by the group of H.
Gomez [136, 115]. The flow of the F-actin network was treated as a Newtonian
fluid and directed by its velocity. A one-dimensional yet comprehensive model
has been proposed in [137].

The multiscale scenario is invoked also for cell contractility. There is evidence
[138] that the interaction among filaments, motors, and cross-linkers is mechani-
cally stimulated. As reported in [106], myosin binding to actin fibers occurs in
a force-dependent manner, as well as the contractile response of actomyosin to
extracellular sti�ness. According to [139], force feedback controls motor activity
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and increases the density and mechanical e�ciency of self-assembling branched
actin networks, thus suggesting that those feedbacks could allow migratory cells
to adjust their viscoelastic properties to favor migration. Mass transport and cell
contractility have been accounted for in several publications with di�erent degrees
of complexity [89, 103, 104]: to the best of our knowledge, however, the force
transmission has always been modeled stemming from the similarity between the
sarcomeric structure of stress fibers and the actin-myosin interactions in muscle
cells. In [77] a multi-dimensional network of stress fibers was built on the notion
of a representative volume element, in which stress fibers can form in any direc-
tion with equal probability. Macroscopic stress is then recovered from the fiber
tension, which in turn is generated by the cross-bridging cycles and described by
a Hill-like relation [140] of viscoelastic nature. Experimental evidence, however,
seems to show that such a resemblance might be questionable in the dynamics
and mechanics of cell spreading [141] and hence that the predictive capability of
this family of models might be poor for this family of cells.

Finally, the passive response of the cytosol, provided mainly by the intermedi-
ate filaments attached to the nuclear and plasma membranes, has been modeled
by several authors through classical models as linear elasticity [89], the finite
strain generalization of Hooke’s law [77] or a Neo-Hookean potential energy

Â
el

R
(Ce) = G0

2 (I1(Ce) ≠ 3) , Â
in

R
(Ee

, ⇠) = G0 ≠ GŒ
G0

Â
el

R
(Ee

≠ ⇠) , (7.18)

where G0 is the initial shear modulus and GŒ is the shear modulus at the end of
the viscous processes. This classical choice of Helmholtz free energy is associated
with e�cient integration schemes, depicted in [27].

7.2.2 A mechanical model for F-actin network contractility:
Deshpande theory

The current section provides a general model for fibroblast contractility,
named after Deshpande - McMeeking [77, 36]. This model accounts for the
dynamic reorganization of the cytoskeleton during cell adhesion and deformation
on an engineered substrate. It prioritizes the continuum stress fibers behavior and
it studies how their formation is a�ected by the substrate mechanical behavior.
To verify the model, we propose a one-dimensional biomechanical simulation
that shows the cytoskeleton contractility behavior under the e�ect of a support
sti�ness.
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7.2.2.1 Fundamentals

The model for the contractility of cells presented in [77] is motivated by three
key biochemical processes

1. an activation signal that triggers actin polymerization and myosin phos-
phorylation;

2. the tension-dependent assembly of the actin and myosin into stress fibers;

3. the cross-bridge cycling between the actin and the myosin filaments that
generates the tension [77].

These are the basic phenomena for stress fiber formation and functioning, as
explained in chapter 6.

To devise a mechanical model, the biochemical processes occurring in the cell
must link with the formation and dissociation of the stress fibers, as well as the
associated generation of tension and contractility [36].

The preceding biochemistry suggests that the mechanical response of the
stress fibers comprises three coupled phenomena

1. an activation signal that triggers the formation of stress fibers;

2. a fiber formation rate that depends upon the activation signal coupled with
a dissociation rate tension dependent;

3. a contraction rate (contractility) for the stress fiber that depends on the
tension through the cross-bridge dynamics [36].

The expressions chosen are the simplest possible without violating the biochem-
istry and, expressed mathematically, become the fundamental concepts underlying
the model [77].

7.2.2.1.1 Activation signal The activation signal triggers the formation of
stress fibers by activating actin polymerization and myosin phosphorylation, both
involved in fiber formation. The signal can either be an internal or an external
signal, insofar as it is induced either by a nervous impulse inside the cell or by
an external stimulus, that comes from the cell perception of the ECM rigidity
surface.

The stress fiber formation, as described in chapter 6, is triggered by protein-
protein interactions and by the activation of several signaling pathways at di�erent
times. In this model, all processes are abridged in a single activation signal, that
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sums up all these biochemical phenomena. Therefore, the activation signal is
assumed as given by

C = exp(≠ t ≠ ›

◊
), (7.19)

where

- ◊ is the decay constant of the signal;

- › is the time from last signal emission;

- t is the current time.

Over the time scales of the contractile activity of the cell (of the order of hours),
it is assumed there are no spatial gradients in C and that the level is dominated
by the most recent signal [77]. The signal varies from 0 to 1. When the signal
decays, the actin depolymerizes and the fibers dissociate. On the contrary, when
the signal starts, the actin polymerizes to create the stress fibers.

7.2.2.1.2 Fiber activation level The transduction of the signal results in
the

- polymerization of the actin filaments and the bundling of these filaments
by –-actinin;

- phosphorylation of myosin II, which promotes the assembly of the myosin
into bipolar filaments [77]. The interaction between the myosin II heads
and the actin filaments forms contractile bundles [77].

So, the activation signal sparks the stress fibers formation, which is related
to the activation level ÷. ÷ is a nondimensional parameter, ÷ (0 Æ ÷ Æ 1), which
describes the level of recruitment of actin and myosin in a stress fiber bundle.
The amount ÷ = 1 is the maximum recruitment allowed by the biochemistry.

The activation level can be written as a ratio of two concentrations

÷ = cf

c
max

f

, (7.20)

where

- cf is the concentration of the polymerized actin and phosphorylated myosin
in the bundle;

- c
max

f
is the saturation concentration [36].
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The balance of mass is expressed by the formula

ˆ

ˆt
cf = Ê, (7.21)

where Ê is the mass supply due to the polymerization and phosphorylation,
quantified via the law of mass action. The equation (7.21) represents the change
over time in the concentration of polymerized actin and phosphorylated myosin
in the bundle.

The mass action law can be written in a non-standard way as follows, according
to the [36]

Ê = [(cmax

f
≠ cf )Ckf

◊
] ≠ [cf (1 ≠

Ta

Tao

)kb

◊
], (7.22)

where

- kf and kb are the two parameters that govern the rate of formation and
dissociation of the stress fibers, respectively;

- Ta is the active tension in the fiber bundle;

- Tao
= ÷Tamax

, where Tamax
is the active tensile strength at full activation,

namely the tension when the concentration of the polymerized actin and
phosphorylated myosin is the maximum permitted by the biochemistry
[77].

Dividing both members by c
max

f
, the equation (7.22) becomes

Ê

c
max

f

= [
(cmax

f
≠ cf )

c
max

f

Ckf

◊
] ≠ [ cf

c
max

f

(1 ≠
Ta

Tao

)kb

◊
]. (7.23)

Replacing the equation (7.20) in equation (7.23), it becomes

ˆ÷

ˆt
= [(1 ≠ ÷)kp] ≠ [÷kd], (7.24)

where

- ÷ = cf

c
max

f

,

- kp = Ckf

◊
,

- kd =
!
1 ≠

Ta

Tao

"
kb

◊
.
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Figure 7.4: The model for the second branch of the constitutive equation that
expresses Ta as a function of Á. Figure from Claudia Bonanno’s Dissertation
titled "Mechanical and Biological Insights of Endothelial Cell Spreading".

Formula (7.24) is the first-order kinetic scheme, that represents the formation
and the dissociation rate of the stress fibers.

The over-dot denotes di�erentiation to time t, measured from the instant of
the application of the first signal [77]. The key features of equation (7.24) are
the followings

1. the rate of the formation of the stress fiber (first square bracket) decreases
with increasing fiber activation ÷ and is proportional to the strength of the
decaying signal;

2. the rate of dissociation (second square bracket) is proportional to the
concentration of the polymerized actin and phosphorylated myosin II [77].
Moreover, to allow the contractile bundles to be held together by the tension,
it is proposed a dissociation term dependent on the tension; namely, the
dissociation rate is zero when the fibers are held at the tension Tamax

, but
increases linearly at lower tension [77].

7.2.2.1.3 Mechanical model The bundle contraction/extension rate Á̇ is
related to the stress by the cross-bridge dynamics [36]. The constitutive equation
that connects the applied tensions Ta to small strain rate Á̇ is described in [77]
by the equation

Ta

Tao

=

Y
___]

___[

0 Á̇

Á̇o

< ≠
÷

kv

1 + kv

÷
( Á̇

Á̇o

) ≠
÷

kv

Æ
Á̇

Á̇o

Æ 0

1 Á̇

Á̇o

> 0

, (7.25)
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Figure 7.5: The model that expresses T as a sum of active and passive tension.
Figure from Claudia Bonanno’s Dissertation titled "Mechanical and Biological
Insights of Endothelial Cell Spreading".

where

- kv is a nondimensional constant that represents the fractional reduction in
fiber tension upon increasing the shortening rate by reference value Á̇o [77];

- Á̇ is the rate of change of the length of stress fiber (positive for lengthening
and negative for shortening) [77];

- Á̇o is the reference strain rate.

For Á̇

Á̇o

> 0 the fibers are getting longer and the fibers’ behavior is neither
elastic nor viscoelastic because the tension has the constant value T = Tao

.
For Á̇

Á̇o

< ≠
÷

kv

the bundle is not subjected to tension, therefore it tends to
dissociate. The tension is equal to 0.

For ÷

kv

Æ
Á̇

Á̇o

Æ 0 the fibers have a viscous elastic behavior because the tension
Ta is linearly dependent to the strain rate Á̇.

The formula (7.25) is a simplified version of the Hill relation and accounts for
the fiber lengthening (see figure 7.4).

The contractile response of a cell includes a contribution from the passive
elasticity due to the intermediate filaments of the cytoskeleton that are attached
to the nuclear and plasma membranes. This elastic passive element acts in
parallel with the active element. Therefore the total tension is a sum of active
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Figure 7.6: A stress fibers bundle and a spring in series between two rigid
supports. Figure from [77]. Figure from Claudia Bonanno’s Dissertation titled
"Mechanical and Biological Insights of Endothelial Cell Spreading".

and passive tensions
T = Ta + Tp, (7.26)

where

- Ta is the active tension, defined by the equation (7.25);

- Tp is the elastic passive tension (see figure 7.5).

The passive tension can be defined as the product of the elastic constant ke

and the deformation Áp, so the (7.26) becomes

T = Ta + keÁp, (7.27)

where the passive deformation Áp is equal to the total deformation, viz.

Átot = Áa = Áp = Á . (7.28)

Such passive elastic contributions are considered only in the two-dimensional
model of [77], but are neglected in the one-dimensional model to better illustrate
the essential features of the stress fiber constitutive relation.

7.2.2.2 E�ect of support sti�ness

This example describes the evolution of bundle behavior on an elastic support.
For simplicity, the fiber is assumed to be completely inactive at time t = 0 s [77]
and the contribution of passive tension is neglected, therefore

Ta = Ttot = T. (7.29)
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Consider a stress fiber held between two rigid foundations through a support
spring in series, characterized by a spring constant ks [77] (figure 7.6). This
spring constant is defined via the relation Fm = ks�x, where Fm is the force
generated by the spring for an extension �x [77].

After the activation of the signal, ÷ increases, and the fiber shortens. At the
same time, the spring applies a force to the bundle to get back to the configuration
at rest.

The sum of the fiber length lf and the spring length �x is a constant

lf + �x = const, (7.30)

hence
˙lf + �̇x = 0. (7.31)

The fiber deformation is
Áf = lf

l
. (7.32)

Denote with
Ám = �x

l
, (7.33)

where l is the total length of the support. The parameter l is a constant over
time, thus, the time derivative of fiber deformation is

Á̇f =
˙lf
l

(7.34)

and the time derivative of spring "deformation" is

Á̇m = �̇x

l
. (7.35)

Replacing the equations (7.35) and (7.34) in (7.31) the latter becomes

˙lf
l

= ≠
�̇x

l
, (7.36)

so
Á̇f = ≠Á̇m. (7.37)

When �x increases, the fiber shortens by the same length. Thus the tension in
the spring is

Ṫm = ksÁ̇m. (7.38)

The internal force in the bundle is equal to the force generated by the spring
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Figure 7.7: Tension in the fiber bundle and in the spring. Figure from Claudia
Bonanno’s Dissertation titled "Mechanical and Biological Insights of Endothelial
Cell Spreading".

(see figure 7.7)
Tm = T. (7.39)

The equation (7.38) can be written as

Ṫ = Ṫm = ksÁ̇m = ≠ksÁ̇f . (7.40)

Solving for Á̇f , the equation becomes

Á̇f = ≠
Ṫ

ks

. (7.41)

Replacing Á̇f in the second-branch of (7.25), it becomes

T

To

= 1 ≠
kv

÷Áo

( Ṫ

ks

), (7.42)

which can be written as an ordinary di�erential equation for T

Ṫ =

Y
]

[

ksÁo

k̄o

(÷ ≠
T

Tmax

) 0 < T < To

0 otherwise

. (7.43)

The resulting coupled governing equations are (7.24) and (7.43) equations,
with initial conditions ÷ = T = 0 at t = 0 s.

Dimensionless formulas The problem is fully specified by four independent
non-dimensional variables: kf , kb, the non-dimensional support sti�ness,

ks ©
ksÁo◊

Tmaxkv

(7.44)

and the non-dimensional time, t ©
t

◊
[77]. The resulting solution-dependent
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variables are the non-dimensional tension in the stress fiber (and spring)

T̄ = T

Tmax

(7.45)

and the non-dimensional extension of the support spring [77]

�x̄ © �x
kv

Áo

◊. (7.46)

Unless otherwise specified, the reaction rate constants are taken as kf = 10.0
and kb = 1.0, referred to as the reference case. The non-dimensional spring
constant is varied in the range 0.5 Æ ks Æ 80 [77].

In range 0 < T < To, dividing both members by Tmax and multiplying by ◊,
the equation (7.43) becomes

◊
ˆT

ˆt
= ≠ks(T ≠ ÷). (7.47)

Introducing the dimensionless time t = t

◊
, the activation signal becomes

C = exp(≠t), (7.48)

whereas the activation level obeys the evolution equation

ˆ÷

ˆt
= (1 ≠ ÷)Ckp ≠ ÷(1 ≠

T

÷
)kd, (7.49)

where ˆ÷

ˆt
= ◊

ˆ÷

ˆt
and

Ṫ = ˆT

ˆt
= ≠ks(T ≠ ÷), (7.50)

where ˆT

ˆt
= ˆT

ˆt

ˆt

ˆt
= ◊

ˆT

ˆt
.

Governing equations The governing equations are
Y
_]

_[

ˆT

ˆt
= ≠ks(T ≠ ÷)

ˆ÷

ˆt
= kp(1 ≠ ÷)exp(≠t) ≠ kd÷(1 ≠

T

÷
)

, (7.51)

with the initial condition ÷ = T = 0 at t = 0 s. The activation signal C is
expressed as

C = exp(≠t). (7.52)
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Figure 7.8: The tension as a function of time in three springs with ks = 0.5, 1.0,
5.0. For sti� springs (ks > 5.0), the steady-state tension always reaches Tmax.
Conversely, compliant springs (ks Æ 1.0) are unable to sustain significant tension
until the stress fiber has undergone substantial contraction. Figure from Claudia
Bonanno’s Dissertation titled "Mechanical and Biological Insights of Endothelial
Cell Spreading".

The numerical solution is given by the backward ◊-method, a finite di�erence
method, which discretizes the problem over time.

With the backward ◊-method, the discretized governing equations become
Y
]

[

T n+1≠T n

�t
= ≠ks(T n+1 ≠ ÷n+1)

÷
n+1≠÷

n

�t
= kp(1 ≠ ÷n+1)exp(≠t) ≠ kd÷n+1(1 ≠

T n+1
÷n+1

)
. (7.53)

Easy algebra leads to

T n+1(1 + ks�t) ≠ ks�t÷n+1 = T n (7.54)

and

≠ kd�tT n+1 + ÷n+1(1 + �tkpexp(≠t) + �tkd) = ÷
n

+ �tkpexp(≠t), (7.55)
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therefore the linear system dicrete solution T n+1, ÷n+1 solves
5
1 + ks�t ≠ks�t

≠kd�t 1 + kp�texp(≠t) + kd�t

6 Ë
T n+1
÷n+1

È
=

5
T n

÷n + kp�texp(≠t)

6
.

(7.56)

Remarks The e�ect of the spring sti�ness ks on the evolution of tension
T with time is plotted in figure 7.8. The results are in agreement with [77].
Specifically, for sti� springs (ks > 5.0), the steady-state tension always reaches
Tmax. Conversely, compliant springs (ks Æ 1.0) are unable to sustain significant
tension until the stress fiber has undergone substantial contraction. Whereupon,
÷ increases more slowly and the stress fiber does not achieve full activation before
the signal C has decayed [77]. Consequently, the steady-state levels of ÷ and T

are both less than unity [77].

7.2.3 A continuum model for receptor dynamics: a general
framework

Receptor motility along cell membranes is involved in several biological
processes, such as cell, bacteria, virus adhesion, and motility, endocytosis, and
exocytosis, to cite a few [152, 153, 154, 155, 156, 157]. The cell membrane plays a
crucial role in cellular protection, in control and transport of nutrients [158], and
regulates the interchange of di�erent substances in the cell [159]. Its structure
facilitates directional or Brownian di�usion of receptors, internalization, and
segregation. Acting as a barrier between the extra-cellular and intra-cellular
environments, the cell membrane controls the flux of matter across and on its
surface [160]. Being constituted of two sheets of phospholipid (amphoteric)
molecules, cell membranes in an aqueous environment acquire the conformation
of a phospholipid bilayer, with the hydrophobic end inside the bilayer and
the hydrophilic outside. Such a conformation, including the various embedded
proteins (receptors, ion channels, transporters, other proteins), constitutes the
so-called fluid-mosaic model [161]. Membrane fluidity represents one of the
most critical membrane properties [158], and it is still object of several studies
[158, 162, 159, 163, 164, 165, 160, 166]

Our mechanobiology group studied the relocation of transmembrane receptors
along advecting cell membranes, as for Vascular Endothelial Growth Factor Recep-
tors 2 (VEGFR2) and –v—3 integrins, by designing chemo-transport-mechanical
multi-physics formulations [54, 30, 101, 169, 170] to describe how the mechanical
behavior of an endothelial cell (EC) a�ects receptor dynamics during the early
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Figure 7.9: Molecular clutches

phases of tumor angiogenesis. VEGFR2 dynamics on cell membrane is studied
in [54] for EC adhesion onto a rigid substrate coated with specific immobilized
ligands, on the basis of the established role as an activator of the angiogenic
process of the chemical interactions between soluble non-canonical ligands, as
gremlin [171, 172], released by cancer cells. Although strongly simplified as-
sumptions on cell mechanics are taken, VEGFR2 dynamics is well captured and
validated against co-designed experimental investigations [173]. The emergence of
three di�erent phases of VEGFR2 relocation and complex generation is unveiled
and related to distinct mechanisms, such as (i) the initial cell-substrate contact
interaction and the VEGFR2-gremlin high chemical reaction rate, (ii) the me-
chanical deformation of the cell due to complex phenomena inside its bulk, (iii)
the VEGFR2 relocation on EC membrane due to di�usion. The mathematical
description of the model is detailed in a companion paper [100]. The model,
framed in the mechanics and thermodynamics of continua, follows a general
description proposed in [30], and takes advantage of successful descriptions of
physically similar systems [174, 175, 176]. The model is broadened [101, 169] to
account for the interplay between VEGFR2 and VEGF-A or gremlin, –v—3 inte-
grin and the glycoprotein fibronectin embedded in the extracellular matrix, and
the experimentally revealed interaction between –v—3 integrin and the VEGFR2-
gremlin complex [177]. The induced receptor polarization is identified in cell
protrusions and in the basal aspect of ECs. Relocation and reaction of –v—3

receptors along cell membranes is also included in a general framework for cell
spreading, motility, and receptor dynamics [170, 169]. The mechanics of the cell
is accounted for, in the field of finite strain theory in continuum mechanics and
in a consistent (continuum) thermodynamic setting, together with the modeling
of relocation and reaction of actin proteins to form biopolymer structures.
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Figure 7.10: Notation. (a) The reference body �R and the deformed body �(t).
Note that x̨ œ P(t) implies X̨ œ PR. (b) Frenet frame at point y̨ œ ˆP(t) and
the normal vector n̨ at point x̨ œ P(t). Figure from [26].

We attempt here to sum up the multi-physics scheme for modeling the
relocation of proteins on advecting lipid membranes presented by our group in
the papers mentioned before. We focus here on the motility of receptor proteins,
without distinguishing between di�erent types of receptors in terms of structure
and second-messenger systems, framing the mathematical setting within the
mechanics and thermodynamics of continua [24]. The active mechanical behavior
of the cell due to actin polymerization is here neglected.

7.2.3.1 Definitions

Interactions between Ligands on the substrate (Ligands=L) and Receptors on
the cell membrane (Receptors=R) generate nascent adhesions (Complexes=C)
which act as bounds between the cell and the substrate. The association and
formation of a protein complex follow a two-step mechanism; the formation
of an encounter complex, in which previously free proteins show few specific
interactions and assume many orientations, and the evolution of the encounter
complex in the final complex. The binding-unbinding interaction

L + R
kf

�
kb

C (7.57)
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accounts for both mechanisms [197]. A similar approach has been taken in
[54, 100] for the relocation of VEGFR-2 receptors and in [101] for integrins.
Coe�cients kf and kb are the kinetic constants of the forward and backward
reactions, respectively. The rate of reaction (7.57), denoted with w

(7.57) and
measured in

#
mol

m2 s

$
, quantifies the net formation of (C) on the advecting membrane

as the di�erence between the forward and backward reactions [26].

Receptors (either free or bound into the complex) are distributed along the
membrane together with other lipid species and proteins. They are assumed to
freely move laterally, e�ects due to steric hindrance are not accounted for. The
amount of proteins per unit area that can be placed at a membrane location x̨

is thus limited by the actual size of the protein itself. This evidence ushers the
definition of a saturation limit for the species, c

max

a
(x̨, t) [26].

Denote with �(t) a volume that advects, and with ˆ�(t) its surface. A point
x̨ œ �(t) is defined as the image of a point X̨ in a reference configuration �R

through a smooth function ‰(X̨, t) termed motion. Following [24], we will name
deformation the snapshot of a motion at a fixed time t

‰t(X̨) = ‰(X̨, t) .

The deformation is assumed to be a one-to-one map. In addition, denoting the
deformation gradient with

F = Grad [ ‰̨t ] ,

the requirement J = det [F ] > 0 holds. Define on the surface a part P(t) µ ˆ�(t)
as in figure 7.10, and consider a scalar function f(x̨, t) with x̨ œ P(t). Denote
with

v̨adv(x̨, t) = dx̨/dt

the velocity of advection at location x̨ and time t; such a velocity has an arbitrary
direction, i.e. it is not necessarily tangent to ˆ�(t).

The Frenet-Serret reference frame at a generic point y̨ œ ˆP(t) is defined
as in Fig. 7.10, in terms of the two unit vectors t̨Î(y̨, t) (tangent) and t̨‹(y̨, t)
(normal). The vector n̨(y̨, t) (binormal) is here taken of non-unit length, being
the image in �(t) of a unit vector n̨R in the reference configuration �R, by means
of the contravariant transformation

n̨ = F≠T
n̨R .
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On the other hand, the following covariant transformations hold

t̨ÎR
= F≠1

t̨Î , t̨‹R
= F≠1

t̨‹ ,

with the obvious implication that t̨ÎR
and t̨‹R

are not unit vectors. The Frenet
formulae hold, namely

Ÿ t̨‹ = ≠ˆ t̨Î/ˆs , · t̨‹ = ˆ
n̨

|n̨|
/ˆs , Ÿ t̨Î ≠ ·

n̨

|n̨|
= ˆ t̨‹/ˆs ,

where Ÿ denotes the curvature and · the torsion.

The projected gradient operator of a scalar field f on a surface P is defined as
follows

ÒP [ f ] = grad [ f ] ≠
n̨ · grad [ f ]

|n̨|2
n̨ , (7.58a)

in the current configuration, whereas in the reference configuration, it reads

GradP [ f ] = Grad [ f ] ≠ n̨R · Grad [ f ] n̨R . (7.58b)

The projected divergence operator of a vector field v̨, which has an arbitrary
direction, on a surface P is defined as follows

divP [ v̨ ] = div [ v̨ ] ≠
n̨ · ln̨

|n̨|2
, (7.59a)

DivPR
[ v̨R ] = Div [ v̨ ] ≠ n̨R · Grad [ v̨R ]n̨R , (7.59b)

in the current and reference configurations, respectively. Tensor l is the gradient
of v̨, l = grad [ v̨ ]. Note that l in eq. (7.59a) can be replaced by its symmetric
part d = sym [ l ], since for any skew-symmetric tensor w it holds n̨ · wn̨ = 0 .
Alternative forms for the projected divergence operators are

divP [ v̨ ] = curl
5

n̨

|n̨|
◊ v̨

6
·

n̨

|n̨|
, DivPR

[ v̨ ] = Curl
5

n̨R

|n̨R|
◊ v̨R

6
·

n̨R

|n̨R|
.

(7.60a)

Provided su�cient smoothness, the divergence theorem holds also for advecting
membranes, in the form

⁄

P(t)
divP [ g̨ ] da =

⁄

ˆP(t)
g̨ · t̨‹ d¸ . (7.61)
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Figure 7.11: Receptors-ligands interaction on the membrane, modeled via equa-
tion (7.57). Figure from [26].

The proof of this theorem, as well as for all other theorems not explicitly stated
in this thesis, can be found in [169, 26].

7.2.3.2 Receptors’ relocation and reaction on an advecting membrane

7.2.3.2.1 Reynold’s theorem on an advecting surface Reynold’s theo-
rem on P(t) reads as follows [169]

d
dt

⁄

P(t)
f da =

⁄

P(t)

ˆf

ˆt
+ divP [ f v̨adv ] da , (7.62)

where v̨adv(x̨, t) is the velocity of advection at location x̨ and time t. By taking
f = 1, eq. (7.62) depicts the area evolution of P(t) as

d
dt

⁄

P(t)
da =

⁄

P(t)
divP [ v̨adv ] da .

Intuitively, advection with velocity in the tangent plane has the potential to
modify the surface area, however, even v̨adv(x̨, t) Ã n̨(x̨, t) can do so, as for the
homothetic expansion of a rubber balloon. Reynold’s theorem (7.62) can be also
restated as

d
dt

⁄

P(t)
f(x̨, t) da =

⁄

P(t)

d f(x̨, t)
dt

+ f(x̨, t) divP [ v̨adv ] da , (7.63)

and is a restriction on surfaces of the classical Reynold’s transport relation on
volumes (see [24], section 16 among others) [26].
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7.2.3.2.2 Mass transport on an advecting surface Mass balance in
the current configuration Consider a generic species a at a point x̨ on the
surface ˆ�(t). Species a convects with velocity v̨a(x̨, t). The latter entails the
dragging, or advection, velocity v̨adv(x̨, t) and another velocity that is due to
many possible physics, as for di�usion or migration. If internalization of species
from the membrane is not allowed, the net velocity v̨a ≠ v̨adv lays in the tangent
plane of the membrane and

(v̨a ≠ v̨adv) · n̨ = 0 . (7.64)

Since species are modeled on a membrane, which is a two-dimensional manifold,
the surface density fla of species a measures the mass of the species per unit
surface. The density flux vector of species a, denoted with ~̨a, is the product of
the surface density times the net velocity of species a, i.e.

~̨a = fla (v̨a ≠ v̨adv) . (7.65)

Define on the surface a part P(t) µ ˆ�(t) as in Fig. 7.10. The flux of species a

across the boundary ˆP(t) is
⁄

ˆP(t)
~̨a · t̨‹ d¸

and the mass balance of species a in the advecting configuration P(t) reads

d
dt

⁄

P(t)
fla(x̨, t) da +

⁄

ˆP(t)
~̨a · t̨‹ d¸ =

⁄

P(t)
sa(x̨, t) da , (7.66)

where sa(x̨, t) is the surface mass supply2 of species a. By means of the divergence
theorem (7.61) and of Reynold’s transport theorem in the form (7.63), balance
law (7.66) becomes

⁄

P(t)

dfla

dt
+ fla divP [ v̨adv ] + divP

Ë
~̨a

È
da =

⁄

P(t)
sa(x̨, t) da .

Since it holds for all P(t), it eventually localizes as

dfla

dt
+ fla divP [ v̨adv ] + divP

Ë
~̨a

È
= sa(x̨, t) . (7.67)

2As an example, in biology cells may produce proteins that move to the lipid membranes
from the cytosol.
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This formulation of the mass conservation law has been considered also in [167].
The mass balance can be finally written in terms of surface molarity ca (in moles
or molecules per unit surface), by dividing by the molar or molecular mass (ma)
of species a. By denoting with ca = fla/ma, sa = sa/ma, and h̨a = ~̨a/ma the
local balance (7.67) becomes

dca

dt
+ ca divP [ v̨adv ] + divP

Ë
h̨a

È
= sa(x̨, t) . (7.68)

Mass balance in the reference configuration The mass balance (7.68)
can be rephrased in the reference configuration at point X̨ and time t. To this
aim, define the reference molarity of species a as

caR
(X̨, t) = ca( x̨(X̨, t ), t ) j(X̨, t) , (7.69)

the reference flux vector h̨aR
(X̨, t) and the reference mass supply saR

(X̨, t) as

h̨aR
= j F≠1

h̨a( x̨(X̨, t ), t ) , saR
= j sa( x̨(X̨, t ), t ) , (7.70)

respectively, where [24, 32]

j = J |F≠T
n̨R| = J


n̨R · C≠1n̨R . (7.71)

The referential form of the mass balance (7.68) can be derived from the mass
balance in the form (7.66), and reads

ˆcaR

ˆt
+ DivPR

Ë
h̨aR

È
= saR

. (7.72)

For the sake of brevity, the proof has been here omitted, interested readers may
find it in [169, 26].

7.2.3.2.3 Relocation and reaction During their life, cells and their mem-
branes undergo major macroscopic mechanical deformations. Studies on the red
blood cell [198] suggest that the membrane deformation occurs at constant area,
but this evidence does not appear to be supported by experiments in endothelial
cells during spreading [141]. Individual proteins and phospholipids can easily
move laterally within the membrane, which results in a very low shear sti�ness.
The fluid mosaic model [199] captures this evidence, adding a questionable high
resistance to areal expansion. Indeed the mechanisms that are in charge of areal
expansion during cell spreading are complex and involve the micro-structural
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topology3 of the membrane (as for flattening of invaginated membrane domains
[200], i.e. the role of the caveolae as membrane surface repository readily made
available for fast geometrical evolution as during filopodia extension). The struc-
ture of the lipid membranes, however, induces us to suppose that the saturation
concentration c

max

a
(x̨, t), i.e. the maximum number of moles or molecules per unit

area for any species a, remains unchanged in time in the current configuration.
This choice in turn entails that the number of moles or molecules per unit area
in the reference configuration is not constant and evolves in time following eq.
(7.69), i.e.

c
max

aR
(X̨, t) = c

max

a
(x̨(X̨, t), t) j(X̨, t) . (7.73)

Accordingly, the value of the non-dimensional ratio between the concentration of
species a and its amount c

max

a
at saturation,

Ëa = ca/c
max

a
(7.74)

in the current configuration remains unchanged in the reference configuration

ËaR
(X̨, t) = Ëa(x̨, t) . (7.75)

The kinetics of reaction (7.57) is modeled for ideal systems via the law of
mass action [37]

w
(7.57) = kf

ËL

(1 ≠ ËL)
ËR

(1 ≠ ËR) ≠ kb

ËC

(1 ≠ ËC) . (7.76)

At chemical equilibrium, as w
(7.57) = 0, the concentrations obey the relation

kf

kb

= Ë
eq
C

(1 ≠ Ë
eq
C

)
(1 ≠ Ë

eq
R

)
Ë

eq
R

(1 ≠ Ë
eq
L

)
Ë

eq
L

= K
(7.57)
eq (7.77)

which defines the constant of equilibrium K
(7.57)
eq of reaction (7.57).

Far from the saturation limit, (1 ≠ Ëa) ≥ 1 for all a. Accordingly, the mass
action law (7.76) simplifies as

w
(7.57) = k̃f cL cR ≠ k̃b cC (7.78)

3Multiscale investigations, however, fall out of the scope of the present thesis.
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once the new constants

k̃f = kf (cmax

L
c

max

R
)≠1

, k̃b = kb(cmax

C
)≠1

are defined.

The di�usion of receptors and the viscous evolution of the cell during adhesion
and migration appear to be much slower than the interaction kinetics, i.e. the
time required to reach chemical equilibrium is orders of magnitude smaller than
the time scale of other processes. For this reason, thermodynamic equilibrium
may be invoked in place of a transient evolution, thus inferring the constraint
w

(7.57) = 0 to the concentrations of species at all times. Far from saturation,
equating (7.78) to zero implies that

cC = cR cL

–
, (7.79)

having denoted with – the following constant

– = k̃b

k̃f

= c
max

R
c

max

L

c
max

C

1
K

(7.57)
eq

. (7.80)

In view of identity (7.79), the two concentrations cR and cL describe the problem
in full, and the concentration of the complex can be deduced a posteriori.

In vivo experiments show that the complex molecules usually have a much
smaller mobility than receptors, perhaps induced by their size. For in vitro
experiments [54, 100, 101], ligands are prevented from flowing onto the substrate:
given that complex molecules result from the interaction with immobile ligands,
they are macroscopically steady as well. Since receptors move along the mem-
brane, reaction (7.57) traps mobile receptors and vice versa [30]. In this work,
analogously to [201], ligands and complex are assumed to be motionless, i.e.

h̨L = h̨C = 0̨ . (7.81)

The reaction rate w
(7.57)(x̨, t), being a mass supply, shall transform as sa(x̨, t)

according to eq. (7.70). The invariance of Ëa with the configuration and the
analysis of the mass action law (7.76) imply that the forward and backward
“constants”, which encompass the dimensionality of w

(7.57)(x̨, t), are not actually
constants in the reference configuration. They rather change with time and with
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point X̨ according to

kfR
(X̨, t) = j(X̨, t) kf , kbR

(X̨, t) = j(X̨, t) kb (7.82)

with j(X̨, t) as in (7.71). The equilibrium constant in the reference configuration,
being the ratio of kfR

and kbR
remains independent upon the configuration.

Eventually, the mass action law (7.76) in the reference configuration writes

w
(7.57)
R

= kfR

ËL

(1 ≠ ËL)
ËR

(1 ≠ ËR) ≠ kbR

ËC

(1 ≠ ËC) . (7.83)

In view of all the considerations made so far, the local form (7.72) of the mass
balance specify as follows (omitting the dependency upon X̨ and t):

ˆcRR

ˆt
+ DivPR

Ë
h̨RR

È
+ w

(7.57)
R

= sRR
, (7.84a)

ˆcLR

ˆt
+ w

(7.57)
R

= 0 , (7.84b)

ˆcCR

ˆt
≠ w

(7.57)
R

= 0 . (7.84c)

Equation (7.84a) is defined on the membrane surface ˆ�R, where the receptors
flow. The supply sRR

accounts for the internalization or generation of proteins:
it is the number of receptors that are generated within the cell and reach the
membrane or that internalize. It can be related to the change in the membrane
area through a parameter ŸRR

as

sRR
(X̨, t) = ŸRR

ˆj

ˆt

= ŸRR

5
|F≠T

n̨R| J tr [ l ] ≠
J

2
1

|F≠T n̨R|
n̨R · C≠1 ˆC

ˆt
C≠1

n̨R

6
.

(7.85)

At all points at which ligands and receptors do not interact, the reaction rate
w

(7.57)
R

vanishes. Equation (7.84b) is rather defined in the location where ligands
stand. In vitro, a given amount of ligands which can be thought of as the initial
condition of eq. (7.84b) are spread upon a microscope slide. Finally, eq. (7.84c)
is defined in the contact zone between the cell and the slide where reaction (7.57)
takes place.

It is convenient to rephrase eq. (7.84b) in terms of the "ligands made available
for the reaction” in place of the "ligands spread on the slide". The former ligands
are the ones “felt” at a point on the membrane as the distance from such a point
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and the substrate, where ligands are spread out, becomes su�ciently small.
Such a distance can be understood as a cuto�, within which the formation

of an encounter complex, Cú, becomes possible as a consequence of di�usion,
as made clear in [202, 203, 197, 204]. Despite the size of the cuto� distance
remaining inaccurately estimated, it is established to be on the order of tens
nanometers [197, 178]. It arises from the interplay of attractive and repulsive
forces between either two cells or a cell and a substrate. Indeed, the negative
electrical charge carried by cells generates repulsive electrostatic forces - repulsive
barrier - which is further enriched by an additional resistance provided by the
compression of the glycocalyx proteins. Rather, electrodynamic van der Waals
forces are expected to be attractive [197]. Both van der Waals and compressive
forces are characterized as non-specific long-ranged forces, whereas cell adhesion
is generally mediated by the specific short-ranged receptor-ligand interactions,
which can cause cell adhesion much more tightly than the non-specific electrical
forces [197, 201]. Cells separated by a distance less than, or equal to, the cuto�
distance should form a zone of adhesion with the substrate by means of local
fluctuations in receptors density [178].

This point of view, which corresponds to the picture of the tight receptor-
ligand bond as a set of weak noncovalent physical interactions [205], is made
explicit by a supply function sLR

, that vanishes at long ranges and rapidly reaches
the initial concentration of ligands available for the reaction at short distances

ˆcLR

ˆt
+ w

(7.57)
R

= sLR
. (7.86)

The ligand supply sLR
(X̨, t) becomes available for the reaction during the spread-

ing of the cell on the substrate riched of ligands. It seems to be logically related
to i) a gap function between the substrate rich in ligands and the cell membrane
in the current configuration; ii) a lag in time, namely a point-wise function of an
internal variable that activates when the gap function is below some threshold
and is related to the chemical kinetics of the binding-unbinding reaction (7.57).
In this form, all three equations (7.84a), (7.84c), (7.86) can be written on the
membrane X̨ œ ˆ�R.

Assuming that the time scale of the chemical reaction is much faster than
other processes, the concentrations of species may be governed by thermodynamic
equilibrium at all times. The concentration of complex cCR

relates then to the
others by the equation w

(7.57) = 0, which leads to eq. (7.79) in the current
configuration. Making use of mapping (7.69), eq. (7.79) relates the concentration
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of complex in the reference configuration cCR
to the concentration of ligands and

receptors in the same configuration cLR
, cRR

as follows

cCR
= cRR

cLR

–R(X̨, t)
, –R(X̨, t) = – j(X̨, t) , (7.87a)

with constant – defined in eq. (7.80). Transformation (7.87a) is consistent with
the assumption (7.73) made on how saturations transform.

In conclusion, exploiting identity (7.87a), the two concentrations cRR
and cLR

fully describe the problem in the assumption of infinitely fast kinetics, whereas
the concentration of the complex can be deduced a posteriori. The two governing
equations descended from equations (7.84) read

ˆcRR

ˆt
+ ˆcCR

ˆt
+ DivPR

Ë
h̨RR

È
= sRR

, X̨ œ ˆ�R , (7.87b)

ˆcLR

ˆt
+ ˆcCR

ˆt
= sLR

, X̨ œ ˆ�R . (7.87c)

Equations (7.87), with associated initial conditions

cRR
(X̨, 0) = c

0
RR

(X̨) , cLR
(X̨, 0) = 0 , cCR

(X̨, 0) = 0

and Dirichlet-Neumann boundary conditions define the relocation of receptors
that undergo binding-unbinding reactions on the reference configuration of a
membrane that advects. These are balance equations and as such hold for any
constitutive behavior for the mass flux. These equations are coupled to the
mechanical evolution of the cell (i.e. adhesion, spreading, migration) through the
function sLR

(X̨, t), which “transfers” ligands on the membrane according to the
geometry of the cell.

Equations (7.87) can be rephrased in a computationally more favorable form
by means of the change of variable cSR

= cCR
+cLR

. After direct time integration
of (7.87c), it comes out

cSR
=

⁄
t

0

ˆcSR

ˆt
d· =

⁄
t

0
sLR

(X̨, ·) d· = SLR
(X̨, t) X̨ œ ˆ�R , (7.88)

with cSR
(X̨, 0) = cLR

(X̨, 0) = cCR
(X̨, 0) = 0 on ˆ�R. The right hand side of

identity (7.88) has a neat physical meaning, because SLR
(X̨, t) corresponds to

the total amount of conformationally available ligands for the reaction (7.57),
pulled back onto the reference configuration.

It is reasonable to relate SLR
(X̨, t) to the gap function gl(X̨, t). We select
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the following expression

SLR
(X̨, t) = c

av

LR
exp

C
≠

gl(X̨, t)
¸chem

D
, (7.89)

where:

- gl identifies a gap function between the cell and the substrate. The normal
vector on the substrate is unaltered in time and holds n̨l = ę2. Via the
minimum distance method, a point x̨ on the manifold ˆ�(t) projects itself
onto a single point x̨ú on the substrate and identifies the gap function
(x̨≠ x̨ú) · n̨, i.e. gl = (x̨≠ x̨

ú
l
) · ę2. The interpenetration inequality constraint

between the body and the substrate reads gl > 0 . Frictionless contact is
adopted on the substrate. A sliding motion between the surface and the
obstacle allows receptors to break the bond with a ligand in favor of a
chemical binding with another ligand located alongside [87]. Denoting with
pl = ·̨l · n̨l the normal component of the traction vector on the substrate
·̨l, the so called Hertz-Signorini-Moreau linear complementarity conditions
for frictionless contact gl > 0, pl 6 0, pl gl = 0 arise. We assume that the
membrane sticks to the substrate and no slip occurs;

- ¸chem > 0 is a chemical length-scale that tunes the amount of available lig-
ands to the gap gl and, numerically, acquires the meaning of a regularization
parameter;

- c
av

LR
is the maximum amount of available ligands on ˆ�(t).

7.2.3.3 Thermodynamics of receptors motion on the membrane

Following [30], receptors’ motion on the lipid membrane is thermodynamically
described by energy and entropy balances, imposing as usual that the internal
production of entropy cannot be negative. After the definition of the referential
specific Helmholtz free energy per unit volume ÂR, taken as a function of
temperature and concentrations, ÂR (T, cRR

, cLR
, cCR

) the entropy imbalance
in the Clausius-Duhem form is derived. Standard arguments - the so-called
Coleman Noll procedure - finally allow identifying the following thermodynamic
restrictions

µRR
= ˆÂR

ˆcRR

, µLR
= ˆÂR

ˆcLR

, µCR
= ˆÂR

ˆcCR

, ÷R = ≠
ˆÂR

ˆT
(7.90)
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for chemical potentials µ and entropy ÷R. Assuming further that relocation of
receptors takes place in thermal equilibrium conditions, the so-called Clausius-
Plank inequalities apply

h̨RR
· GradPR

[ µRR
] Æ 0 , (7.91a)

A
(7.57)
R

w
(7.57)
R

Æ 0 . (7.91b)

with A
(7.57)
R

the chemical a�nity of reaction (7.57). A strategy to meet the
thermodynamic restriction (7.91a) is to model the flux of receptors by Fickian-
di�usion, that linearly correlates h̨RR

to the gradient of its chemical potential
µRR

h̨RR
= ≠MR(cR) GradPR

[ µRR
] (7.92)

by means of a positive definite mobility tensor MR. The following isotropic non
linear specialization for the mobility tensor MR is chosen [29]

MR(cRR
) = u|

R
c

max

RR
ËRR

(1 ≠ ËRR
) 1 , (7.93)

where c
max

RR
is the saturation limit for receptors, and u|

R
> 0 is the mobility of

receptors. Definition (7.93) represents the physical requirement that both the
pure (cRR

= 0) and the saturated (cRR
= c

max

RR
) phases have vanishing mobilities.

Neither the mobility u|
R

nor the saturation concentration c
max

RR
are assumed to

change in time. Where experimental data indicate an influence of temperature,
stresses, or concentrations, such a limitation can be removed without altering
the conceptual picture. Noting that

GradPR
[ µRR

] = R T

c
max

RR

1
ËRR

(1 ≠ ËRR
) GradPR

[ cRR
] ,

Fick’s Law (7.92) specializes as

h̨RR
= ≠D|

R
GradPR

[ cRR
] , (7.94)

where D|
R

= u|
R

R T is the receptor di�usivity.

The chemical kinetics of reaction (7.57) is modeled via the law of mass action
(7.83). Experimental evidence [54] shows that: (i) the equilibrium constant (7.77)
is high, thus favoring the formation of ligand-receptor complex and the depletions
of receptors and ligands; (ii) the di�usion of receptors on the cell membrane
is much slower than interaction kinetics. Accordingly, it can be assumed that
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Figure 7.12: Relocation of receptors on the lipid membrane of an EC during cell
floating, adhesion, and spreading. (a) Color map molecules molecules µm≠2; (b)
t = 0, the cell in suspension; (c) the cell at the beginning of the attachment; (d)
the cell at the end of the attachment; (e) t = 120 s, the cell starts spreading;
(f) t = 240 s; (g) t = 360 s; (h) t = 480 s; (i) t = 600 s, the cell at the end of
spreading; (l) t = 7200 s, the cell at the end of the experiment. In (b-d) the
(virtual) µslide is depicted for clarity. Figure from [26].

the reaction kinetics is infinitely fast, in the sense that the time required to
reach chemical equilibrium is orders of magnitude smaller than the time scale of
other processes. For these reasons, we assume that the concentrations of species
are ruled by thermodynamic equilibrium at all times, and the concentration of
complex cCR

is related to the others by the equation (7.87a). This very same
equation could be derived by imposing

A
(7.57) = 0 .

Simple algebra allows deriving eq. (7.87a), provided that to the equilibrium
constant K

(7.57)
eq the alternative definition

K
(7.57)
eq = exp

3
≠

�G
0

R T

4
(7.95)

is given, where �G
0 = µ

0
C

≠ µ
0
L

≠ µ
0
R

is the standard Gibbs free energy.
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7.2.3.4 An application

Although the focus of the present note stands in the establishment of a
framework, rather than providing a model for any specific phenomenon, it
seems to use introducing simple but concrete examples of specific problems,
in which the novelties introduced in the previous sections can be used. We
refer to [169] Chapter 7 and [34] for the extended dissertation of the data on
model predictions and interpretation. Here, we briefly introduce the relocation
of vascular endothelial growth factor receptors-2 (VEGFR2) observed in an
in vitro experimental setup and replicated numerically. Such a problem was
discussed in [54, 100] in the framework of small displacements and strains and
will be extensively presented in a companion paper [206] using the finite strain
multiphysics framework developed herein.

VEGFR2 is a pro-angiogenic receptor expressed on endothelial cells (ECs)
and is the main mediator of the angiogenic response. The interaction between
VEGFR2 and extracellular ligands, produced by tumor cells, is essential to cancer
growth. Specifically, ligand stimulation causes the relocation of VEGFR2 in
the basal aspect in cells plated on ligand-enriched extracellular matrix both in
vitro and in vivo and ultimately receptors-ligands interactions activate the ECs
division and proliferation towards tumor cells. Upon release, growth factors
associate with the extracellular matrix and act as ECs guidance during neo-vessel
formation.

The binding-unbinding interaction (7.57) was tailored to describe the interac-
tion between VEGFR2 (R) and VEGF (L), which produces a receptor-ligand
complex (C). Mass balance equations along the advecting membrane lead to the
chemo-transport problem (7.84), which comprises the governing equations for
the relocation on the membrane. At present, research on the identification of
suitable free energies Â

el,iso

R
(cFR

,Ce
i) + Â

in

R
(cFR

,Ee
≠ ⇠) for the active stress

Sactive is ongoing, based on statistical mechanics of cytoskeletal reorganization
in stress fibers and pseudopodia. We thus accounted only for the passive stress
Spassive by means of rubber visco-elasticity (7.18). Such a multi-physics initial
boundary value problem in the bulk and on the membrane of the cell, rephrased
in a weak form and further discretized via finite elements, has been implemented
in a high-performance computing code with a staggered Newton-Raphson solver,
in the deal.ii framework ( http://www.dealii.org ).

The resulting code has been used to simulate the relocation of VEGFR2
expressed on the cell membrane during the mechanical adhesion and spread-
ing of cells onto a ligand-enriched substrate. A co-designed experimental and
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computational campaign unveiled the multiphysics progression of the process.
The geometrical evolution of the cell was recorded for 2 hours in time-lapse
microscopy. During this time span, three mechanically relevant events could be
identified: the floating and adhesion of the EC on the ligand-rich µslide, and
eventually the spreading onto the latter. These three events can be recognized in
figure 7.12 , which depicts with di�erent colors the relocation of VEGFR2 during
the 2 hours time span of the simulation.

Three limiting processes characterize the depletion of VEGFR2. In the first
phase, figure 7.12(b)-(d), the VEGFR2 depletion is dominated by the chemical
interaction between receptor and ligands during the adhesion between the cell
membrane and the ligand-reach substrate. The second phase, up to 600 s,
illustrated in figure 7.12(d)-(i), is driven by the mechanical spreading of the cell:
the cell-substrate contact dynamics stimulate the formations of complexes since
the mechanical spreading makes new free receptors available for the binding with
the ligands. Eventually, the last phase is dominated by a lower complex formation
rate (from 600 s to 7200 s) and takes place after the EC spreading is completed,
thus resulting in transport-dominated, see figure 7.12(i)-(h). Free VEGFR2,
guided by concentration gradients, moves from the apical part of the cell towards
the basal one, where the binding-unbinding interaction (7.57) occurs. Ultimately
receptor depletion is complete on the cell membrane - see figure 7.12(l): such
an event is actually unrealistic, since an immobile fraction of VEGFR2 shall be
accounted for, as it is illustrated in [206].

7.2.4 A probabilistic model for cell-substrate interaction:
Shenoy theory

In the current paragraph, an existent probabilist model that was studied
during the visiting period at UPENN, University of Pennsylvania, under the
supervision of Professor Vivek Shenoy, is presented and discussed. It concerns
the dynamics of focal adhesions formed between the cell and the ECM and it
examines how cell spreading is a�ected by ECM mechanical behavior with a
constant polymerization speed. No reorganization of cell internal structures is
discussed. Such collaboration started in April 2023 and it ended in October 2023.

7.2.4.1 Theoretical insights

Mechanosensitivity of cells, the ability to sense and react to the physical
properties of the ECM, is strictly related to FAs. Focal Adhesions are channels
that exchange physical and chemical signals, determining the mechanosensitivity
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Figure 7.13: Model investigating FA and cell spreading behavior on viscoelastic
substrates. Figure from [78].

of cells. Cells can test the sti�ness of ECM, measuring the resistance of FAs to
actin retrograde flow generated by active myosin contraction, membrane tension,
and actin polymerization. Moreover, cells can actively reinforce their adhesion
recruiting integrins or activating adhesion proteins, with high surrounding sti�ness
levels.

In [78], Shenoy’s research group systematically studies the dynamics of focal
adhesions (i.e. motor clutches) formed between the cell and the ECM. They use
both an analytical mean-field analysis and direct Monte Carlo simulations to
examine how cell spreading is a�ected by ECM mechanical behavior. Generally,
ECMs have a viscoelastic behavior and exhibit a strong frequency-dependent
mechanical response.

They observe two behaviors related to di�erent mechanical properties of ECM.
In substrates with low sti�ness, viscoelastic behavior can promote cell spreading
when the relaxation time (·s = ÷

ka

) falls between the timescale for clutch binding
(·b = 1

ron

) and its characteristic binding lifetime (·l = Fs

v0kl

). That is, viscosity
serves to sti�en soft substrates on a timescale faster than the clutch o�-rate,
so enhancing cell-ECM adhesion and cell spreading. In substrates with high
sti�ness, viscosity will not influence cell spreading, since the bound clutches are
saturated by the elevated sti�ness [78].
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7.2.4.2 Model description

Following the canonical motor-clutch model [213], schematically illustrated in
Fig. 7.13, the evolution of state of each clutch is written as

dPb,i

dt
= (1 ≠ Pb,i) ron ≠ Pb,i roff,i , (7.96)

where Pb,i represents the probability of the i-clutch to be engaged. When the
i-clutch is bound with F-actin filaments, it resists the retrograde flow of actin
and undergoes stretching, generating an elastic spring force Fc,i

Fc,i = kc (xc,i ≠ xs) , (7.97)

where kc represents the spring sti�ness, xc,i the displacement of the i-clutch
filament end and xs the displacement of the substrate.

The reaction rate parameters are written as

roff,i = r
0
off,i

· exp (Fc,i

Fb

) , (7.98a)

ron = r
0
on

(1 + –(Fa ≠ Fcr)) with (1 + –(Fa ≠ Fcr)) = 1 if Fa < Fcr ,

(7.98b)

where Fb is a characteristic force, r
0
off

represents the breaking rate of clutches
in the absence of any force, Fcr represents a force threshold and the term
(1 + –(Fa ≠ Fcr)) reflects the reinforcement of FAs (through the recruitment of
integrins to the adhesion complex via talin unfolding) on sti� substrates, namely
once the average clutch force Fa surpasses a force threshold Fcr [78].

The ECM is represented as a standard linear viscoelastic material as

(ka + kl)÷
dxs

dt
+ kaklxs = kaFs + ÷

dFs

dt
, (7.99)

where ÷ represents the viscosity of the dashpot, ka and kl the additional and
long-term sti�ness.

The total load transmitted to the substrate due to the stretching of the
engaged clutches is

Fs =
ncÿ

i=1
Fc,i =

ncÿ

i=1
kc (xc,i ≠ xs) , (7.100)

which represents the sum of the forces exerted by the bounded clutches. The
retrograde flow speed, Vf , is influenced by the total load transmitted to the
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substrate via
Vf = vu ·

#
1 ≠

Fs

nmFm

$
. (7.101)

The velocity of the filament end of the i-clutch depends on the retrograde flow
Vf and the displacement of the ECM. In particular, when the clutch is engaged,
it moves at the same velocity as the retrograde flow, but when it is not engaged,
it carries zero loads, so it moves with the substrate, xc,i = xs. Thus, the velocity
of the filament end of the i-clutch is

dxc,i

dt
= (1 ≠ Pb,i)

dxs

dt
+ Pb,i Vf . (7.102)

It has been found that the sum of retrograde flow velocity and the actin protrusion
velocity remains constant. It means that the velocity of polymerization is a
constant, so the spreading velocity is

Vs = Vp ≠ Vf , (7.103)

where Vf represents the retrograde flow speed and Vp represents the constant
velocity of polymerization. Here, it should be noted that the spreading velocity
Vs is the initial spreading speed when the cells are seeded on the substrates. After
this initial phase of polymerization, the outward motion of the actin filaments
is countered not only by rearward forces from the myosin motors but also by
the resistance of the plasma membrane, eventually leading to a steady-state
configuration where the cell spreading area becomes constant. So, after the
initial phase, the force of FAs is countered by the myosin pulling force and the
resistance force generated by the deformed cytoskeleton and membrane. Under
such circumstances, the force equilibrium becomes

fF A = fc + fm , (7.104)

where the resistance force fc is calculated as

fc = h ‡r = h
!
km ‘r + ÷m

d‘r

dt

"
. (7.105)

The steady-state spreading area is a function of the initial spreading velocity,
initial spreading radius, and the properties of the cytoskeleton and cell membrane:
the spreading radius increases linearly with respect to the initial spreading speed.

Using a mean-field approach, we can average the behavior of all clutches into
a single "ensemble" with e�ective sti�ness kcncPb, where Pb is the fraction of
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clutches remain engaged [78].

7.2.4.3 Timescales of the model

Three timescales govern the model behavior: clutch binding timescale (·b =
1/ron), FA lifetime scale (·l = FmNm/vukl), and substrate relaxation timescale
·s = ÷/ka. These are the definitions

- ·l = FmNm/vukl: the FA lifetime scale is the characteristic time it takes
the clutches to develop su�cient force to stall the motor forces. As the
clutches attach to the actin filament and stretch, the force they exert on the
substrate increases at a rate vukl. The motor forces that pull the filaments
are represented by FmNm. The lifetime of FA, named tlife, is proportional
to ·l;

- ·b = 1/ron: the clutches binding timescale defines the timescale for the
clutches to bind, which is also correlated to the formation time (tbind) of
the FAs;

- ·s = ÷/ka: the substrate relaxation timescale defines the relaxation
timescale of the viscoelastic ECM. Essentially, upon loading, the e�ec-
tive substrate sti�ness decays exponentially (with the timescale ·s) from
its initial value of ka + kl to the long-term sti�ness, kl.

Depending on the value of the two timescales, the FA cluster exhibits di�erent
behaviors that eventually lead to di�erent cell spreading. Basically, depending
on the values of the two timescales ·b and ·l, which approximately describe the
binding time (tbind Ã ·b) and lifetime (tlife Ã ·l) of the FA, the clutches and cell
spreading behave totally di�erently [78].

7.2.4.4 Model flowchart

Here is the list that depicts the simulation algorithm for getting the steady-
state spreading configuration:

1. Initialization: at t = 0, we have the ratio R(0), the actin retrograde flow
Vf (0) = vu, the total load transmitted to the substrate Fs(0) = 0, the
probability of the i-clutch to remain engaged Pb,i(0) = 0, all the forces of
the i-clutch Fc,i(0) = 0, displacement of the filament end of the i-clutch
xc,i(0) = 0 and the displacement of the substrate xs(0) = 0;
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2. Clutches probability: since roff,i = r
0
off,i

and ron = r
0
on

at t = 0, we
can find the probability of the i-clutch to remain engaged Pb,i with equation

Pb,i(t + �t) ≠ Pb,i(t)
�t

= (1 ≠ Pb,i) ron ≠ Pb,i roff,i ; (7.106)

3. Substrate/clutches displacements: since we have Pb,i, Vf (0) = vu, we
can find xc,i, Fs and xs via equations

xc,i(t + �t) ≠ xc,i(t)
�t

= (1 ≠ Pb,i)
xs(t + �t) ≠ xs(t)

�t
+ Pb,i Vf ,

(7.107)

Fs =
ncÿ

i=1
Fc,i =

ncÿ

i=1
kc (xc,i ≠ xs) , (7.108)

(ka + kl)÷
xs(t + �t) ≠ xs(t)

�t
= ka

Fs(t + �t) ≠ Fs(t)
�t

+ ÷
dFs

dt
≠ kaklxs ;

(7.109)

4. Cytoskeleton resistance force: since we have R(t), we find the cy-
toskeleton strain and so the resistance force via equation fc = h‡ =
h(km‘r + ÷m

d‘r

dt
), where ‘r = R(t)≠R0

R0
;

5. Myosin force: based on force equilibrium and since the adhesion force is
fF A, we calculate myosin forces fm = fF A ≠ fc;

6. Spreading velocity: we can find actin retrograde flow as Vf = vu ·
#
1 ≠

Fs

nmFm

$
and so the spreading velocity as Vs = Vp ≠ Vf ;

7. Radius: we can update the spreading radius R(t), integrating the spreading
speed;

8. Time: we can advance in time t = t + �t and restart from point 2.

In order to solve the problem, Kinetic Monte Carlo simulations and a mean-
field approach are used. For the Mean-Field Analysis, all clutches’ behaviour
is averaged into one ensemble clutch with e�ective sti�ness kcncPb, where Pb

represents the average binding probability, xc the average displacement and Fc

the average force transmitted of any clutch. So, the governing equations are
written as
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Figure 7.14: Results of the fraction of engaged clutches and spreading speed for
a set of parameters (ka = 1pN/nm, kl = 0.1pN/nm, ÷ = 1pN · s/nm). When
t > tbind clutches start to break. At t = tlife, all clutches break with the classical
"load and fail" response [78].

Pb(t + �t) ≠ Pb(t)
�t

= (1 ≠ Pb) ron ≠ Pb < roff > ,

(7.110a)

(ka + kl)÷
xs(t + �t) ≠ xs(t)

�t
+ kaklxs = kaFs + ÷

Fs(t + �t) ≠ Fs(t)
�t

,

(7.110b)

Fs = kcncPb(xc ≠ xs) , (7.110c)
xc(t + �t) ≠ xc(t)

�t
= vu

!
1 ≠

Fs

nmFm

"
, (7.110d)

where
xc(t + �t) ≠ xc(t)

�t
= Vf . (7.111)

Since the ensemble clutch is assumed to remain bounded during its lifetime, its
filament end moves with the retrograde flow velocity Vf [78].
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The reaction rate parameters read

< roff > = r
0
off

· exp(Fc/Fb) , (7.112a)

ron = r
0
on

(1 + –(Fa ≠ Fcr)) with (1 + –(Fa ≠ Fcr)) = 1 if Fa < Fcr ,

(7.112b)

with Fa the average FA force (during each lifetime cycle) and Fcr a threshold
level [78].

The spreading velocity is written as

Vs = Vp ≠ Vf , (7.113)

with Vp the polymerization speed of the actin bundle. The mean spreading
velocity is evaluated over one formation-breakage cycle. A simple average of Vf

in every time step is recorded in KMC simulation to obtain the mean retrograde
velocity. In the mean-field approach, the total clutch displacement xc is calculated
in the time ttotal by solving the ODEs described above, from which the average
retrograde flow speed can be estimated as

Vf = xc

ttotal

. (7.114)

7.2.4.5 Outcomes

To characterize the cellular spreading behavior, they use the mean spreading
speed, Vs, calculated by averaging the speed over the FA lifetime (tlife). The
main results are the following

- Intermediate viscosity ÷ promote cell spreading for soft substrates;

- Spreading is optimal when substrate relaxation timescale is comparable to
clutch binding timescale [78].

Using Kinetic Monte Carlo simulation, we obtain the fraction of bounded
clutches and the cell spreading speed in a 1D case with a standard linear vis-
coelastic substrate over the FA life cycle (the time elapsed between two Pb = 0)
(see figure 7.14).

The clutches engage at the beginning, since Fc = 0 (no stretching of clutches),
so the spreading speed and substrate displacement increase. When t > tbind

clutches start to break, even if the load level inside keeps increasing. At t = tlife,
namely the binding lifetime for a FA, all clutches break: this is the classical "load
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Figure 7.15: Cell spreading speed is significantly di�erent based on the elastic
and viscous parameters (ka, kl, ÷) of the substrate [78]. Figure from [78].

and fail" response produced also by other motor-clutch models. The lifetime
tlife gradually increases with substrate sti�ness (when the clutch reinforcement
takes place), since it increases the binding rate ron and a high percentage of
clutches remain engaged. Hence, the clutches would form bonds very quickly,
with a characteristic binding timescale ·b = 1/ron. For a stable FA formed in
the load and fail regime, the binding time can be estimated (by assuming most
clutches become engaged) as tbind ¥ ln(Nc)/ron. As motors keep pulling the
actin bundle toward the cell center, the clutches sustain higher loads and start to
break. This is reflected by a gradual drop in the fractional probability Pb after
the initial binding stage [78]. Finally, all clutches become broken at t = tlife

(often referred to as the lifetime of FA cluster) and this e�ectively completes
the formation-breakage cycle. Note that tlife can be approximately estimated
as tlife ¥ Fs,max/vuks, i.e. the time needed for the substrate force Fs to reach
its maximum at substrate deformation force rate, vuks. Here, ks represents
the e�ective sti�ness of the substrate. Considering the limiting scenario where
FAs exist for a long time, the maximum substrate force (Fs,max) in this case is
simply the total myosin pulling force FmNm, while ks should be interpreted as
the long-term sti�ness of the substrate, leading to a characteristic lifetime scale
·l = FmNm/vukl [78].
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Figure 7.16: Optimal substrate viscosity is determined by the ratio between the
substrate relaxation (÷s) and clutch binding (÷b) timescales [78]. Figure from
[78].

In figure 7.15A-B, the response of the standard linear model is shown. It is
dictated by three parameters: the long-term sti�ness kl, the additional sti�ness
ka, and the viscosity ÷. For a constant applied substrate displacement, ka + kl

represents the initial sti�ness of the substrate, ka represents the drop in sti�ness
as the substrate relaxes, and kl represents the equilibrium substrate sti�ness.
Depending on the elastic parameters, viscosity can influence cell spreading in
very di�erent ways. When the viscosity is very small, the response of cells is
largely determined by the long-term ECM sti�ness, which is similar to the case
of purely elastic substrates [78]

klxs = Fs . (7.115)

However, as viscosity increases, the spreading behavior is highly a�ected by both
the long-term and additional sti�ness of the substrate. Specifically, viscosity was
found to promote cell spreading for soft substrates (namely with relatively low
long-term sti�ness) as it increases the e�ective sti�ness that cells can sense, leading
to maximized cell spreading at intermediate viscosity values (see figure 7.15B).
In comparison, for substrates with a large long-term sti�ness (kl > 5pN = nm),
viscosity has a negligible e�ect on cell spreading, as the number of clutches that
can be formed has reached a plateau due to the elevated ECM rigidity in this
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case (see figure 7.15A) [78].
The optimum viscosity (for inducing maximized cell spreading) as a function

of both the long-term and additional substrate sti�ness is given in figure 7.15C. In
regime I, optimal cell spreading is achieved at intermediate levels of viscosity for
compliant ECMs, while, in regime II, the largest spreading occurs when viscosity
is large [78].

To investigate the optimum in cell spreading that is observed at intermediate
viscosities for soft substrates, the relevant timescales controlling cell spreading in
the model are analyzed [78].

In figure 7.16A, the mean spreading speed is investigated with di�erent values
of ·s/·b and kl. Maximal cell spreading occurs at intermediate viscosity values
when the substrate relaxation timescale ·s is within an order of magnitude of
·b. This behavior can be explained by examining the cell spreading that occurs
during a single FA lifetime in relation to the three pertinent timescales ( ·b, ·l,
·s) [78].

In figure 7.16B-C, the heat map of spreading speed Vs as a function of the
long-term sti�ness, kl, and viscosity, ÷, and the spreading speed vs. time for
three typical values of ÷ are plotted [78].

These are the main results:

- when ·s < ·b, the ECM sti�ness relaxes rapidly to its long-term value faster
than the clutches can fully bind to the substrate. Consequently, the FAs
only sense the long-term sti�ness, kl, and the e�ect of viscosity becomes
negligible. In this case, a typical clutch behavior in a one-lifetime cycle is
shown by the red curve in figure 7.16C [78];

- when ·b < ·s < ·l, FAs sense a gradual change of sti�ness during their
formation-disruption cycle. Cells gradually sense the relaxed sti�ness that
helps FAs extend their lifetime corresponding to the long-term sti�ness.
The net outcome is that actin retrograde flow is suppressed at the beginning
while a long FA lifetime is maintained, thereby maximizing cell spreading.
Specifically, if ·l is larger than ·b, a large number of clutches will remain
engaged before total rupture occurs, a scenario referred to as the "load and
fail" behavior. However, when the substrate becomes sti�er (corresponding
to ·l < 1/r

0
on

), the clutch reinforcement begins to take e�ect, while the
timescale analysis does not apply. The gradually increasing integrin density
due to the reinforcement mechanism elevates the binding rate, which further
extends FA lifetime. These long stable FAs could o�er large resistance
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forces to counter the retrograde flow, thus promoting cell spreading. As
a comparison, they also discuss the case without clutch reinforcement.
Similarly, when ·b < ·l the reinforcement will not have an e�ect, since the
average clutch force has reached a threshold value. The clutches would
perform the same "load and fail" behaviors [78];

- when ·s > ·l, the substrate does not relax during the lifetime of the FA.
As such, the ECM behaves elastically, with the e�ective sti�ness ka + kl.
A representative response of an FA in this regime is shown by the black
curve in Fig. 7.16C, with a sharp increase in the spreading speed at the
beginning, yet a very short lifetime [78];

- when ·l < ·b, clutch reinforcement takes e�ect and leads to saturation of
the cell spreading area; in this case, viscosity has no e�ect on cell spreading.
No stable clutches or adhesion can be formed. Instead, the FA cluster goes
through rapid binding and breakage, with its lifetime typically less than 1
s. Under such circumstances, labeled as the "frictional slippage" regime,
the substrate displacement is almost negligible, while the retrograde flow
velocity is essentially the polymerization speed, resulting in stalling of cell
spreading. In this case, an optimum ECM sti�ness leading to maximized
spreading speed can be obtained in this transitional regime when the cluster
binding time equals its lifetime. Hence, a medium substrate sti�ness will
promote cell spreading, a conclusion that is also obtained from their results
under low ECM viscosity conditions [78].

In figure 7.16D, three regimes show distinct regulation e�ects as the relaxation
timescales are varied. Note that this only applies to soft substrates; as the
long-term sti�ness increases, the clutch reinforcement mechanism increases the
binding rate, saturates bounded clutches, and weakens the viscosity e�ects. The
end e�ect is that the substrate properties and clutch binding kinetics produce
phenomenological timescales that must be precisely tuned so that substrate
viscoelasticity has a significant impact on cell spreading. Specifically, for viscosity-
based regulation to be significant, the material relaxation timescale ·s should be
larger than (or at least comparable to) the characteristic binding time ·b of the
clutches [78].

7.3 Concluding remarks
In this chapter, several continuum and probabilistic models, that illustrate

di�erent processes involved in cell ABM, have been put forward.
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We summarize theoretical approaches and computational methodologies devel-
oped since the late 1970s, in modeling protein motion along advecting membranes,
ECM-cell interactions by molecular clutches, and cell F-actin structure reorgani-
zation for di�erent biological systems. It has been our aim to collect some of the
most emblematic mathematical and computational methodologies, providing a
broad introduction to a scientific topic that is in great development nowadays.
We also aim to recollect recent publications from several schools on cell mechanics,
encasing them in a unified framework, being aware that a comprehensive account
of publications is significantly hard in view of the broadness of the literature in
the field. We clarify that for some processes, as for contractility and protrusion,
either a thermodynamically consistent formulation has not been devised yet
or it stems from simplistic models that do not account for the microstructural
evolution of the biopolymers. Even in this fascinating field, the last word is far
from being spoken.

Moreover, we propose two novel models and some results related to two
existing models that describe several phenomena pivotal for cell ABM. The two
novel models describe the mechanical evolution of F-actin network protrusion
in the cellular bulk and receptors motility along the advecting membrane. The
results related to the existing models come from the Deshpande-McMeeeking
constitutive theory and Shenoy’s model.

The first new model describes cell F-actin protrusion at a continuum level,
extending the model presented in [6]. The second new model is characterized by
a multi-physics framework that illustrates protein relocation on the advecting
lipid membrane during cell spreading and motion. It sets the (continuum)
thermodynamic background for the simulations of receptor recruitment during
migration, extending previous simulations proposed by our lab: simulations
carried out in [54] stem from a simplified form of the framework and describe
the limiting factors in vascular cell growth factor receptors relocation; similarly,
in [101] the relocation of integrins on the membrane and their interactions with
growth factor receptors is discussed; a companion paper [206] deals with the
relocation of vascular endothelial growth factor receptors on advecting lipid
membrane during endothelial cell adhesion and spreading. Those simulations
may have a significant impact on biology and in the pharmacological treatment
of cancer, either in view of their predictive nature in virtual experiments or by
clearly identifying the sequence of processes that limit the relocation of targeted
proteins during in vitro experiments.

The present works on cell ABM still have significant limitations. First of all,
the profound bibliographic research carried out during the Ph.D. and the novel
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models presented in this chapter do not account for the behavior of a specific
cell, but they represent the processes involved in the ABM of di�erent types of
cells. This course of action simplified our work because it allowed us to split
the phenomena involved in ABM in di�erent models, but it represents a big
limitation for a complete and correct description of the ABM of a specific type of
cell. Each cell has a peculiar biological behavior that must be taken into account
in order to propose a unique and correct multi-physics model.

Moreover, many phenomena of cell ABM were not considered and many
cellular behaviors have been simplified both in the existing literature and in our
new models. For example, the constitutive law that represents the mechanical
behavior of the F-actin network has been greatly simplified and it is far from
being correctly defined. The internalization of complexes, the role of membrane
resistance, and the reorganization of F-actin in cell bulk during cell motility are all
occurrences not included in this work. The role of ECM mechanical behavior in
cell ABM both in a 1D, 2D, and 3D setting has been insu�ciently discussed here.
Furthermore, in view of having a general and broad representation of cell ABM,
the protein transport on the membrane and the cytoskeleton reorganization have
been discussed separately, even if they are crucially coupled: the cytoskeleton
reorganization is related to the motion of integrins on the membrane and the
formation of focal adhesion sites is preliminary to F-actin protrusion, stress fibers
generation, and contractility. So, the discussion of these two phenomena turns
out to be incomplete in this thesis.

A remarkable e�ort must be made to couple the di�erent models that we
have presented here, so further publications will be devoted to extending these
frameworks to these and other challenging tasks. Nevertheless, by illustrating a
complex and rigorous scenario, these models might be a cornerstone to account
for several cellular processes.





Chapter 8

Conclusions and future
developments

In this thesis, we present several multi-physics models for the ABM of
pathogens and cells. These models are suitable for investigating, describing,
and predicting the key mechanisms that govern ABM processes, and they are
embedded in the newly emerging scientific discipline called "mechanobiology".
Mechanobiology provides the tools for describing the evolution of biological
phenomena, while multi-physics models give a rationale for biological phenomena
behaviors, becoming predictive methodologies for the evolution in time of several
quantities of interest.

The use of physical-mathematical modeling and subsequent computational
analysis uncovers the concealed key mechanisms within living matter. Conse-
quently, interdisciplinarity is the focal point of our endeavors. The objective is to
facilitate the mutual exchange of scientific knowledge and methodologies, leading
to the establishment of a mechanobiology group. This group, in turn, has given
rise to an Interdepartmental Center for International Research in Mechanobiology,
capable of describing and quantifying the mechanical contributions to cellular
activities.

The shared intent between biologists and engineers bestows interpretative
and predictive capabilities on the models developed. The combination of cur-
rent theoretical knowledge with the increasing ability to calculate and process
experimental data, coupled with the greater availability of high-precision tools
for biologists, necessitates the construction of an exact science. This science
harmoniously integrates principles from physics, biology, and engineering to ad-

207
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dress the evolving demands of the scientific landscape. Co-designing theoretical
multi-physics frameworks, numerical simulations, and experimental outcomes,
allows the identification of the laws that regulate several biological events, thus
opening new perspectives to support biological and medical research.

Motivations. The present research aims to develop multi-physics models
capable of describing, interpreting, and predicting the fundamental mechanisms
governing ABM. This endeavor is part of a long-term plan aimed at creating
several multiphysics models delineating the primary stages of cancer metastasis.
ABM modeling is prioritized due to its fundamental nature and its prevalence
across various organisms, including simpler ones like bacteria.

Metastasis remains the foremost challenge in cancer clinical management.
Hence, it is crucial to elucidate the mechanisms underlying ABM with the ultimate
aim of identifying combination therapies that enhance the motility of beneficial
cells while impeding the spread of harmful ones. A deeper understanding of ABM
could lead to significant advancements in both pro- and anti-angiogenic therapies.
Consequently, the development of in-silico simulations could yield substantial
contributions to biology and pharmacological interventions for pathological an-
giogenic occurrences. These simulations hold potential significance due to their
predictive capabilities in virtual experiments, as well as their ability to elucidate
the sequence of ABM processes.

8.1 Multi-physical models and Results
Two di�erent biological phenomena are illustrated throughout the dissertation,

i.e., pathogen and cell ABM, each of which two chapters of the thesis are dedicated.
The pathogen ABM is extensively examined from a biological and a mathematical
point of view, and a unique multi-physics model, that expresses the mathematical
coding of the mechanical behavior of the system, is proposed. Cell ABM, instead,
is extensively studied from a biological point of view, illustrating a review of
the di�erent mechanical behavior of cells, and lingering on the peculiar case of
keratocytes. Then, aiming at overviewing the ABM modeling, several models
that come from the existing literature and original contributions are presented.

8.1.1 Pathogens ABM

The pathogen ABM model entails an interaction among external signaling, the
elastic response of the polymerized actin network, and the kinetics of the chemical
reaction between the monomeric form of G-actin and the network of F-actin. It is
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shown that the model captures the general features of pathogen motility observed
in experimental studies, including the signal dependence of polymerization of the
F-actin network on the bacterium tail and the F-actin network distribution during
pathogen motility. The model is characterized by some features and assumptions.
We do not account for anisotropy in the multiplicative decomposition of the
deformation gradient, since generally the network is not aligned to a preferential
direction. We assume an isotropic behavior of the network, with uniform swelling
behavior in the area of the cell where the signal is emitted. Moreover, we
neglect the dependence of the reaction rate parameters on the load, even if
the production of the F-actin network can be drastically a�ected by the forces
the network is subjected to. In the model of bacterial pathogen motility, we
consider an elastic strain-energy function of the Saint-Venant type, without
cross-link protein rearrangement, because of the “high” speed of bacteria in the
host cytoplasm. In reality, cross-link reorganization can occur in pathogens and
certainly takes place in cellular motility. More sophisticated, statistically based
continuum theories can be invoked to capture the consequent rate-dependent
behavior of the F-actin network upon mechanical loading. While the consistency
of the chemomechanical motor is verified for bacterial pathogen motility, we
limit ourselves to the assumption of material parameters independent of F-actin
concentration. To account for the role of concentration in the sti�ness of the
F-actin network, further work is required.

8.1.2 Cells ABM

Cells ABM is described taking into account several models that come from
the existing literature and original contributions. First, we give an overview
of the state of the art, presenting several models that describe the mechanical
evolution of cells’ internal structures, receptor motility on the membrane, and
cell-substrate interaction. Then, we introduce two new models and some results
that come from the existing literature that concern several aspects of ABM.

The first one is an original model, inspired by [6], that describes the mechanical
behavior of the F-actin network lamellipodia protrusion in keratocytes. The
model is composed of a multi-physics framework that describes F-actin network
protrusion at a continuum level and it is an extension of the pathogen ABM
model described in chapter 3. We consider three di�erent species: F-actin, G-
actin, and the cytosol inside the cell. The kinematic development of the F-actin
network is described by the multiplicative decomposition of the deformation
gradient into a chemical and a mechanical part, whereas the mechanical behavior
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of G-actin is neglected and the cytosol is considered as an incompressible fluid.
Then, we illustrate the Deshpande-McMeeking constitutive theory for stress
fibers contractility, and we obtain a numerical result from this model [77, 36].
This model accounts for the dynamic reorganization of the cytoskeleton during
cell adhesion and deformation on an engineered substrate. The result of the one-
dimensional biomechanical simulation shows how the cytoskeleton contractility
behaves under a defined displacement field and the e�ect of a support sti�ness.
They show that the sti�ness of the substrate a�ects the formation of stress fibers.

Subsequently, we define a continuum multi-physics scheme for modeling the
relocation of proteins on advecting lipid membranes, framing the mathematical
setting within the mechanics and thermodynamics of continua [24]. The model
can represent the receptor distribution along the cellular membrane and the
complex formation when the receptors are in contact with the integrins on the
ECM. Moreover, a concrete example of a specific problem, in which the novelties
introduced in the sections can be used, is shown. In particular, we briefly de-
scribe the relocation of vascular endothelial growth factor receptors-2 (VEGFR2)
observed in an in-vitro experimental setup and numerically replicate it. Such a
problem is discussed in [54, 100] in the framework of small displacements and
strains, and it is presented here using a finite strain multi-physics framework. In
addition, a probabilistic theory that extensively studies the role of the viscoelastic
behavior of ECM on cell spreading and motility is illustrated [78].

8.2 Future developments
The positive outcomes derived from the multi-physics models illustrated in

this thesis motivate us to further enhance them through the incorporation of
more detailed formulations. Future results, both from a theoretical and numerical
standpoint, will be published in further works.

Model assumptions The model representing the F-actin network is char-
acterized by some features and assumptions. First, we chose the volume as
the mechanical descriptor of F-actin network swelling. Following [58, 59], the
volumetric approach can be transformed into a boundary layer problem, where
the interface is represented by the tip of the F-actin network. In this case, the
tip of the F-actin network is the only part that acts against the external load,
and the mechanical role of the F-actin network in the volume is neglected.

We did not account for the anisotropy in the multiplicative decomposition
of the deformation gradient. As highlighted in [63, 64], filaments in the F-actin
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network generally do not seem to be aligned in a preferential direction, rather,
they form a matrix of arbitrarily oriented strands: fibers perpendicular to the
direction of motion are visible even in the depolymerized zone. F-actin network
evolution is dictated by the motion of the signal, which is emitted at di�erent
positions in time. In reality, the orientation of filaments inside the F-actin
network can change and assume a preferential direction depending on several
factors, such as altered loads and actin density (see section 6.4.1.2).

Moreover, the assumption that both the forward and backward reaction
parameters, capable of inducing the formation and decomposition of the F-actin
network, are force-independent is a simplification of the real process since the
presence of the load force can drastically a�ect both kf and kb, as explained in
[5].

We delayed further studies on the multi-scale and multi-physics description of
the energetics of the nucleation, polymerization, and branching of actin filaments
into the F-network: all biological events have been condensed into a single signal.

In addition, we neglected the presence of other networks and cell internal
structures that can a�ect the mechanical behavior of the cell and can interact
with the F-actin network, such as intermediate filaments, microtubules, and
nucleus.

For this reason, further studies must be conducted to account for these
structures and to propose a thermodynamically consistent formulation that can
describe completely the F-actin network mechanical behavior.

F-actin network constitutive law As we already explained, the governing
equations that define the multi-physics continuum models hold for any specifica-
tion of the Helmholtz free energy. Since the focus of this thesis was the ABM
engine, we arbitrarily and simplistically considered an elastic strain-energy of
Saint-Venant type in all the numerical simulations, without considering cross-link
protein rearrangement and F-actin network reorganization during motility. In
reality, cross-link reorganization can occur in actin polymerization, and the me-
chanical behavior of the F-actin network is severely a�ected by this, as illustrated
in [5, 73].

It is broadly recognized that the mechanical resistance of the F-actin network
depends on the concentration of F-actin filaments in the network and the me-
chanical parameters that represent the F-actin network’s mechanical behavior
should be a�ected by this. While the consistency of the chemomechanical motor
has been verified for bacterial pathogen motility, we limited ourselves to the
assumption of material parameters independence of F-actin concentration. To
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account for the role of F-actin concentration in the sti�ness of the network [53, 5],
further work is required.

Viscosity was purposely neglected because it was argued that the cross-linking
rearrangement in the F-actin network has insu�cient time to develop [46] in
view of the “high” speed of bacteria in the host cytoplasm. In reality, cross-link
reorganization can occur in pathogens, certainly taking place in cellular motil-
ity, and the force-velocity relation of actin-network growth requires a thorough
study, which started from the experiments done by Theriot’s group in [5]. More
sophisticated, statistically-based continuum theories can be invoked to capture
the consequent rate-dependent behavior of the F-actin network upon mechanical
loading [56, 57]. One of the possible models is represented by F.J. Vernerey and
co-workers’ [57]. The fundamental concept involves idealizing actin monomers
(G-actin) as monodisperse (or polydisperse, considering other polymer networks
like microtubules) polymers within the cytoplasm. Concurrently, through poly-
merization, these monomers become generators of F-actin chains that support
the actin network in cell protrusions. The configuration of these chains can be
statistically described using a distribution function. To capture the dynamics of
the polymerization and depolymerization of G-actin into F-actin, and vice versa,
we consider the polymerization-depolymerization process. Specifically, referring
to the deformation gradient decomposition (F = F eF c), we assume that the
viscoelastic behavior of the F-actin network is connected to the tensor F e and
is fully described by a dynamic characterization of the evolution of the F-actin
network.

In this framework, the viscoelastic machinery is outlined by the attachment
and detachment of actin filaments, while the polymerization-depolymerization
phenomena govern the density of the total chain available to form the actin
network. This contribution, combined with the e�ects of the swelling distortion
tensor, comprehensively describes the dense network of actin filaments within
pseudopodia.

Cells two-way coupled models The models on cell ABM presented in this
thesis have significant limitations. First of all, the profound bibliographic research
carried out during the Ph.D. and the novel models presented in this chapter do
not account for the behavior of a specific cell, but they represent the processes
involved in the ABM of di�erent types of cells. This course of action simplified
our work since it allowed us to split several phenomena into di�erent models,
but it represents a significant limitation for a complete and correct description of
ABM for a specific type of cell. Each cell has a peculiar biological behavior that
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must be correctly represented to propose a unique multi-physics model.
Moreover, many phenomena of cell ABM were not considered, and many

cellular behaviors have been simplified both in the existing literature and in
our new models. For example, the constitutive law representing the mechanical
behavior of the F-actin network has been greatly simplified and it is far from being
correctly defined. Additionally, to have a general and broad representation of cell
ABM, the protein transport on the membrane and the cytoskeleton reorganization
have been discussed separately, even if they are crucially coupled: the cytoskeleton
reorganization is related to the motion of integrins on the membrane and the
formation of focal adhesion sites is preliminary to F-actin protrusion, stress fiber
generation, and contractility. Therefore, the discussion of these two phenomena
turns out to be incomplete in this thesis.

By combining the description of the chemo-di�usive aspects of the integrin
receptor on the cell membrane, including the modeling of clustering procedures
observed in adhesion sites and the phenomena of internalization/externalization,
with an active portrayal of the mechanical behavior of cells, it will be possible
to upgrade the one-way coupled models hereto discussed in a two-way coupled
formulations. In this new scheme, the activities of receptors (integrins) on
the lipid bilayer collaborate to organize the mechanical response of the cell,
facilitating the formation of adhesion sites and influencing the arrangement of
F-actin networks.

Consequently, we aim to incorporate a thermodynamically motivated model
that describes the remodeling of the F-actin network and the interaction between
actin and myosin II during F-actin reorganization. If the contractile machinery
of SFs within the chosen cell is similar to that observed in muscle sarcomeres,
as demonstrated in fibroblasts, the model formulation proposed by [103] will
be considered; otherwise, alternative and innovative models may be required.
Additionally, a coarse-grained model based on principles of statistical mechanics
is essential to establish connections between the microscopic properties of the
actin network and the macroscopic properties determinable at the continuum
scale.

Therefore, further extension of this pattern could emerge through a statistical
continuum theory, enabling the study of the transient actin network in both
globular (G-actin) and filamentous (F-actin) forms. This extension aims to
provide an innovative characterization of the mechanical description of cell
motility guided by actin polymerization, directly building upon the formulations
derived in Chapter 7. Being inspired by [73], it could also be of interest to apply
a multi-scale approach where the microscopic behavior of actin and receptors is
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correlated to the mechanical behavior of cells at a continuum level.
A remarkable e�ort must be made to couple the di�erent models that we

have presented here, so further publications will be devoted to extend these
frameworks to these and other challenging tasks. Nevertheless, by illustrating a
complex and rigorous scenario, these models might be a cornerstone to account
for several processes.

Model extension The model could be also extended to account for additional
phenomena. In the case of pathogen ABM, cell-to-cell spread via protrusion- and
vesicle-mediated transfer can be included by adding models that couple ABM
of intracellular bacterial pathogens with the resistance of the membrane, which
depends on the tra�cking of tension-regulating proteins [7]. Such developments
in the model permit a complete picture of the life cycles of intracellular bacteria
that harness ABM [20].

In the case of cells ABM, a careful investigation of the mechanobiology of the
membrane is required to accurately depict the cellular motility [65]. Moreover,
the internalization of complexes, the role of membrane resistance, and the
reorganization of F-actin in cell bulk during cell motility are all occurrences that
must be included for correctly representing cell ABM. Since the role of ECM in
cell ABM both in a 1D, 2D, and 3D setting was insu�ciently discussed here, it
must be considered in further studies.

The model can be used to address one of the key challenges in cell biomechanics,
namely how to measure the mechanical characteristics of pathogens and cells
during ABM. Because the model captures the reorganization of the actin network
in response to an external stimulus, it can be used as a framework to design and
interpret tailored experiments in di�erent fields.

Being aware that further improvements are necessary, we believe that this
thesis paves the way to quantitative investigations, which can help interpret
biological experimental outcomes and address key challenges in mechanobiology.
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