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The Vehicle Routing Problem (VRP) is one of the most central transporta-
tion problems in the field of Operations Research. Introduced by Dantzig
and Ramser, 1959, the problem aims at finding the optimal routes for a fleet
of vehicles in order to serve a set of costumers. The traditional version of
the VRP and its variants have been extensively studied in the academic lit-
erature. However, recent years have witnessed a surge in the application
of optimization models by businesses and organizations. This shift in fo-
cus aims to address real-world complexities by introducing novel features
and constraints. The family of these extended problems is called Rich Vehi-
cle Routing Problems (RVRPs). RVRPs extend the traditional academic for-
mulations of VRPs by incorporating problem-specific constraints that closely
mirror decisions made at both tactical and operational levels in practical set-
tings. In this thesis, we delve into the study of RVRPs in the field of health-
care and logistics providing efficient mathematical model formulations, ex-
act and heuristic resolution approaches and a comprehensive analysis of the
computational results.

In the healthcare domain, our research focuses on addressing critical is-
sues within the Nurse Routing Problems (NRPs). Our goal is to enhance lo-
gistic outcomes for healthcare organizations while simultaneously improv-
ing the working conditions of healthcare providers and the quality of care
delivered to patients. To achieve this, we introduce the concept of fairness

into NRPs, along with quality-enhancing constraints such as nurse-patient
consistency and time window specifications. Our analysis begins by exam-
ining several fairness metrics, considering both patients and nurses, within a
Single-Objective Single-Period NRP framework. We provide a set of objective
functions that can be interchanged to assess the interaction between different
metrics and their cost implications. Next, we extend our investigation on fair-
ness inserting new measures and providing a Multi-Objective formulation of
the previous NRP. Employing a lexicographic approach, we simultaneously
consider multiple objective functions, selecting triplets of functions to repre-
sent the interests of each stakeholder (hospital, nurses, and patients). Fur-
thermore, we present a Dynamic Multi-Period NRP with Consistency Con-
straints in which temporal distribution of patients requests is unknown. Ob-
jective of the problem is to decide which nurse visit wich patients over sev-
eral days based on new requests daily revealed. We propose two approaches:
a pure myopic dynamic method, which lacks future event information, and a
scenario-based optimization method that leverages historical data to forecast
future developments.

In the logistics domain, we propose two key problem formulations: the
Last Mile Logistic Delivery Problem with Parcel Lockers (LMDP-LS) and the
Attended Home Delivery Problem with Recovery Options (AHDP-RO). In
the LMDP-LS we evaluate the environmental impact of parcel lockers when
the ecological footprint of consumers is taken into account. The problem has
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the objective of deriving meaningful insights on the environmental impact
of both the company and the consumers in the switch from a door-to-door
delivery service to a locker-based one. Additionally, in the AHDP-RO, we
model and solve the traditional attended home delivery service, which man-
dates the customer’s presence at home to avoid delivery failures. Specifically,
we model the probability of finding the customer at home through Avail-
ability Profiles (APs) plotting the probability of successful deliveries during
the working day. We introduce the possibility for couriers to take recovery
actions when customers are unavailable, with associated penalties included
in the objective function. The overarching objective is to plan daily courier
routes to minimize both routing and penalty costs. Throughout our research,
we provide the results of small-size instances solved to optimality and we
employ the Adaptive Large Neighborhood Search (ALNS) meta-heuristic to
obtain good quality solutions for large-size instances. Our heuristic results
are compared with the one obtained by the commercial solver Gurobi.

Versione italiana: I Vehicle Routing Problems (VRPs) sono una branca di
problemi centrali nella Ricerca Operativa. Introdotto da Dantzig et al (1959),
il problema mira a trovare le rotte ottimali per una flotta di veicoli per servire
i clienti. Negli ultimi anni si è assistito a un incremento nell’applicazione
dei modelli di ottimizzazione da parte di aziende e organizzazioni. Questo
cambiamento di focus mira ad affrontare le complessità del mondo reale in-
troducendo caratteristiche e vincoli innovativi. La famiglia di questi prob-
lemi estesi è chiamata Rich VRP (RVRPs). I RVRPs estendono le formu-
lazioni tradizionali dei VRP incorporando vincoli specifici del problema che
riflettono decisioni prese sia a livello tattico che operativo in contesti pratici.
Questa tesi approfondisce lo studio dei RVRPs nel settore sanitario e logis-
tico. Forniamo formulazioni di modelli matematici efficienti, approcci di
risoluzione esatti ed euristici, e un’analisi comprensiva dei risultati com-
putazionali. La nostra ricerca affronta questioni critiche all’interno dei Nurse
Routing Problems (NRPs) nel settore sanitario. Il nostro obiettivo è miglio-
rare i risultati logistici per le organizzazioni sanitarie migliorando contem-
poraneamente le condizioni di lavoro dei fornitori di assistenza e la qualità
dell’assistenza fornita, Per raggiungere questo scopo, introduciamo il con-
cetto di equità negli NRPs, insieme a vincoli che migliorano la qualità come la
coerenza infermiere-paziente e le specifiche delle finestre temporali. La nos-
tra analisi inizia esaminando diverse metriche di equità, fornendo un insieme
di funzioni obiettivo che possono essere scambiate per valutare l’interazione
tra diverse metriche e le loro implicazioni sui costi. Successivamente, es-
tendiamo la nostra indagine sull’equità inserendo nuove misure e fornendo
una formulazione Multi-Obiettivo del precedente NRP in cui selezioniamo
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triplette di funzioni per rappresentare gli interessi di ogni stakeholder. In-
oltre, presentiamo un NRP Dinamico Multi-Periodo con Consistenza in cui la
distribuzione temporale delle richieste dei pazienti è sconosciuta. L’obiettivo
del problema è decidere le assegnazioni infermiere-paziente per diversi giorni
basandosi su richieste rivelate giornalmente. Proponiamo due approcci: un
metodo dinamico puramente miope, che manca di informazioni sugli eventi
futuri, e un metodo di ottimizzazione basato su scenari che sfrutta i dati
storici per prevedere sviluppi futuri. Nel dominio logistico proponiamo il
Last Mile Delivery Problem with Locker Selection (LMDP-LS) e l’Attended
Home Delivery Problem with Recovery Options (AHDP-RO). Nel LMDP-LS,
valutiamo l’impatto ambientale dei locker per pacchi tenendo conto dell’impronta
ecologica dei consumatori. Nell’AHDP-RO, modelliamo e risolviamo an-
che il servizio tradizionale di consegna a domicilio assistita, modellando
la probabilità di trovare il cliente a casa attraverso profili di disponibilità
e tracciando la probabilità di consegne riuscite durante la giornata lavora-
tiva. Introduciamo la possibilità per i corrieri di intraprendere azioni di
recupero quando i clienti sono indisponibili, con penalità associate incluse
nella funzione obiettivo. L’obiettivo generale è pianificare le rotte giornaliere
dei corrieri per minimizzare i costi di routing e di penalità. Nel corso della
nostra ricerca, forniamo i risultati di istanze di piccole dimensioni risolte
all’ottimalità e impieghiamo la meta-euristica di Adaptive Large Neighbor-
hood Search (ALNS) per ottenere soluzioni di buona qualità per quelle di
grandi dimensioni.
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Chapter 1

Introduction

The global transportation industry, as a pivotal component of the world’s
economy, is projected to experience significant growth, with a Compounded
Average Growth Rate (CAGR) of 3.6% through 2030, culminating in a value
of approximately $8.9 trillion by 2030 (ReportLinker, 2023). This growth
trajectory underscores the vital role of an efficient transportation and lo-
gistics system in driving economic success and sustainability, especially in
a world increasingly shaped by technological advancements and escalating
demands. The challenges emerging from this growth span various trans-
portation industry sectors, including logistics, healthcare, rail, trucking, in-
frastructure, and passenger vehicles. This expansion has been further accel-
erated by the change in consumer habits over recent years, a direct conse-
quence of the Covid-19 pandemic. The 2022 European E-Commerce Report
(Lone and Weltevreden, 2022) highlights a significant shift in this trend, with
e-commerce in Europe experiencing a 6% increase in B2C sales compared
to 2019. It is estimated that around 75% of internet users purchased prod-
ucts or services online during 2022, exerting a profound impact on the trans-
portation dynamics within the delivery sector. Moreover, the transportation
needs within the healthcare sector have been influenced mainly by the pan-
demic, which has reshaped how transportation facilitates access to health-
care (Chen et al., 2021). This has led to the emergence of new trends in home
healthcare businesses. However, this switch in habits has also highlighted
environmental concerns. According to the European Environment Agency,
transportation is responsible for about a quarter of the EU’s total greenhouse
gas emissions, with road transport being one of Europe’s leading contribu-
tors to environmental noise pollution. This sector is Europe’s only central
economic area where greenhouse gas emissions have increased since 1990.
In the face of these evolving demands and environmental implications, tra-
ditional Vehicle Routing Problem (VRP) models are increasingly inadequate
in capturing the multifaceted nature of these challenges. The necessity for
Rich Vehicle Routing Problems (RVRP) has emerged, offering more sophis-
ticated and adaptable solutions to accommodate these new trends and ef-
fectively manage the complexities of the contemporary transportation sector.
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These advanced RVRP models are essential to optimize transportation op-
erations, balancing efficiency and sustainability in an environment of rapid
change and growth. This thesis aims to investigate the models and the al-
gorithms of RVRPs in two main domains: the home healthcare sector and
the last-mile delivery process. We first delve into the healthcare part by
describing three different applications of a Nurse Routing Problem (NRP)
studied from multiple aspects. We will investigate the role of fairness, in-
tended to create an equal and impartial environment for all the stakeholders
involved through a single and multi-objective formulation. Then, we pro-
pose a stochastic and dynamic Consistent VRP, and we solve it using two
different problem-tailored heuristics. The second part addresses the Last-
Mile Delivery Problems (LMDPs) in door-to-door and locker-based systems.
Many practical constraints are considered, such as the client’s presence at
home, managing failed deliveries, or the computation of the ecological im-
pact of both clients and couriers.

Contributions

In what follows, we summarise the main contributions we achieve in this
thesis.

• We have described, formulated, and efficiently solved, exactly and heuris-
tically, a multitude of Vehicle Routing Problems (VRPs), incorporating
a range of practical constraints. This comprehensive approach has pro-
vided the necessary tools to adapt VRPs to various domains, including
but not limited to home care and home delivery services. This has al-
lowed us to tailor VRP solutions that are theoretically sound and prac-
tically viable, ensuring that they can address the specific logistical and
operational demands of the transportation sector.

• We have characterized the fairness needs of stakeholders involved in
a nurse routing problem through meticulous mathematical modeling.
This detailed modeling has enabled us to capture the complex interplay
of objectives within and across different stakeholders. We have devel-
oped both single-objective and multi-objective approaches to provide a
comprehensive overview of the intricate relationships among these of-
ten conflicting objectives. The analysis conducted in this study extends
beyond the examination of objectives specific to individual stakehold-
ers. Instead, it adopts a broader perspective, exploring how different
stakeholders’ objectives interact.

• We have developed a novel meta-heuristic approach (ParallelALNS)
capable of efficiently handling multi-actor and multi-objective prob-
lems. The results of our study demonstrate how this heuristic outper-
forms commercial solvers in various scenarios.
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• We have conducted an in-depth analysis of last-mile delivery prob-
lems from various aspects. Our focus has been optimizing the logis-
tical side by developing an operational model to minimize costs and
maximize the delivery hit rate. This model considers the likelihood of
customers being at home, ensuring a more efficient delivery process.
Additionally, we have explored the environmental side of these prob-
lems. Our findings demonstrate that a locker-based solution is efficient
only when customers are environmentally conscious. Combining logis-
tical efficiency with environmental considerations, this dual approach
highlights the complexity of last-mile delivery challenges and provides
a comprehensive framework for addressing them effectively.

Structure of the thesis

In this section, we summarise the content of the thesis in more detail. The
thesis comprises eight chapters, introduction and conclusions excluded, di-
vided into two main parts: Part I refers to healthcare applications, and Part II
refers to the logistics. Table (1.1) reports the primary information about each
chapter’s content. Each row corresponds to a chapter. The columns spec-
ify the primary sector, the model name, and if the problem has been solved
through an exact or a heuristic solutions method.

TABLE 1.1: content of the chapters

Sector Model Name Exact Heuristic

Chapter (2)

Healthcare

Literature Review
Chapter (3) Solution Approaches
Chapter (4) NRP yes -
Chapter (5) NRP yes ALNS meta-heuristic
Chapter (6) SMHHP-C yes ALNS meta-heuristic

Chapter (7)
Logistic

Literature Review
Chapter (8) LR-LMDP yes -
Chapter (9) AHDP-RO yes -

In what follows, we describe the content of each chapter in more detail.

• In Chapter (2) and Chapter (7), we review the main literature applica-
tions of RVRPs in healthcare and logistics, respectively.

• Chapter (3) presents the literature and the general framework of the
main solution methods that will be implemented in Chapter (5) and
Chapter (6). We present the meta-heuristic Adaptive Large Neighbor-
hood Search (ALNS) and two dynamic approaches, the Myopic Dy-
namic Heuristic (MDH) and the Multi-Scenario.Based Progressive Fix-
ing (MSB-PF).
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• Chapters from (4) to (6) include the healthcare applications. Precisely,
in Chapter (4) and Chapter (5), we study the insertion of fairness mea-
sures in the NRP. Then, Chapter (6) presents the Stochastic and Dy-
namic Home Healthcare Problem with consistency constraints. Chap-
ter (4) is published as a conference paper on IFAC-PapersOnLine. Chap-
ter (5) is published on the International Journal of Production Research.

• Chapters (8) and Chapter (9) are dedicated to the logistic applications.
In Chapter (8), we study the environmental impact of a Location-Routing
Problem in last-mile delivery, including the presence of parcel lockers
to collect packages. In Chapter (9) we study an Attended Home De-
livery Problem in the operational efficiency is reached by minimizing
both the traveling and the failed delivery costs. The latter depends on
the customers’ presence at home and the recovery option the courier
has to perform in case of failed delivery.

• Finally, Chapter (10) presents the main conclusions.
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Part I

Rich Vehicle Routing Problems in

Healthcare Applications

This part explores the application of Rich Vehicle Routing Problems (RVRPs)
in the Healthcare sector. Specifically, our research addresses critical chal-
lenges in the Nurse Routing Problems (NRPs) - a variant of the Vehicle Rout-
ing Problems that involves nurses or healthcare workers as vehicles and pa-
tients as nodes to visit. Our objective is to identify and explore the challenges
that arise from real-life scenarios by introducing realistic settings and con-
straints. As a result, our focus is on optimizing a service provider’s costs
while considering the working conditions of the nurses and the quality of
care provided to patients. After an extensive review of the literature in Chap-
ter (2), we introduce the concept of fairness in the NRP formulation. Chapter
(4) explores this idea further with a Single-Objective NRP that addresses a
multi-actor implementation of fairness. Moreover, we extend our exploration
of fairness by introducing novel metrics and formulating a Multi-Objective
variant of the preceding problem in Chapter (5). In addition, we present
a Dynamic Multi-Period NRP with Consistency Constraints in Chapter (6).
This problem deals with the temporal distribution of patient requests, which
remains unknown. The goal is to make informed decisions regarding nurse-
patient assignments across several days, with new requests unveiled daily.
For each work, we provide a general description of the problem and the spe-
cific setting, followed by the mathematical model and a comprehensive anal-
ysis of the computational outcomes on both exact and heuristic approaches.
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Chapter 2

Literature Review

Contents

2.1 Nurse Routing Problem Variants Including Fairness . . . . . . 7
2.2 Multi-Objective Approaches . . . . . . . . . . . . . . . . . . . . 10
2.3 The Consistent Vehicle Routing Problem . . . . . . . . . . . . . 10

In this chapter we present the relevant literature in the domain of RVRPs
in the Home Healthcare (HCC) domain. In particular, our review mainly fo-
cuses on the articles dealing with Nurse Routing Problems (NRPs) including
features in common with the works introduced in this chapter.

The study is divided as follows. In Section (2.1) we present a comprehen-
sive review of the variations of NRPs in literature with particular attention
on works including fairness and multi-actor formulations; we highlight how
it is missing a contribution treating fairness in a multi-objective and multi-
actor framework. Then, Section (2.2) delves into healthcare applications of
hierarchical Multi-Objective approaches. Finally Section (2.3) reviews the
most relevant works dealing with Vehicle Routing Problems including the
service-level consistency constraint.

2.1 Nurse Routing Problem Variants Including Fair-

ness

The home healthcare sector has various issues that need to be addressed for
an efficient and functional optimization of the overall system, from staff ros-
tering to visit scheduling and service allocation. The reader is referred to
Grieco et al., 2020 for an extensive survey about home healthcare optimiza-
tion. To our knowledge, there are only a few works that include fairness
and most of them approach it as a secondary objective in addition to cost
minimization. Frequently, fairness is associated with providing low-cost,
timely, and high-quality services to patients by maximizing their satisfaction
and/or minimizing their waiting time. Among works addressing fairness,
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the majority presents a single-objective formulation including the presence
of stakeholders other than the hospital only as additional constraints. Table
(2.1) provides a detailed overview of various NRP variants as reported in
known literature. This table captures the essential features of each variant,
including their solution approaches. The ’Obj’ column specifies the objective
function aimed for optimization, which varies from minimizing total time
(TT) or cost (TC), total tardiness (TTA), number of unattended clients (NC),
and time window violations (TWV) for patients, to maximizing workload
balance (WB), consistency (CON), profit per visit (PP), nurse skill alignment
(NS) with visits, task management flexibility (TF), nurse preferences (NP),
and patient satisfaction (PS) using certain problem parameters. The ’Multi-
obj’ column is marked with a checkmark to indicate multi-objective problem
formulation. Resolution methods are shown in brackets: epsilon-constraint
method (ϵ-const), and lexicographic method (lex). The ’Multi-actor’ column
notes if multiple stakeholders are involved, while ’Problem Type’ catego-
rizes each as deterministic (Det), stochastic (Stoch), or dynamic (Dyn). The
’Approach’ column distinguishes between exact (Exact) and heuristic (Heur)
solution methods. Table (2.2) compiles key constraints from these studies.
The ’Fairness’ column underscores equitable considerations for patients (P),
nurses (N), or the hospital/TOC (H/T). The ’Horizon’ column distinguishes
between single-period and multi-period problems. The ’Serv Freq’ column
indicates if patient requests are for single or multiple appointments over the
planning period. The ’Serv Type’ column classifies services as either hetero-
geneous (heterog) or homogeneous (homog). The presence of consistency
or coordinated visits by multiple nurses is marked by a checkmark in the
’Cons’ and ’Synchro’ columns. Finally, the ’TW’ and ’Skills’ columns address
the type of time windows (hard or soft) for patient visits and the integration
of nurse skill considerations.

TABLE 2.1: NRP variants: problem type and solution method-
ology.

Article Obj Multi- Multi- Problem Approach
Obj Actor Type

Liu et al., 2016 TT,NC – – Det Exact
Carello et al., 2018 TT,NP,CON ✓ (ϵ-const) ✓ Det/Stoch/Dyn Exact
Decerle et al., 2019 TT,LST,PP,WB – ✓ Det Heur
Mosquera et al., 2019 TF ✓ (lex) ✓ Det Heur
Gobbi et al., 2019 PP – – Det Heur
Khodabandeh et al., 2021 TT,NS ✓ (ϵ-const) ✓ Det Exact
Bhattarai et al., 2022 TC, LST, WB ✓ (ϵ-const) ✓ Det Exact
Bonomi et al., 2022 TT,CON,TWV,NS,PS – ✓ Det Exact
Jiang et al., 2023 CON,WB ✓ ✓ Det Heur
Belhor et al., 2023 TT,TWV ✓ (lex) – Det Exact/Heur
Gobbi et al., 2022 PP – – Det Heur
Current work TT,TTA,TWV,CON,WB,NS ✓ (lex) ✓ Det Exact/Heur

In the realm of nursing research, recent literature over the past five years
has revealed a notable gap in studies that simultaneously consider multiple
stakeholders’ perspectives and a variety of fairness measures. This overview
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TABLE 2.2: NRP variants: constraint types.

Patients Nurses
Authors Fairness Horizon Serv Freq Serv Type Cons TW Syncro Skills
Liu et al., 2016 – single single homog – hard – –
Carello et al., 2018 ✓ (H,N,P) multi multi heterog ✓ – – ✓

Decerle et al., 2019 ✓ (N,P) multi multi heterog – soft ✓ ✓

Mosquera et al., 2019 – multi multi heterog – hard – ✓

Gobbi et al., 2019 – single multi heterog – hard – – –
Khodabandeh et al., 2021 ✓ (N) single single heterog – hard – ✓

Bhattarai et al., 2022 ✓ (H,N,P) multi multi homog – hard ✓ ✓

Bonomi et al., 2022 ✓ (N,P) single multi heterog ✓ soft – ✓

Jiang et al., 2023 ✓ (N) multi multi homog ✓ – – –
Belhor et al., 2023 ✓ (P) single single homog – soft – –
Gobbi et al., 2022 – single multi heterog – soft – –
Current work ✓ (T,N,P) single multi heterog – – – –

reorders the cited articles while maintaining their thematic relevance. The lit-
erature shows a varied approach regarding the stakeholder perspectives and
fairness measures. For instance, Carello et al., 2018 stands out for its inclusive
approach towards stakeholders’ requirements. The study proposes mathe-
matical models to explore the effects of prioritizing different stakeholders,
focusing on quality of service for patients, workload balance among opera-
tors, and cost minimization for service providers. Bhattarai et al., 2022, while
addressing the role of multiple actors, limits its scope to a single measure for
each stakeholder. This contrasts with the broader set of measures used in
the current article to analyze stakeholder perspectives. Several studies have
focused on specific stakeholder needs in the context of fairness. Belhor et al.,
2023 emphasizes patients’ needs, aiming to minimize total tardiness relative
to visiting time preferences and overall service time. Conversely, Khodaban-
deh et al., 2021 and Jiang et al., 2023 center on nurses’ requirements. The
former integrates the minimization of the gap between actual and potential
skills of nurses with the minimization of total travel time, while the latter
employs a heuristic approach to maximize workload balance and continuity
of care. The work of Decerle et al., 2019 proposes a memetic algorithm for an
NRP, balancing caregivers’ workload to minimize total working time and en-
hance service quality. Mosquera et al., 2019 introduces a novel perspective on
task flexibility, encompassing flexible scheduling, duration, and caregivers’
workload. From a resolution approach standpoint, Liu et al., 2016 contributes
a Branch-and-Cut algorithm for a worker scheduling and routing problem,
including lunch break considerations. Building on the foundational work of
Manerba and Mansini, 2016 in the Nurse Routing Problem with Workload
Constraints and Incompatible Services, Gobbi et al., 2019 extends the prob-
lem to allow for multiple services required by patients in a single day and
integrates minimum demand requirements. Their research aims to maximize
visit numbers and optimize patient rewards, employing a hybrid matheuris-
tic approach enhanced by Kernel Search for improved solution space explo-
ration.
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2.2 Multi-Objective Approaches

Multi-objective problems (MOPs) involve the challenging task of optimiz-
ing several, often conflicting, objectives concurrently. Various methodolo-
gies have been developed to address MOPs, which are well-documented in
the literature. The ϵ−constraint method, a prominent approach where one
objective is optimized while others are restricted by pre-set values ϵ is one
of the most applied. This technique is instrumental in generating the Pareto
frontier, as exemplified in works by Carello et al. 2018, Khodabandeh et al.
2021, and Bhattarai et al. 2022. The scalarization or weighted sum method,
which consolidates multiple objectives into a singular goal through weighted
summation. The hierarchical or lexicographic method, prioritizes objectives
based on their perceived importance or decision-maker preference. Addi-
tionally, various alternative strategies are employed for solving MOPs, such
as goal programming Tirkolaee et al., 2020, evolutionary algorithms Ghan-
nadpour and Zarrabi, 2019, and non-dominated sorting methods Long et al.,
2021. For an extensive review, Gunantara, 2018 thoroughly analyzes Multi-
Objective Optimization. Hierarchical multi-objective optimization (H-MOO)
particularly addresses MOPs by prioritizing objectives based on their relative
importance. This approach seeks optimal solutions at each hierarchical level,
starting from the highest priority objective. H-MOO is beneficial for its abil-
ity to simplify multi-objective problems into a series of single-objective ones,
and its flexibility in reordering objectives. The healthcare sector frequently
utilizes MOO, often adopting a hierarchical approach. Examples include
Mosquera et al., 2019, which applies hierarchical optimization for home care
visit scheduling to enhance task flexibility; Malagodi et al., 2021, employ-
ing a lexicographic method for home health care (HHC) scheduling with an
emphasis on stakeholder preferences; and Belhor et al., 2023, which com-
bines lexicographic and evolutionary algorithm approaches. Our research
departs from these models by not fixing the hierarchy of objectives. Instead,
we explore various combinations of objectives related to different stakehold-
ers to understand their inter-impact. We introduce a novel parallel ALNS
designed for multi-objective, multi-actor problems. Beyond healthcare, hier-
archical approaches have been successfully applied in other domains, such
as surgery scheduling (Al Hasan et al., 2018), pick-up and delivery services
(Al Chami et al., 2021), and workforce allocation in scheduling perishable
products (Bolsi et al., 2022).

2.3 The Consistent Vehicle Routing Problem

Rich VRP variants introduce real-world constraints, leading to more com-
plex formulations like the Consistent VRP (ConVRP) and Capacitated VRP
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(CVRP). ConVRP, particularly relevant when customer satisfaction is essen-
tial, strives to create cost-efficient routes while adhering to specific customer
requirements. In the context of ConVRP, Groër et al., 2009 emphasizes con-
sistency in both visit timing and the driver serving a patient. Kovacs et al.,
2015a extends this concept by treating consistency as soft constraints, where
any violations are penalized in the objective function. For an overview of
ConVRP resolution methods, Goeke et al., 2019 provides a comprehensive
analysis. A novel approach is seen in Mancini et al., 2021, where consis-
tency is integrated into a CVRP framework, allowing for vehicle collabora-
tion and customer sharing to enhance profit. Our study focuses on a HHC-
oriented ConVRP, which considers nurse-patient consistency constraints, en-
suring each customer is visited by no more than one driver. The significance
of HCC problems has surged recently, especially with the planning and opti-
mizing medical services at home becoming a competitive edge for hospitals
and enhancing patient satisfaction. The Covid-19 pandemic has further un-
derscored the importance of efficient HHC management to maintain social
distancing and cater to vulnerable patient groups. In this context, Allen et al.,
2020 presents a model simulating a worst-case Covid-19 scenario’s impact on
an outpatient dialysis network. The authors apply a Monte-Carlo VRP model
to test the transportation plan’s resilience, aiming to transport more patients
simultaneously. Pacheco and Laguna, 2020 models a VRP for the urgent de-
livery of face shields in Burgos, Spain, incorporating pick-up and delivery
dynamics. Service and time consistency in HHC problems are explored in
Grenouilleau et al., 2019, focusing on service-level improvement by maxi-
mizing the number of patients served. Similarly, Demirbilek et al., 2018 aims
to maximize daily nurse visits, implementing strict time window constraints.
To our knowledge, the works that most resemble the application of consis-
tency of our problem are the ones from Cappanera and Scutellà, 2021 and
Demirbilek et al., 2019. In Cappanera and Scutellà, 2021 the authors address
consistency and demand uncertainty in Home Care planning by proposing
a mathematical model and alternative policies to develop a pattern-based
algorithmic framework. However, in the resolution method, they address
uncertainty through a robust approach. Demirbilek et al., 2019 proposes a
new heuristic approach for routing and scheduling multiple nurses in home
healthcare, considering real-life aspects such as clustered service areas and
skill requirements. The authors propose a new heuristic based on generating
several scenarios, including current schedules of nurses, new requests, and
randomly generated future requests, to solve three decision problems: pa-
tient acceptance, nurse assignment, and assignment of visit days and times.
The approach is compared with a greedy heuristic from the literature and em-
pirically demonstrates higher average daily visits and shorter travel times.





13

Chapter 3

Solution Methods

Contents

3.1 Large Neighborhood Search (LNS) . . . . . . . . . . . . . . . . 14
3.1.1 Destroy Operators . . . . . . . . . . . . . . . . . . . . . 15
3.1.2 Repair Operators . . . . . . . . . . . . . . . . . . . . . . 16
3.1.3 Initial Solution . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.4 Acceptance Criterion . . . . . . . . . . . . . . . . . . . . 17

3.2 Adaptive Large Neighborhood Search (ALNS) . . . . . . . . . 18
3.2.1 Weight Adjustment . . . . . . . . . . . . . . . . . . . . . 19

3.3 Dynamic Approaches . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.1 Myopic Dynamic Heuristic (MDH) . . . . . . . . . . . . 21
3.3.2 Multi-Scenario-Based Progressive Fixing (MSB-PF) . . 22



14 Chapter 3. Solution Methods

The inherent complexity of Rich Vehicle Routing Problems often renders
exact methods impractical or overly time-consuming when solving large in-
stances. Heuristic approaches can give a trade-off between solution quality
and computational efficiency, operating on the principle of taking efficient
problem-tailored paths to reach good quality, if nonoptimal, solutions. This
chapter aims to outline the heuristic resolution techniques utilized in this the-
sis. While the chapter offers a comprehensive overview of the fundamental
methods, detailed adaptations tailored to specific problems will be elabo-
rated upon in the following chapters, alongside their respective problems.
The chapter is divided as follows. First, Section (3.1) introduces the funda-
mentals of Local Search Algorithms, highlighting the principal characteris-
tics. Then, Section (3.2) describes the Adaptive Large Neighborhood Search
(ALNS) framework. Section (3.3) shifts the focus to dynamic approaches that,
in contrast with the so-called Offline approach, address problems with uncer-
tainty in specific data sets or problems where data are not completely know
but become available as time goes on. Within this section, two distinct dy-
namic approaches are presented. Section (3.3.1) describes the Myopic Dy-
namic Heuristic (MDH), which operates without foresight in future events.
Meanwhile, Section (3.3.2) explores a dynamic strategy incorporating antici-
pated future events into the solution process by using scenarios.

3.1 Large Neighborhood Search (LNS)

The Large Neighborhood Search (LNS) is a meta-heuristic presented by Shaw,
1998 and belongs to the class of Large-Scale Neighbourhood Search (VLSN)
heuristics. LNS is built around efficiently examining the neighborhood of a so-
lution by iteratively deconstructing and rebuilding it, aiming to find a better
solution or exit from local optima. To have a formal definition of neighbor-
hood, let P = ({, S) be an optimization problem, S the set of all the feasible
solutions for P and {: S← R its objective function. The Neighborhood func-
tion N : S ← 2|S| defines for each solution i ∈ S the neighborhood N(i) ¦ S

set of all the solutions close to i. N(i) comprises solutions derived by apply-
ing a specific move to a solution s ∈ S. In the LNS, the way the neighbor-
hood search is carried out is defined by a set of destroy and repair functions.
A destroy function d(s) removes part of the elements present in the current
solution, while a repair method r(d(s)) reconstructs it by reinserting them
following problem-specific criteria. As shown in Algorithm (1), the method
inputs an initial feasible solution s, and, at each iteration, destruction, and
repair operators are applied to obtain a new solution s′. This solution is then
submitted to an acceptance criteria(s′, s) that allows the method to accept non-
improving solutions to widen the search in the neighborhood and exit from
possible local optima. If accepted, the new solution becomes the current so-
lution s′, and the method is repeated until the termination criteria are met,
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returning the best solution s∗. The best solution is evaluated through the cost
function c(s) mapping for each solution in the solution space and its cost.
We present the case of a minimization problem where a solution s∗ is better
than s if c(s∗) < c(s). Regarding routing problems, we will delve into the
most commonly used destroy and repair operators in Section (3.1.1) and Sec-
tion (3.1.2), respectively. A detailed examination of the acceptance criteria is
given in Section (3.1.4)

Algorithm 1 Large Neighborhood Search

Require: a feasible solution s
1: s∗ ← s
2: while stopping criteria not met do
3: s′ = r(d(s))
4: if accept(s′, s) then
5: s← s′

6: if (c(s) < c(s∗)) then
7: s∗ ← s
8: end if
9: end if

10: end while
11: return s∗.

3.1.1 Destroy Operators

Destroy functions deconstruct part of the initial solution. One key parameter
for an effective search is the degree of destruction q, representing the number
of removed elements from the current solution. If this degree is low, the
heuristic explores only a small part of the space and might have problems in
finding improving solutions. If the parameter is too high, there is the risk of
a total re-optimization, losing the link with the initial solution. Since every
destroy heuristic works on any degree of destruction, the setting and per-
formance of the operator according to the value of q may vary depending
on problem-specific characteristics. In Shaw, 1998, the value is gradually in-
creased at each iteration between two values qmin and qmax, while Ropke and
Pisinger, 2006 choose it randomly inside a predefined range. Some examples
of general destruction heuristics are now presented. Then, Chapter (5) and
Chapter (6) contain a more detailed adaptation to our specific problems.

Random Removal

This heuristic randomly selects q elements (e.g., routes, nodes, or requests)
without considering their role inside the solution. It is primarily practical
when diversification is needed and when it is paired with other removal
heuristics, as is the case of the framework shown in Section (3.2).
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Worst Removal

The idea behind implementing this heuristic is to remove the q elements that
most adversely affect the solution—specifically, those that most degrade the
objective function’s value. An element’s cost is typically determined by com-
paring the solution’s total cost with and without that particular element. Tak-
ing a solution s with objective f (s) and an element r, the cost of the element
is computed as C(r, s) = f (s)− f (s−r), where f (s−r) is the objective of the
solution without the element r. Then, the elements are sorted in descending
order according to their cost; the first is removed, and the costs are updated.
The process is iterated until q elements are removed.

Shaw or Related Removal

This heuristic is initially presented in Shaw, 1998. A number q of elements
is removed based on their similarity. Removing similar elements increases
the chances for the insertion heuristic to reinsert them in shuffled positions
with a little computational cost. How the similarity is computed is highly
problem-tailored. In Shaw, 1998 the presented problem is a Vehicle Routing
Problem where the relatedness function is:

(3.1) R(i, j) =
1

cij + Vij

where cij is the traveling distance to go from node i to node j normalized
in the range [0,1], and Vij is a parameter taking value 1 if the two nodes are
served by the same vehicle, 0 otherwise. In this case, relatedness depends on
the proximity of the visits and whether they are inserted in the same route or
not.

3.1.2 Repair Operators

In Shaw, 1998, the authors propose a Branch-and-Bound heuristic to reinsert
removed nodes. At the same time, Ropke and Pisinger, 2006 implements less
precise but less time-consuming heuristics presented in this section.

Greedy Insertion

This method calculates the cheapest insertion position for each element that
has been previously removed. The insertion cost is computed as the dif-
ference between the solution cost with and without the inserted part. The
elements are then ordered in non decreasing cost and inserted starting from
the first one, computing the new insertion cost at each iteration. It provides
a rapid way to construct or repair solutions, ensuring each step adheres to
a locally optimal criterion. However, like all greedy methods, it might suf-
fer from shortsightedness, potentially getting trapped in local optima. In
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particular, it postpones the insertion of high-cost elements to the end of the
algorithm, where fewer inserting possibilities are available. Taking a routing
problem with N nodes as an example, let us define as ∆ f k

i
as the cost of in-

serting node i into its k− th best route. A greedy insertion would insert the
node j ∈ N that produces the least increase of costs, i.e.

(3.2) j = arg mini∈N∆ f 1
i

Regret Heuristic

To overcome the greedy nature of the previous heuristic, the regret heuristic
incorporates the regret value of not inserting an element in its best position
compared to its second-best, third-best, and so on. A Regret-n heuristic gen-
erally calculates the element with the most significant cost difference, hence
the regret, between the cheapest and the n − 1 position. The highest regret
element is the one with the highest difference, thus the one for which a later
insertion might cause the most significant additional cost. Differently from
the greedy heuristic, in a routing problem the regret considers the difference
in terms of costs between inserting a node into its best route or in its k-th
best. Hence, a Regret-k heuristic inserts node j as:

(3.3) j = arg maxi∈N(
k

∑
h=2

∆ f h
i − ∆ f 1

i )

3.1.3 Initial Solution

The initial solution given as input to the algorithm is strictly problem-related.
It can be obtained through a mathematical model or a heuristic method like
a greedy constructive algorithm.

3.1.4 Acceptance Criterion

In LNS, the acceptance criterion is a critical factor that strongly influences
the quality of the solutions obtained. It is instrumental in enabling the al-
gorithm to accept non-improving solutions, which can be vital in escaping
from local optima and exploring the search space more effectively. Several
different acceptance criteria can be used in LNS, and the choice of criterion
can significantly impact the algorithm’s performance. One of the most fa-
mous ones is the acceptance rule used by Simulated Annealing, first presented
by Laarhoven and Aarts, 1987. The method mimics the man-made process of
metal annealing in which the metal is melted and then slowly cooled down
with a steady decrease in temperature. Based on this, the heuristic idea is
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to accept a worsening solution with a probability related to a current tem-
perature T, that starting from an initial value T0 is decreased at each itera-
tion. This means that at the initial steps, the probability of accepting non-
improving solutions is higher and then reduces. This allows the algorithm to
refine the search at the end, focusing primarily on improving solutions. More
precisely, given a current solution s, the probability of accepting an obtained
solution s′ is computed as

(3.4) e−
f (s′)− f (s)

Tn .

In Equation (3.4), f (s′)− f (s) represents the objective function degradation,
and Tn is the time-dependent global variable representing the temperature at
iteration n that can be computed starting from T0 as

(3.5) Tn = cTn−1 = cnT0

where c ∈ [0, 1] is the cooling rate parameter determining how fast the temper-
ature decreases. Alternatively, other less efficient criteria can be the Random

Walk, where every new solution s′ is accepted, or the Greedy Acceptance, which
agrees with every improving solution. Choosing the proper acceptance cri-
terion is crucial for optimizing the performance of the LNS algorithm. Some
criteria may be more effective for specific problems or solution spaces, while
others may be more robust or easier to implement. In practice, a combination
of acceptance criteria may balance exploration and exploitation of the search
space.

3.2 Adaptive Large Neighborhood Search (ALNS)

The Adaptive Large Neighborhood Search (ALNS) is an advanced meta-
heuristic technique first introduced in Ropke and Pisinger, 2006 in the con-
text of a Pickup and Delivery Problem. It builds upon and extends the Large
Neighborhood Search (LNS) by integrating adaptive mechanisms. These
mechanisms empower ALNS to efficiently explore and exploit the solution
space, making it especially adept at tackling intricate combinatorial opti-
mization challenges. Contrary to the conventional LNS, where a single de-
struction and repair function is employed, ALNS harnesses the power of
multiple heuristics to address a given problem collaboratively. Central to
this approach is a weight-based selection system. This system monitors and
evaluates the performance of each heuristic combination in real-time. Simply
put, heuristic pairs that yield better solutions are given higher probabilities of
being chosen in subsequent iterations. Weights are not static but are instead
periodically adjusted throughout the solution process. These adjustments
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occur at specified intervals called "segments," representing user-defined iter-
ations. The weight adjustment process is detailed in Section (3.2.1). Refer to
Algorithm (2) for a detailed view of the ALNS framework. This structure
expands upon the foundation laid out in Algorithm (1), adding elements
of adaptability. The ALNS algorithm takes an initial solution as input and
works with two sets of operators: destroy operators (Ω−) and repair opera-
tors (Ω+). At each iteration, it selects a pair of these operators based on their
respective weights, w− and w+, and dynamically recalibrates them based on
the solution’s quality.

Algorithm 2 Adaptive Large Neighborhood Search

Require: a feasible solution s, sets of destroy Ω− and repair Ω+ operators.
1: s∗ ← s, w− ← (1, . . . , 1), w+ ← (1, . . . , 1)
2: while stopping criteria not met do
3: select destroy d ∈ Ω− and repair r ∈ Ω+ operators using weights w−

and w+

4: s′ ← r(d(s))
5: if accept(s, s′) then
6: s← s′

7: end if
8: if c(s′) < c(s∗)) then
9: s∗ ← s

10: end if
11: update w− and w+

12: end while
13: return s∗.

3.2.1 Weight Adjustment

To improve the performance of a heuristic in resolving a problem, it is es-
sential to adjust the weights of the heuristics used dynamically. One exam-
ple of this is the Roulette wheel selection principle presented in Ropke and
Pisinger, 2006, where a set of h heuristics with weight wk, k = {1, . . . , h} is
used to select a function i in the set, based on the probability of its weight rel-
ative to the sum of all the weights. This means that the higher the operator’s
weight, the higher the chances of it being selected.

During the search process, the weights of the heuristics are automatically
adjusted based on the scores of the heuristics recorded during iterations. The
scores measure how well the heuristics perform, with a higher score indicat-
ing a more successful heuristic. The search is divided into segments, which
represent the number of iterations, where the scores are all set to zero at the
beginning of a segment, and the weights are adjusted using the recorded
scores at the end of the segment.
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The score of a pair is increased based on the quality of the solution found
at a specific iteration, with three possible increments:

• Ã1: the remove-insert pair resulted in a new global solution;

• Ã2: the remove-insert pair resulted in a solution that was not accepted
before but had an improving cost relative to the current solution.

• Ã3: the remove-insert pair resulted in a solution that was not accepted
before, has a non-improving cost, but is still accepted.

Cases Ã1 and Ã2 are considered successful, as the pair improved the current
solution by finding a never-visited solution, thereby promoting exploitation
in the search space. The third case rewards the pair of heuristics that found
a non-improving but never-visited solution, promoting diversification in the
search space.

Once the scores are recorded during a segment j, the weights that will be
used in segment j + 1 are computed based on equation (3.6):

(3.6) wi,j+1 = wij(1− ρ) + ρ
πi

Θi

where πi is the score of heuristic i in segment j, and Θi is the number of
times the heuristic i has been used. The reaction factor ρ adjusts the weight
variation’s sensitivity based on the heuristic’s effectiveness. When ρ = 0,
the weights are never updated among segments, while at the increase of the
factor, the weights tend to be equal to the score of the last segment.

3.3 Dynamic Approaches

In this section, we explore the two predominant methodologies utilized along-
side ALNS in our research to address complex problems, especially those
plagued with uncertainty. Uncertainty in real-world situations often means
not all information is available or guaranteed. These methodologies help
simulate such scenarios to ascertain the effect of uncertainty on problem-
solving and the ultimate solutions derived.

Firstly, we address dynamic approaches. These methods’ core is the recog-
nition that real-world problems are constantly evolving. Traditional static so-
lutions might be inadequate because they don’t adjust or adapt to changing
inputs or environments. By employing dynamic approaches, we ensure that
solutions are flexible and can respond to variations. The work of Psaraftis,
1995, provides a comprehensive overview of the dynamic aspects that can
be incorporated in dynamic vehicle routing problems. The author catego-
rizes the characteristics of the problem that can be deterministic, such as the
number of nodes, vehicles or the distances matrix, from the others that are
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subjected to uncertainty and become dynamically known during the routing
process, such as travel times or nodes’ demand. The latter category can be ei-
ther forecasted through historical data, drawn by probabilistic distributions
or revealed on real-time during the process.

Within the realm of dynamic approaches, an effective heuristic is the My-
opic Dynamic Heuristic (MDH), discussed in detail in Section (3.3.1). The
MDH exemplifies how a purely dynamic structure can be integrated into
problem-solving. It operates on a short-sighted basis, making decisions that
seem best at the present moment without extensive foresight into the future.
This can be particularly valuable when immediate response is paramount
and waiting for complete data is not feasible.

On the other hand, we also explore Multi-Scenario Approaches. These
are essential when dealing with uncertainties as they offer a broader per-
spective by analyzing multiple potential scenarios arising from uncertain
data or conditions. Instead of basing decisions on a single expected out-
come, multi-scenario methods assess various outcomes, providing a compre-
hensive view of potential risks and rewards. Specifically, in Section (3.3.2),
we focus on the Multi-Scenario-Based Progressive-Fixing (MSB-PF), a novel
method highlighted in this thesis. This approach aims to find solutions that
perform well across various plausible scenarios rather than optimizing for
just one. In our exploration, both small instances for economic analysis and
larger ones using ALNS have been solved, demonstrating the versatility and
applicability of these methods. Both methods are applied to the problem "A

Dynamic Multi-Period Home Healthcare Problem with Consistency Constraints"

presented in Section (6).

3.3.1 Myopic Dynamic Heuristic (MDH)

The Myopic Dynamic Heuristic (MDH) is presented by Hvattum et al., 2006
to solve a Dynamic and Stochastic Vehicle Routing Problem. The term myopic

refers to the fact that the approach considers the problem as purely dynamic
without using any knowledge about future events or any stochastic informa-
tion. In practice, it considers a series of static and deterministic subproblems,
obtained by dividing the main problem into decision epochs, moments in
which replanning is allowed and new decisions are taken, updating infor-
mation considering only the known information. The solution obtained at
each decision epoch is used as input to the following, adding available infor-
mation and fixing the already taken decisions. In our thesis, we use the MDH
to solve the Multi-Period Dynamic Nurse Routing Problem with Consistency
Constraints (MPDNRP-CC) presented in Chapter (6) where the objective is to
create a set of routes to serve patients with requests that become known dur-
ing the time horizon. We set each decision epoch at the end of the working
day, and the known information is the patients’ requests already arrived at
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the decision maker. Routes of the previous days can’t be changed, and new
decisions involve only the routes of the following day. Each subproblem is
solved using the ALNS. In Algorithm (3), the decision process of MDH is
detailed.

Algorithm 3 Myopic Dynamic Heuristic (MDH)

1: for each decision epoch do
2: Formulate a static and deterministic sub-problem with known pa-

tients and fix the variables corresponding to decisions that have already
been made.

3: Solve the problem using the ALNS of Algorithm (2).
4: Use the solution as the new plan for the overall problem.
5: end for

The MDH can be used to obtain a fast benchmark for the overall prob-
lem, and it represents the application most similar to the real-world standard
practice. However, due to its myopic nature, it tends to create good-quality
solutions, overlooking the long-term consequences of initial decisions.

3.3.2 Multi-Scenario-Based Progressive Fixing (MSB-PF)

In our research, we have employed the Multi-Scenario-Based Progressive
Fixing (MSB-PF), a heuristic method based on the traditional Multi-Scenario
Approach (MSA) initially proposed by Bent and Van Hentenryck, 2004 and
the Branch and Regret Heuristic (BRH) by Hvattum et al., 2007. The MSA
framework is specifically tailored to address the intricacies inherent in re-
solving partially dynamic vehicle routing problems involving stochastic cus-
tomer behavior. The primary objective of employing MSA is to leverage the
wealth of stochastic information available when dealing with routing prob-
lems characterized by dynamic and stochastic attributes. At the core of the
MSA technique is the concept of crafting multiple sample scenarios. Each
scenario encapsulates all the known information and accommodates poten-
tial future data by drawing from relevant probability distributions. At each
decision point, these scenarios are tackled as if they are static and determin-
istic. This means they are treated as problems with fixed, known outcomes.
After solutions for all scenarios are obtained, the challenge is to pick the most
indicative of the future. This chosen solution becomes the input solution for
the decisions made in the next phase. In the original MSA method, this "most
indicative" scenario is determined using a consensus function, which mea-
sures which scenario aligns most closely with the rest.

The BRH, instead, maintains the use of sample scenarios from the MSA
but improves the evaluation of stochastic information. Rather than choosing
one scenario as representative of future events, the BRH branches on all the
possible decisions that can be made in a decision epoch and then selects one
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of the branches according to a regret criterion. For better understanding, let
us give an overview of the specific application used by Hvattum et al., 2007
for a Stochastic and Dynamic Vehicle Routing Problem in which customers
may place orders at any time during the day, and the objective is to maxi-
mize the served customers while minimizing the number of vehicles and the
traveled distance. The working day is divided into decision intervals, and at
each interval, the BRH works on two different levels of decisions. The first
level objective is to decide which customers to visit during the current inter-
val and which to postpone. Then, the most frequent customer-vehicle pair is
fixed for the customers that have to be served in the interval. A decision is
evaluated by solving the sample scenarios with the current decision and with
all the alternatives. For each alternative, the resulting solutions are evaluated
on the problem objective function and averaged over the set of sample sce-
narios. The alternative with the best average value is selected. In Algorithm
(4), the decision process is detailed.

Algorithm 4 Branch and Regret Heuristic (BRH)

1: for each decision epoch do
2: Lock all previous decisions.
3: create the set of sample scenarios S
4: for each scenario s ∈ S do
5: solve s
6: end for
7: while there are decisions to take do
8: select a decision d.
9: create the set Φ(d) of alternatives of d.

10: for each alternative ϕ ∈ Φ(d) do
11: for each scenario s ∈ S do
12: solve scenario sϕ with decision ϕ locked.
13: end for
14: Compute the regret cost of ϕ.
15: end for
16: lock the least regret action ϕ.
17: end while
18: end for

Our MSB-FP heuristic includes the generation of multiple scenarios as in
the MSA approach but disregards the decision process based on consensus
functions using the branching technique present in the BRH. However, due
to the computational burden of considering all the possible alternatives for
all the possible sample scenarios, we modify the decision using a progressive

fixing of information. Precisely, as in the BRH, the Algorithm starts with solv-
ing the sample scenarios to find the most common decision. Then, instead of
re-evaluating all the scenarios on all the alternatives, in the MSB-PF, this de-
cision is fixed, and the resolution moves either to the next decision that has to
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be taken or to the next decision epoch. Each sub-problem is solved using the
ALNS presented in Section (3.2). Algorithm (5) shows the general decision
process.

Algorithm 5 Multi-Scenario-Based Progressive Fixing (MSB-PF)

1: for each decision epoch do
2: Create the set of sample scenarios S
3: while there are decisions to make do
4: Fix all previous decisions.
5: for each scenario s ∈ S do
6: solve s
7: end for
8: select the decision d with more consensus among scenarios
9: add decision d to locked decisions

10: end while
11: end for

The specific application of the MSB-PF is detailed in the problem of Chap-
ter (6) in the Section (6.4.3).
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4.1 Introduction

In the context of home healthcare (HHC) systems, the notion of fairness is
multifaceted and varies in significance based on the stakeholders involved.
Fairness within the workplace boosts the morale and productivity of employ-
ees such as nurses and medical professionals, fostering greater job engage-
ment. Conversely, patient safety and satisfaction, widely recognized as key
metrics in HHC, reflect the standard of care provided. A fair environment
for patients and care workers is critically essential for HHC organizations.
According to public data, the HHC industry is expected to see considerable
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expansion shortly. The World Health Organization projects that by 2050, the
global population aged 60 and over will double, representing 22% of the to-
tal population. This demographic shift, along with progress in medical tech-
nologies and broader healthcare accessibility, is anticipated to escalate the
need for HHC services. In Italy, for instance, about 2.7% of the population
aged 65 and older are currently utilizing HHC services, a statistic mirrored
in several other European countries. These statistics highlight the need of
an evolving system open to the incorporation of different perspectives. This
includes looking beyond just the minimization of costs, adopting an inclu-
sive approach that considers the point of view of the external stakeholders
such as patients’ needs and nurses’ satisfaction. By doing so, home health-
care systems can evolve to meet the increasing demands of the sector while
maintaining a balance between cost-effectiveness and fair, quality care for
all involved. In this chapter, we aim at analyzing the impact that switching
the perspective from the costs to fairness achievement could have on the op-
erational activities of a Territorial Operations Center (TOC), a district-level
authority tasked with the management of patient care through the deploy-
ment of a fleet of professional caregivers. The study models a single-period
Nurse Routing Problem (NRP) to introduce the concepts of fairness. We ex-
amine various fairness metrics pertinent to the two primary entities involved
other than the TOC, and model these via min/max objective functions. The
first entity, the nurse, is central to our analysis. When prioritizing nurses, our
objectives are:

• Workload Fairness: this aspect emphasizes the desire of nurses for a
balanced distribution of tasks. Achieving this involves minimizing the
maximum total service time or the maximum time spent on daily tasks
outside the hospital by all nurses.

• Fairness in Preferred Working Zone: nurses generally prefer to work
in areas that are more accessible based on their transportation means.
This involves allocating zones in such a way that the maximum ranking
level of zones assigned to nurses is minimized, based on their prefer-
ences.

• Fairness in Qualification Level: it is crucial for nurses to perform tasks
that match their qualification levels. A fair distribution in this regard
means minimizing the maximum discrepancy from the ideal qualifica-
tion level for each service assigned to nurses, ensuring that they are not
relegated to tasks below their skill level.

The patients represent the other relevant actor. Their care, encompassing re-
habilitation or post-discharge follow-up plans, necessitates a daily optimiza-
tion of visits. This optimization incorporates various aspects of fairness, with
a focus on patient-centric goals:
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• Fairness in visiting time windows: the objective here is to align the
timing of services provided to a patient as closely as possible with a
pre-established time window. The fairness goal minimizes the maxi-
mum sum of early and late deviation from the scheduled visiting time
window computed for all patients;

• Fairness in waiting time: when a patient receives more than one service
and does not want to wait too much between the first and the last ser-
vice’s execution. The fairness goal minimizes the maximum idle time
endured by all patients;

• Fairness in nurse assignment consistency: patients often prefer conti-
nuity in their care, desiring the same nurse for all services. To satisfy
this preference, the aim is to minimize the number of nurses attending
to patients needing multiple services.

• Fairness in adequacy level: patients expect to receive care from nurses
whose qualifications match the required level of service. The goal is to
minimize the gap between the lowest average adequacy level assigned
to each patient and the highest possible qualification level.

This chapter is organized as follows. Section (4.2) describes the studied
problem and Section (4.3) gives the mathematical formulation, whereas Sec-
tion (4.4) introduces the different fairness measures related to nurses and pa-
tients and their mathematical formulations. Section (4.5) analyzes the results
obtained when using the different fairness measures and draws some inter-
esting managerial insights. Finally, Section (4.6) provides conclusions and
future developments.

4.2 Problem Description

In our study, we examine the daily operational activities of routing and schedul-
ing of a TOC. A non-trivial task is to meet different stakeholders’ often con-
flicting needs and expectations while minimizing operational costs. For in-
stance, the needs of patients might not align with the one of the hospitals pro-
viding the service or with the fleet of nurses performing visits. Specifically,
our research delves into the daily organization of patient visits conducted
by the TOC fleet of nurses at their homes. The process includes scheduling
and routing nurses to various patient locations, taking into account factors
such as the nurses’ skills, travel time, and the specific healthcare needs of
each patient. The aim is to optimize these visits to maximize patient care
while being mindful of the constraints and resources of the healthcare sys-
tem, particularly the hospital and its nursing staff. We perform a double
analysis in which, starting from the traditional problem of minimizing costs
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we try to incorporate different perspectives through a switch in the objec-
tive function. The needs of the other stakeholders other than the hospital are
modeled through the concept of fairness. Patients require a fair and impar-
tial care delivery while nurses seek an equitable working environment. The
main indicators to measure fairness for each stakeholder and their mathe-
matical formulation are detailed in Section (4.4). The standard model can be
formulated as a NRP characterized by a set of nurses tasked with visiting a
set of patients over the territory. The activities are planned daily and, during
the day, patients might require more than one visit. Visits have a predefined
service time and do not need to be performed by the same vehicles. Nurses
are characterized by different levels of specialization, yet they can perform
any visit. The objective of the problem is to find a set of routes that mini-
mizes the total traveling time without exceeding the working time limit.

The problem can be defined over a complete graph G = (V, A), where
V = {0} ∪ {1, ..., n} is the node set, and A = {(i, j) : i, j ∈ V; i ̸= j} is
the arc set. N = {1, ..., n} represents the set of services requested by pa-
tients, whereas 0 is the hospital (starting and ending point for the routes
of the nurses). Let K be the set of nurses and P the set of patients. Node
set N is partitioned into |P| disjoint and non-empty subsets Np, p ∈ P, i.e.
N = ∪p∈PNp and Np ∩ Np′ = ∅ for p ̸= p′. Nodes belonging to the subset
Np represent the set of services required by patient p ∈ P and have the same
location. A positive service time si is associated with each patient’s service
i ∈ N. We define as tij the non-negative time needed to travel from node i

to node j, where tij = 0 for all i, j ∈ Np, p ∈ P. Each nurse has a working
time threshold equal to Tmax. We assume that travel times satisfy the triangle
inequality. The NRP assigns nurses to patients by scheduling their visits in
a set of routes (starting and ending at node 0) such that each service is satis-
fied by precisely one nurse and the global traveling time is minimized while
complying with nurses’ working time limit.

4.3 Mathematical Formulation

In this section, we first present the decision variables and the formulation of
the standard NRP. Then, in Section (4.4), we detail how the various fairness
measures are formulated and inserted in the standard model. We define three
distinct sets of variables. For each arc (i, j) ∈ A and each vehicle k ∈ K we
define the binary variable as follows:

• xk
ij =

{

1, if arc (i, j) is traversed by vehicle k

0, otherwise.

The second set contains, for each node i ∈ N and each vehicle k ∈ K the
binary variable:
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• yk
i =

{

1, if nurse k performs a visit on node i

0, otherwise.

The third set contains the continuous variables zij for each arc (i, j) defin-
ing the arrival time at node j when arriving from node i. For each set S ¢ N,
let δ+(S) = {(i, j) ∈ A : i ∈ S, j /∈ S} and δ−(S) = {(i, j) ∈ A : i /∈ S, j ∈ S}
be the set of arcs leaving and entering set S, respectively, with a special case
where |S| = 1 indicated as δ+(i) = δ+({i}) and δ−(i) = δ−({i}).

The model can be formulated as follows:

(NRP) min ∑
(i,j)∈A

tijx
k
ij(4.1)

Subject to:

∑
(i,j)∈δ+(i)

xk
ij = ∑

(j,i)∈δ−(i)

xk
ji = yk

i i ∈ N, k ∈ K(4.2)

∑
k∈K

yk
i = 1 i ∈ N(4.3)

∑
(0,j)∈δ+(0)

xk
0j = ∑

(j,0)∈δ−(0)

xk
j0 f 1 k ∈ K(4.4)

∑
(i,j)∈δ+(i)

zij − ∑
(j,i)∈δ−(i)

zji = ∑
k∈K

∑
(i,j)∈δ+(i)

(si + tij)xk
ij i ∈ N(4.5)

z0j g t0j ∑
k∈K

xk
0j j ∈ N(4.6)

(t0i + si + tij) ∑
k∈K

xk
ij fzijf (Tmax− tj0 − sj) ∑

k∈K

xk
ij (i, j) ∈ A(4.7)

zij g 0 (i, j) ∈ A(4.8)

xk
ij ∈ {0, 1} (i, j) ∈ A, k ∈ K(4.9)

yk
i ∈ {0, 1} i ∈ N, k ∈ K(4.10)

The objective function (4.1) minimizes the operational costs of the hospi-
tal computed as the Total Travelling Time (TTT). Constraints (4.2) regulate
the arc flow in visit nodes, imposing that if a vehicle k is assigned to node i,
exactly one arc can enter and leave from it. Constraints (4.3) guarantee that
each node (each service) is visited (is executed) exactly once by one nurse.
Constraints (4.4) impose that at maximum |K| nurses vehicles start from the
starting node 0 and come back. Constraints (4.5) ensure that, if a nurse k

serves node j immediately after node i (i.e. xk
ij = 1), then the time elapsed

between the arrival times in the two nodes is equal to the execution time
ti required to serve node i plus the travel time tij to move from node i to
node j. Constraints (4.6) set a bound on the minimum time required to reach
the starting node after the depot, whereas constraints (4.7) define lower and
upper bounds on the arrival time and duration of each route. Finally, con-
straints (4.8)– (4.10) impose nonnegative and binary conditions on variables.
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The creation of subtours is prevented by constraints (4.5)–(4.7). Moreover,
we strengthened the formulation by adding the following connectivity con-
straints from Hanafi et al., 2020:

(4.11) ∑
(i,j)∈δ+(S)

xk
ij g yk

s S ¦ N, |S| g 2, k ∈ K, s ∈ S.

Finally, it is worth noticing that, to correctly model some of the fairness
objectives discussed in the next section, we need to identify which nurse pro-
vides which service for each patient. For this reason, we use a three-index
formulation. Alternatively, one can avoid this by duplicating the depot a
number of times equal to the number of nurses, thus separating the starting
and ending depot for each nurse in a fictitious way as referenced in Luo et al.,
2015.

4.4 Fairness Measures

In this section, we introduce several objective functions expressed through
min/max formulations classified according to the main stakeholder they re-
fer to.

For the sake of space, we do not provide the entire model formulation
associated with each function. Instead, we introduce the objective function
and additional constraints to extend the model in (4.2)–(4.10).

4.4.1 Nurse-centered measures

From the viewpoint of nurses, implementing fairness measures is essential
for ensuring that the distribution of workload is balanced and that service
assignments are equitable. These measures must reflect the nurses’ skills and
experience. By optimizing these aspects, we not only foster fair treatment of
the nursing staff but also enhance patient satisfaction and the quality of care
provided.

Four primary fairness measures are considered in our approach: the bal-
ance of workload, evaluated in terms of Total Time (TTW) and Service Time
(STW), the equitable allocation of Working Zones (PWZ) based on the prefer-
ences of nurses, and the assignment of tasks that align with the nurses’ level
of qualification (NQL).

Total Time Workload (TTW) and Service Time Workload (STW)

In the workload distribution, fairness is achieved by minimizing the max-
imum workload wmax assigned to nurses. The workload for each nurse is
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quantified in two ways: firstly, as the service time workload, which encom-
passes the total duration a nurse spends in attending to their assigned pa-
tients, and secondly, as the total working time, defined by the time of return
to the TOC. In both cases, we formulate a min-max problem as follows:

min wmax(4.12)

wk f wmax k ∈ K(4.13)

wk g 0 k ∈ K(4.14)

where wk can be defined either as the service time workload of nurse k using
constraints (4.15) or her/his total working time expressed as traveling time
plus service time, using constraints (4.16):

∑
i∈N

siy
k
i = wk k ∈ K(4.15)

∑
(i,j)∈A

tijx
k
ij + ∑

i∈N

siy
k
i = wk k ∈ K(4.16)

Fairness on Preferred Working Zone (PWZ)

Nurses often have varying preferences for different zones within the same
district, as these zones may differ in accessibility. For example, a nurse who
doesn’t own a car might prefer not to be assigned to areas with sparse pub-
lic transport options. To model these preferences, we assign a set of positive
integer numbers γik for each nurse k and each service i, indicating the pref-
erence level for the zone associated with the service. A rank value equal to
1 corresponds to the best possible level. If two services i and j are located in
the same zone, then γik = γjk, for each nurse k ∈ K. The formulation for this
fairness goal is:

min zonmax(4.17)

zonmax g zonk k ∈ K(4.18)

zonk g γikyk
i k ∈ K, i ∈ N(4.19)

zonk g 0 k ∈ K(4.20)

zonmax g 0(4.21)

Variable zonk will take the maximum γik value (worst ranking position)
among all services i ∈ N directly assigned to nurse k (i.e., max{γik|y

k
i = 1, i ∈

N}).
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Fairness on Nurse Qualification Level (NQL)

Regarding the skill levels of nurses, it’s noted that they possess varied qualifi-
cations, with certain nurses being more adept and comfortable in performing
specific services compared to others. We indicate as ρik the qualification level

of nurse k ∈ K in executing service i ∈ N. This coefficient takes an integer
value between 1 (lowest level) and ρ (the highest level, equal to 5 in our case).
The present fairness measure aims at equitably assigning nurses to services
according to their qualification:

min qmax(4.22)

qmax g qk k ∈ K(4.23)

qk g ρ− ρikyk
i k ∈ K, i ∈ N(4.24)

qk g 0 k ∈ K(4.25)

qmax g 0(4.26)

where variable qk represents the maximum difference between the best value
ρ and each value ρik among those related to services assigned to nurse k (i.e.,
all i ∈ N for which yk

i = 1). Variable qmax takes, according to the constraints
(4.23) and the objective function, the maximum of qk out of all nurses k ∈ K.

4.4.2 Patient-centered measures

Ensuring fairness in patient care involves providing services equally, and
avoiding any form of prioritization. To this end, we have developed three
distinct equity measures that facilitate equitable service delivery in various
aspects, ranging from consistency in nursing to scheduling of visits. The key
measures identified are: equity in Visiting Time Windows (VTW) expressed
as earliness or lateness in respect to patients’ time windows; equity in Pa-
tient Waiting Time (PWT) as a measure of fairness balancing the maximum
idle time between visits of a patient; Nurse Adequacy Level (NAL) as a mea-
sure of fairness in assigning nurses based on their qualifications compared
to patients’ needs, and Nurse Assignment Consistency (NAC) guarantees a
limited number of nurses for each patient.

Equity in Visiting Time Windows (VTW)

This fairness measure helps model in a fair way the time in which the pa-
tients receive their visits. Let [ap, bp] be the time window in which patient
p ∈ P would like to receive his/her visits. We model as ei and li two continu-
ous variables, for each service i ∈ N, that measure the earliness and lateness
in executing the service concerning the assigned time window, respectively.
The fairness goal is to balance the total lateness and earliness among all pa-
tients. We introduce continuous variable tp which measures the total lateness
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and earliness for each patient p ∈ P and variable tmax, representing the max-
imum tp value among all the different patients p ∈ P. The formulation is as
follows:

min tmax(4.27)

tp f tmax(4.28)

tp g ∑
i∈Np

(ei + li) p ∈ P(4.29)

ap − ej f ∑
(i,j)∈δ−(j)

zij f bp + lj p ∈ P, j ∈ Np(4.30)

ei g 0, li g 0 i ∈ N(4.31)

tp g 0 p ∈ P(4.32)

tmax g 0(4.33)

Constraints (4.30) model the time window assigned to each service j ∈ Np,
for each patient p ∈ P. Notice that, if the arrival time at node j, measured by
∑(i,j)∈δ−(j) zij, is included in the time window [ap, bp], the values of ei and li
are forced to zero by the objective function.

Equity in Patient Waiting Time (PWT)

A crucial aspect of time-related fairness in patient care involves reducing the
waiting period between consecutive visits to the same patient. Especially in
cases where a patient needs multiple visits, it’s preferable to conduct these
visits with minimal delay.

To achieve this, our focus is on promoting fairness by aiming to minimize
the maximum idle time represented by the non-negative variable idlemax.
This variable represents the interval between the start of the first service and
the end of the last service to which it is substracted the time to serve the pa-
tient as in constraints (4.36). By doing so, we ensure that patients are not left
waiting unnecessarily long between visits, thereby enhancing the efficiency
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and responsiveness of the care provided.

min idlemax(4.34)

idlep f idlemax p ∈ P(4.35)

idlep g highp − lowp − ∑
i∈Np

si p ∈ P(4.36)

lowp f ∑
j∈δ−(i)

zji i ∈ Np(4.37)

highp g ∑
j∈δ−(i)

zji + si i ∈ Np(4.38)

idlep g 0, lowp g 0, highp g 0 p ∈ P(4.39)

idlemax g 0(4.40)

where variables lowp and highp are the earliest starting time and the latest
concluding time for all services required by patient p ∈ P, and their differ-
ence net of the service times (nonnegative variable idlep) measures the idle
time for the same patient.

Equity in Nurse Assignment Consistency (NAC)

In practical scenarios, there’s generally no limit to the number of nurses that
can attend to a single patient. This function aims to prevent situations where
some patients receive care from a higher number of nurses than others who
require a similar level of service. To create a fair environment, we minimize
the maximum number of nurses assigned to patients needing multiple vis-
its. We define complete consistency as the possibility that the same nurse
provides all the services for a given patient. Such consistency becomes par-
ticularly critical during health crises like the COVID-19 pandemic, as it sig-
nificantly reduces the risk of contamination. In our model, a solution is con-
sidered fair if it is close to guarantee complete consistency. By maintaining
this consistency, we aim to elevate the level of service provided and simulta-
neously minimize the risk to the patient.

Following Kovacs et al., 2015b, we minimize a variable kmax representing
the maximum number of nurses assigned to patients as follows:

min kmax(4.41)

kmax g ∑
k∈K

rpk p ∈ P(4.42)

rpk g yk
i p ∈ P, i ∈ Np, k ∈ K(4.43)

rpk ∈ {0, 1} p ∈ P, k ∈ K(4.44)

kmax g 0(4.45)
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where binary variable rpk takes value 1 if nurse k visits patient p. Notice that,
according to (4.43), rpk is forced to 1 if at least one of the binary variables
yk

i takes value 1, indicating that nurse k has performed at least one of the
services i ∈ Np.

Equity in Nurse Adequacy Level (NAL)

Patients have a strong interest in receiving highly specialized services. The
more qualified a nurse is for a particular service, the higher the patient’s
perceived adequacy level of the service. As already explained, ρik is the qual-
ification level of nurse k with respect to service i. We indicate as adqmax the
continuous variable representing the worst adequacy measured as the dif-
ference between the maximum possible qualification level ρ and the average
level of qualification assigned to each patient. The higher such difference, the
lower the adequacy of the service. The goal is to minimize such value:

min adqmax(4.46)

adqmax g ρ−
1
|Np|

∑
k∈K

∑
i∈Np

ρikyk
i p ∈ P(4.47)

adqmax g 0(4.48)

Constraints (4.47) impose that adqmax has to be greater than or equal to the
difference between ρ and the average qualification level assigned to each pa-
tient p ∈ P and computed out of all ρik values of nurses performing all the
services i ∈ Np.

4.5 Computational Results and Managerial Insights

This section details the results achieved by employing various fairness mea-
sures as objective functions in a standard NRP. We assess their impact on the
overall structure of the solutions and the total costs, quantified here as the to-
tal traveled time (TTT) expended by nurses in completing their tasks. Section
(4.5.1) presents the structure of the benchmark instances used in the study,
while Section (4.5.2) gives an extensive analysis of the correlation that can be
found among different measures. In particular, we draw conclusions on the
effect that each fairness measure has on the others when optimized and we
gives some insight on the correlation that can exist between measures of dif-
ferent stakeholders. The experiments were conducted on a Ubuntu 20.04.2
system, powered by an AMD Ryzen 9 3950x CPU, featuring 16 cores, 32
threads, and equipped with 32 GB of RAM. The optimization tasks utilized
Gurobi 9.1.2 for mixed integer linear programming (MILP). All test cases
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were resolved to their optimal solutions within one hour. The only excep-
tions were instances with |N| = 30 and |N| = 40 when applying fairness
measures TTW and VTW as objectives.

4.5.1 Instances Generation

We performed the experiments on a total of 30 benchmark instances that dif-
fer from the number of nodes |N|, the number of vehicles |K|, and the max-
imum number of services that can be required by a patient |F|. Table (4.1)
reports the structure and the size of the instances. The column Pat. indicates
the average number of patients among the instances, and the column #Inst.
indicates the number of instances generated per each tuple (|N|, |K|, |F|). Pa-
tients’ locations have been randomly generated within a geometrical square
in such a way that the maximum travel time between any two nodes is equal
to 120 minutes. The geographical area is divided into 16 zones for which the
nurses display their preferences. The duration of a service denoted as si for
a visit i within the set N varies based on the patient’s required service type.
We categorize these services into three types: the short service, lasting be-
tween 5 to 15 minutes, the medium service, with a duration ranging from 16
to 30 minutes, and the long service, taking between 31 to 45 minutes. The
maximum working shift of the nurses Tmax equals 8 hours.

TABLE 4.1: Instances: structure and size.

|N| |K| |F| Pat. #Inst

20 2 2 13 10
30 3 2 20 10
40 3 3 21 10

In Table (4.2), we report the average time required to reach optimality. It
is worth noticing how STW and VTW have a much higher average time than
the other objectives, reaching the time limit for every instance for |N| = 40.

|N| TTT TTW STW NQL PWZ NAC VTW PWT NAL

20 6 1 351 12 7 2 706 4 100
30 114 5 3241 35 24 14 3342 30 16
40 403 85 3600 122 92 56 3600 283 191

TABLE 4.2: Computational Times (s)

4.5.2 Fairness Measures correlation

To explore the correlation between different fairness measures, we approach
each instance by solving it with every possible fairness objective. Once we
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obtain a solution for a specific objective function, we are interested in the
value that the non-optimized measures assume. Let us define as z

obj
f air the

value that the measure f air assume when function obj is being optimized.
Table (4.3) reports all the obtained values of z

obj
f air. Row caption (from now on

obj) indicates the fairness measure used as objective function, the remaining
measures ( f air) are listed in the columns.

|N| TTT TTW STW NQL PWZ NAC VTW PWT NAL

20

TTT 297.9 415.2 22.1 3.1 11.0 1.0 660.0 0.0 3.1
TTW 310.1 359.9 21.8 3.1 12.0 1.3 587.3 47.4 3.1
STW 501.4 462.8 19.4 3.1 11.6 1.9 496.8 224.0 3.1
NQL 479.7 470.6 23.0 1.4 11.2 2.0 575.2 264.9 1.4
PWZ 426.5 463.4 22.9 3.1 6.7 1.3 528.2 114.4 2.9
NAC 489.6 466.2 21.3 3.3 11.4 1.0 566.8 215.6 3.2
VTW 513.7 473.6 20.5 3.3 12.0 1.8 63.9 43.2 3.2
PWT 456.2 448.6 20.8 3.1 11.6 1.8 657.1 0.0 3.1
NAL 465.7 468.6 22.7 9.5 11.4 2.0 555.3 219.8 1.0

30

TTT 345.6 469.1 28.5 3.9 9.5 1.0 534.4 0.0 3.9
TTW 438.5 339.8 21.4 3.9 12.0 1.7 598.0 91.9 3.9
STW 775.9 464.6 18.8 3.9 12.2 2.0 571.4 291.4 3.9
NQL 747.2 468.8 24.5 1.1 13.1 2.0 540.8 268.8 1.1
PWZ 655.4 468.2 23.9 3.9 5.2 2.0 614.7 239.1 3.9
NAC 718.5 465.0 21.5 3.9 11.6 1.0 631.9 200.9 3.9
VTW 806.9 472.9 21.2 3.9 12.2 2.0 82.6 86.8 3.9
PWT 738.9 463.4 20.7 3.9 12.5 2.0 664.9 0.0 3.9
NAL 730.0 474.7 24.1 1.5 12.9 2.0 538.9 285.8 1.1

40

TTT 312.6 471.1 38.0 5.6 17.6 1.0 817.2 3.3 3.2
TTW 397.6 354.7 28.5 3.5 13.2 1.9 772.6 111.9 3.2
STW 727.9 473.6 24.8 3.5 14.0 2.6 718.0 327.3 3.4
NQL 717.7 474.6 28.3 1.3 13.9 2.5 700.9 330.2 1.3
PWZ 638.9 471.7 30.1 3.5 5.9 2.0 695.7 300.3 3.4
NAC 665.2 469.3 29.7 3.5 13.2 1.0 818.3 253.2 3.3
VTW 730.7 474.1 27.9 3.5 13.7 2.3 128.1 144.2 3.4
PWT 676.3 469.8 29.3 3.5 14.0 2.1 775.4 0.0 3.4
NAL 726.0 474.9 27.4 1.9 13.7 2.2 779.3 258.3 1.1

TABLE 4.3: Value of different measures at the variation of the
optimized function, divided per |N|

For example, taking |N| = 30 nodes, when PWZ is optimized the function
STW has a value of 23.9 that corresponds to zPWZ

STW = 23.9. The highlighted

entrances on the diagonals correspond to z
obj
obj, more precisely, the value of a

fairness measures when it is optimized. It can be noticed how these corre-
spond to the lowest value in each column, meaning that every function has
its best fairness level when it is optimized as an objective. Analyzing the ta-
ble column by column offers insights into the varying outcomes a function
can achieve, whether it is the main focus of optimization or not. For exam-
ple, in the column dedicated to PWT, which tracks patient waiting time, the
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number drops to 0 when PWT is the primary objective. However, this mea-
sure can escalate to as high as 330.2 as in instances with |N| = 40 and PWZ
as main objective.

However, the pure values of z
obj
f air do not give any immediate insight into

the impact that a switch in the objective function has on the fairness results.
For this reason, we measure the improvement that each function has on a
specific obj compared to its worse case. Let us define, as objW the measure obj

that provides the worst outcome for a specific measure f air. We computed
the percentage improvement of z

obj
f air for various obj as :

(4.49) ∆%( f air, obj) =
z

obj
f air − z

objW

f air

z
objW

f air

∗ 100

Table (4.4) reports the results of these improvements for all the combina-
tions of obj and f air.

|N| TTT TTW STW NQL PWZ NAC VTW PWT NAL

20

TTT 42.0 12.3 3.9 67.4 8.3 50.0 0.0 100.0 1.6
TTW 39.6 24.0 5.2 67.4 0.0 35.0 11.0 82.1 1.6
STW 2.4 2.3 15.7 67.4 3.3 5.0 24.7 15.5 1.6
NQL 6.6 0.6 0.0 85.3 6.7 0.0 12.8 0.0 57.1
PWZ 17.0 2.2 0.4 67.4 44.2 35.0 20.0 56.8 7.9
NAC 4.7 1.6 7.4 65.3 5.0 50.0 14.1 18.6 0.0
VTW 0.0 0.0 10.9 65.3 0.0 10.0 90.3 83.7 0.0
PWT 11.2 5.3 9.6 67.4 3.3 10.0 0.4 100.0 1.6
NAL 9.3 1.1 1.3 0.0 5.0 0.0 15.9 17.0 69.8

30

TTT 57.2 1.2 0.0 0.0 27.5 50.0 19.6 100.0 0.0
TTW 45.7 28.4 24.9 0.0 8.4 15.0 10.1 68.5 1.3
STW 3.8 2.1 34.0 0.0 6.9 0.0 14.1 0.0 1.3
NQL 7.4 1.2 14.0 71.8 0.0 0.0 18.7 7.8 71.8
PWZ 18.8 1.4 16.1 0.0 60.3 0.0 7.5 17.9 1.3
NAC 11.0 2.1 24.6 0.0 11.5 50.0 5.0 31.1 0.0
VTW 0.0 0.4 25.6 0.0 6.9 0.0 87.6 70.2 1.3
PWT 8.4 2.4 27.4 0.0 4.6 0.0 0.0 100.0 0.0
NAL 9.5 0.0 15.4 61.5 1.5 0.0 18.9 1.9 73.1

40

TTT 57.2 0.8 0.0 0.0 0.0 61.5 0.1 99.0 5.9
TTW 45.6 25.3 25.0 37.5 25.0 26.9 5.6 66.1 5.9
STW 0.4 0.3 34.7 37.5 20.5 0.0 12.3 0.9 0.0
NQL 1.8 0.1 25.5 76.8 21.0 3.8 14.3 0.0 62.7
PWZ 12.6 0.7 20.8 37.5 66.5 23.1 15.0 9.1 0.0
NAC 9.0 1.2 21.8 37.5 25.0 61.5 0.0 23.3 3.9
VTW 0.0 0.2 26.6 37.5 22.2 11.5 84.3 56.3 1.5
PWT 7.5 1.1 22.9 37.5 20.5 19.2 5.2 100.0 1.5
NAL 0.7 0.0 27.9 66.1 22.2 15.4 4.8 21.8 67.2

TABLE 4.4: Percentage improvements comparison.
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In the table, each (obj − f air) entry represents the percentage improve-
ment of z

obj
f air with respect to the worst result measure f air has got among

all the objs. For example, entry ∆%(PWT, TTW) indicates the improvement
that the function PWT has when TTW is optimized in respect to its worst
outcome. Considering the 20 nodes case, ∆%(PWT, TTW) = 82.1% meaning
that the result of PWT improves of the 82.1% in respect of the worst value
that is, in this case, when NQL is optimized. The worst case of each f air are
identified by the entry 0. Having the highest improvements on the diago-
nal proves how each function’s best fairness level is reached when it is used
as an objective. Considering the table by column, it becomes easier to high-
light which objectives yield to the most significant improvements for each
fairness measure. Let us take, for example, the goal of optimizing the total
traveled time (TTT). The best measures are TTT (as expected), TTW, PWT
but also PWZ, and when the number of patients increases, also NAC. These
last two measures indicate that attributing the preferred zones to nurses and
the optimization of nurse consistency positively impact on the total travel-
ing time since all services of the same patient are generally assigned to the
same nurse. Table (4.3) and Table (4.4) help identify the behavior of specific
measures when the objective function varies.

The second scope of our computational analysis is to examine the corre-
lations existing among different fairness goals. We conducted the analysis
by examining functions in pairs and deriving two distinct types of corre-
lations: a pair-external correlation (Type 1) and a pair-internal correlation
(Type 2). For each pair of objective function (obj1, obj2), Type 1 correlation is
computed as the complement to 1 of the average gap between z

obj1
f air and z

obj2
f air

for all the values of f air. The gap for each f air is computed as in equation
(4.50).

(4.50) ∆ f air =
|z

obj1
f air − z

obj2
f air|

max{z
obj1
f air, z

obj2
f air}

Type 1 correlation indicates the similarity among two objectives obj1 and obj2
in respect of the measures external of the pair. The highest the correlation
value the highest the pair’s similarity, meaning that the other measures’ re-
sults are similar in the solutions obtained optimizing obj1 and obj2.

On the other hand, Type 2 correlation measure the similarity within the
pair. Type 2 computes the complement to one of the average percentage gaps
between z

obj1
obj2

and the optimal value of obj1 z
obj1
obj1

over z
obj1
obj2

and the same is

done using z
obj2
obj1

and obj2 and average the resulting values. The highest the
value the more directly correlated are the two measures, meaning that op-
timizing one generally implies optimizing the other. Figure (4.1) visually
represents each pair’s correlations.
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FIGURE 4.1: Correlation between fairness measures.

The graph delineates three principal regions where pivotal pairs are high-
lighted.

• In the leftmost area are included pairs with low Type 1 values, mean-
ing a low correlation regarding the external measures. An example are
TTT − NQL and TTT − NAL with a Type 1 correlation equal to 65%.
The Type 2 correlation for these pairs is even lower, aligning with the
expectations of a low in-pair similarity regarding the solutions. Func-
tion TTT prioritizes the reduction of travel times while both NALand
NQL deal with the assignment of patients to nurses.

• The upper part of the graph contains pairs with high value of Type 2

correlation, hence a higher similarity between the in-pair solution. The
involved pairs, such as TTT − TTW, TTT − NAC, TTW − STW, and
TTT − PWT, all pertain to travel time optimization. Notably, TTT also
correlates significantly with PWT and NAC. This correlation is due to
these fairness measures often obtaining solutions where the visits from
the same patients are close to each other, reducing total costs.

• In the rightmost area pairs are characterized by high Type 1 correla-
tions, showing solutions similar in the results regarding the other mea-
sures. In VTW − PWT and NAC − PWT the solutions are incredibly
similar. In fact, all these functions schedule visits to patients close to
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each other to achieve their fairness objective. A low level of Type 2 cor-
relation, however, suggests that considering the pair measures the val-
ues are completely different. In fact, taking as example, NAC − PWT

we can see solutions in which visits are closer but that drastically dif-
fer in the number of nurses assigned to a patient. NAC will reach the
closeness by sending only one nurse to each patient, the opposite will
happen in PWT where, to achieve closeness, multiple vehicles are sent
to a node simultaneously.

In conclusion, the pair with robust correlation in both Type 1 and Type 2

is NQL−NAL. This pairing unites two measures focused on nurses’ qualifi-
cations, striving to create the most beneficial nurse-patient assignments from
either the patient’s (NAL) or the nurse’s (NQL) perspective.

4.6 Conclusions

In this chapter, we study the daily activities of a TOC tasked with the rout-
ing and scheduling of a fleet of nurses to visit patients at their homes. We
consider different fairness measures that summarize the needs of both pa-
tients and nurses, proposing a set of alternative objective functions beyond
the basic problem formulation of minimizing total traveled times. Doing so,
we aim to encapsulate in the logistical setting of a NRP the multifaceted na-
ture of different stakeholders. To facilitate our analysis, we’ve employed a
range of alternative models, each one a derivative of distinct fairness mea-
sures. These models have been rigorously solved to obtain optimal solutions
utilizing advanced Mixed Integer Linear Programming (MILP) solvers. The
computational experiments show how specific fairness measures can concur
to similar results despite belonging to different stakeholders. These similari-
ties might be helpful from an optimization perspective in reducing the list of
fairness measures considered in the development of a more realistic multi-
objective problem.
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5.1 Introduction

This chapter aims to deepen the study of the problem addressed in Chapter
(4) by facing the challenges arising from the optimization of a Home Health-
care (HHC) System involving multiple actors with conflicting goals through
a multi-objective formulation. Chapter (4) tackles the diverse goals of mul-
tiple stakeholders through a single-objective optimization, a framework that
doesn’t suit well with the complexity of the relationships that arise from hav-
ing multiple decision-makers, each with their often conflicting unique prior-
ities. This multifaceted scenario necessitates a more advanced approach to
integrate the varying perspectives and needs of each actor involved.

In this context, we keep the problem description of a routing and schedul-
ing problem in home healthcare in which we insert the concept of fairness,
recognizing that equitable resource allocation and service provision are cru-
cial for the well-being of both nurses and patients. We keep the majority of
fairness measures related to nurses and patients already defined in Chapter
(4), like workload balance, equitable patient-nurse matching, and the min-
imization of disparities in care quality while formulating new governance
measures for the TOC. Along with the pure minimization of traveled times,
we insert a more patient-oriented policy of minimizing lateness and a nurse-
oriented one with the minimization of the time of the last visit. We introduce
a variety of multi-objective formulations for the problem, each the broader
multi-objective context is not lost while focusing on one primary goal at a
time involves a hierarchical prioritization of these objectives, leading to a
sequential problem-solving method. In this approach, we address a series
of single-objective problems, where each problem’s solution becomes a con-
straint in the subsequent ones. This method ensures that while focusing on
one primary goal at a time, the broader multi-objective context is not lost.
For every set of three objectives—one for each stakeholder—we conduct a
thorough analysis of all six permutations to derive the most advantageous
outcome for each stakeholder. This systematic evaluation is crucial for un-
derstanding the trade-offs involved allowing the identification of the most
effective ordering of objectives. This hierarchy-based analysis is particularly
valuable in scenarios where prioritization can significantly impact the over-
all system’s efficiency and fairness. Computationally, addressing hierarchi-
cal multi-objective problems, particularly their single-objective formulations
in medium to large instances, presents a non-trivial challenge. Advanced
Mixed Integer Programming (MIP) solvers, such as Gurobi, often struggle
to find feasible solutions within a reasonable time due to the complexity of
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these problems. We introduce a cutting-edge method to overcome this obsta-
cle: the Parallel Adaptive Large Neighborhood Search (ParallelALNS). This
approach innovates key components of the traditional ALNS to better han-
dle our problem’s multi-objective nature. We develop unique destroy and
repair operators that are sensitive to multiple objectives. These operators
are specifically designed to effectively deconstruct and reconstruct solutions,
taking into account the various goals in our hierarchical framework. Ad-
ditionally, we create several acceptance operators that leverage the hierar-
chical structure, guiding the search process more effectively toward optimal
solutions. The versatility of these methods makes them suitable for a wide
range of hierarchical multi-objective problems. To validate the efficacy of
our ParallelALNS method, we conduct a comparative analysis with solutions
provided by the Gurobi MIP solver, which runs for one hour. To enhance the
performance of Gurobi’s Branch-and-Cut algorithm, we implement a two-
phase matheuristic approach, dubbed MathALNS. The first phase utilizes a
variant of ParallelALNS to generate a strong initial solution. In the second
phase, we re-engage Gurobi with this initial solution, effectively incorpo-
rating an ALNS as a primal heuristic within the branch-and-bound search
tree. This approach aims to refine the upper and lower bounds achieved by
Gurobi. Moreover, we position the solutions obtained through ParallelALNS

on a Pareto frontier, which is established by multiple runs of a ParetoALNS

strategy. This strategy is dedicated to iteratively producing non-dominated
solutions for the multi-objective formulation. By doing so, we can assess the
performance of our solutions in the context of a broader solution space, en-
suring that our approach not only finds feasible solutions but also contributes
to the overall optimality of the problem-solving process. This comprehensive
approach underscores the innovative potential of ParallelALNS in tackling
complex hierarchical multi-objective problems in the realm of home health-
care and beyond.

The Chapter is organized as follows. Section (5.2) reports, for clarity,
the problem notation and the mathematical formulation already detailed in
Chapter (4), Section (4.2) and (4.3), respectively. Section (5.3) presents the
new policies introduced for the stakeholder and Section (5.4) details the ap-
plied multi-objective approach implemented and the method used to eval-
uate the quality of a triplet as objective function. The description of the
ParallelALNS framework is given in Section (5.5), with a focus on the novel
characteristics inserted to handle multi-objective multi-actors problems. Sec-
tion (5.6) focuses on the computational analysis of the results obtained by
solving multiple small-size instances using Gurobi and their comparison us-
ing the scoring method. The performance of ParallelALNS is also analyzed
on large-size instances through the implementation of a method generating
the Pareto frontier, and by devising a matheuristic (MathALNS) that allows
Gurobi to obtain better upper and lower bounds. Finally, in Section (5.7) we
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draw conclusions on the presented problem and its results.

5.2 Problem Description and Mathematical Formu-

lation

In this section, the model notation and the mathematical formulation pre-
sented in Chapter (4) are detailed again, to give the reader a better under-
standing of the chapter. The described problem is a Nurse Routing and
Scheduling Problem, which involves managing different actors’ presence and
influence. To address this challenge, we adopt a multi-objective formulation
that combines the goals of all three stakeholders (TOC, nurses, and patients)
involved.

Let P = {1, · · · , pmax} be a set of patients geographically dispersed over
a district manned by a TOC, and let K = {1, · · · , m} be a set of nurses in
charge of performing services at patients’ homes. We indicate as Np the set
of services demanded by patient p ∈ P and as N = {1, · · · , n} the set of
services needed by all the patients, where N = ∪p∈PNp and Np ∩ Np′ = ∅

for p ̸= p′. Each service i ∈ N is associated with a positive service time si and
must be satisfied by precisely one nurse. Every morning, each nurse starts
his/her tour from the TOC, visits a subset of patients fulfilling some or all of
their service requests, and then returns to the TOC within the shift duration
T (working time). The sequence of patients a nurse visits depends on the
optimized objective function.

The problem can be formalized on a directed graph G = (V, A), where
V = {0} ∪ N is the node set, with node 0 representing the TOC, and A =

{(i, j) : i, j ∈ V; i ̸= j} is the arc set. For each arc (i, j) ∈ A, we denote as tij

the non-negative time required to travel from node i to node j, where tij = 0
for all i, j ∈ Np, p ∈ P. Travel times satisfy the triangle inequality.

To define the model, we introduce the following three sets of variables:

• Binary variables xk
ij, (i, j) ∈ A, k ∈ K. Each variable xk

ij takes value 1 if
nurse k traverses arc (i, j), and 0 otherwise;

• Binary variables yk
i , i ∈ N, k ∈ K. Each variable yk

i takes value 1 if nurse
k performs service i, and 0 otherwise;

• Continuous variables zij, (i, j) ∈ A. Each variable zij indicates the ar-
rival time at node j when arriving from node i.

Regardless of the objective function used, all feasible solutions must sat-
isfy the following set of basic constraints:
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∑
(i,j)∈δ+(i)

xk
ij = ∑

(j,i)∈δ−(i)

xk
ji = yk

i i ∈ N, k ∈ K(5.1)

∑
k∈K

yk
i = 1 i ∈ N(5.2)

∑
(0,j)∈δ+(0)

xk
0j = ∑

(j,0)∈δ−(0)

xk
j0 f 1 k ∈ K(5.3)

∑
(i,j)∈δ+(i)

zij − ∑
(j,i)∈δ−(i)

zji = ∑
k∈K

∑
(i,j)∈δ+(i)

(si + tij)xk
ij i ∈ N(5.4)

z0j g t0j ∑
k∈K

xk
0j j ∈ N(5.5)

(t0i + si + tij) ∑
k∈K

xk
ij fzijf (T− tj0 − sj) ∑

k∈K

xk
ij (i, j) ∈ A(5.6)

zij g 0 (i, j) ∈ A(5.7)

xk
ij ∈ {0, 1} (i, j) ∈ A, k ∈ K(5.8)

yk
i ∈ {0, 1} i ∈ N, k ∈ K(5.9)

For each subset S ¢ N of nodes, let δ+(S) = {(i, j) ∈ A : i ∈ S, j /∈ S} and
δ−(S) = {(i, j) ∈ A : i /∈ S, j ∈ S} be the sets of arcs leaving and entering set
S, respectively. To simplify notation, the special case with |S| = 1 is indicated
as δ+(i) (δ−(i)) instead of δ+({i}) (δ−({i})). Constraints (5.2) impose that if
nurse k visits node i (i.e., yk

i = 1), precisely one arc entering and one arc
leaving the node are selected. Constraints (5.2) guarantee that each node
(each service) is visited (is executed) exactly once by one nurse. Constraints
(5.3) restrict the number of nurses who can depart from and return to the
TOC (node 0) to be no more than |K|. Constraints (5.4) ensure that if nurse
k visits node j immediately after node i (i.e., xk

ij = 1), then the time elapsed
between the arrival times in the two nodes is equal to the service time si at
node i plus the travel time tij to move from node i to node j. Constraints (5.5)
set a lower bound on the time required to reach the first visited node after
leaving the TOC, whereas constraints (5.6) define lower and upper bounds
on the arrival time and duration of each route. More precisely, they ensure
that if a nurse arrives at node j from node i, it is early enough to complete
the service and return to the TOC before the shift duration T expires, and
late enough to account for the travel time from the TOC to node i, from i to
j, and for the service time at node i. Finally, constraints (5.7)–(5.9) enforce
non-negative and binary conditions on variables.

Notice that constraints (5.4)–(5.6) prevent the construction of subtours.
Nevertheless, we have further strengthened this formulation by adding the
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generalized connectivity constraints (see Hanafi et al., 2020):

(5.10) ∑
(i,j)∈δ+(S)

xk
ij g yk

s S ¦ N, |S| g 2, k ∈ K, s ∈ S.

Finally, it is worth noticing that, to correctly model some of the fairness
objectives discussed in the next section, we need to identify which nurse pro-
vides which service for each patient. For this reason, we use a three-index
formulation. Alternatively, one can avoid this by duplicating the depot a
number of times equal to the number of nurses, thus separating the starting
and ending depot for each nurse in a fictitious way (see Luo et al., 2015).

5.3 Stakeholders’ Goals

IIn Section (5.3.1), we detail the new governance goals for the Territorial Op-
erations Center (TOC), complete with their descriptions and mathematical
formulations. Following this, Sections (5.3.2) and (5.3.3) provide an overview
of the objectives for nurses and patients, as initially introduced in Section
(4.4). Here, we highlight the key changes and continuities from the previous
chapter. For the nurses’ objectives, we retain the four functions STW,TTW,PWZ

and NQL, without modification. On the patient side, however, we have
made notable adjustments. Specifically, we have eliminated the PWT goal
due to its high optimality gaps in smaller-sized instances. Moreover, we have
restructured the Equity in Visiting Time Windows (VTW) measure. Rather than
quantifying earliness and lateness concerning a patient-given time window,
we have introduced the Equity in Late Service Time (LST) metric. This new
measure focuses exclusively on the lateness aspect, calculated from a specific
point in time, thus providing a more targeted assessment of service timeli-
ness from the patients’ perspective.

5.3.1 TOC-centered measures

In contrast with the previous chapter, we introduce two new governance
measures for the TOC, one aimed at improving the operational costs of the
staff and the other for guaranteeing a good quality of service for the pa-
tients. In total we study three TOC-related measures: the minimization of
Total Traveled Time (TTT), the Total Tardiness (TTA) and the Time of Last
Visit (TLV).

Total Traveled Time (TTT)

Already presented as objective function of the overall model in (4.1), TTT
aims at reduce the total time spent by nurses in travelling to visit patients. It
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can be formulated as:

min ∑
k∈K

∑
(i,j)∈A

tijx
k
ij(5.11)

This is the most frequently used measure in the computation of costs for
healthcare operations. However, other than a pure optimization of opera-
tions, it doesn’t account for the patients or the nurses needs.

Total Tardiness (TTA)

This governance goal aims at minimizing the overall tardiness in respect to
patients given deadline of visit. To each patient p ∈ P it is associated with a
deadline ap, which represents the time by which the patient expects to com-
plete all the required services. Whether the patient requires one or more
visits, the deadline represents the moment after which the patient would like
not to receive any more nurse visits. Although this is not a hard constraint
in terms of TOC operations, the patients perceive a lower level of tardiness
as a higher level of service quality. Let ti, i ∈ Np, be a non-negative variable
measuring the time overrun (tardiness) of deadline ap for patient p on his
service i. TTA can be formulated as follows:

min ∑
i∈N

ti(5.12)

∑
(i,j)∈δ−(j)

zij f ap + tj p ∈ P, j ∈ Np(5.13)

ti g 0 i ∈ N(5.14)

Constraints (5.13)–(5.14), along with objective function (5.12), define the
value of tardiness at node j of customer p as the positive difference between
the arrival time at node j ∈ Np and the deadline ap, i.e., max{0, ∑(i,j)∈δ−(j) zij−
ap}. Notice that optimizing global tardiness may not be equitable, as it could
result in an unfair distribution of tardiness values among patients.

Time of the Last Visit (TLV)

To prioritize the nurses perspective while minimizing operational costs, the
TOC might be interested in minimizing the completion time of all the services
(which is equivalent to the time of completion of the last visit). In this way,
the overall working shift of nurses would also be reduced. Let tlast denote
this completion time. TLV can be formulated as follows:
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min tlast(5.15)

tlast g ∑
(i,j)∈δ−(j)

zij + sj j ∈ N(5.16)

tlast g 0(5.17)

Given objective function (5.15), constraints (5.16) set tlast exactly equal to
the maximum value of the leaving time for each node j ∈ N, computed as
the arrival time in j (∑(i,j)∈δ−(j) zij) plus the service time in the node.

5.3.2 Nurse-centered measures

Given that the included nurses measures have not been modified since Sec-
tion (4.4), we report here only the denomination and a brief description. For
each one are referenced the objective function and constraints indexed from
Section (4.4). The modeled nurses’ perspectives are:

• Total Time Workload (TTW), modeled in Constraints (4.12)–(4.14) and
Constraints(4.16), aimed at achieving a fair distribution of workload
computed as traveled time plus service times;

• Service Time Workload (STW), modeled in Constraints (4.12)–(4.14) and
Constraints(4.15)), aimed at achieving a fair distribution of workload
computed only as service times at patients;

• Preferred Working Zone (PWT), modeled in Constraints (4.17)–(4.21),
achieving a fair assignment of patients to nurses according to their pre-
ferred working zone;

• Nurse Qualification Level (NQL), modeled in Constraints (4.22)–(4.26),
equitably assigning visits to nurses according to their qualification level.

5.3.3 Patient-centered measures

We have modeled a total of three different equity measures for the patients.
In particular, we re-implemented the measures

• Nurse Assignment Consistency (NAC), modeled in Constraints (4.41)–
(4.48), minimizing the maximum number of nurses assigned to any pa-
tient needing multiple visits;

• Nurse Adequacy Level (NAL), modeled in Constraints (4.46)–(4.48),
making fair nurse-patients assignments according to nurses qualifica-
tions, the higher the specialization level of a nurse in a specific service,
the higher the adequacy perceived by the patient;

from Section (4.4) and added the Equity of Late Service Time (LST).
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Equity in Late Service Time (LST)

This equity measure aims to establish a fair time for patients to receive their
visits in relation to the deadline ap set by each patient p ∈ P, which is the time
by which they would like to receive all of their visits. For each service j ∈ Np,
we introduce the continuous variable lj that measures the lateness (the dis-
card) in starting service j with respect to ap (i.e., lj = max{0, ∑(i,j)∈δ−(j) zij −
ap}). The goal is to balance the worst lateness among all patients. The contin-
uous variable tp measures the total lateness for each patient p ∈ P computed
as the sum of all positive discards from deadline ap for all the services be-
longing to patient p (i.e., tp = ∑i∈Np

li). Finally, variable tmax represents the
maximum tp value among all the different patients p ∈ P. The formulation
is as follows:

min tmax(5.18)

tmax g tp p ∈ P(5.19)

tp g ∑
i∈Np

li p ∈ P(5.20)

lj g ∑
(i,j)∈δ−(j)

zij − ap p ∈ P, j ∈ Np(5.21)

li g 0 i ∈ N(5.22)

tp g 0 p ∈ P(5.23)

tmax g 0(5.24)

Constraints (5.21) model the lateness for each service j ∈ Np, for each patient
p ∈ P. Notice that, if the arrival time at node j, measured by ∑(i,j)∈δ−(j) zij,
is lower than the deadline ap, the value of li will be greater than or equal to
zero due to (5.22) and thus forced to zero by the objective function.

5.4 Multi-Objective Optimization Approach

In this section, we first present the multi-objective optimization approach
selected to tackle the multi-objective and multi-actor nature of our problem
in Section (5.4.1). Then, in Section (5.4.2) we introduce the scoring method
used to determine the best triplet of objective functions (one for each actor).

5.4.1 The Lexicographic Approach

MOO problems are characterized by the presence of multiple, possibly con-
flicting, objectives that need to be optimized simultaneously. In general, an
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MOO problem consists of an unordered sequence of objective functions de-
fined over a feasible set X generated by common constraints:

min
x∈X
{ fi(x), i = 1, ..., r}

In this article, we propose several alternative formulations of our prob-
lem. Each one is characterized by a defined triplet of objective functions in a
specific order [ f1, f2, f3], where each fi, i = 1, ..., 3 is associated with one of the
three actors involved. To solve this model, we employ a hierarchical (lexico-
graphic) method, which establishes a predefined order (usually determined
by the decision maker) among objective functions and then solves a series of
single-objective optimization problems.

Let us assume that we have an ordered sequence f1, . . . , fr of goals, all of
which need to be minimized. For each level i of optimization, the associated
single objective problem will be:

min fi(x)(5.25)

s.t.

f j(x) = f j(x∗j ) j ∈ {1, . . . , i− 1}, i g 2(5.26)

x ∈ X(5.27)

where f j(x∗j ) represents the optimal solution value for the higher-priority
objective j computed in the previous j = 1, ..., i− 1 problem resolutions.

This approach presents a distinct advantage in facilitating explicit con-
siderations of trade-offs among diverse objectives. It empowers decision-
makers to balance prioritizing critical goals while retaining a degree of flex-
ibility for secondary objectives. In applying the lexicographic framework
to our case, we concentrate on two fundamental elements: multiple goals,
including those representing fairness measures, and the diversity of stake-
holders involved. This allows for a double-level optimization, prioritizing
both goals and actors. To this aim, we applied an approach working on two
different scopes. The first scope is to highlight the relationships among vari-
ous goals, with particular attention to those including equity considerations.
To this end, we generate all possible combinations of three goals, each rep-
resenting a different stakeholder. Subsequently, the second objective aims to
examine these goal triads individually, adjusting each priority to catch the ef-
fect of favoring one stakeholder over others on the overall solution. Through
a scoring mechanism, our approach can identify the triplet that represents the
optimal goal combination. This combination is characterized by its minimal
trade-off in terms of stakeholder dissatisfaction. The specifics of this method
are elaborated in the subsequent section
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5.4.2 The Scoring Method

Scoring methods are useful tools that help solve complex problems, espe-
cially when we need to pick the best options from a set. These methods
make it easier to weigh different choices against each other. We examined
different methods from literature to find the most suitable for our problem.
One popular method is the Analytic Hierarchy Process (AHP) cited by Saaty,
1990 and its different versions like the Analytic Network Process (ANP) and
AHPSort of Saaty and Vargas, 2013; Ishizaka et al., 2012. AHP simplifies
complex decision-making by decomposing it into more manageable compo-
nents and employing pairwise comparisons to establish priorities. ANP ex-
tends this approach to scenarios characterized by interdependent elements,
functioning within a networked structure. Another notable method is the
Elimination by Aspects (EbA) presented in Tversky, 1972, which systemati-
cally excludes options that fail to meet essential criteria, proving invaluable
when dealing with indispensable requirements. Furthermore, collaborative
decision-making models, such as those discussed by Sirikijpanichkul et al.,
2017, incorporate collective preferences and priorities in the scoring process.
However, our research aims to formulate a distinct scoring methodology for
VRPs in healthcare and logistics. This novel approach diverges from tradi-
tional methods like AHP, which rely on predetermined priorities, or EbA,
which operates on inflexible criteria. Our proposed method aims to organi-
cally identify the most pertinent objectives, treating all objectives with equal
initial significance. This approach offers enhanced adaptability and is more
adept at capturing the holistic aspirations of all stakeholders involved in the
routing problem.

In the defined problem, the amalgamation of distinct objectives from var-
ious stakeholders results in 36 non-ordered triplets. For any given triplet,
each objective can assume one of three hierarchical priority levels, leading to
six possible ordered triplets due to the permutations of these three objectives.
From a stakeholder perspective, each Total Operations Cost (TOC) goal ap-
pears in 12 non-ordered triplets, formed by combining three patient goals
with four nurse goals. Correspondingly, each patient objective is present
in 12 non-ordered triplets, while each nurse objective features in nine. Our
scoring methodology determines the optimal goal for each stakeholder by
internally ranking their objectives. This ranking is derived from the perfor-
mance of each objective when optimized as the primary function within all
priority levels of the ordered triplets. For instance, a TOC goal undergoes
optimization 24 times (2 · 12) at priority level 1, with analogous occurrences
at other levels. When an objective is optimized at a specific priority level i,
it facilitates the assessment of other objectives for the same stakeholder. We
denote the value of the optimized objective at priority level i as z∗obj,i, and
the value of an alternative objective ¯obj evaluated under the solution derived
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from optimizing obj at priority level i as z
obj,i
¯obj

. For example, z∗TLV,2 signifies
the optimization value of the Time Lost in Traffic (TLV) goal at priority level
2, while zTLV,2

TTA denotes the evaluated value of the Total Time of Arrival (TTA)
objective using the solution optimized for TLV at priority level 2. Each TOC
goal has 24 · 3 values from optimizing it across all priority levels and an equal
number of recomputed values for alternate goals. This optimization is repli-
cated for each goal, leading to a reevaluation of values for other objectives.
The objectives are ranked accordingly after calculating the average values for
each goal and priority level. The detailed methodology is encapsulated in the
pseudocode presented in Algorithm (6).

The ranking method (StakeholderObjSelector function) takes as input
the set of instances I , the set of stakeholders S, and the collection of all pos-
sible goals for all stakeholders G. The method first generates all possible or-
dered tuples of goals (one for each stakeholder) and stores them in F (proce-
dure GENERATETRIPLETS, Line (1)). In our case, as there are three stakehold-
ers, GENERATETRIPLETS will produce 36 · 6 = 216 ordered triplets. Next, for
each instance I ∈ I and each ordered triplet [ f1, f2, f3], the method solves a
hierarchical model to obtain a solution sol and the optimized values of the ob-
jective functions z∗fi,i

, i = 1, ..., 3 for each stakeholder’s goal (Line (4)). Based

on such solution, the method computes the values z
fi,i
f for f ̸= fi, i = 1, ..., 3

of the other goals for each stakeholder (Lines (7)-(9)).
For each stakeholder, the method then proceeds to assign a score to every

goal of the stakeholder itself. This two-step process is repeated for each prior-
ity level and stakeholder goal. In the first step, given the results obtained (in-
cluded in z), goals f and g, and a priority level i, Procedure COMPUTEAVERAGE

(Line (16)) returns the average value of g when function f ∈ Gs is optimized
with priority level i. Notice that, when f = g and i = 1, this is exactly the
value of z∗f ,i. In the second step, based on the relative position of these av-
erage values, a positive score is assigned to each function (procedure COM-
PUTESCORE at Line (18)). Since all objective functions are minimization ones,
the lower the average value, the higher the score of a function. We set the
highest score equal to 1. Finally, the global score associated with a function
is obtained by summing up its average scores computed with respect to all
the stakeholders and all priority levels. Sorting the global scores allows us to
identify the best function for each stakeholder (Line (27)). These best func-
tions f∗ are provided as output.

5.5 A Parallel ALNS

The core aim of our research was to develop a methodology capable of tack-
ling realistic-sized scenarios of the problem at hand, as existing state-of-the-
art solvers often struggle to generate high-quality solutions within a feasible
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Algorithm 6 StakeholderObjSelector

Require: Instance set I , Stakeholder set S, collection G = {Gs|s ∈ S} with Gs set of goals
for stakeholder s ∈ S.

1: F ← GENERATETRIPLETS(G)
2: for all I ∈ I do
3: for all [ f1, f2, f3] ∈ F do
4: (sol; z∗f1,1, z∗f2,2, z∗f3,3),← OPTIMIZE(I, [ f1, f2, f3])

5: for fi ∈ [ f1, f2, f3] do
6: s← STAKEHOLDER( fi)
7: for all f ∈ Gs, f ̸= fi do

8: z
fi ,i
f ← f (sol)

9: end for
10: end for
11: end for
12: for s ∈ S do
13: for i = 1 . . . 3 do
14: for all g ∈ Gs do
15: for all f ∈ Gs do
16: avg f ← COMPUTEAVERAGE(z, g, f , i)
17: end for
18: score← COMPUTESCORE(avg, Gs)
19: for all f ∈ Gs do
20: globalScore( f )← globalScore( f ) + score( f )
21: end for
22: end for
23: end for
24: end for
25: end for
26: for s ∈ S do
27: f (s)∗ ← SORTANDPICKBEST(globalScore, Gs)
28: end for
29: return f∗

time frame. In response, we formulated a novel metaheuristic framework
with the following characteristics:

• it addresses a multi-objective, multi-actor scenario without necessitat-
ing a predefined hierarchy among the input objective functions.

• it demonstrates adaptability in its exploration of the solution space,
leveraging the hierarchical and multi-dimensional nature of the prob-
lem.

• it employs a parallel approach for handling large-scale instances effi-
ciently, wherein a central manager coordinates the flow of crucial infor-
mation among several workers.

Our innovation includes a new parallel adaptation of Adaptive Large
Neighborhood Search (ALNS),a meta-heuristic approach originally proposed
in Ropke and Pisinger, 2006 presented in Chapter (3), Section (3.2). In our
specific context, a feasible solution sol for our problem, characterized by ob-
jective function values objsol = [obj1sol, obj2sol, obj3sol], entails creating up to |K|
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routes (one per nurse), with each route comprising a sequence of services for
various patients. The destroy operators selectively remove services from routes
based on certain criteria, resulting in a temporary infeasible solution. Subse-
quently, repair operators attempt to reinsert services using different criteria to
restore feasibility. Our unique implementation, termed ParallelALNS, distin-
guishes itself by identifying optimal solutions for every possible combination
of the input objective functions, rather than optimizing a singular predeter-
mined order. This is achieved through parallelization: multiple ALNS in-
stances (workers) operate concurrently, exchanging information via a shared
manager. Each worker handles an ordered set of objectives, with the possi-
bility of several workers addressing the same set, depending on the chosen
level of parallelism. This approach is predicated on the understanding that
solutions suboptimal for one worker due to different prioritization of objec-
tives might be valuable to another.

Algorithm (7) outlines the general structure of our ParallelALNS frame-
work, which is executed by each worker. It requires as input an ordered
triplet of objective functions [ f1, f2, f3], as well as a feasible solution sol and its
value objsol. In addition, it takes a set of destroy and repair operators, Θ− and
Θ+, a set of acceptance operators Γ, and a time limit Ä. The algorithm starts
by initializing both the current solution (solC) and the best incumbent solu-
tion (solI) to the input solution sol (Lines (1)–(2)). It selects an acceptance op-
erator (Line (3)) and initializes the degree of destruction q to 1 (Line (4)). The
algorithm then enters a loop (Line (5)) that continues until the termination
criterion (i.e., time limit Ä) is met. First, a destroy (θ−) and a repair operator
(θ+) are selected (Line (6)) and applied to the current solution (Lines (7)-(8)).
Then, depending on the acceptance operator γ, one of two things happens:
either the newly generated solution (solE) is accepted (Lines (9)-(15)), q is set
to 1, and the incumbent solution is updated, if necessary (Lines (12)-(14)),
or, if noImpIter iterations have passed since the last accepted solution, q is
increased by qStep. When a solution solE is accepted, it is shared with other
workers through the ALNSManager.PUSH routine (Line (11)). The probabil-
ities of the selected destroy and repair operators are then updated according
to their performance (Line (19)). At Lines (20)-(32), the algorithm performs
an epoch reset, a standard feature of ALNS implementations. The operators’
probabilities are reset (Line (21)), and the current solution is set to the best
incumbent (Line (22)). Differently from standard ALNS implementations, if
the incumbent has not been improved for imprEpoch epochs, the acceptance
operator is changed (Line (24)). The current solution sC is then set to the best
available solution shared by all workers, provided by the ALNS manager
through ALNSManager.GETBEST (Line (25)). Additionally, to leverage the
information collected during the algorithm’s execution and try to improve
the best incumbent, an improvement phase is called (MIPIMPROVEMENT).
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Algorithm 7 ALNS-Worker

Require: ordered set of goals [ f1, f2, f3]; feasible solution (sol, objsol); sets of destroy and
repair operators Θ−, Θ+; set of acceptance operators Γ; time limit Ä.

1: solC ← sol ▷ current solution
2: solI ← sol ▷ best incumbent solution
3: select γ ∈ Γ

4: q← 1
5: repeat
6: select θ− ∈ Θ− and θ+ ∈ Θ+

7: [solC, N−]← θ−(solC, q)

8: solE ← θ+(solC, N−)
9: if γ(solE, solC) then

10: solC ← solE

11: ALNSManager.PUSH(solC)
12: if ISBETTER(solE, solI) then
13: solI ← solE

14: end if
15: q← 1
16: else if no solution accepted for noImpIter then
17: q← min(q + qStep, qmax)
18: end if
19: update probabilities of θ− and θ+

20: if epochIter is reached then
21: reset probabilities of operators in Θ− and Θ+

22: solC ← solI

23: if solI not improved for imprEpoch then
24: randomly select γ ∈ Γ

25: solC ← ALNSManager.GETBEST([ f1, f2, f3])
26: Ā← ALNSManager.GETRESTRICTEDNETWORK([ f1, f2, f3])
27: solC ← MIPIMPROVEMENT(solC, Ā)
28: if ISBETTER(solC, solI) then
29: solI ← solC
30: end if
31: end if
32: end if
33: until time limit Ä is reached
34: return solI

During the improvement phase, the current worker receives a list of promis-
ing arcs (restricted network) from the manager. This list corresponds to the
arcs present in the best solutions found so far by all workers and made avail-
able to the manager through the ALNSManager.GETRESTRICTEDNETWORK

procedure (Line (26)). Notably, the restricted network is updated continu-
ously with new solutions pushed by the workers. Thus, two consecutive calls
to ALNSManager.GETRESTRICTEDNETWORK may provide different lists of
arcs Ā. The MIPIMPROVEMENT procedure uses the arcs contained in the
current solution solC and the promising set of arcs Ā to construct a restricted
problem and solves it through a MIP solver with a very short time limit. The
procedure then updates the best incumbent if necessary (Lines (28)-(30)).

In the following sections, we describe the main components of our ParallelALNS
method, including the initial feasible solution construction, the set of destroy
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and repair operators, the acceptance operators, and the role played by the
manager in sharing information and coordinating the workers.

5.5.1 Initial Feasible Solution

In our approach, the initial step involves identifying a starting feasible solu-
tion, denoted as sol. We employ a constructive heuristic, beginning with |K|
empty routes. A node i ∈ N is selected at random, adhering to specific selec-
tion criteria (to be detailed), and added to a route via the cheapest insertion
rule. This rule seeks to minimize the total length of all routes by determining
the optimal position for node insertion. The process continues until all nodes
are assigned or an insertion failure occurs, which is when a node cannot be
feasibly added to any route under the given constraints. In such cases, the
current partial solution is discarded, and the process restarts. Upon finding
a feasible solution, it is evaluated against the incumbent solution based on
criteria such as total distance, cost, and time, and is retained only if it offers
an improvement. This heuristic is executed iteratively within a brief time
limit, Äinit, typically just a few seconds. To fully leverage the computational
capacity, particularly in a scenario with nCore logical cores available, we run
nCore instances of the constructive heuristics in parallel. The optimal solu-
tion from these parallel runs is then selected. This approach, while efficient,
assumes [insert assumptions], and its effectiveness within the limited time
frame warrants further statistical analysis for reliability assessment.

5.5.2 Destroy and Repair Operators

In the architecture of our ParallelALNS system, each unit is designed to
tackle optimization tasks that involve multiple objectives, arranged in a lexi-
cographic order. This is facilitated by the development of specialized destroy
and repair mechanisms. These mechanisms are versatile, capable of focusing
on a singular objective, a pair of objectives, or all three objectives simultane-
ously. This flexibility allows them to selectively target services for removal
and reinsertion based on one, two, or all three objectives. The advantage
of this method lies in its efficiency: by concentrating on fewer objectives at
a time, it streamlines neighborhood exploration and minimizes the need for
computing multiple objectives for every potential solution. Additionally, our
approach achieves a higher degree of diversification by not taking into ac-
count one or two of the less significant objective functions.

In the Ω− set, each destroy operator removes service requests based on
the worst removal criterion. For its application for single-objective problems,
the reader is referred to Section (3.1.1). With multiple objectives, we assess
the removal impact either hierarchically, prioritizing higher-ranked objec-
tives, or through a weighted scheme using predefined weights (γ1, γ2, γ3).
This results in either prioritizing major improvements in top objectives or
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balancing improvements across objectives. Given a set of three objectives,
we explore all possible combinations (15 in total), which, when accounting
for the hierarchical and weighted evaluations (12 out of 15 combinations),
leads to two distinct sorting methods for each combination. Additionally, we
incorporate a random sorting approach, culminating in 28 distinct sorting
possibilities. Once the service requests are sorted, different ways of drawing
them produce different destroy operators. We implement two different re-
moval rules; the first rule involves removing the top-ranked request with a
set probability, continuing until q requests are removed or restarting the cy-
cle if necessary. The second rule adapts the Shaw removal strategy (Section
(3.1.1)), starting not randomly but with the first request in the sorted list. This
leads to a total of 56 destroy operators (28 sorting methods times 2 removal
rules).

Similarly, the repair operators in the Ω+ set follow analogous principles.
Removed services are re-sorted for reinsertion using various criteria, includ-
ing random and objective function-based methods, either hierarchically or
weighted. Each repair operator then calculates the cheapest insertion cost
for each request, arranging them accordingly for reinsertion. Consequently,
with three objective functions, we have 28 distinct repair operators.

5.5.3 Acceptance Operators

In contrast to the conventional ALNS, our approach integrates multiple ac-
ceptance operators, rather than just one, to effectively navigate the multi-
objective dimensions of our problem. These acceptance operators, akin to
the destroy and repair operators in traditional models, consider multiple ob-
jectives when evaluating whether to accept a solution. Specifically, given a
candidate solution solE and the current selected solution solC, we compute
the probability of solE to be selected as:

e
min(0,∑imax

i=1 wi(obji
solC
−obji

solE
)

T

where imax is the number of objective functions (possibly lower than 3) taken
into account by the acceptance rule, wi is the weight associated with the i-
th objective function, and T is the temperature for the iteration in which the
acceptance has to be decided.

Similar to the simulated annealing method, the initial temperature T is set
to a default value T0 and is subsequently reduced after every Titer iterations.
This reduction follows a geometric progression with a cooling rate equal to
0 < ³ < 1. This approach aims to prevent the algorithm from becoming
trapped in certain regions of the solution space, thereby enhancing the likeli-
hood of discovering more favorable solutions, particularly for the secondary
and tertiary objectives.
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5.5.4 The ALNS Manager

In the proposed parallel infrastructure, the ALNS is executed by multiple
workers operating in parallel, under the supervision of a centralized ALNS
manager. This manager performs two crucial functions:

• Best solution record: The manager is tasked with keeping track of
the optimal solutions for each hierarchical arrangement of the objec-
tive functions. As workers find acceptable solutions solC (referenced in
Algorithm (7) through the function ALNSManager.PUSH(solC), these
are communicated to the manager. The manager then assesses whether
these solutions surpass existing records in any of the objective func-
tion hierarchies. Upon a worker’s request for the current best solu-
tion for a specific order of objectives [ f1, f2, f3] (as per Algorithm (7),
ALNSManager.GETBEST([ f1, f2, f3]) , the manager responds with the
leading solution from the relevant list.

• Escape local minima via mathematical programming: Drawing on
prior research that demonstrates the efficacy of combining ALNS with
mathematical programming techniques (Mansini and Zanotti 2019), the
manager also engages in facilitating escape from local minima. Specifi-
cally, the manager provides a subset of highly promising arcs Ā to assist
workers in formulating a constrained version of the problem (as de-
scribed in Algorithm (7), ALNSManager.GETRESTRICTEDNETWORK).
When a worker reaches a point where the incumbent best solution re-
mains unimproved over several epochs, it resorts to this restricted prob-
lem, leveraging the insights accumulated by the manager, including the
best solution available (Algorithm (7),MIPIMPROVEMENT(solC, Ā)). The
restricted problem involves only a selected subset of arcs Ā from the
complete set A, enabling a swift resolution to optimality. The man-
ager’s role here is to discern the most pertinent arcs for a given triplet
of objectives, using the recorded best solutions. Solutions are ranked by
their performance on the objectives, and each arc in the top χ solutions
is scored, with arcs in the r-th ranked solution receiving an incremental
score of χ− r. After evaluating all solutions, arcs are ordered based on
their cumulative score, and the top ψarcs, determined by a predefined
percentage of the total arc count, are provided to the requesting worker.

5.6 Computational Results and Managerial insights

In this section, we delineate the outcomes of our computational experiments
on the impact of varying goal combinations, each with distinct priorities, on
the overall solution and stakeholder satisfaction. Initially, we introduce the
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benchmark scenarios that underpin our analysis. This is followed by a dis-
cussion offering managerial perspectives, particularly focusing on the impli-
cations for small to medium-sized scenarios. Concluding this section, we
evaluate the efficacy of our ParallelALNS approach in the context of scenar-
ios that mirror real-world complexities. All tests were run on a machine run-
ning Ubuntu 20.04.2, equipped with an AMD Ryzen 9 3950x CPU, 16 cores,
32 threads, and 32 GB of RAM. We used Gurobi 10.0.1 as mixed integer pro-
gramming solver. All methods have been implemented in Java 17.

5.6.1 Instances Generation

We have evaluated the different problem formulations on a large number of
benchmark instances. In particular, we use a set of small-size instances (Set 1)
solved to optimality using Gurobi, on which we conduct the managerial anal-
ysis, providing valuable insights for decision-makers and two sets of large-

size instances (Set 2 and Set 3) to evaluate the performance of ParallelALNS
in terms of computing time and quality when the main instance parameters
(number of patients, maximum number of services per patient, and number
of nurses) are varied. For all sets of instances, the locations of patients (and
thus, services) are randomly generated within a geographical square such
that the maximum travel time between any two nodes is equal to 120 min-
utes.

More precisely:

• Set 1 consists of 20 small-size instances characterized by the same num-
ber of services (nodes) |N|, nurses |K|, and the maximum number of
services nmax per patient (the number of services for each patient is
generated uniformly random between 1 and nmax). Such parameters
are set to 20, 2, and 2, respectively. Each instance differs for the number
of patients (generated uniformly random between 10 and 20) and their
locations.

• Set 2 consists of 20 large-size instances all with (|N|,|K|,nmax)=(75,5,3).
Similarly to Set 1, each instance differs for the number of patients (gen-
erated uniformly random between 25 and 75) and their locations.

• Set 3 consists of 120 instances in which the number of patients is fixed
at 30, while the number of nodes |N| is variable and determined by
the maximum number of services per patient nmax ∈ {1, 3, 5}, and the
number of nurses varies across |K| ∈ {5, 7}. For each combination of
parameter values (|K|, nmax), we generate 20 random instances that dif-
fer for the locations of the patients.

All three sets of instances are available for download at https://or-dii.
unibs.it/index.php?page=nurse-fairness.
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Table (5.1) shows the dimensions and configuration of the first two sets
of instances. In particular, it reports the minimum, average, and maximum
number of patients per instance (#Patients). Table (5.2) displays the features
of instances in Set 3, which were introduced to duly analyze the scalability of
ParallelALNS when increasing both the number of nurses and services.

Set |N| |K| nmax #Patients #Inst
min avg max

1 20 2 2 10 13.3 20 20
2 75 5 3 25 37.3 75 20

TABLE 5.1: Instances structure of Set 1 and Set 2.

|P| |K| nmax |N| #Inst
min avg max

30

5
1 30 30 30 20
3 30 64.35 90 20
5 30 87.3 150 20

7
1 30 30 30 20
3 30 59.3 90 20
5 30 89.05 150 20

TABLE 5.2: Instances structure of Set 3.

Each small-size instance in Set 1 has been solved for all possible ordered
triplets of objective functions, which amounted to 216 in total. Set 2 and Set
3 large-size instances have been tested only on the three objectives finally
selected by procedure StakeholderObjSelector, representing the best goal
for each stakeholder. These correspond to the minimization of the Time of
the Last Visit (TLV) for the TOC, of the worst Total Time Workload (TTW)
for the nurses, and of Late Service Time (LST) for patients. Notice that both
TTW and LST are equity measures, whereas TLV is not.

5.6.2 Managerial Insights on Small-Size Instances

In this section, we detail the outcomes derived from the application of our
scoring method, alongside pivotal managerial insights gleaned from examin-
ing the solution sets of instances in Set 1. The core objective of these insights
is to elucidate for stakeholders the interplay between their individual objec-
tives and the collective impact that emerges when these objectives intersect
with those of other stakeholders.

Scoring Methods Results

Table (5.3) provides a summary of the average scores obtained for each in-
stance (listed in columns), grouped by stakeholder (three blocks listed in
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rows), as computed by the STAKEHOLDEROBJSELECTOR function. We recall
that the lower the value the better the ranking position. Within each column,
the lowest score for each stakeholder is highlighted in bold font. For exam-
ple, in instance 12, both NAC and LST in the patient’s goals have the same
best ranking value of 1.8. The final average score (across all instances) used
to identify the triplet to optimize in Set 2 and Set 3 is shown in the Avg col-
umn. Thus, the triplet finally chosen is TLV-LST-TTW with average scores of
1.7, 1.7, and 1.9, respectively. Only the first decimal digit is shown for clarity.
TTW has been chosen over STW because its score is slightly better at 1.929
compared to 1.933 for STW.

TABLE 5.3: Average scores for the 20 instances of Set 1.

Obj Instance Avg

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

TTT 2.0 2.3 2.2 2.3 2.3 2.1 2.3 2.2 2.2 2.2 2.1 2.0 2.2 2.1 2.1 2.3 2.2 2.3 2.3 2.2 2.2
TTA 2.2 2.0 2.1 2.0 2.0 2.1 2.0 2.1 2.1 2.1 2.2 2.2 2.1 2.1 2.1 2.0 2.1 2.0 2.0 2.1 2.1
TLV 1.8 1.7 1.7 1.7 1.7 1.8 1.7 1.7 1.7 1.7 1.7 1.8 1.7 1.8 1.8 1.7 1.7 1.7 1.7 1.7 1.7

NAC 1.9 1.8 1.9 1.7 1.8 1.9 2.0 1.8 2.0 1.9 1.8 1.8 2.0 1.7 1.9 1.4 1.6 1.9 1.4 1.8 1.8
NAL 1.9 1.9 1.8 2.0 1.9 1.8 1.8 1.9 1.8 1.9 2.0 1.9 1.7 2.0 1.9 1.9 2.0 1.8 1.9 1.9 1.9
LST 1.8 1.8 1.7 1.7 1.9 1.9 1.8 1.9 1.8 1.7 1.7 1.8 1.8 1.8 1.7 1.3 1.6 1.7 1.3 1.8 1.7

NQL 2.3 2.7 3.0 2.5 2.7 2.3 2.6 2.7 2.1 2.3 2.5 2.4 2.3 2.6 2.8 2.6 2.8 2.5 2.3 3.1 2.5
STW 2.2 1.8 2.2 1.6 1.9 1.8 1.9 2.1 1.8 2.3 1.8 1.8 1.9 2.0 2.0 2.1 2.1 1.8 1.8 2.0 1.9
TTW 1.8 2.3 1.8 1.9 2.2 2.1 1.8 2.1 2.3 1.8 1.8 1.8 2.0 1.7 2.2 1.9 1.8 1.8 1.8 1.8 1.9
PWZ 2.6 2.2 2.3 2.4 2.3 2.8 3.0 2.5 3.0 2.7 2.4 2.6 2.9 2.5 2.4 2.4 2.3 2.2 2.5 2.3 2.5

Figure (5.1) provides a visual representation of how results are distributed
for each goal of each stakeholder. The disparity in the TOC scores with TLV

as the most favorable measure (average score of 1.7) compared to TTA and
TLV highlights a critical insight. It suggests that, from a hospital’s perspec-
tive, efficiency is better achieved by the minimizing the time of the last ser-
vice rather than the overall travel time or the total lateness. This insight
can be beneficial to the TOC in deploying a different strategy than the min-
imization of costs knowing that the trade-off in prioritizing nurses working
shifts would be low. From Figure (5.1b), the uniformity in scores across var-
ious fairness measures indicates that, from the patient’s standpoint, no sin-
gle fairness function significantly outperforms the others in balancing trade-
offs. This could mean that patients perceive a relatively equal level of service
regardless of the specific fairness measure applied. It’s an important find-
ing, suggesting a degree of flexibility in choosing fairness measures without
significantly impacting patient perception. On a nurses perspective, Figure
(5.1c) reports the time-related functions STW and TTW with an average score
equal to 1.9 diverging from the average equal to 2.4 of the two assignment-
related functions NQL and PWZ . Lower scores in STW and TTW might re-
flect nurses’ preference or better satisfaction for measures that focus on their
workload scheduling and travel aspects. In contrast, higher scores for NQL
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FIGURE 5.1: Distribution of the scores for each objective.
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and PWZ indicate less favorable views when the workload is assessed from
the perspectives of overall quality of life and patient waiting times.

Intra-Actor Results

In this section, we delve into the correlation between measures by analyzing
the impact of using a specific goal as the first objective function in a triplet
solved through hierarchical optimization. We investigate how this affects the
values of the remaining objectives, as shown in Figure (5.2). Additionally, we
examine how changing the priority order of goals in the triplet impacts the
solution values, as illustrated in Figure (5.5).

(A) TOC (B) Patients

(C) Nurses

FIGURE 5.2: Correlation between objective functions.

Figure (5.2) presents a comparative analysis of various objectives linked
to the same stakeholder, employing a parallel coordinates graph for illustra-
tion. This graph is an effective tool for visualizing and comparing multivari-
ate data. Each vertical axis on this graph represents a specific goal, allowing
for an effortless examination of the interconnections between these goals and
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identifying discernible patterns or trends. In this graph, each color-coded
piece-wise line is associated with a distinct objective function pertaining to
a stakeholder, considered as the primary objective in a triplet of hierarchi-
cal multi-objective optimization. The number of points each line connects
varies with the stakeholder: three points for some (refer to Figures (5.2a) and
(5.2b)) and four for others (as shown in Figure (5.2c)). For example, in Fig-
ure (5.2a), a black dotted line represents the goal TTT. This line intersects
the TTT axis at its lowest point value of 145.09, indicative of the optimized
average objective function value when TTT is prioritized in all tests. Subse-
quently, it crosses the axes of other goals for the same stakeholder, recording
average values of 931.28 for TTA and 456.15 for TLV. These values are the
averages achieved across all instances for TTA and TLV when TTT is opti-
mized and the resulting solution is used to evaluate the other two goals of
the TOC. By analyzing the values displayed on a given vertical axis, we can
effectively assess the performance of a stakeholder’s specific objective under
different optimization scenarios. This allows us to observe how well the goal
performs when it’s the primary focus of optimization (resulting in its mini-
mum value) and how it fares when the optimal solution for other objectives
is considered, yielding an average value. For instance, take a look at Fig-
ure (5.2a). Concentrating on the vertical axis labeled TLV, we notice that its
optimal value stands at 288.87 when prioritized in the optimization process.
However, when we calculate TLV’s average performance using the optimal
solution for TTT, its performance worsens significantly, reaching a maximum
value of 456.15. Conversely, when TTA takes precedence in optimization,
TLV’s average value improves to 393.43. These visual representations offer
valuable insights into the relationships between different objectives and how
their values fluctuate when the top-priority objective changes. This deeper
understanding helps decision-makers comprehend the interplay among var-
ious measures. For example, Figure (5.2c) reveals a clear connection between
the behaviors of functions STW and TTW. Optimizing one of these functions
leads to the other achieving its second-best value. Interestingly, both func-
tions perform poorly when the optimization focus shifts to NQL and PWZ.
Although certain functions may show positive correlations, Figures (5.3) and
(5.4) emphasize significant disparities in the optimal routes between these
solutions. These figures provide a detailed view of the routes generated for
Instance 13 within Set 1, which involves 20 nodes, 13 patients, and 2 vehi-
cles. In Figure (5.3), we can observe the solutions derived from optimizing
NQL and NAL, while Figure (5.4) displays the results of optimizing TTW and
STW. It’s important to note that, for clarity in visualization, the nodes in these
figures represent patients rather than individual services. Consequently, you
may notice subtours in the graphs where two services for the same patient
are not executed consecutively, leading to multiple visits to the same patient.
These subtours are a result of the representation choice and provide insights
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FIGURE 5.3: Optimal routes for functions NQL and NAL for
Instance 13 of Set 1.

into the complexities of optimizing routes for healthcare services.
Figure (5.3) compares optimal solutions when optimizing functions re-

lated to nurses’ skills. Despite the strong correlation between these measures,
there are notable discrepancies in nurse-patient assignments. For instance, in
Figure (5.3a), Patient 6 is attended to by just one nurse, whereas in Figure
(5.3b), the patient’s services are distributed among two nurses. This demon-
strates that the specific assignments and routes can vary significantly even
with similar optimization goals.

Similarly, Figure (5.4) illustrates that, while function STW is encompassed
within function TTW, the routes obtained by optimizing these objective func-
tions differ notably. This highlights that the inclusion of one function within
another does not necessarily result in identical or even highly similar routes,
emphasizing the intricacies of route optimization in healthcare contexts.

In Figure (5.5), the box plots visually represent the percentage improve-
ment in various measures when their priority changes during the lexico-
graphic optimization process. These improvements are quantified as "gaps,"
denoted as Gap(i→ j), indicating the percentage of value enhancement that
occurs when a function is shifted from priority level i to priority level j with
i > j. Specifically, we focus on three graphs: Gap(3 → 2) and Gap(3 → 1)
measure the enhancement when moving from the third priority level to the
second and first priority levels, respectively and Gap(2 → 1) represents the
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FIGURE 5.4: Optimal routes for functions TTW and STW for
Instance 13 of Set 1.

improvement when transitioning from the second to the first priority level.
The analysis helps us conclude that the improvement of four measures (two
related to the TOC and two to nurses) remains consistently below 30%, while
for half of the functions the highest improvement falls short of 40%. For in-
stance, take the measure NAC, which exhibits Gap(2 → 1) values ranging
from 0% to 17.5%, with an average improvement of 10%. The whisker asso-
ciated with the maximum value reaches 29%.

However, for measures like TTA, NAL, LST, and NQL, the percentage
improvement can reach as high as 100%. Among these, LST experiences the
most significant improvement, with an average enhancement of 98% when
transitioning from the third to the first priority level. These findings shed
light on how different measures respond to changes in priority levels during
optimization.

Inter-Actor Results

In this section, we delve into the intricate relationships between stakehold-
ers and their objective functions. Specifically, we explore how prioritizing
an objective function associated with one stakeholder can impact the opti-
mization of objectives related to non-prioritized stakeholders. Figure (5.6)
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FIGURE 5.5: Improvement of the value of the objective func-
tions when changing priority.

visually represents the percentage deterioration observed in various mea-
sures based on the stakeholder with the highest priority. For each measure,
two distinct points are plotted to evaluate its deterioration under different
scenarios: when each of the other two stakeholders is assumed to have the
highest priority level.

Here’s how to interpret the graph: the x-axis represents the percentage
worsening of a measure when it is optimized as the secondary objective, com-
pared to its value when it is the primary objective. The y-axis displays the
percentage decrease in performance when the measure is used as the tertiary
(third) objective in the hierarchical order. For example, in Subfigure (5.6a),
the point patSTW indicates that when patients’ objectives are prioritized as
the first to be optimized, measure STW experiences an average decline of 3%
when subsequently optimized as the second objective. This decline increases
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to 14% when STW becomes the third objective, suggesting a high sensitiv-
ity to its prioritization. Conversely, functions that are positioned near the
bisector line at the center of the figure, like tocTTW , exhibit no significant dif-
ference in their percentage deterioration when moved from the second to the
last priority level. This implies that their performance remains relatively con-
sistent regardless of their priority. This visual representation serves a dual
purpose. Firstly, it clearly illustrates how one stakeholder’s objectives can
impact the deterioration of another stakeholder’s objectives. For example,
comparing patPWZ with tocPWZ allows us to observe that the deterioration
of PWZ when shifted from the first to the third priority level is independent
of the first-priority stakeholder chosen. However, moving it from the first to
the second priority level performs better when patients’ objectives are prior-
itized over TOC’s. Secondly, it helps understand the difference in behavior
between a shift to the secondary priority level and a shift to the tertiary pri-
ority level, providing valuable insights into the dynamics of prioritization in
this context.

Certainly, the analysis reveals interesting patterns in how the optimiza-
tion of nurses’ measures (STW, TTW, NQL, and PWZ) as the second ob-
jective is influenced by the prioritization of the TOC as the main objective.
For instance, when nurses’ measures are secondary objectives, they exhibit
significantly higher declines in performance when the TOC is the primary
focus. Take tocNQL, for example, which experiences an average decline of
82% when the TOC is prioritized, compared to a 23% decline when patients’
objectives take precedence. However, this sensitivity to the primary actor
diminishes when the measure is in the third position, with a difference of
only 22% between patNQL and tocNQL. The plot is divided into three sub-
figures based on the range of values to enhance the visualization of these
results. Subfigure ((5.6a)) includes values ranging from 0% to 45% for the y-
axis. Subfigure ((5.6b)) covers values between 60% and 110%, and Subfigure
((5.6c)) represents the highest section of the plane, with a maximum value
of 2250%. Consistent with the previous analysis of percentage variations in
Figure (5.5), TTA and LST exhibit the widest ranges of value decline. For ex-
ample, the coordinates for tocLST show a decline of 1986% and 2031%. How-
ever, it’s crucial to note that your ranking system identifies LST as the best
measure for patients. Therefore, despite the significant decline in LST values,
the computed values for the other functions remain, on average, better than
those obtained when optimizing other patients’ goals. In other words, even
with the substantial decrease in LST values, the overall solutions still out-
perform alternative options when it comes to meeting patients’ objectives, as
determined by your ranking system.
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(A) First Range (B) Second Range

(C) Third Range

FIGURE 5.6: Worsening of objective functions with varying first
optimized actor.
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5.6.3 Sensitivity Analysis on the Number of Nurses and Ser-

vices

In this section, we delve into the results obtained from solving the large-
size instances within Set 3, consisting of 120 instances. These instances were
solved for all possible combinations of the triplet TLV, TTW, LST using the
ParallelALNS metaheuristic. For each instance and ordered triplet of ob-
jective functions, the algorithm was executed three times, with a time limit
of 600 seconds per run. In total, we obtained 2160 solutions for the 120 in-
stances, considering six different ordered triplets and three runs per instance.
We selected the best run for each instance and each ordered triplet to facil-
itate the analysis. This approach allows us to focus on the most promising
and optimal solutions among the multiple runs conducted for each instance
and triplet combination.

TABLE 5.4: Results for instances in Set 3.

|K| = 5 |K| = 7

f 1 f 2 f 3 nmax = 1 nmax = 3 nmax = 5 nmax = 1 nmax = 3 nmax = 5

LST TTW TLV 11.32 185.25 175.11 162% 93% 98% 715% 147% 153% 0% -25% -27% 87% 29% 30% 258% 99% 104%
TLV TTW LST 156.25 191.39 82.48 72% 59% 402% 133% 108% 857% -27% -23% -39% 25% 20% 156% 78% 63% 599%
TTW TLV LST 178.51 168.32 65.91 62% 67% 435% 114% 123% 1038% -23% -25% -34% 21% 23% 198% 66% 72% 652%
TLV LST TTW 156.25 77.34 191.49 72% 426% 59% 133% 919% 108% -27% -40% -23% 25% 156% 20% 78% 646% 63%
LST TLV TTW 11.32 166.93 194.18 162% 105% 87% 715% 165% 136% 0% -30% -23% 87% 33% 27% 258% 112% 93%
TTW LST TLV 178.51 43.89 170.70 62% 542% 65% 114% 1344% 120% -23% -44% -25% 21% 229% 21% 66% 998% 70%

Table (5.4) provides a detailed summary of the results, specifically focus-
ing on ordered triplets of objective functions, categorized by the number of
nurses (|K| = 5 and |K| = 7) and the maximum number of services requested
(nmax = 1, 3, 5). Analyzing the percentage variations, we observe a consis-
tent trend where increasing the number of services leads to higher objective
function values, as expected. Regarding LST, it is evident that the objective
function is highly sensitive to parameter nmax changes. When LST is the first
objective, its value increases significantly, by 162% and 715% for nmax = 3
and 5, respectively. This impact of nmax becomes more pronounced when
LST occupies the second and third positions. Notably, the difference in the
average increase between the second and third positions is relatively small,
averaging 484% vs. 418% for nmax = 5. This highlights the sensitivity of
LST to variations in nmax. On the other hand, the other two objective func-
tions, TLV and TTW, also show noticeable changes but to a lesser extent. For
instance, when TLV is in the first position and nmax is increased from 1 to
3, its value increases by 72%. Similarly, when nmax is increased from 1 to 5,
TLV exhibits a 133% increase. Similar behavior is observed when TLV is in
the second and third positions. The behavior of TTW closely resembles that
of TLV. In summary, the results in Table (5.4) confirm the expected impact
of changing the number of services on objective function values and high-
light the sensitivity of LST to variations in nmax, while also showing notable
but less pronounced effects on TLV and TTW. It’s evident from the analysis
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TABLE 5.5: Tuning of the ParallelALNS parameters.

Parameter Meaning Value

qStep Incremental quantity of the degree of destruction q 1
qmax Maximum value of q +0.9|N|,
noImpIter Number of iterations without improvement before increasing q 100
epochIter Number of iterations per epoch 10000
imprEpoch Number of epochs without improv. before solving the restricted problem 12,6
Äinit Time limit for the initial solution heuristic 3s
χ Number of top solutions kept by the ALNS manager 10000
Ā Number of arcs in the restricted network +0.1|A|,
Ä Time limit for ParallelALNS 120s,600s
γ1, γ2, γ3 Weight values in weighted operators 0.9, 0.07, 0.03
T0 Initial temperature 10
³ Cooling rate 0.9
Titer Cooling schedule 100
ALNS Workers Number of ALNS workers running in parallel 30

that when the number of services is kept constant, an increase in the number
of nurses generally leads to improved overall performance. However, once
again, we observe that LST exhibits the highest volatility among the three
measures. For example, when LST is in the third position, and nmax = 5, the
average increase in its value compared to the baseline results decreases from
947.5% to 625.5% when the number of nurses changes from 5 to 7. This sensi-
tivity of LST to changes in the number of nurses is consistent across different
positions and values of nmax. An interesting exception arises when LST is in
the first position, nmax = 1, and |K| = 7. In this particular case, the value of
LST remains unchanged compared to the baseline results. This indicates that
5 nurses were sufficient to provide the services when nmax = 1, and adding
more nurses did not lead to any further improvements in this specific sce-
nario. These findings highlight the complex interplay between the number
of nurses, the maximum number of services, and the position of the objective
function in the optimization process, with LST showing particularly notable
sensitivity to these factors.

5.6.4 Evaluating the ParallelALNS Framework

In this section, we present the results obtained by our ParallelALNS meta-
heuristic. We conducted preliminary tests using a limited set of instances
with varying numbers of service requests and nurses. Based on these tests,
we fixed nearly all the ALNS parameters, except for imprEpoch, Ä, qmax, and
Ā, which depend on the size of the solved instance. All parameter values are
listed in Table (5.5). Regarding imprEpoch and Ä, we utilized imprEpoch = 12
and a time limit of 120 seconds for Set 1 instances, and imprEpoch = 6 and
Ä = 600 for Set 2 instances.

Table (5.6) provides a comprehensive comparison of the results achieved
by the ParallelALNS metaheuristic on Set 1 instances in comparison to the
optimal solutions obtained by Gurobi. The algorithm was run three times
with a time limit of 120 seconds for each run.
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Each row in the table represents the performance of the algorithm for a
specific hierarchical order of the three objective functions. The first three
columns indicate the objectives in hierarchical order, and the last two columns
display the number of times (out of 20 instances) the best (B) and the worst
(W) solution found by ParallelALNS matches the optimal solution discov-
ered by Gurobi. The results demonstrate that ParallelALNS is generally suc-
cessful in finding the optimal solution, except when the objective function
LST is prioritized as the first one to be optimized. In all other cases, even the
worst run of ParallelALNS is capable of matching the optimal solution. For
example, when considering the best solution, in the triplet [LST, TTW, TLV],
ParallelALNS obtains 18 optimal solutions out of 20, and for the worst so-
lution, it achieves 16 out of 20. Overall, the performance of ParallelALNS
on these small instances is relatively stable, with little difference between the
best and worst runs. In the cases where ParallelALNS cannot find the opti-
mal solution, it’s worth noting that the value of the first objective function is
consistently equal to the optimal value. In one case, the value of the second
objective deviates slightly from the optimal value, with a negligible gap of
0.25%. In the remaining two cases, the average gap between the value ob-
tained for the third objective and the optimal one is 1.24%. These gaps are
expressed as percentages and represent the difference between the solution
value found by Gurobi for the considered objective function and the solution
value obtained by ParallelALNS, divided by Gurobi’s value.

Considering the worst solution instead, four times the non-optimal objec-
tive is the second one (average gap 0.46%) and twice the third one (0.72%).

TABLE 5.6: Comparison between ParallelALNS and Gurobi on
Set 1 instances.

Objectives #Opt

f1 f2 f3 B W

TLV LST TTW 20 20
TLV TTW LST 20 20
LST TTW TLV 18 16
LST TLV TTW 19 18
TTW TLV LST 20 20
TTW LST TLV 20 20

Table (5.7) presents a comprehensive comparison between ParallelALNS

(with three runs) and Gurobi (with time limits of 600s and 3600s) on the 20
instances from Set 2. The table’s structure is similar to the previous one.

Let’s analyze the key observations from this comparison:

• ParallelALNS outperforms Gurobi. It’s evident that ParallelALNS con-
sistently achieves better solutions than Gurobi. In fact, for all hierarchi-
cal orders of the three objectives, even the worst solution obtained by
ParallelALNS surpasses the one found by Gurobi.
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• Gurobi faces challenges in finding feasible solutions for certain hier-
archical orders, particularly when LST is the first optimized function.
In these cases, Gurobi often reaches the time limit without finding the
optimal solution but provides a feasible one.

• When LST is the first objective function and Gurobi does find a solution,
ParallelALNS achieves a significant improvement, with an average gap
reduction of 66.5% compared to Gurobi’s solutions.

• The difference between the best and worst solutions obtained by ParallelALNS

for each hierarchical order is limited, indicating the method’s consis-
tency in generating competitive solutions.

• When LST is the second objective function, there is a noticeable trade-
off between the value of the first and second objectives. On average,
the solutions identified by ParallelALNS are 9.35% better than those
found by Gurobi for the first objective, but they are 74.7% worse when
considering LST (in the second position). This highlights the challenge
of optimizing LST when it is not the primary objective.

Overall, the results showcase the effectiveness of ParallelALNS in pro-
viding competitive solutions across different hierarchical orders, while also
highlighting the difficulties Gurobi faces in finding optimal solutions for spe-
cific cases.

TABLE 5.7: Comparison between ParallelALNS and Gurobi on
Set 2 instances.

Objectives #Improv. Best Worst

f1 f2 f3 B W #Feas. Gap f1 Gap f2 Gap f3 Gap f1 Gap f2 Gap f3

TLV LST TTW 20 20 15 -13.8 93.9 -7.1 -13.4 91.3 -6.8
TLV TTW LST 20 20 15 -8.5 -0.4 116.0 -8.1 -0.1 100.1
LST TTW TLV 20 20 13 -66.5 0.9 1.8 -65.0 3.0 3.8
LST TLV TTW 20 20 13 -66.5 3.8 6.8 -65.0 6.4 7.9
TTW TLV LST 20 20 20 -4.8 -2.9 33.0 -4.5 -2.5 31.0
TTW LST TLV 20 20 20 -4.9 55.5 -4.1 -4.5 61.6 -3.8

Table (5.8) provides insights into the effectiveness of the MIPIMPROVEMENT

procedure, which is designed to solve the mathematical model of the prob-
lem on a restricted network. The table reveals significant variation in the
number of times the MIPIMPROVEMENT procedure improves the best solu-
tion identified for any of the hierarchical orders across different instances.
Some instances, like Instance 3, show a substantial impact of the procedure,
with an average of 18.3 improvements. However, there are instances, such as
Instance 18, where the procedure does not lead to any improvements. This
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TABLE 5.8: Contribution of function MIPIMPROVEMENT when
solving Set 2 instances.

Instance #Impr Instance #Impr

1 13.0 11 2.3
2 5.0 12 15.0
3 18.3 13 3.3
4 2.3 14 17.7
5 3.0 15 4.3
6 4.0 16 6.3
7 13.7 17 9.7
8 7.0 18 0.0
9 6.0 19 2.7
10 12.0 20 12.7

variability suggests that the effectiveness of the MIPIMPROVEMENT proce-
dure depends on the specific characteristics of the instances and the initial so-
lutions obtained. Additionally, to address the challenges in accurately eval-
uating the quality of solutions for certain triplet combinations in Table (5.7)
we introduced an algorithm called MathALNS, which consists of two phases:

• Phase 1: A modified version of ParallelALNS is used to concentrate
solely on one hierarchical order, resulting in six times more parallel
ALNSs focusing on specific orders. This phase takes the best incum-
bent integer solution found by ParallelALNS in the original three runs
as input and produces a potentially improved solution.

• Phase 2: Gurobi receives the solution obtained in Phase 1 as a mild start
and runs for 3600 seconds to further enhance it. Based on a non-parallel
version of ALNS, our primal heuristic is embedded to strengthen Gurobi’s
branch-and-cut algorithm. Whenever Gurobi finds a new improved so-
lution, our primal heuristic is executed for 20 seconds to refine it fur-
ther.

Table (5.9) provides a summary of the improvements achieved by MathALNS

over ParallelALNS on Set 2 instances for the two selected triplet orders. The
table showcases the percentage improvement obtained at the end of both
phases concerning the best solution obtained by ParallelALNS over three
runs. It can be observed that, the two triplet orders, TLV-TTW-LST and
LST-TLV-TTW, exhibit significantly different solution improvements. For the
triplet TLV-TTW-LST both Phase 1 and Phase 2 fail to improve the solutions
obtained by ParallelALNS by more than half a percentage point for all ob-
jectives. This suggests that the solutions achieved by ParallelALNS were
likely already of very high quality. In contrast, for the LST-TLV-TTW triplet
order, Phase 1 demonstrates substantial improvements, particularly in re-
ducing the LST value by almost 5%. Phase 2 further refines the average
LST value by a 5.3% reduction, with noticeable improvements for the sec-
ond and third objectives, TLV and TTW. notably, for the LST-TLV-TTW triplet
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order, MathALNS determines the optimal objective function value for LST in
eight out of 20 cases, matching the one found by ParallelALNS. It’s impor-
tant to consider that these improvements come at the cost of significantly in-
creased execution time. MathALNS utilizes the best solution out of three runs
of ParallelALNS (30 minutes in total), then runs a modified ParallelALNS

(10 minutes), and finally runs Gurobi (60 minutes), resulting in a total ex-
ecution time of 100 minutes, which is ten times longer than ParallelALNS.
Overall, MathALNS demonstrates its capability to further enhance solutions
obtained by ParallelALNS, especially for specific triplet orders where signif-
icant improvements are achievable. However, this improvement comes at the
expense of increased computational time, highlighting the trade-off between
solution quality and execution time.

TABLE 5.9: Improvement of MathALNS over ParallelALNS.

Objectives Phase 1 Phase 2

f1 f2 f3 Gap f1 Gap f2 Gap f3 Gap f1 Gap f2 Gap f3

TLV TTW LST −0.3 −0.1 0.7 −0.4 −0.4 −0.4
LST TLV TTW −4.7 −1.4 −1.0 −5.3 −5.2 −6.4

To enhance our assessment of the ParallelALNS method, we’ve devel-
oped a new technique named ParetoALNS. This method is designed to closely
approximate the Pareto-efficient frontier, which represents the set of best pos-
sible solutions in terms of multiple objectives. It achieves this by keeping
track of all non-dominated points – points where no other solution is bet-
ter in all objectives – that it finds during its operation. By comparing the
results from ParallelALNS to this frontier, we can better understand how ef-
fective ParallelALNS really is. ParetoALNS is tasked with finding the best
possible solutions across all six possible hierarchical orders of a given triplet
of objectives. To do this efficiently, we assign one ALNS worker to each hi-
erarchical order, while the rest of the workers focus on solving the problem
using objective functions weighted differently. These weights are randomly
selected from a range between 0 and 1, ensuring a diverse set of solutions.
Our findings, illustrated in Figures (5.7) and (5.8), showcase the Pareto fron-
tier and all the solutions generated by ParetoALNS during multiple runs on
a specific instance. For instance, when run 1200 times under the same con-
ditions as ParallelALNS, ParetoALNS produced around 90,000 points. Out of
these, 137 were identified as constituting the approximated Pareto frontier,
as shown in Figure (5.7). In these figures, we’ve highlighted in red the six
points that represent the best solutions found by ParallelALNS for the six
orders of a specific triplet. Interestingly, only four of these points are visi-
ble as two of them overlap with points 1 and 4. It’s notable that out of the
six ParallelALNS solutions, half were not dominated by any other solution
throughout the 1200 runs. The other half were only marginally dominated,
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with minimal improvements noted in the first objective (0.09%) and slightly
higher in the second and third objectives (0.14%). However, it’s important
to mention the computational cost involved in creating a robust approxima-
tion of the Pareto frontier for each instance. In this case, ParetoALNS man-
aged to generate a large number of points through extensive runs, but only a
small fraction contributed to the frontier approximation. The entire process
required a substantial amount of time – around 200 hours in total.

FIGURE 5.7: Approximation of the Pareto frontier: Instance 1 of
Set 2.

FIGURE 5.8: 90000 solutions generated by ParetoALNS: Instance
1 of Set 2.
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5.7 Conclusions

Addressing multi-objective, multi-actor problems presents significant chal-
lenges, especially in fields requiring intricate balancing of diverse prefer-
ences and goals, such as in nurse routing and scheduling. In this study, we
have explored an innovative approach to such problems, particularly em-
phasizing the varying priorities of nurses, patients, and healthcare service
providers. Our method stands out by not requiring predetermined objective
orderings from different stakeholders. Instead, each stakeholder proposes a
range of goals, and our approach independently identifies the most effective
goal for each actor, irrespective of its hierarchical position or its interplay
with others’ objectives. The result is a singular, streamlined problem for-
mulation that focuses solely on the optimal goal for each stakeholder. We
have developed a unique adaptation of the Adaptive Large Neighborhood
Search (ALNS) algorithm, tailored to address the complexities of multiple
objective functions. This version of ALNS innovatively integrates destroy
and repair operators alongside acceptance criteria tailored to multi-objective
scenarios. To enhance computational efficiency for large-scale instances, we
employed a parallel processing strategy. In this setup, multiple ALNS work-
ers, each dedicated to a specific sequence of goals, operate simultaneously.
A manager-worker framework orchestrates this parallelism, where the man-
ager acts as a central hub, circulating essential data among the workers. This
data includes the most successful solution identified for each goal triplet and
a dynamically updated list of promising network arcs. Each worker utilizes
this shared knowledge in a specialized matheuristic phase, formulating and
resolving the problem on a restricted network using a Mixed Integer Pro-
gramming (MIP) solver. Our computational experiments offer valuable in-
sights into various equity measures pertinent to nurses and patients. These
findings elucidate the relationship between these measures and the objec-
tives set by the healthcare organization responsible for home care services.
The efficiency and effectiveness of our developed method are evident in both
small and large-scale instances, with its performance being notably superior
when compared to leading MIP solvers. We introduced two additional vari-
ants of our method for a more thorough evaluation. One variant collabo-
rates with a MIP solver to refine the best solutions identified, while the other
focuses on approximating the Pareto-efficient frontier. Both these enhance-
ments further demonstrate the robustness and adaptability of our approach
in handling complex, multi-stakeholder optimization problems in healthcare
logistics. The success of these methods not only marks a significant advance-
ment in solving such intricate problems but also opens the door for future
research and applications in similar multi-objective, multi-actor scenarios.
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This chapter corresponds to the paper "V.Bonomi, R.Mansini, R.Zanotti, Dy-

namically dealing with requests in a Stochastic Multi-Period Home Healthcare Prob-

lem with Consistency Constraints", to be submitted

6.1 Introduction

In this section, we examine the Multi-Period Dynamic Vehicle Routing Prob-
lem within the context of the healthcare industry, focusing specifically on
home care services. This challenge involves dealing with unpredictable re-
quests from patients who require visits from nurses at their homes, where the
exact time and location of the needed service are not known in advance. The
agency responsible for the nurses must decide daily whether to accept new
patients, thus generating revenue, or to outsource these requests to other
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providers. To improve patients’ satisfaction, visits must be scheduled re-
specting the consistency constraint, meaning that it is necessary for a con-
sistent nurse-to-patient assignment in all patient visits. The goal is to plan
assignments efficiently, ensuring all accepted patient requests are met while
maximizing profits by balancing the revenue against travel costs. We propose
several solution approaches to tackle this problem, relying on the dynamic
nature of the problem. At first, we consider patient selection and nurse rout-
ing day by day in a myopic approach, and then we integrate historical data
through scenario generation to obtain better predictions of future demands.
All our proposed solutions employ an Adaptive Large Neighborhood Search
algorithm to manage the routing challenges, tested on various scenarios to
ensure their effectiveness. In Section (6.2) we detailed the problem descrip-
tion and present the mathematical formulation in Section (6.3). Section (6.4)
details the main heuristic applied already introduced in Chapter (3). The
main computational results are presented in Section (6.5). At first a sensitiv-
ity analysis on consistency is made on small size instances.Then, the heuris-
tics performances are studied in more detail.

6.2 Problem Description

We consider the operational model of a private nurse agency tasked with the
planning of visits to patients in different geographical areas. When patients
need care, they contact the agency and provide details on the number of visits
required and the specific days they need service within a given time frame.
Requests must be submitted at least one day before the first visit. If a request
is submitted more than one day before the first service, the decision to ac-
cept or deny the patient will be deferred until the day before the requested
first visit. This approach allows the agency to exploit, at maximum, all the
new information that may arise between the patient’s call and the start of ser-
vice. If no nurses’ routes can accommodate all the patient’s visits, the agency
declines the patient, referring it to an alternate local provider. The agency
does not know in advance how many patients will require service during
the time horizon, their locations, the number of associated interventions, and
their requests’ temporal profile. Every day, the agency plans the routes for
its nurses based on the patients already known. After a patient is accepted,
it is assigned to a nurse who will be responsible for all the scheduled visits.
This commitment to nurse-patient consistency is motivated by the fact that a
stable caregiver relationship is crucial to improving the level of care.

Given that patient requests are received continuously, the problem falls
under the category of a multi-period stochastic problem with the added com-
plexity of maintaining consistent nurse assignments in a dynamic setting.

The problem is defined over a discrete timeline represented by the set
D = {1, ..., dmax}where the time horizon spans dmax days. We indicate as K =
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{1, ..., m} the set of nurses available on each day of the time horizon, and as
P = {1, . . . , p̄} the set of patients requiring services over the dmax days. The
maximum working shift of the nurses is defined as tmax. We refer to Dp ¦ D

as the set of days on which patient p requires the service. For each day d ∈ D,
we define as Pd ¦ P the patients that require a visit on day d. Every patient
p contributes an amount denoted as rp (representing the agency’s revenue)
in exchange for the completion of the service. During the period D, on any
given day d, patients are classified in two distinct categories:

• Booked patients: patients who have already contacted the agency spec-
ifying their locations and service requests. We denote this set as PB ¦ P.
Among these patients, we can further divide them into those who have
been accepted (set PA), those who have been rejected (set PR), and
those still awaiting a decision (set PW), forming the partition PB =

PA ∪ PR ∪ PW .

• Potential patients: This group includes individuals whose service re-
quests and locations have not yet been determined. For these patients,
the agency must use information from past service requests to antici-
pate and plan for future needs.

At the end of each day d, decisions about the assignments and the routing
of day d + 1 are taken. In particular, patients in PW with the first service in
d + 1 are either assigned to a nurse or rejected. Once all the assignments are
defined, each nurse route is built with the patients in PA requiring a visit in
d + 1.

The hospital’s costs are calculated as the difference between the revenues
of accepted patients and the total travel expenses. Travel costs are propor-
tional to the traveled distances that are Euclidean.

The objective of the problem is to identify which patients to serve to max-
imize the difference between the revenues and the travel expenses. This has
to be achieved while ensuring to comply with consistency constraints. The
problem is the Stochastic Multi-Period Home Healthcare Problem with Con-
sistency Constraints (SMHHP-C).

We call the particular version of the problem where it is assumed to know
all the patients requiring a visit to the Offline Problem. In this case, there is no
uncertainty about future patients, and all the needed visits are known.

To better understand the requests management we give here a numerical
example over a time horizon of |D| = 6 days with |P| = 4 patients.

In Table (6.1), for each patient, are shown the day in which the request
became known (Release Date) and the days in which the patient requires
visits (Service Dates), while a visual representation is given in Figure (6.1).

In Figure (6.1), each patient is represented by a circle on its release date.
The arrows exiting the circles indicate in which days the patient needs a visit.
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TABLE 6.1: Requests Example

Patient ID Rel. Date Serv. Dates

1 0 {1, 2}
2 1 {3, 4}
3 3 {4, 5}
4 4 5

FIGURE 6.1: Visual representation of patients requests

The time horizon is divided in days and the decision epoch is set at the end of
the day. Let us assume to be on day d = 1. In a real-life situation the subset
of booked patients PB would include Patient 1 and Patient 2; the patients
with a release day less or equal than d = 1. Patient 3 and Patient 4 are still
unknown to the hospital. To this day, decisions about Patient 1 have already
been taken on DE = 0 while Patient 2, although already known, is will not
be planned until DE = 2, the day before its first visit that will take place on
day 3. Hence, on DE = 1 no decision has to be made, and the routes for
the subsequent days are not updated. On the other hand, if we consider the
Offline Problem, all the patients are already known at DE = 0. How different
solution methods handle information is presented in Section (6.4).

To provide a compact formulation of the problem, we create a set of Ns =

{|P|+ 1, . . . , |P|+ |K|} of |K| dummy nodes representing the starting points
for each one of the m vehicles. The same process is applied to the ending
nodes, with the set Ne = {|P|+ |K|+ 1, . . . , |P|+ 2|K|} of |K| dummy nodes.
Consequently, for each vehicle k ∈ K the starting and ending depots are rep-
resented by nodes ( p̄ + k) and p̄ + m + k, respectively. The duplication of
depots avoid us to implement the k index on the arcs variable and was ini-
tially presented by Luo et al., 2015. The Offline Problem can be defined over
a complete and directed graph G = (V, A) where V = P ∪ Ns ∪ Ne is the set
of nodes including all the patients and depots over the time horizon, and A
is the arc set. For each set S ¢ V, let δ+(S) = {(i, j) ∈ A : i ∈ S, j /∈ S}
and δ−(S) = {(i, j) ∈ A : i /∈ S, j ∈ S} be the set of arcs leaving from and
entering set S, respectively. For each d ∈ D, we can define the sub-graph
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Gd = (Vd, Ad) where Vd = Pd ∪ Ns ∪ Ne and Ad ¦ A are the arcs connecting
the nodes of day d. We indicate as cij and tij the traveling time associated
with arc (i, j) ∈ A and as si the service time at node i ∈ P.

6.3 Mathematical Formulation

In this section, we provide the mathematical formulation of the problem
when all information is assumed to be known (Offline problem) and we
present a different formulation to include various patients management poli-
cies.

To this aim, we define the following sets of variables. For each day d ∈ D,
and each arc (i, j) ∈ Ad connecting node i ∈ Vd and node j ∈ Vd, we define
the binary variable xd

ij as follows:

• xd
ij =

{

1, if arc (i, j) is traversed on day d

0, otherwise.

The second set of binary variables defines nurse/patient assignments. For
each patient p ∈ P and for each nurse k ∈ K we introduce the variable ypk as
follows:

• ypk =

{

1, if patient p is assigned to nurse k

0, otherwise.

It’s essential to observe that the variable ypk remains independent of d ∈
D, as its value remains constant throughout the time horizon due to the con-
sistency constraint. Once a patient is allocated to a nurse, that patient will
consistently receive care from the same nurse across all days d ∈ D.

The last set consists of continuous variables zd
ij ∈ Ad, d ∈ D that define

the arrival time at node j when arriving from node i in day d. The offline
mathematical formulation is as follows.
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max ∑
k∈K

∑
p∈P

rpypk − ∑
k∈K

∑
d∈D

∑
(i,j)∈δ−( p̄+m+k)

cijz
d
ij(6.1)

Subject to:

∑
(i,j)∈δ+( p̄+k)

xd
ij = ∑

(i,j)∈δ−( p̄+m+k)

xd
ij f 1 k ∈ K, d ∈ D(6.2)

∑
k∈K

yik f 1 i ∈ P(6.3)

∑
(i,j)∈δ+(i)

xd
ij = ∑

k∈K

yik d ∈ D, i ∈ Pd(6.4)

∑
(j,i)∈δ−(i)

xd
ji = ∑

k∈K

yik d ∈ D, i ∈ Pd(6.5)

∑
(i,j)∈δ+(i)

zd
ij − ∑

(j,i)∈δ−(i)

zd
ji = ∑

(i,j)∈δ+(i)

(tij + si)xd
ij d ∈ D, i ∈ Pd(6.6)

zd
p̄+k,i f t p̄+k,ix

d
p̄+k,i d ∈ D, i ∈ Pd, k ∈ K(6.7)

zd
ij g (t p̄+1,i + tij + si)xd

ij d ∈ D, (i, j) ∈ Ad(6.8)

zd
ij f (tmax − tj,p̄+m+1 − sj)xd

ij d ∈ D, (i, j) ∈ Ad(6.9)

yjk g yik + xd
ij − 1 d ∈ D, k ∈ K, (i, j) ∈ Ad(6.10)

y p̄+k,k = y p̄+m+k,k = 1 k ∈ K(6.11)

xd
ij ∈ {0, 1} d ∈ D, (i, j) ∈ Ad(6.12)

zd
ij g 0 d ∈ D, (i, j) ∈ Ad(6.13)

yik ∈ {0, 1} k ∈ K, i ∈ P ∪ { p̄ + k, p̄ + m + k}(6.14)

As outlined by objective function (6.1), the goal is to maximize the differ-
ence between the patients revenues and the traversing costs, computed as
the total costs for the time of arrival to the final depot for all the nurses.
Constraints (6.2) regulate the activation of each vehicle k on any given day,
imposing that at maximum one arc can leave from node (p̄ + k) and enter-
ing in node ( p̄ + m + k). Constraints (6.3) are the nurse-patient consistency
constraints, stating that each patient i ∈ P is served by at most one nurse.
Constraints (6.4)–(6.5) manage the arc flow for each patient (node), ensuring
that, if accepted, exactly one arc enters and leaves node i on a day d. The
elimination of sub-tours is managed through Constraints (6.6) ensuring that
if a vehicle visits node j immediately after node i on a day d, then the time
elapsed between the arrival times in the two nodes is equal to the execution
time si required to serve node i plus the travel time tij to move from node
i to node j. Constraints (6.7) set a bound on the minimum time required to
reach the starting node after the depot, whereas constraints (6.8)–(6.9) define
lower and upper bounds on the arrival time and duration of each route. We
can avoid the duplication of Constraints (6.8)–(6.9) for each vehicle ending
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and starting nodes from the moment that they all have the same location and
consequently, selected a specific arc (i, j), for each k ∈ K t p̄+1 = t p̄+k and
tj,p̄+m+1 = tj,p̄+m+k. Constraints (6.10) avoid that an arc (i, j) is traversed by
a vehicle k ∈ K when the node i is assigned to k (yik = 1) but the node j is not
(yjk = 0). The respective starting and ending depots for each vehicle k ∈ K

are assigned through Constraints (6.11). Finally, Constraints (6.12)–(6.14) are
variables domain.

6.3.1 Alternative Policies Mathematical Formulation

The problem presented in this section can be modified to simulate alternative
policies that the agency can adopt to provide a different service regarding
consistency and temporal distribution of visits. In our main model, consis-
tency is inserted as a hard constraint, meaning that the initial assignment to
a nurse can not be modified among visits to the same patient. Also, services
are provided precisely on the days requested by the patient. As alternative,
the agency might choose to change one or both of these two aspects, remov-
ing consistency or providing a more flexible service in terms of days. To this
end, we insert the possibility of removing consistency from the main model
and we introduce two different versions of visits flexibility: partial flexibility

where the patient can be served either the day before or after the one he re-
quested and total flexibility, stating that the patient can be visited at any time
during the time horizon as long as the totality of the provided visits reaches
the number of requested services. In total we model six different policies
summarized in Table (6.2).

Consistency Flexibility

cons_no yes no
cons_part yes partial
cons_tot yes total
noCons_no no no
noCons_part no partial
noCons_tot no total

TABLE 6.2: Alternative policies configuration

The main model is represented by cons_no policy, indicating the presence
of consistency and no flexibility in visits.

To model these new versions we introduced two new variables:

• wp =

{

1, if patient p is served by the hospital

0, otherwise.

• yd
pk =

{

1, if patient p is served by nurse k on day d

0, otherwise.
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Moreover, the parameter kmax indicates the maximum number of vehicles
that can be assigned to patients.

We present here the updated model with highlighted changes to accom-
modate the new policies.

max ∑
p∈P

rpwp − ∑
k∈K

∑
d∈D

∑
(i,j)∈δ−( p̄+m+k)

zd
ij(6.15)

Subject to:

∑
(i,j)∈δ+(i)

xd
ij = ∑

k∈K

yd
ik d ∈ D, i ∈ Pd(6.16)

∑
(j,i)∈δ−(i)

xd
ji = ∑

k∈K

yd
ik d ∈ D, i ∈ Pd(6.17)

∑
k∈K

yd
ik f 1 d ∈ D, i ∈ Pd(6.18)

yd
ik f yik d ∈ D, i ∈ Pd, k ∈ K(6.19)

∑
k∈K

yik f kcons i ∈ P(6.20)

∑
d∈Di

∑
k∈K

yd
ik = |Di|wi i ∈ P(6.21)

The objective function (6.15) is changed to accommodate the relaxation
of consistency. The variable ypk must to be replaced by the binary variable
wp since multiple nurses could be assigned to the same patient, making the
sum of the y variables not equal to one. Constraints (6.16) and (6.17) lose the
part of hard consistency stating that on a specific day d only one vehicle k

must visit a node i without imposing that it is the same vehicle in all the time
horizon. The maximum number of vehicles assigned to a patient is regulated
by constraints (6.20). Constraints (6.18) impose that in each day d ∈ D at
maximum one vehicle is assigned to a node i ∈ Pd while constraints (6.19)
activates the yik variables only if at least one yd

ik is active. Flexibility is han-
dled by constraints (6.21). The total number of visits for each node i ∈ P,
when it is served by the hospital (wi = 1) must be equal to the cardinality of
the original set Di of days requested by the patient, regardless of the actual
days of visits.

6.4 Solution Approaches

6.4.1 Adaptive Large Neighborhood Search

In this section we present the algorithm used to solve the problem in its Of-
fline version, assuming all the information known. Although we acknowl-
edge the fact that this represent a scenario significantly far from the reality,
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it is beneficial for us to examine a benchmark of the value derived from pos-
sessing perfect information. In this case, we have only one decision epoch
(DE) in which all the decisions about accepting patients and creating routes
are taken. Figure (6.2) adapts the example given in Figure (6.1), where only
DE0 is needed and all the patients are supposed to be known at day d = 0.

Table (6.3) encapsulates the key decisions made at each decision epoch.
Given the presence of a singular decision epoch, every request falls within
the PB subset, which comprises booked patients. For each of these patients,
a prior determination has been made regarding their acceptance (PA) or re-
jection (PR), leading to the subsequent updating of routes to include these
patient visits.

FIGURE 6.2: Requests management in the Offline Approach

TABLE 6.3: Routes creation in the Offline Approach

Decision Epoch
DE0

PB 1-2-3-4
PA|PR 1-2-3-4
PW -
Routes update yes

The Offline problem is solved using the Adaptive Large Neighborhood
Search presented in Chapter (3) which is detailed in respect of our problem
characteristics in the current section. The underlying algorithm remains Al-
gorithm (2) presented in Section (3.2). We now give a more specific formu-
lation of the insertion and removal operators as well as a description of how
an initial solution is obtained.

Initial Solution

The ALNS algorithm requires as input an initial feasible solution. To this
end, we develop a simple constructive heuristic that starts from a set of |K|
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empty routes. A patient p ∈ P is then randomly selected and the heuristic
tries to insert all its visits, i.e. its nodes, according to the least-cost principle;
that is, each node is possibly inserted in a route and position that minimize
the total routes length. If it is impossible to accommodate all the visits, the
patient is marked as externally assigned. The selection is repeated until there
are no more patient left to be inserted. The creation of an initial solution
is repeated multiple times in a time limit Äinit. Since the choice of the first
patient to insert is random, we can obtain a different objective function value
each time we create an initial solution. For this reason, we keep track of the
found solutions and their objectives saving as incumbent only the one with
the best solution value. When a feasible solution is found, it is compared to
the incumbent solution and kept only if it represents an improvement.

Destroy Operators

All the destroy operators take as input a feasible solution sol and the degree
of destruction q and create a set of removed patients P−. This set is created
by sorting in a specific order the patients in sol. We implement a set Ω− of
five different destroy operators associated to five sorting procedures:

• Remove Random d1: randomly selects q patients and remove all their
nodes from the solution.

• Remove Shaw d2: removes from the solution q patients and their vis-
its based on their Relatedeness measure R(i, j). Taking a patient i and a
patient j their R(i, j) is computed as

R(i, j) =
1

tij + 0.1 ∗ |si − sj|+ Λij

where Λij is a parameter equal to 1 if the two nodes belong to the same
route, 0 otherwise.

• Remove High Savings d3: selects and removes the q patients that, if
removed, have the biggest impact on traveling time.

• Remove High Service Dates d4: selects and removes the q patients with
the highest number of service dates.

• Remove High Service Dates d5: selects and removes the q patients that,
considering all the days of service, have the highest total service time.

Repair Operators

The repair operators aim at reconstructing the current partial solution by try-
ing to insert the patients removed by the destroy operator. The procedure
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sorts in a specific order the patients to be inserted. We implemented a set Ω+

of four different sorting criteria and, thus, repair operators.

• Random Insertion r1: random ordering of the patients.

• Low Travel Time r2: Patients are sorted in ascending order according to
the incremental travel time incurred by their incorporation into a route.

• Low Service Times r3: Patients are sorted in ascending order according
to their total service time.

• Low service Dates r4: Patients are sorted in ascending order according
to their total number of visits.

Once the patients are ordered, we re-insert them in a sequential order or
using the Regret procedure showed in Section (3.2).

6.4.2 Myopic Dynamic Heuristic (MDH)

A pure dynamic approach, with no knowledge about future events, allows
us to simulate at best the real-life routing management of the nurse agency.
In fact, at each decision epoch, the agency has knowledge only of the patients
whom already submitted a request. Additionally, route adjustments are only
made on a given day if there is a patient not yet scheduled who requires
a visit the following day. Figure (6.3) demonstrates the dynamic approach
to the scenario depicted in Figure (6.1), with a focus on day d = 3. In this
illustration, patients already known to the agency are marked with colored
circles, while those unknown, such as Patient 4 whose request is scheduled
for day d = 4, are indicated in grey. The data and decisions at each decision
epoch are concisely detailed in Table (6.4).

FIGURE 6.3: Requests management in the dynamic approach

We can see that Patient 2 is placed in the PW subset, which is for waiting
requests, from day 2 to day 3. This happens because Patient 2 is known from
day d = 1 but doesn’t need service until day d = 3. Therefore, the decision
about this patient is delayed until the second decision epoch, DE2. Similarly,
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TABLE 6.4: Routes creation in the Dynamic Approach

Decision Epoch
DE0 DE1 DE2 DE3 DE4

PB 1 1-2 1-2 1-2-3 1-2-3-4
PA|PR 1 - 2 3 4
PW - 2 - - -
Routes update yes no yes yes yes

the routes for day d = 1 are not changed, as no new requests need to be
added to the routes for day d = 2.

The algorithm employed for addressing the dynamic version is the My-
opic Dynamic Heuristic (MDH) presented in Section (3.3.1). Algorithm (8)
gives a problem specific formulation of the high level Algorithm (3).

Algorithm 8 MyopicDynamicApproach(I0, sol0, PA
0 , PR

0 , PW
0 )

1: d← 1
2: (PA, PR, PW)← (PA

0 , PR
0 , PW

0 )
3: sol ← sol0
4: I ← I0
5: while d < dmax do
6: sol ← LockAssignments(sol, PA)
7: I ← I ∪ Id

8: PB ← GetNewPatients(Id) ∪ PW

9: (sol, PA
d , PR

d )← OptimizeRoutes(I , sol, PB)

10: PW ← PB \ (PA
d ∪ PR

d )

11: PA ← PA ∪ PA
d

12: PR ← PR ∪ PR
d

13: d← d + 1
14: end while
15: return (sol, PA, PR)

The algorithm requires as input an initial feasible solution sol0, an in-
stance (i.e. a partial part) of the problem I0 containing all the available infor-
mation at the start of the algorithm and the division of patients in the three
subset PA

0 , PR
0 , PW

0 according to the solution sol0. The initialization part from
Step (1) to Step (4), initializes the current day d to the first day of the time
horizon and sets as current division of patients (PA, PR, PW) the initial di-
vision (PA

0 , PR
0 , PW

0 ). Moreover, it initializes the current solution sol to sol0
and the current instance I to I0. Then, the Loop from Step (5) to Step (14)
iterates for each day d ∈ D. The function LockAssignments(sol, PA) on Step
(6) fixes the nurse-patients assignments contained in sol for the request in
PA, meaning that all the patients that have already been assigned to a spe-
cific nurse cannot be switched during the iteration. The on Step (7) it adds
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to the instance I the instance Id containing the aspects of the problem that
emerged during day d. More specifically, it adds the patients that have sub-
mitted a request during the current day and were unknown in I . On Step
(8) the function GetNewPatients(Id) updates the set of booked patients PB

adding to the pending patients PW the new patients in Id. The Algorithm
then optimizes routes for the following days on Step (9) using the ALNS
from Algorithm (2). The function OptimizeRoutes(I , sol, PB) takes as input
(i) the instance I , (ii) the solution sol containing all the routes for the days
previous to d with the fixed assignments for patients contained in PA and
(iii) the set of known patients PB. Among these patients an accept/reject de-
cision is taken only for the ones with the first service day in d + 1, the others
will be inserted in PW . The ouptut of the OptimizeRoutes(I , sol, PB) is an
updated sol with the routes for the next day and the set of accepted patients
of the day PA

d and the set of rejected ones PR
d . From Step (10) to (12) the set of

patients are updated. The patients in PB without a decision are added to PW

and the accepted and rejected patients of the day PA
d and PR

d are inserted in
PA and PR, respectively. The algorithm moved to the next day on Step (13).
At the end of the while loop the best solution is returned.

6.4.3 Multi-Scenario-Based Progressive Fixing (MSB-PF)

In this section we detailed the MSB-PF already presented in Chapter (3), Sec-
tion (3.3.2). MSB-PF tackles the problem generating multiple scenarios to
simulate future events. Meaning that, at each decision epoch, known infor-
mation are merged with possible future events coming from scenarios creat-
ing a set of deterministic sub-problems. All the sub-problems are then solved
as Offline problems. The term Progressive Fixing refers to the fact that, during
a decision epoch, rather than making simultaneous decisions for patients in
PW , the heuristic progressively selects one decision to fix for the subsequent
iterations. Specifically, this decision involves fixing the most prevalent nurse-
patient assignment observed across all sub-problems. The selected patient is
removed from PW and each sub-problem is then resolved including this new
decisions. The procedure moves to the next decision epoch only when all the
patients in PW are accepted or rejected. To give a better understanding of sce-
narios generation, in Figure (6.4) is shown information that the nurse agency
has at Day 2 or DE2, considering the example in Figure (6.1) as representative
of reality. The part highlighted in green represents the events belonging to
the past, hence known, while the grey part symbolizes a possible realization
of future events according to two different scenarios, Scenario A in Figure
(6.4a) and Scenario B in Figure (6.4b).

On Day 2, Patient 1 and Patient 2 are already known since their release
date is previous. On DE2, Patient 2 is included in PW since it requires a visit
on Day 3. However, in taking this decision the agency has no knowledge
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(A) Scenario A

(B) Scenario B

FIGURE 6.4: Requests management in a Scenario-Based ap-
proach

about future events but can take advantage of the information contained in
two fictitious scenarios. According to Scenario A, for example, two new re-
quests are expected on Day 4 with a service on Day 5, this wouldn’t affect the
scheduling of Patient 2. On the other hand, Scenario B foresees the arrival of
Patient B1 on Day 3 with two visits, one of them on Day 4 as Patient 2. Hence,
the agency has to take into account that, according to this scenario the choice
on Patient 2 it might be affected by future requests. Algorithm (9) shows the
exact structure of the procedure.

The algorithm requires an initial feasible solution sol0, the instance I0 con-
taining all information available at the beginning of the time horizon, the
three subsets PA

0 , PR
0 , PW

0 and the set of scenarios S. In Steps (1) to (4), the
current day is set to the beginning of the time horizon, the current solution
sol is initialized to the initial solution sol0 as well as the current sets PA, PR,
PW and I . The main loop (Steps (5)-(32)) is repeated for all the days of the
time horizon. On Step (6), the function LockAssignments(sol, PA) locks the
decision already taken in the current solution sol about the accepted patients
PA. It then updates the instance I merging it with the partial instance Id

composed of the patients become known on day d on Step (7). The set PB of
booked patients is updated merging the new patients from Id to the set of
waiting patients PW . On Step (9) is created the empty set of scenarios solu-
tions F . The Loop from Step (10) to Step (14) is repeated for each scenario
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Algorithm 9 ProgressiveFixing(I0, sol0, PA
0 , PR

0 , PW
0 , S)

1: d← 1
2: (PA, PR, PW)← (PA

0 , PR
0 , PW

0 )
3: sol ← sol0
4: I ← I0
5: while d < dmax do
6: sol ← LockAssignments(sol, PA)
7: I ← I ∪ Id

8: PB ← GetNewPatients(Id) ∪ PW

9: F ← ∅

10: for all s ∈ S do
11: PB

s ← GetNewPatients(s, d) ∪ PB

12: (sols, PA
ds, PR

ds)← OptimizeRoutes(I , sol, s, PS
s )

13: F ← F ∪ (sols, PA
ds, PR

ds)
14: end for
15: (sol, PA

d , PR
d , PW

d , P̄W
d )← FixCommonAssignments(sol,F , PB)

16: while P̄W
d ̸= ∅ do

17: P̄W
d ← SortByConsensus(P̄W

d ,F )
18: (sol, PA

d , PR
d )← FixFirstAssignment(sol,F , PA

d , PR
d , P̄W

d )

19: P̄W
d ← RemoveFirst(P̄W

d )
20: F ← ∅

21: for all s ∈ S do
22: PS

s ← GetNewPatients(s, d) ∪ P̄W
d

23: (sols, PA
ds, PR

ds)← OptimizeRoutes(I , sol, s, P̄W
d )

24: F ← F ∪ (sols, PA
ds, PR

ds)
25: end for
26: (sol, PA

d , PR
d , PW

d , P̄W
d )← FixCommonAssignments(sol,F , PA

d , PR
d , P̄W

d )

27: end while
28: PW ← PB \ (PA

d ∪ PR
d )

29: PA ← PA ∪ PA
d

30: PR ← PR ∪ PR
d

31: d← d + 1
32: end while
33: return (sol, PA, PR)
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s ∈ S. At first, on Step (11), the set of scenario’s patients PB
s is created emerg-

ing the already known patients in PB and the new patients of day d coming
from scenario s. Then, function OptimizeRoutes(I , sol, s, PB

s ) optimizes the
scenario using the ALNS algorithm. The optimization is made considering
the decisions already locked in the current solution sol and new information
coming from the scenario s. In this step, decision for all the patients in PB

s

is made, whether they are real patients coming from instance I or fictitious
one coming from scenario s. However, only decisions about real ones will be
fixed. The solution of the scenario is then added to the set F . Once all the so-
lutions are collected, on Step (14), function FixCommonAssignments fixes the
decisions that are common among all the scenarios. After the fixing, the set
of remaining decisions P̄W

d is created. The while loop from Step (16) to Step
(27) continues until the set in PP̄W

d is not empty, meaning that all the pend-
ing patients have a decision. To assign these decisions, the set PP̄W

d is sorted
by the function SortByConsensus(P̄W

d ,F ). The function collects data on as-
signments from solutions across various scenarios and arranges the set of
patients P̄W

d based on the frequency of decision-making occurrences among
these scenarios. This is achieved by counting the times a specific decision
for a patient has been made across scenarios and subsequently organizing
the patients in a descending order of decision frequency. The decision about
the first patient of the ordered list is fixed in the solution sol by the function
FixFirstAssignment(sol,F , PA

d , PR
d , P̄W

d ) that also updates the sets PA
d , PR

d ac-
cording to the decision. The patient is then removed from the set P̄W

d and the
set of solutions F is emptied. In loop from step (21) to Step (25) the scenarios
are solved again with the new solution fixed. When the set P̄W

d is empty the
while loops ends and the subset of patients are updated. In Step (28) the set
PW of pending patients is created removing from PB the patients either ac-
cepted (PA

d ) or rejected (PR
d ) during the day. The sets PA

d and PR
d are merged

with the current set PA and PR on steps (29) and (30), respectively. The al-
gorithm then moves to the next day and all the process is repeated from step
(6). When dmax is reached, the current solution sol is returned with the sets of
accepted and rejected patients.

6.5 Computational Results and Managerial Insights

In this section, we present the results obtained from solving the model with
different methods to draw interesting analyses for the nurse agency to deal
with dynamic patients management. We first describe the benchmark in-
stances used in our study. Then, we propose a valuable sensitivity analysis
on small-size instances valid to draw managerial insights. Lastly, we present
the performances of the methods shown in Section (6.4) applied on large-size
instances. All tests were run on a Ubuntu 20.04.2 machine with an AMD
Ryzen 9 3950x CPU, 16 cores, 32 threads, and 32 GB RAM. We used Gurobi
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10.0.1 as mixed integer programming solver. All methods have been imple-
mented in Java 17.

6.5.1 Instance Generation

We have evaluated the solutions methods on a large number of benchmark
instances. Specifically, we employed a set of small-size instances (Set 1) which
were optimally solved using Gurobi. This set is used to conduct a sensi-
tivity analysis concerning key parameters on the model of Section (6.3) and
for deriving managerial insights about the policies the agency might adopt
presented in Section (6.3.1). Together with Set 1 instances, a set of large-size

instances (Set 2) is employed to evaluate the performance of the solutions
method of Section (6.4) in terms of computing time and quality of solutions.
Among all the instances, the locations of patients are randomly generated
in a geographical area such that the maximum travel time between any two
nodes is equal to 120 minutes. The sets are differentiated by the number of
patients |P|, the number of nurses |K|, and the time horizon |D|. Two key
parameters vary as follows: the parameter ¼, which indicates the percentage
of patients having a release date of d = 1, and the parameter ρ, utilized in
calculating patients profits, as in Equation (6.22), to alter the profit-to-travel
cost ratio. The profit of a patient p ∈ P is computed as:

(6.22) rp = |Dp|(sp + 2t0pρ) ∗ω

where ω represents a random part of noise included in the interval [0.8,1.2].
We can notice how the impact of the travel times, in particular of the round
trip from the depot to the patient 2t0p, is regulated by the parameter ρ; the
higher the value, the higher the impact of the revenue compared to the trav-
elling costs. The distribution of visits over the time horizon is governed by
a sequence of events. An event, in this context, refers to an occurrence that
triggers a series of requests for visits. Each event is characterized by its dis-
tinct number and frequency of visits. For example, we defined an event to
simulate a Covid-19 outbreak that, if selected, generates a set of patients ge-
ographically close to each other with a high number of visits (modeling the
Covid-19 illness duration) but with a low frequency in time. Conversely, an
event simulating for example a day aimed at home vaccine visits will as-
sign to patients a profile including only one visit over the time horizon. In
our study we tested instances with values of ρ equal to {0.25, 0.5, 1, 2} for the
small size instances and ρ = {0.5, 1, 2} for the large size ones. The percentage
of patients known on the starting day varies as ¼ = {0%, 20%, 50%, 100%};
where the ¼ = 100% case corresponds to the Offline version of the problem,
with all the patients known, while the ¼ = 0% indicates that the problem
starts with no knowledge about future events. The sensitivity analysis on
small-size instances is made on the Offline problem, hence setting ¼ = 100%.
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For each benchmark instance we generated a set of |S| = 100 sample scenar-
ios starting from the realistic scenario s∗. For each scenario s ∈ S, the total
number of patients Ps is drawn from a normal distribution having mean |P|
and variance **, where |P| is the number of patients belonging s∗. Of these
|Ps| patients the first ¼ ∗ |P| come from the real scenarios being the ones with
release date equal to d = 0 and known at the beginning of the time horizon
while the others are randomly generated.

Table (6.5) and Table (6.6) show the dimension and configurations of the
two sets of instances. #Inst represents the number of instances generated per
combination.

Set Values

|P| 25
|D| 7
|K| 2
¼(%) 100
ρ {0.25, 0.5, 1, 2}
#Inst 20

Total 80

TABLE 6.5: Instance structure of Set 1

Set Values

|P| {50, 100, 200}
|D| 15
|K| {3, 4}
¼(%) {0, 20, 50, 100}
ρ {0.5, 1}
#Inst 3

Total 144

TABLE 6.6: Instance structure of Set 2

In our tests, the total number of instances is determined by the product of
the cardinalities of each parameter set. Precisely, for Set 1, the total number
of instances is calculated by considering the single values of |P|, |D|, |K|,
and ¼, along with the four distinct values in the set ρ, multiplied for the
number of instances per combination #Inst. Therefore, the total number of
Set 1 instances is 80. For Set 2, the total number of instances is calculated
by considering three distinct values of |P|, a single value of |D|, two distinct
values of |K|, four distinct percentage values of ¼, and three distinct values
in the set ρ, multiplied by the number of instances per combination #Inst.
Therefore, the total number of Set 2 instances is 144.
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6.5.2 Managerial Insights on small size instances

In this section, we present the results on parameters sensitivity analysis and
the key managerial insights obtained by analyzing the instances in Set 1. At
first, we give an overview of how the parameter ρ affects the overall results.
This can give to the agency more understanding when it comes to patients
revenue configuration. Then, we present some insights on results variations
among the model versions of Section (6.3.1). Table (6.7) provides a summary
of the average results obtained solving to optimality Set 1 instances for each
of the different policies. For each policy, on the rows, are listed the value of
the objective function Obj, the revenue component PR, the travel time part
TTT and the average number of accepted patients |PA|. The corresponding
value of the ρ parameter is indicated on the columns.

ρ = 0.25 ρ = 0.5 ρ = 1 ρ = 2

cons_no

Obj 29.45 880.40 3174.50 7916.65
PR 617.90 3135.20 6047.75 10802.15
TTT 588.45 2254.80 2873.25 2885.50
|PA| 5.35 20.50 24.90 25.00

cons_part

Obj 150.90 1220.35 3557.25 8288.40
PR 1545.95 3496.05 6043.10 10802.15
TTT 1395.05 2275.70 2485.85 2513.75
|PA| 15.55 23.20 24.80 25.00

cons_tot

Obj 169.10 1272.55 3608.80 8334.15
PR 1663.90 3525.35 6049.05 10802.15
TTT 1494.80 2252.80 2440.25 2468.00
|PA| 17.85 23.55 24.85 25.00

nocons_no

Obj 30.35 912.35 3252.05 7994.25
PR 643.90 3336.05 6054.40 10802.15
TTT 613.55 2423.70 2802.35 2807.90
|PA| 5.65 21.85 24.95 25.00

nocons_part

Obj 148.70 1228.20 3585.05 8324.55
PR 1572.70 3510.55 6050.95 10802.15
TTT 1424.00 2282.35 2465.90 2477.60
|PA| 15.90 23.15 24.90 25.00

nocons_tot

Obj 170.85 1272.00 3631.30 8373.30
PR 1675.50 3543.80 6049.05 10802.15
TTT 1504.65 2271.80 2417.75 2428.85
|PA| 17.65 23.70 24.85 25.00

TABLE 6.7: Average results for Set 1 instances varying the pa-
rameter ρ

Aggregated computational times and percentages gap are shown in Table
(6.8).

Table (6.9),presents the average results among policies of the results pre-
sented in Table (6.7). Figure (6.5) and Figure (6.6) gives a visual representa-
tion of these average results among all policies at the parameter ρ variation.
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Gap (%) Time (s)

cons_no 0.27 537.12
cons_part 2.18 3606.62
cons_tot 0.71 2375.52
noCons_no 0.03 412.36
noCons_part 1.93 3509.89
noCons_tot 1.01 1820.04

TABLE 6.8: Average MIP Gap (%) and computational times for
Set 1 instances.

ρ = 0.25 ρ = 0.5 ρ = 1 ρ = 2

Obj 116.6 1130.9 3468.2 8205.2
PR 1286.6 3424.5 6049.1 10802.2
TTT 1170.1 2293.5 2580.9 2596.9
|PA| 13.0 22.7 24.9 25.0

TABLE 6.9: Average results for Set 1 instances varying the pa-
rameter ρ

Figure (6.5) shows the variation of the total objective function Obj ob-
tained as difference between the PR component and the TTT one. It can be
noted how, increasing the parameter ρ, the revenues increase significantly
with only a tiny variation of travel time, hence costs. In fact, when ρ = 0.25
the average values of PR and TTT are equal to 1286.6 and 1170.1, respectively.
Whe ρ is increased to 2, these values equal to PR = 10802.2 and TTT = 2596.9
showing a much relevant increase in the patients’ revenue at the cost of only
a more minor increase in traveled times. The results obtained in Figure (6.5)
reflect the different operational strategies that can be applied by the nurse
agencies. A lower value of ρ represents a balanced decision-making process
in which revenues and travel times are considered equally while increasing
the value shifts the decisions to a more profit-maximization-focused strategy.

Figure (6.6) shows the number of patients that the agency is willing to
accommodate when the impact of revenues varies. As expected, increasing
the value of ρ, hence of the weight of revenues over the operational costs,
leads to a higher acceptance rate for patients 24.9 patients accepted already
for ρ = 1. To better understand how results are affected by a change in policy
we now presents disaggregated results for each case. Table (6.10), Table (6.11)
and Table (6.12) present the percentage variation of outcomes compared to
our standard policy cons_no of patients revenues (PR), travel times (TTT)
and objective function (Obj), respectively.

The standard policy cons_no used in the SMHHP-C is the more rigid and,
consequently, the least profitable. Modifying this by either relaxing the con-
sistency constraints or integrating a flexible visit management service en-
hances the total objective function, yielding higher revenues and reduced
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FIGURE 6.5: Grouped bar chart showing the average results
among policies of PR, TTT, and Obj values for different ρ pa-

rameters.
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FIGURE 6.6: Average number of accepted patients for different
values of parameter ρ.
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ρ = 0.25 ρ = 0.5 ρ = 1 ρ = 2

cons_no 29.45 880.40 3174.50 7916.65
cons_part 412.39% 38.61% 12.06% 4.70%
cons_tot 474.19% 44.54% 13.68% 5.27%
noCons_no 3.06% 3.63% 2.44% 0.98%
noCons_part 404.92% 39.50% 12.93% 5.15%
noCons_tot 480.14% 44.48% 14.39% 5.77%

TABLE 6.10: Percentage variation of objective function (Obj) for
different values of ρ and different policies

ρ = 0.25 ρ = 0.5 ρ = 1 ρ = 2

cons_no 618 3135 6048 10802
cons_part 150.19% 11.51% 0.00% 0.00%
cons_tot 169.28% 12.44% 0.02% 0.00%
noCons_no 4.21% 6.41% 0.11% 0.00%
noCons_part 154.52% 11.97% 0.05% 0.00%
noCons_tot 171.16% 13.03% 0.02% 0.00%

TABLE 6.11: Percentage variation of Patients Revenues (PR) for
different values of ρ and different policies

ρ = 0.25 ρ = 0.5 ρ = 1 ρ = 2

cons_no 588 2254.80 2873.25 2885.50
cons_part 137.07% 0.93% -13.48% -12.88%
cons_total 154.02% -0.09% -15.07% -14.47%
noCons_no 4.27% 7.49% -2.47% -2.69%
noCons_part 141.99% 1.22% -14.18% -14.14%
noCons_total 155.70% 0.75% -15.85% -15.83%

TABLE 6.12: Percentage variation of Total Traveled Times (TTT)
for different values of ρ and different policies
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travel costs. It’s noteworthy, however, that the impact of relaxing consis-
tency is substantially less than that of incorporating flexibility. Table (6.10)
shows that, comparing policies with and without consistency (such as the
pair cons_no-noCons_no), reveals that the improvement in the objective func-
tion is relatively modest, ranging from 0.98% at ρ = 2 to 3.63% at ρ = 0.5. In
contrast, adopting a partially or fully flexible policy, while maintaining con-
sistency, results in more significant improvements. This is exemplified by the
comparison of cons_no with cons_tot, where the enhancement in the objec-
tive function is 5.27% at ρ = 2 and a substantial 474.19% at ρ = 0.25. These
findings indicate that for an agency, once a patient is accepted, offering a ser-
vice with flexible visitation days is more advantageous than assigning mul-
tiple nurses to a single patient. This approach not only maximizes efficiency
but also significantly boosts profitability. This pattern is also confirmed in
Figure (6.7) where, for any value of ρ, a growing line between policies with
the same consistency approach is reported that decreases when there is a
switch between consistency and no consistency.

A notable trend is that as we move from lower to higher ρ values, the
revenue (PR) curves tend to level off. This implies that at lower patient
profit margins, the model has greater latitude to adjust patient acceptance
or rejection in response to policy changes. This is particularly evident in
Figure (6.7b), where the PR line exhibits a marked change between poli-
cies, indicating that a more flexible model significantly enhances the likeli-
hood of increasing profits accepting more patients. This conclusion is further
supported by the behavior of the TTT line, where its relative flatness sug-
gests that increasing patient visits due to flexibility does not correspondingly
increase travel times. The higher variation is obtained confronting a total
flexible policy with consistency with a rigid one without consistency (pair
cons_total-noCons_no) with travel times passing from a value of 2252.8 to
2423.70. Conversely, Figure (6.7c) depicts a scenario in which there is no sub-
stantial trade-off between policies regarding revenue. The reduction of the
objective function is obtained through a variation of the travel times TTT,
suggesting that more flexible policies allow for better optimization of rout-
ings. Figure (6.7a) and Figure (6.7d) report two extreme situations. In the
first, the profit ratio is too low for the agency to practice some analysis; when
flexibility is not allowed in most solved instances, no patients are accepted,
leading to an objective function equal to 0. On the opposite, when ρ = 2,
there is no substantial difference between different policies since often all the
patients are accepted leaving no space to optimization. Figure (6.8) presents
a resume on the number of accepted patients per policy and ρ values.

In the performance analysis of solution methods, we opted to exclude the
extreme ρ values, focusing solely on cases where ρ = {0.5, 1}.
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TABLE 6.13: Tuning of the ParallelALNS parameters.

Parameter Meaning Value

qStep Incremental quantity of the degree of destruction q 5
qmax Maximum value of q +0.75|P|,
noImpIter Number of iterations without improvement before increasing q 500
epochIter Number of iterations per epoch 10000
Iterinit Number of iterations for the initial solution heuristic 100000
Ä Time limit for ParallelALNS 300s,10s
γ1, γ2, γ3 Weight values in weighted operators 0.9, 0.07, 0.03
T0 Initial temperature 50
³ Cooling rate 1
Titer Cooling schedule 100

6.5.3 Resolution Methods Performance Analysis

In this section we present the results obtained by solving the model with the
three different teqniques presented in Section (6.4): the Offline Approach, the
Myopic Dinamic Heuristic (MDH) and the Multi-Scenario-Based Progressive
Fixing (MSB-PF). We conducted preliminary tests using Set 1 instances to as-
sess the quality of our ALNS metaheuristic used to solve the Offline Problem
and all the deterministic sub-problems of the dynamic approaches. Based on
these tests we fixed nearly all the ALNS parameters, except for the time limit
Ä which depends on the heuristic applied; we used a time limit in seconds
equal to Ä = 300 for the Offline Problem and Ä = 10 for each sub-problem of
MDH and MSB-PF. All parameters values are listed in Table (6.13). We eval-
uate how well our Adaptive Large Neighborhood Search (ALNS) performs
on the first set of problems (Set 1), comparing our Offline Approach’s results
to those obtained with Gurobi. For the same set, we also explore how the
parameter ¼, which represents the initial level of knowledge, affects the per-
formance of MDH and MSB-PF. Next, we use the second set of problems (Set
2) to assess the performance of MDH and MSB-PF in terms of computational
time and solution quality.

Computational Results on Set 1 instances

The first analysis performed to tune our ALNS parameters has been made on
Set 1 instances comparing the exact values found by Gurobi with the ALNS
applied to the Offline Problem, hence with all the information known at the
beginning. Table (6.14) presents the percentage gap (∆OFF) for each instance
of Set 1 with ρ = {0.5, 1}. A positive ∆gap indicates that Gurobi performs
better than ALNS. Instances are indicated as ID-ρ where all share a parameter
¼ = 100%.

It can be noticed how, when ρ = 1 the ALNS finds the same solution
as the commercial solver Gurobi. However, when ρ = 0.5, it finds the op-
timal solution only in 2 instances out of 20 and has an average gap of the
10%. Set 1 instances have been solved also using MDH and MSB-PF, varying
the value of ¼. In particular, to evaluate the impact that initial information
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ρ = 0.5 ρ = 1

Inst. ∆OFF Inst. ∆OFF Inst. ∆OFF Inst. ∆OFF

0 9 10 33 0 0 10 0
1 9 11 3 1 0 11 0
2 0 12 16 2 0 12 0
3 5 13 7 3 0 13 0
4 13 14 8 4 0 14 0
5 10 15 0 5 0 15 0
6 5 16 3 6 0 16 0
7 28 17 4 7 0 17 0
8 34 18 11 8 0 18 0
9 8 19 17 9 0 19 0

TABLE 6.14: Comparison between ALNS and Gurobi on Set 1
instances.

might have on the overall solution we tested two extreme situations with
¼ = {0%, 100%}. Table (6.15) compares the results obtained with Gurobi for
the Offline Problem with the results of the pure dynamic approach and the
scenario-based heuristic when the percentage of known information equals
the 100%. Columns ∆MDH and ∆MSB−PF report the percentage gap in respect
of the Offline Problem (pure ALNS) for the MDH and MSB-PF, respectively.
A positive percentage means that the found solution is worse than the Offline
one.

From Table (6.15) arises a distinct difference in performance of both the
heuristics for different ρ values. For ρ = 0.5, the percentage gaps are gen-
erally higher, indicating a notable deviation from the optimal solution of the
Offline Problem. This could imply that, when the problem has a wider pos-
sibility of accepting or rejecting patients approaching it dynamically lead to
a lack of solution efficiency. In contrast, when ρ is set to 1, the percentage
gaps decrease significantly, indicating a closer alignment with the optimal
Offline Problem solutions. This implies that in situations where the prob-
lem is primarily focused on routing, rather than dynamic patient selection,
having complete information is crucial for achieving solutions that closely
approximate the optimum. Furthermore, it’s important to emphasize that
the notable disparities between the MDH and MSB-PF heuristics observed in
instances 5, 6, 7, 14, and 19 may not fully encapsulate the potential differences
in performance, primarily due to the smaller size of these instances. In larger
and more complex instances, such as those in Set 2, the performance char-
acteristics of these heuristics could be more pronounced and informative.
The current dataset, while indicative of specific trends, might not provide a
complete picture of the heuristics’ capabilities in handling more complex sce-
narios. In summary, the results presented in Table (6.15) suggest that moving
from an exact Offline approach to a dynamic one leads to a loss of solution
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ρ = 0.5 ρ = 1

Inst ∆MDH ∆MSB−PF Inst ∆MDH ∆MSB−PF

0 14.2 14.2 0 1.4 1.4
1 13.8 13.8 1 1.7 1.7
2 3.5 3.5 2 1.0 1.0
3 8.1 8.1 3 0.9 0.9
4 21.2 21.2 4 1.5 1.5
5 13.6 10.6 5 1.0 1.0
6 9.8 6.4 6 1.6 1.6
7 35.0 28.9 7 1.6 1.6
8 39.3 39.3 8 1.8 1.8
9 11.5 11.5 9 1.1 1.1
10 44.9 44.9 10 1.9 1.9
11 7.1 7.1 11 1.1 1.1
12 21.1 21.1 12 1.1 1.1
13 13.0 13.0 13 1.5 1.5
14 11.5 6.6 14 1.1 1.1
15 4.9 4.9 15 1.2 1.2
16 4.9 4.9 16 0.8 0.8
17 7.3 7.3 17 0.9 0.9
18 15.6 15.6 18 1.1 1.1
19 19.9 16.2 19 0.9 0.9

TABLE 6.15: Comparison bewteen the Offline Problem, MDH
and MSB-PF on Set 1 instances for ¼ = 100%.

quality already for small size instances. The impact the changing the param-
eter ¼ has on the solutions is shown in Figure (6.9) with Figure (6.9a) for the
Myopic Dynamic Heurisitic results and Figure (6.9b) for the MSB-PF.

The boxplots represent the percentage improvement that the objective
value has when the available initial knowledge pass from the 0% to the 100%.
In Figure (6.9a), for example, we see that in the ρ = 0.5 case the average im-
provement when ¼ is increased is around the 10%, with upgrades in objective
functions up to the 26% as represented by the higher whiskers. Confronting
Figure (6.9a) and Figure (6.9b) it is evident that the scenario-based heuris-
tic (MDB-PF) presents lower variations of the objective function when the
knowledge is increased, with a mean variation of the 5,7% when ρ = 0.5
and arriving to no variation in the ρ = 1 case. The reason behind this lies in
the fact that the use of simulated scenarios to include precision about future
events is crucial to improve the quality of solutions during the time horizon.
Moreover, both Figure (6.9a) and Figure (6.9b) show a significantly higher
variation in results for the ρ = 0.5.

Computational Results on Set 2 instances

This section presents the results from applying MDH and MSB-PF to Set 2
instances. We conducted a two-part analysis. First, we examined the benefits
of moving from a dynamic to a scenario-based approach, evaluating how fu-
ture event provisions can influence the solution process. Then, we expanded
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FIGURE 6.9: Distribution of improvements from ¼ = 0% to ¼ =
100%

on the initial knowledge investigation that we started with Set 1 instances by
introducing two additional values of ¼, 20% and 50%.

Table (6.16) shows the results for different numbers of patients (|P|) and
¼ values. The columns for MDH and MSB-PF list the results for ρ = {0.5, 1}
after applying the respective heuristics. The last three columns present the
percentage variation between the results of the two methods. Columns ∆0.5

and ∆1 show the variation between MDH and MSB-PF when ρ = 0.5 and
∆1, respectively. Column ∆Avg is the average of the previous two. A positive
value represents improved results, indicating that MSB-PF performs better.
The improvements are significantly higher for ρ = 0.5 with an average im-
provements among the all instances equal to 6.7% against the 3.2% of ρ = 1.
In general, the insertion of scenarios lead to an average improvement of the
4.9%. It is interesting to examine the behaviour when |P| = 50. The disparity
in variations between the lower ( ¼ = {0, 20}) and higher ( ¼ = {50, 100})
values of ¼ indicates that, when the number of patients is limited, a higher
level of known information is sufficient to obtain good quality results even
with a myopic approach. Conversely, for higher number of patients the im-
provements are evenly distributed among all the ¼ values with a mean vari-
ation of the 4.6% for |P| = 100 and 5.1% for |P| = 200.

A visual representation of how improvements are distributed among in-
stances is given in Figure (6.10). Figure (6.10a), Figure (6.10b) and Figure
(6.10c) present the improvements for different values of ¼ when |P| is equal
to 50,100 and 200, respectively.

Among with the change in objective function, it is interesting to look at
the variation in accepted clients to analyze if the choice of the heuristic might
lead to the possibility of accommodating more patients. Results are pre-
sented in Table (6.17) where, for each combination of patients |P|, ρ and
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TABLE 6.16: Computational Results for Set 2 instances

MDH MSB-PF
|P| ¼ (%) ρ = 0.5 ρ = 1 ρ = 0.5 ρ = 1 ∆0.5 ∆1 ∆Avg

50

0 2239.7 8594.3 2650.3 9005.3 18.3 4.8 11.6
20 2334.7 8690.7 2650.3 9005.3 13.5 3.6 8.6
50 2649.3 9004.3 2650.3 9005.3 0.0 0.0 0.0

100 2665.6 9020.6 2665.6 9020.6 0.0 0.0 0.0

100

0 5372.0 16035.6 5696.5 16564.8 6.0 3.3 4.7
20 5410.6 16314.2 5816.3 16561.6 7.5 1.5 4.5
50 5629.0 16060.6 5964.5 17089.0 6.0 6.4 6.2

100 5836.8 16537.1 6035.3 17034.2 3.4 3.0 3.2

200

0 15942.4 39328.4 17019.1 41734.6 6.8 6.1 6.4
20 16369.1 40742.1 17312.2 42433.9 5.8 4.2 5.0
50 16662.5 42235.4 17514.9 43926.8 5.1 4.0 4.6

100 16622.6 43309.1 17922.7 43696.3 7.8 0.9 4.4

Avg. 6.7 3.2 4.9

¼ is indicated the number of rejected patients in the two different heuristics.

TABLE 6.17: Number of rejected patients in the two heuristics

MDH MSB-PF
ρ = 0.5 ρ = 1 ρ = 0.5 ρ = 1

50

0 0.0 0.0 0.0 0.0
20 0.0 0.0 0.0 0.0
50 0.0 0.0 0.0 0.0
100 0.0 0.0 0.0 0.0

100

0 12.0 13.0 11.5 11.5
20 12.5 11.5 11.0 11.5
50 12.0 13.0 11.5 10.5
100 9.0 9.5 10.0 8.0

200

0 57.5 63.5 49.5 53.0
20 52.5 51.5 49.0 49.5
50 49.0 50.0 46.5 47.0
100 47.5 47.5 45.0 47.5

Results display how the MSB-PF heuristic effectively reduces the number
of rejected patients in most scenarios. The greatest impact is obtained by
increasing the number of patients with an average increment of 4 patients
accepted. Specifically, with a patient set size of 200 (|P| = 200) and no prior
knowledge (¼ = 0%), MSB-PF manages to serve 11 additional patients at full
capacity (ρ = 1). Generally, it becomes clear that purely dynamic approaches,
which lack foresight into future events, tend to yield inferior results in both
objective function quality and the number of patients accommodated. The
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FIGURE 6.10: Percentage improvements of results from MDH
to MSB-PF

MSB-PF algorithm outperforms in this regard, enabling the agency to serve
a greater number of patients within its routes.

Altering the proportion of information available at the start of the time
horizon, namely the patients who have already made requests to the agency,
can significantly impact the performance of these heuristics. Indeed, having
more certain information at the beginning leads to more effective initial pa-
tient assignments, which is crucial for optimizing the results of subsequent
days by mitigating the impact of newly arriving information. This is con-
firmed in Figure (6.11), which depicts the percentage improvement in the
objective function for various ¼ values compared to the baseline scenario of
¼ = 0%, ∆50 for example indicates the percentage variation in results when
¼ = 50%. Figure (6.11a) presents the results for MDH, while Figure (6.11b)
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FIGURE 6.11: Percentage improvements of objective function
for different ¼ values.

details the outcomes for MSB-PF.
In both methods, for each number of patients the improvement increases

with the increasing of ¼ value confirming that an increment in known in-
formation is directly correlated with an improvement in the overall results,
whether scenarios are included or the problem is solved in a myopic ap-
proach. In Figure (6.11a), the greatest improvement is obtained for |P| = 50
with ∆50 equal to 13%. While when the number of patients increases the
MDH shows more difficulties in improving the solution even with more
information available. The opposite happens in Figure (6.11b), where for
|P| = 50 the improvement is close to 0%, suggesting that the heuristic ob-
tains a good quality solution for even with little or no information at the
beginning. Conversely, for higher values of P, it is evident the contribution
of the parameter ¼, with increments up to the 4.2% for |P| = 100. In general
∆50 and ∆100 show similar values, suggesting that passing from ¼ = 50% to
¼ = 100% does not impact significantly on the resolution.

6.6 Conclusions

In this chapter, we studied the Stochastic Multi-Period Home Healthcare
Problem with Consistency Constraints (SMHHP-C) which involves the op-
timization of a nurse agency patients management system. In a realistic
setting, patients requests are dynamically distributed over the time horizon.
Under this uncertainty, objective of the SMHHP-C is to determine which pa-
tients to accept and to which nurse to assign them maximizing the total profit,
computed as the revenue coming from the visits less the travelling costs. We
added the service-level constraints of consistency to the model to improve
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the quality of care provided. We performed an experimental analysis on the
role of consistency and visit flexibility inside the problem to assess the impact
of relaxing these aspects on the overall solutions. We modelled and solved
multiple versions of the original problem modifying the role of consistency
and the temporal distribution of visits. Results show how proposing a flex-
ible service in terms of visits days helps in improving the solution. We then
approached the dynamic nature of the problem with two different heuris-
tics: the Myopic Dynamic Heuristic and the Multi-Scenario-Based Progres-
sive Fixing. The former solved the problem day by day without any knowl-
edge of the future while the latter exploits the previsions coming from dif-
ferent scenarios to take more future-conscious decisions. Results show how
implementing a scenario set is fundamental to obtaining better solutions, es-
pecially with low known information at the beginning of the time horizon.
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Part II

Rich Vehicle Routing Problems in

Logistic Applications

The second part explores the application of Rich Vehicle Routing Problems
(RVRPs) in the Logistic sector. The scope of our study is to improve the
delivery company’s operational efficiency while addressing environmental
concerns and adding customer-centric constraints. Initially,in Chapter (7) we
present the main literature in the field of logistics application. In Chapter (8)
we explore the application of collection lockers in a last-mile delivery service,
offering a detailed analysis of its environmental impact. This assessment
does not focus solely on the company perspective but extends to include the
influence of eco-conscious consumers on the logistic setting. This chapter
aims to evaluate how both companies and environmentally aware customers
can collectively contribute to reshape the dynamics of delivery services, in-
fluencing the overall environmental footprint of the logistic sector. Subse-
quently, Chapter (9) progresses to investigate an Attended Home Delivery
service with recovery options. The problem focuses on the probabilistic na-
ture of customer presence during delivery and the implications of various
recovery options in case of missed deliveries. The goal is to achieve trans-
portation efficiency, balancing the minimization of both transportation costs
and the penalties incurred with failed deliveries. This dual-focused approach
offers a comprehensive understanding of the complexities and challenges in-
herent in attended home deliveries contributing to both the reduction of costs
and the improvement of quality of service.
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This chapter presents the main literature about RVRPs in the logistic do-
main. In particular, we focus on works dealing with Last-Mile Delivery prob-
lems describing door-to-door and/or locker based delivery models. First, we
review the Attended Home Delivery (AHD) to analyze how failed deliveries
and alternative deliveries options have been treated in literature. Then, we
present the recent literature on delivery problems with a special focus on the
ones dealing with the environmental issues.

7.1 Logistic and Operational aspects of Attented

Home Delivery

In the scientific literature, there has been a growing interest in AHD as it is
one of the most applied trends in last-mile package delivery. The function-
ality of home delivery is crucial for the economic success of online shopping
business models, hence it is fundamental to provide a cost-efficient service
while, at the same time, maintaining a good quality of service to meet cos-
tumers’ expectations. The diverse strategies employed by companies to meet
client demands have led to a rich and varied body of literature, especially in
the field of AHD. This literature spans several key areas, primarily focusing
on tactical management and operational aspects. (Agatz et al., 2008) offers
a thorough review of the challenges and opportunities in AHD, presenting
an exhaustive perspective on the subject. This work is instrumental in un-
derstanding the breadth of issues and potential strategies within the AHD
domain.

Two fundamental aspects in AHD are the tactical management of time
slots selection and the addressing of failed deliveries. The length of time slots
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is a critical factor balancing service quality and delivery costs. Narrow time
windows preferred by customers may lead to increased delivery costs. Early
studies by (Punakivi and Saranen, 2001) highlighted this by showing that
unattended services could be up to a third cheaper than attended deliveries
with two-hour slots. Similarly, (Boyer et al., 2009) found that a three-hour
delivery window is 45% more expensive than unattended delivery. (Gevaers
et al., 2011) further illustrated that in low-value customer goods delivery, the
cost impact of time windows could negate the benefits of online shopping.
From an environmental standpoint, (Manerba et al., 2018) demonstrated how
two-hour time slots could increase environmental impacts by up to 400%
compared to all-day deliveries. In terms of time slot allocation, (Campbell
and Savelsbergh, 2005) pioneered approaches where the service provider
controls delivery acceptance and time slot assignments. (Ehmke and Camp-
bell, 2014) expanded this analysis by incorporating variable and stochastic
travel times. Cost reductions for strict delivery windows and unpredictable
demand can be achieved through dynamic pricing of time slots, as suggested
by (Campbell and Savelsbergh, 2005). (Yang et al., 2016) extended this con-
cept by considering potential future demand in routing cost anticipation.
(Klein et al., 2019) further explored demand management through differenti-
ated time slot pricing, enabling cost-effective delivery scheduling at an oper-
ational level. We present the AHD Problem with Recovery option to distance
our research from the existing studies. The problem focuses on dividing the
workday into time slots to reflect client delivery preferences, rather than as-
sessing cost impacts in traditional AHD service. Our analysis of varying time
window lengths aims to glean managerial insights related to the costs of our
recovery options, rather than comparing AHDP-RO with non-attended de-
liveries. Furthermore, we tackle time slot application from a tactical perspec-
tive, excluding aspects such as pricing or allocation. We do not consider re-
quest rejections, and all time slots are assumed to have uniform pricing from
the client’s viewpoint.

From an operational perspective, AHD can be modeled as a basic VRP,
where the goal is to dispatch orders to specific locations using a fleet of ve-
hicles while minimizing overall costs. This task becomes more complex as it
often falls under the VRP with Time Windows (VRP-TW) category, where de-
liveries must occur within specified time frames. (Baldacci et al., 2012) offers
a review of exact algorithms and model formulations relevant to VRPTW.
Given theNP-Hard nature of VRP-TW, where optimal solutions are compu-
tationally difficult to derive, researchers have developed various algorithms
to approximate delivery costs. To enhance client satisfaction, many stud-
ies have introduced flexible delivery options into VRP-TW. (Moccia et al.,
2012) were pioneers in formulating a VRP-TW that includes alternative de-
livery locations, utilizing an incremental Tabu Search approach. (Spliet and
Desaulniers, 2015) introduced the Discrete Time Window Assignment VRP,
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which allows each customer to have a set of potential time windows, from
which one must be selected. To address large instances, they developed an
exact branch-and-price algorithm along with column generation heuristics.
Another extension of VRP-TW is the Vehicle Routing Problem with Deliv-
ery Options (VRP-DO), where customers have preferences among various
delivery options, and a certain level of client satisfaction is required. (Tilk
et al., 2021) introduced a VRP-DO model where requests can be sent to alter-
native capacitated locations, and carriers need to choose the most effective
option for each client. They also presented a new branch-price-and-cut al-
gorithm for exact problem-solving. The most recent application in this field
is by (Escudero-Santana et al., 2022), who expanded VRP-TW to include op-
tions for clients to suggest combinations of time slots and delivery locations.
They also provided a comprehensive analysis of the performance of various
tailored heuristics and metaheuristics.

Finally, the last core aspect of AHD is the management of failed deliveries
that often results in additional operational costs and negative environmental
impacts, as highlighted by (Song et al., 2009). For a detailed discussion on
the environmental sustainability of B2C services, (Mangiaracina et al., 2015)
provides a comprehensive literature review. Addressing the issue of failed
deliveries, much of the research has focused on alternative delivery meth-
ods. Automated lockers and collection points have become popular solu-
tions, with recent applications like Grabenschweiger et al., 2021 promoting
locker stations via client discounts. An extensive survey of such delivery
options, including the use of drones, is provided by Boysen et al., 2020. In-
novative methods like leaving packages in customers’ car trunks have been
introduced by (Reyes et al., 2017) and (Ozbaygin et al., 2017). From a cost im-
plications point of view, some researchers have started to consider the likeli-
hood of customer availability during specific time slots. (Özarık et al., 2021)
approached this by calculating the probability of customer presence based
on historical delivery success rates, though they did not consider recovery
options for failed deliveries. (Florio et al., 2018) offered a more detailed anal-
ysis with their availability profiles (AP), which predict customer presence at
home throughout the day. Their model, aimed at minimizing expected costs
of unsuccessful deliveries, allows for multiple visits to the same customer as
a recovery strategy. Building on these APs, (Voigt et al., 2023) developed a
VRP that balances transportation and failed-delivery costs, with the latter be-
ing client-specific and linked to the likelihood of customer presence. While
these studies predominantly use deterministic models, a two-stage stochastic
approach is explored in (Özarık et al., 2023). Here, routes and schedules are
initially planned, and upon actual determination of customer presence, ap-
propriate recovery actions are taken, with penalties applied after two failed
attempts in a day. Our research contributes to this body of work by not only
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considering APs and the cost trade-offs but also introducing multiple recov-
ery options for failed deliveries, with the costs varying based on the chosen
policy. For instance, customers can opt for a second delivery attempt or the
use of a collection point, adding a novel dimension to the management of
failed deliveries in AHD.

7.2 Addressing the environmental issue

Parcel lockers, recognized in specialized literature as an effective way to si-
multaneously reduce carbon emissions and failed deliveries, serve as auto-
mated collection and delivery points (CDPs) where consumers can indepen-
dently collect their parcels. Tilk et al., 2021 developed a Vehicle Routing Prob-
lem with Delivery Options, focusing on consumer-preferred delivery meth-
ods. Their objective was to serve all consumers while minimizing route costs,
adhering to time window constraints, vehicle capacity, and minimum service
levels for each consumer. Grabenschweiger et al., 2021 took a different ap-
proach by incorporating consumer satisfaction through heterogeneous locker
stations in their VRP, aiming to minimize travel costs and offer compensation
to motivate consumers to use lockers. However, these studies did not delve
into the environmental side-effects of last-mile delivery systems. From an
environmental perspective, Edwards et al., 2010 conducted a carbon audit to
assess the impact of failed deliveries. They explored various failure rates in
home delivery and calculated the additional carbon cost (in grams of CO2)
for each extra journey. Their comprehensive study showed that CO2 emis-
sions could be reduced by up to 87% when consumers are, on average, about
1.2 Km from lockers. Jiang et al., 2019 examined cost and emission reduc-
tions in a Travelling Salesman Problem that included a pickup cost based
on consumer willingness to use CDPs. They found that carbon emissions
could be reduced by up to 51.2% in areas where lockers are widely accepted.
Schnieder et al., 2021 presented an approach that considers emissions from
both the company and consumers. They analyzed the sustainability of inte-
grating CDPs into delivery systems, showing that it heavily depends on envi-
ronmentally conscious consumer choices. They predetermined the delivery
method for each consumer and assumed that consumers always travel to the
nearest locker by car when using CDPs. Our work expands on these analy-
ses by offering a comprehensive impact assessment that allows consumers to
make sustainable transport choices to reach a locker, regardless of distance.
Furthermore, we treat the decision to open or not a locker as a variable, ex-
ploring the optimal delivery configuration to reduce overall CO2 emissions.
This approach provides a more nuanced understanding of the environmental
implications of delivery choices, considering both company operations and
consumer behavior.
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8.1 Introduction

During the COVID-19 pandemic, the shift towards e-commerce, especially
in the business-to-consumer (B2C) sector, and home deliveries marked a sig-
nificant change, effectively replacing traditional shopping venues like super-
stores. This adaptation to pandemic-induced lockdowns and movement re-
strictions signaled a new era in consumer behavior. Statistics from this pe-
riod reveal a clear consumer preference for avoiding crowded places, opting
for online shopping as a safer alternative. The pandemic’s influence on on-
line shopping is thoroughly examined in an insightful report released by the
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United Nations Conference on Trade and Development (UNCTAD) (COVID-

19 and e-commerce: a global review 2021). This report comprehensively analyzes
data from various economies, including emerging markets and developed
countries like Italy. It focuses on the patterns of e-retailers and consumers,
shedding light on the significant shift in shopping habits during the pan-
demic. A key takeaway from the report is the marked increase in online shop-
ping frequency, a trend that starkly contrasts with the pre-pandemic period.
The substantial change in customers’ behavior and their switch through e-
commerce resulted in a tangible impact on urban environments. The increase
in delivery vehicles, including vans and commercial trucks, has brought to
the attention new environmental issues. Increased air pollution and traffic
congestion highlight the adverse side effects of e-commerce growth on the
life and safety of people living in urban areas. In response to the pandemic,
consumer priorities have shifted significantly, with a newfound emphasis on
health, safety, and sustainability. This shift has given rise to a group identi-
fied as "reimagined customers," a term coined by analysts like that at (Accen-
ture, 2021). These customers have redefined their consumption patterns in
line with these evolving values.

To address these challenges, we study a Last Mile Delivery system in
which couriers must deliver packages for clients’ houses. In particular, we
model a Location-Routing Last Mile Delivery Problem (LR-LMDP) to assess
the ecological benefits of a locker-based delivery system compared to tra-
ditional door-to-door methods. Central to this analysis is the minimization
of total carbon emissions, which involves considering the travel distances
of both the delivery company and the consumers, who must retrieve their
parcels from the lockers. In performing this analysis, it is fundamental to
consider the eco-conscious behavior of consumers, which represents a criti-
cal factor in the output of the delivery system. We model various consumer
behaviors through two parameters: the maximum distance customers accept
to travel to collect packages at parcel lockers and the maximum distance they
are willing to travel, generating zero emissions (by foot or bicycle, for exam-
ple). The computational results obtained by solving the mathematical model
on a comprehensive set of instances, provide interesting insights on the prob-
lem, emphasizing how the role of consumers is one of the main drivers for
controlling the environmental impact.

The chapter is organized as follows. The logistic settings of the problem
are defined in Section (8.2), and the mathematical formulation is detailed in
Section (8.3). Computational results and managerial insights are presented
in Section (8.4), and conclusions are drawn in Section (8.5).
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8.2 Problem Description

The LR-LMDP deals with the operational challenges of a delivery company
that has to deploy a set of couriers to deliver packages to clients. It can be
modeled as a variant of the traditional Vehicle Routing Problem where the
vehicles do not have to visit all the nodes. Deliveries can happen at clients’
houses or parcel lockers spread over the territory, describing a flexible sys-
tem that can accommodate consumer preferences while being operationally
efficient. The primary objective of the LR-LMDP is to strategically deter-
mine which locker stations to open to minimize the overall environmental
impact of the delivery process. The impact is measured in terms of carbon
emissions (grams per kilometer of CO2) created by the company’s couriers
and the consumers who collect their parcels from the lockers. We model the
LR-LMDP utilizing a complete directed graph to represent the road network
with the consumers and the lockers in the nodes. Let C = {1, ..., n} be the
set of n consumers and L = {n + 1, ..., n + m} be the set of m possible lock-
ers’ stations. The problem can be defined over a complete directed graph
G = (V, A) representing the road network where V = {0} ∪ C ∪ L is the
node set with node 0 representing the depot, and A = {(i, j) : i, j ∈ V, i ̸= j}
is the arc set. We indicate as dij and tij the non-negative distance and travel
time between any two nodes i, j ∈ V, respectively. We assume that distances
satisfy the triangular inequality. Each node i is associated with a service time
si. We indicate as dmax the maximum distance consumers are willing to travel
from home to collect their packages. To separately account for arcs traveled
to consumers, we need to identify the subset of reachable lockers for each
consumer c ∈ C. We define as Lc ¦ L the subset of potential parcel lockers
located at a distance lower than or equal to dmax from consumer c. In addi-
tion, we define as deco (Eco-Green Distance) a maximum distance threshold
below which we assume any consumer is willing to reach a locker by foot or
by bicycle (the emissions to collect packages can be neglected). According to
the current EU Regulation on CO2 emissions, we define a constant emission
factor ev for commercial vehicles and a variable emission factor ecl for private
cars depending on the locations of consumer home c and the parcel locker l.
In particular,

• ecl =

{

ep, if deco < dcl f dmax

0, if dcl f deco.

to attribute emissions to a specific consumer c only when the locker is outside
his deco distance. Deliveries are performed by a fleet of homogeneous vehicles
K = {1, ..., k} with nonrestrictive capacity. Also, locker stations are assumed
with unbounded capacity.
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8.3 Mathematical Formulation

Let us define, for each arc (i, j) ∈ A, a binary variable xij taking value one if
arc (i, j) is traversed by any vehicle and 0 otherwise. Moreover, for each arc
(i, j), we define a continuous variable zij indicating the time of vehicle arrival
at node j when arriving from i. For each set S ¢ V, let δ+(S) = {(i, j) ∈ A :
i ∈ S, j /∈ S} and δ−(S) = {(i, j) ∈ A : i /∈ S, j ∈ S} be the set of arcs leaving
and entering set S, respectively, with δ+(i) = δ+({i}) and δ−(i) = δ−({i}).
Each locker l ∈ L is associated with a binary variable yl, taking value one if
the locker is opened, 0 otherwise. Finally, for each customer c ∈ C and each
locker l ∈ Lc, the binary variable wcl is equal to 1 when consumer c travels
to locker l and zero otherwise. If this wcl equals zero customer c receives the
package at home. The problem aims to find the optimal subset of lockers to
open to minimize the system’s total carbon emissions, computed as the sum
of emissions produced by the company couriers and the consumers.

The mathematical formulation is as follows:

min ∑
(i,j)∈A

ev(dijxij) + ∑
c∈C

∑
l∈Lc

ecl(2dclwcl)(8.1)

subject to:

∑
(i,c)∈δ−(c)

xic = ∑
(c,i)∈δ+(c)

xci = 1− ∑
l∈Lc

wcl c ∈ C(8.2)

∑
(i,l)∈δ−(l)

xil = ∑
(l,i)∈δ+(l)

xli = yl l ∈ L(8.3)

∑
(0,j)∈δ+(0)

x0j = ∑
(j,0)∈δ−(0)

xj0 f |K|(8.4)

wcl f yl c ∈ C, l ∈ Lc(8.5)

∑
(i,j)∈δ+(i)

zij − ∑
(j,i)∈δ−(i)

zji = ∑
(i,j)∈δ+(i)

(tij + ti)xij i ∈ L ∪ C(8.6)

(t0i + tij + si)xij fzijf (T− tj0 − sj)xij (i, j) ∈ A(8.7)

z0i = t0ix0i i ∈ L ∪ C(8.8)

zij g 0 (i, j) ∈ A(8.9)

xij ∈ {0, 1} (i, j) ∈ A(8.10)

wcl ∈ {0, 1} c ∈ C, l ∈ Lc(8.11)

yl ∈ {0, 1} l ∈ L(8.12)

The objective function (8.1) minimizes the total environmental impact
computed as the total traveled distance by both vehicles and consumers mul-
tiplied by the respective emission factors. For the consumers, we calculate
the distance at round-trip from their house to the locker, assuming they don’t
de-tour after collecting the package. Constraints (8.2) regulate the arc flow
through the clients’ nodes. If a client c ∈ C is served at home (∑l∈Lc wcl = 0),
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exactly one arc must enter and leaves node c. The arc flow through locker
nodes is set through Constraints (8.3) where an arc traverses nodes l only if
the respective locker is open (yl = 1). These constraints are fundamental to
impose that a courier route visits a locker only if it is open. Constraints (8.4)
ensure that at most K vehicles are used. Constraints (8.5) state that a client
c ∈ C can travel to a locker l ∈ Lc only if the latter has been previously open,
hence included in a vehicle route. Constraints (8.6) determine the arrival
time at two consecutive nodes, thus working as sub-tour elimination con-
straints. In particular, if node j is visited immediately after node i, the time
elapsed between the arrival in the two nodes is equal to the time tij needed to
travel between the two nodes plus the service time at note i. The lower and
upper bounds of variable zij are regulated by Constraints (8.7), stating that
if arc (i, j) is traversed, then the arrival time at node j must be greater than
the time required to leave the depot and serve the consumer i (t0i + si) and
lower than the allowed tour length (T) minus the time required to serve the
consumer j and return to the depot (sj + tj0). Constraints (8.8) ensure that the
time needed to travel from the depot to any visited node i (when x0i = 1) is
equal to t0i. Non-negativity and binary conditions on variables are defined
in Constraints (8.9) to (8.12).

8.4 Computational Results and Managerial Insights

In this section, we present the results obtained by investigating the impact of
the eco-conscious behavior of consumers. In particular, we perform a sensi-
tivity analysis on the parameters dmax and deco, highlighting how consumers’
daily choices deeply influence environmental issues. Section (8.4.1) describes
the structure of the benchmark instances used in the study, and Section (8.4.2)
proposes the computational analysis of the environmental impact of different
consumer behaviors. All tests have been run on an Ubuntu 20.04.2 machine
with an AMD Ryzen 9 3950x CPU, 16 cores, 32 threads, and 32 GB of RAM.
Gurobi 9.1.2 has been used as a mixed integer linear programming solver. A
time limit of 8 hours has been set for solving each instance.

8.4.1 Instances Generation

We have solved and tested 60 benchmark instances, differentiating the num-
ber of consumers |C|, the number of lockers |L|, and the number of vehi-
cles |K|. The structure and size of the instances are detailed in Table (8.1),
where column #Inst indicates the number of instances generated per each
tuple (|C|, |L|, |K|). Consumers’ locations are randomly generated in a geo-
metrical square representing a city area of 15 Km of edge. The travel speed of
vehicles is assumed to be uniform and equal to 30 km/h throughout all the
area. This space is divided into |L| zones. Each zone is designated to have a
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potential locker, ensuring that every consumer is within a maximum distance
of 5 km from a pick-up station when the number of lockers is set to |L| = 5.
Additionally, the depot is strategically placed near the area’s perimeter to
mimic the topical location of big warehouses in industrial zones. The time to
serve client and locker nodes varies between 3 and 10 minutes. The working
shift of couriers is equal to 8 hours. For the environmental impact assess-
ment, the emissions parameters are equal to ev = 161.2g/Km for commercial
vehicles (European Environment Agency, 2020b) and ep = 127.0g/Km for
private ones (European Environment Agency, 2020a).

|C| |L| |K| #Inst

50 5
2 5
3 5

50 10
2 5
3 5

50 15
2 5
3 5

100 5
2 5
3 5

100 10
2 5
3 5

100 15
2 5
3 5

TABLE 8.1: Structure and size of benchmark instances

We have considered 7 possible values for dmax and deco 0m, 500m, 750m,
1000m, 1500m, 2000m, and 5000m. Combining each value of dmax with all the
values of deco equal or lower allowed us to have a total of 28 combinations
of the pair dmax-deco. Of these, the 0-0 combination represents the pure home
delivery scenario, in which clients are unwilling to travel to collect packages.
Considering that each benchmark instance has been solved for every pair
combination, we have analyzed 1680 instances in our study. Of these, 1608
have been solved to optimality within the computational time limit. The me-
dian optimality gap value is 6%; if we exclude two instances with an average
gap more significant than 30%, the average gap to optimality drops to 2% for
the remaining ones. Table (8.2) presents, for each pair, the average compu-
tational time (s) for 50 and 100 customers. The average percentage gaps are
detailed in Table(8.3)
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deco

|P| dmax 0 500 750 1000 1500 2000 5000

50

0 678.0
500 1172.9 1104.0
750 1259.4 1173.8 1254.8
1000 1154.4 1247.2 1253.8 1014.7
1500 1225.7 1225.7 1068.0 1165.1 775.5
2000 1254.0 1142.0 1143.2 1125.4 688.3 769.2
5000 1529.8 1417.7 1458.5 1335.5 860.7 1179.1 5779.4

100

0 3787.3
500 6452.5 5327.4
750 6549.4 5474.2 5330.4
1000 6781.7 5598.8 5454.2 5214.3
1500 6784.5 5587.9 5530.0 5798.5 5994.2
2000 6957.1 5703.3 5704.7 5901.9 6031.2 6068.4
5000 6794.5 5742.9 5830.6 5918.0 6406.4 6260.3 7001.4

TABLE 8.2: Average computational times (s)

deco

|P| dmax 0 500 750 1000 1500 2000 5000

50

0 0
500 0 0
750 0 0 0
1000 0 0 0 0
1500 0 0 0 0 0
2000 0 0 0 0 0 0
5000 0 0 0 0 0 0 12

100

0 0
500 1 1
750 1 1 1
1000 1 1 1 1
1500 0 1 1 1 2
2000 1 1 1 1 2 3
5000 1 1 0 1 2 3 26

TABLE 8.3: Average optimality gap (%)
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8.4.2 Environmental Impact

In this analysis, we focus on the effects of changes in eco-conscious consumer
behaviors on the last-mile delivery system, specifically examining the impact
of variations in the distances consumers are willing to travel to retrieve pack-
ages and their inclination towards using eco-friendly transportation meth-
ods. Our objective is to understand how these behaviors influence the reduc-
tion of environmental emissions in the last-mile delivery process. Our study
is divided into two main parts. Initially, we investigate the effects of vary-
ing the maximum distance consumers travel (dmax) and the ecological dis-
tance (deco), analyzing them separately to discern their individual impacts.
The first phase of our computational experiments is designed to calculate the
reduction in emissions resulting from alterations in dmax and deco. These pa-
rameters are varied one at a time, keeping the other constant, to provide a
clear understanding of their individual effects on the solutions. We observe
in Figure (8.1) the decrease in carbon emissions when deco = 0 and dmax is in-
creased across different consumer and locker combinations. This reduction
is compared against a baseline scenario of pure home delivery, where dmax

- deco = 0-0. By setting the eco-distance to zero, we can assess the environ-
mental impact when consumers do not utilize green transportation methods.
Notably, the behavior of the systems with 50 consumers (|C| = 50) differs sig-
nificantly from those with 100 consumers (|C| = 100). When the consumer
count increases, leading to more private vehicles for package collection, the
difference in carbon emissions compared to the home delivery scenario be-
comes negligible. A notable impact is observed for a smaller consumer base
(|C| = 50) when dmax exceeds 750 meters. However, the maximum reduction
achieved is only about 1.9% for the scenario with 15 lockers, 50 consumers,
and dmax of 5000 meters, indicating that even if consumers are willing to
travel up to 5 km to collect their parcels, the overall system reduction is min-
imal without the use of green transport methods, questioning the necessity
of introducing lockers.

In contrast, Figure (8.2) depicts a different trend, showing the emission
reductions compared to home delivery when dmax = 5000 and deco increases.
No significant improvement is observed for deco values up to 750 meters.
However, emissions are exponentially reduced for deco f 1000 meters, peak-
ing at 68% in scenarios with 100 consumers and 15 lockers. This finding
suggests that last-mile delivery systems can significantly benefit in terms of
environmental impact when consumers actively reduce emissions.

Another critical aspect to consider is the proportion of consumers receiv-
ing their parcels at home as dmax and deco increase. Figures (8.3) and (8.4) dis-
play the number of consumers served at home for deco = 0 and dmax = 5000m,
respectively. As shown in Figure (8.3), most clients receive home deliver-
ies regardless of dmax values, with the percentage hovering around 96.2%
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FIGURE 8.1: Decrease of emissions over dmax values for each
combination of |C| − |L|
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FIGURE 8.2: Decrease of emissions over deco values for each
combination of |C| − |L|
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FIGURE 8.3: Consumers served at home over dmax values for
different combinations of |C| − |L|

in optimal scenarios. This high percentage, constant across different dmax

values, suggests that lockers do not significantly alter the traditional door-
to-door delivery model if consumers do not adopt eco-conscious behaviors.
Conversely, home deliveries decrease substantially for scenarios where deco

exceeds zero. When deco g 750m meters, the proportion of home deliver-
ies drops exponentially, with a maximum of only 20% of clients receiving
home deliveries in the 5000-5000 meter scenario (Figure (8.4)). These results
indicate that consumers must be willing to travel more than 1.5 km using
zero-emission transportation methods for a locker-based system to be envi-
ronmentally effective.

In a second round of experiments, we simultaneously varied the param-
eters dmax and deco. Figure (8.5a) illustrates the impact of different deco val-
ues on emissions reduction, compared to the baseline scenario where deco=0.
This analysis differs from that in Figure (8.2) as it encompasses all poten-
tial dmax values. For example, with deco = 1500m, the analysis included all
combinations of dmax-deco such as (1500-1500), (2000-1500), and (5000-1500),
calculating the emissions reduction percentage relative to the scenarios (1500-
0),(2000-0), and (5000-0). This approach provided a comprehensive view of
the influence a specific deco value has across all instances that incorporate it.
The box-plot data indicates minimal variability in the results. When deco is f
1000m, the range between the highest and lowest percentage reduction is ap-
proximately 5%. The most significant reduction occurs at deco=5000m, with
an average decrease of 56% and a span of 26% between the lower and upper
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FIGURE 8.4: Consumers served at home over dmax values for
different combinations of |C| − |L|

percentiles. Figure (8.5b) presents a similar analysis on emissions reduction
but for different values of dmax in respect to the case dmax=0. Given a value of
dmax, we consider all the instances with positive values of deco <= dmax. The
box-plot shows a similar behavior to Figure (8.5a) with emission decreasing
at the increment of the considered parameter and compact boxes represent-
ing a low variability in results. However, in Figure (8.5a), a huge numbers
of outliers can be highlighted mainly in instances with dmax = deco and for
deco g 1500; the presence of outliers for higher values of deco suggests that
the key parameter to the study is the eco-conscious distance of clients. In
fact, looking at the median percentage values emissions reduction for differ-
ent dmax, it is evident how they are way below the outliers, going from 0.0%
when dmax = 500 to only 3.59% when dmax = 5000.

8.4.3 Managerial Insights

Purpose of our managerial insights is to have a whole picture of the impact
of the consumers and the one of the company. Figure (8.6) shows how, at the
increasing of deco, the total travelled distance is distributed between the com-
pany’s vehicles (dv) and the consumers, with (deco

c ) and without (dc) green
means of transport for different values of |C| and |L|. It is clear to notice that,
for lower values of deco the majority of the distance is traveled by the com-
pany with values always higher than the 90% until deco g 1500m. The only
exception is the combination for deco = 1000m with |C| = 100 and |L| = 15
where the distance travelled by consumers is equal to 87%. In general, the
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FIGURE 8.5: Emission reduction for different values of deco and
dmax

contribution of dc is always marginal confirming how the locker-based so-
lution is efficient in reducing emissions only when they adopt an actively
green behavior. A conclusion confirmed also by the trend of deco

c that for val-
ues of deco g 1500m starts to decrease reaching values higher than the 30% in
the deco = 2000m case up to the 90% when the deco distance it’s at its maxi-
mum. Together with the traveled distances, we are also interested in analyz-
ing how the carbon emissions are divided between the two actors involved.
Figure (8.7) presents the distribution of emissions between the company ev

and the clients ecl for each combination of |C| and |L| when dmax increases.
We do not include the green client since their emissions are always equal to
0. As already concluded, rarely a clients collects a package outside his/her
green distance, making the consumers’ emissions always lower than the 5%.
A clear trend is evident only beyond 750m when |VC| is equal to 50: the per-
centage of emissions due to consumers increases from less than 1% to slightly
above 4%. For |VC| = 100 an increasing trend could emerge for higher values
of dmax and |VL|. However, since a value of |VL| equal to 15 when |VC| = 100
is already realistic, we can infer that consumer emissions for high values of
|VC| can be considered negligible.

Finally, in Figure (8.8) we present the percentage increase in emissions in
a scenario in which clients are not included in the objective function (ecl =

0∀c ∈ C, l ∈ L). This is the most common studied scenario in optimization
papers when evaluating a locker-based solution of a last-mile system. Not
taking consumers emissions into account, optimal solutions show that the
introduction of lockers can significantly drop the total traveled distance for
the company, decreasing the costs. However, the overall environmental im-
pact can be far greater. As can be seen from the graph, for values greater than
dmax = 1000m the increase in emissions is exponential, reaching almost the
50% when dmax = 2000m and over 250% when dmax = 5000m.
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FIGURE 8.6: Travelled distances over deco values: company vs
non-green consumers vs green consumers.

FIGURE 8.7: Emissions distribution: company vs consumers.
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FIGURE 8.8: Emissions increase over dmax values when ecl = 0,
for all c ∈ C and l ∈ L.

8.5 Conclusions

In this study, we delve into the challenging task of comparing different last-
mile transportation models, particularly focusing on their environmental im-
pacts. Our analysis primarily contrasts the traditional door-to-door delivery
service, where consumers receive goods directly at their homes, with a par-
cel locker system, where consumers collect their parcels at a designated hub.
The core of our examination is the evaluation of the CO2 emissions associ-
ated with these two models. We propose a mathematical formulation aimed
at minimizing the emissions from distances traveled both by the delivery
company and consumers who opt to use locker stations. A key aspect of
this model is its flexibility in determining the optimal number and locations
of lockers to be operational. This decision-making process is ruled by two
crucial parameters to simulate consumers behavior: the maximum distance
a consumer is willing to travel to a locker using any mode of transport, and
the ’green distance’—the furthest a consumer is prepared to go by foot or
bicycle, thereby not generating any CO2 emissions. The computational anal-
ysis of this model, applied to over 1600 instances, draws relevant insights on
the effectiveness of the locker-based system. One of the key findings is that
while the installation of lockers plays a role in emission reduction, it is not
the primary factor. Instead, the pivotal element is the eco-conscious behavior
of consumers. This revelation shifts the focus towards encouraging environ-
mentally friendly practices among consumers as a more effective strategy for
reducing emissions.
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Chapter 9

An Attended Home Delivery

Problem with recovery options and

availability profiles

The content of this chapter was presented to the 1st ULTRAOPTYMAL Workshop

and to the International Conference on Optimization and Decision Science (ODS

2023). This chapter corresponds to the conference paper "V.Bonomi, D.Manerba,

R.Mansini, R.Zanotti, Evaluating the impact of recovery options in Attended Home

Delivery with Availability profiles", to be submitted

9.1 Introduction

The COVID-19 pandemic has significantly accelerated the growth of the on-
line retail sector, a trend highlighted in the 2022 European E-Commerce Re-
port. This report indicates a 6% increase in business-to-costumers sales com-
pared to 2019, with an estimated 75% of internet users engaging in online
purchases in 2022. The shift from traditional in-store shopping to online
platforms, partly driven by the pandemic, has compelled more companies
to venture into the market, particularly by offering home delivery services.
One prominent model in e-commerce is Unattended Home Delivery, where
the recipient’s presence isn’t required at the time of delivery. However, the
recent surge in online shopping has seen a gradual shift towards AHD, es-
pecially for products like electronic groceries, high-value electronics, and
large furniture items. In AHD, customers schedule a specific delivery time,
aligning with their availability to receive the order. As competition intensi-
fies in this space, e-companies are compelled to develop efficient AHD ser-
vices. A critical component of this efficiency is a well-planned routing and
scheduling system to minimize delivery failures. Delivery failures in AHD
are typically due to the service being performed outside the customer’s pre-
ferred time window. These failures are not just costly for the company and
burdensome for couriers, but also negatively impact customer satisfaction.
However, guaranteeing successful deliveries is challenging, considering the
dynamic nature of clients’ daily schedules and the operational complexities
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of last-mile delivery, particularly in traffic-congested urban areas. As the
Attended Home Delivery sector expands, the issue of missed deliveries be-
comes increasingly critical, impacting customer satisfaction and operational
costs for companies. To enhance service quality and logistic efficiency, it’s
crucial to reduce delivery failures. However, this task is non-trivial since it
involves the meticulous planning of routes and schedules to face the uncer-
tainty of the dynamic nature of clients’ daily behavior. The AHD process
is inherently uncertain, and providers must consider this when striving to
maintain a high success rate in deliveries and, consequently, service qual-
ity. Including probabilistic elements is essential when designing an efficient
and reliable AHD system. Moreover, implementing and evaluating recovery
strategies for failed deliveries, which we term as Recover Options is crucial
to the overall effectiveness of the AHD model. Our research centers on an
Attended Home Delivery problem with Recovery Options (AHDP-RO). This
involves analyzing customer availability during various times of the day and
their preferences for handling missed deliveries, such as leaving the package
at a secure location, a general collection point, or rescheduling for another
delivery attempt. Each of these recovery options entails distinct costs and
operational considerations. Since the penalties are probabilistic, the prob-
lem can be suitable for stochastic modeling. However, we choose to adopt
a deterministic perspective to focus on the strategic and tactical modeling of
the AHD settings and the implications of incorporating scenarios where de-
liveries fail with a certain probability, thus incurring redelivery costs based
on the customer’s preferred recovery option. To this end, we introduce a
Mixed Integer Linear Programming (MILP) model designed to be solved us-
ing standard off-the-shelf solvers. The chapter is divided as follows. First,
we present the assumptions and the elements of the problem formulation in
Section (9.2). Section (9.3) presents the MILP model while Section (9.4) details
the results obtained solving to optimality small-size instances. Conclusions
are included in Section (9.5).

9.2 Problem Description

In the AHD framework, the operational challenge involves routing a fleet
of vehicles with limited capacity to deliver parcels. These deliveries must
align with the times when customers are available at home. The primary op-
erational constraints in this context are the delivery time windows at each
client’s location and the maximum working time length of couriers. Differ-
ently from traditional AHD problems, where the delivery is either successful
or failed, we specifically address the probability of finding the client at home.
Our scope is to describe a realistic setting in which penalties for missed de-
liveries depend on the probability of finding the client at home as well as on
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the recovery option that the courier has to perform to deliver the package.
We refer to this specific variant as the AHDP-RO.

A specific aspect of our formulation of the AHDP-RO is the division of
the operational day into distinct time slots. This structure allows us to apply
the concept of Clients’ Availability Profiles (CAP), as delineated in the study
by (Florio et al., 2018), which effectively captures different clients’ daily be-
haviors mapping their probability at home during different times of the day.
These profiles are critical in giving a realistic picture of the varied scenarios
that might be encountered during delivery operations. For example, a CAP
showing higher probabilities in the morning suggests the client’s availability
earlier in the day but not later. Following the methodology in (Florio et al.,
2018), these profiles are originally represented as non-overlapping, continu-
ous, piece-wise linear functions ranging between 0 and 1. In our adaptation,
we have chosen to discretize these functions within each interval, intention-
ally excluding the probability of an absolute certainty (a probability of 1).
The data for constructing a CAP for each client can be collected directly at
the time of order placement (for instance, through an online portal) or de-
rived from historical data. Figure (9.1) gives some examples of theoretical
CAP. It is important to underline that in our implementation, the continuous
functions representing the profiles as in Figure (9.1) are discretized in time in-
tervals such that inside each interval the probability of finding the costumer
is constant. Taking the example of the Linear Dec profile, on a scenario with
four sub-intervals, a possible implementation could be:

Linear Dec =























1 if 0 f t < T
4

3
4 if T

4 f t < T
2

1
3 if T

2 f t < 3T
4

0 if 3T
4 f t f T

with a decreasing probability through the time horizon T.
The selection of plausible recovery options and the implementation of a

close-to-reality cost assessment are pivotal in this problem. In our research,
we consider three distinct options, each having a unique influence on the
total costs:

• Fixed Penalty option (FP): This option allows the carrier to leave the
parcel at a prearranged secure location (like a garden, garage, private
locker, or with a neighbor) if the client is not at home. This choice, not
requiring extra operational steps that could disrupt the vehicle sched-
ule, incurs a fixed cost as a penalty. This cost reflects the client’s dissat-
isfaction with receiving the parcel in their absence.

• Second Attempt option (SA): If the client is not found at home during the
initial attempt, a second delivery on the same day is scheduled. Given



136
Chapter 9. An Attended Home Delivery Problem with recovery options

and availability profiles

T
2

T

1

(A) V-Shape

T
2

T

1

(B) A-Shape

T

1

(C) Linear Dec

T

1

(D) Linear Inc

T
2

T
4

3T
4

T

1

(E) M-Shape

T
2

T
4

3T
4

T

1

(F) W-Shape

FIGURE 9.1: Examples of customers availability profiles in a
time horizon T as implemented by (Florio et al., 2018).

that the probability of the client being home is never 100%, this second
attempt is always carried out. The penalty here is a weighted sum of the
penalties for both visits, reflecting the necessity of both trips within the
model framework. The rationale for using summation, rather than mul-
tiplication, is rooted in our understanding that both visits are compul-
sory. Multiplication would suggest the penalty of the first visit could
influence the second’s likelihood, which contradicts our model’s as-
sumptions. The penalty for a single visit is the round-trip cost from
the client’s location to the depot.

• Collection Point option (CP): In this scenario, if the client is absent, the
package is delivered to a shared collection point, like a self-service locker
or retail location. We assume there is only one such point for each client.
If necessary, it is visited by a vehicle just before returning to the depot at
the end of its route. The penalty is the round-trip cost from the client’s
location to the collection point. Similar to the SA option, we opt for a
worst-case analysis to illustrate the potential high costs of selecting an
inappropriate time slot.

The options discussed align well with existing company models for last-
mile delivery. Nonetheless, the flexibility of both the problem and its mathe-
matical representation allows for the integration of novel recovery strategies,
along with their respective actions and associated costs. The main goal of the
AHDP-RO centers on reducing the aggregate cost of delivery. This includes
the complete cost associated with routing as well as any penalties resulting
from undelivered items.

Let us consider a set P of clients requiring deliveries over a day. Each
client p ∈ P is identified by a unique location, a service time stp, and a deliv-
ery demand dp. Deliveries are performed by a set K of homogeneous vehicles
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with fixed capacity Q. Each vehicle starts from a common depot and must re-
turn within a predefined working time tmax which represents the daily plan-
ning time horizon of the service. The time horizon tmax is partitioned into a
set T = {1, . . . , Ä} of time windows (at, bt). It is known the probability ρpt

for each client p of being at home during time window t ∈ T. The clients
are partitioned according to the selected recovery options (FP,SA and CP),
i.e. P = PFP ∪ PSA ∪ PCP and Pu ∩ Pv = ∅ ∀u, v ∈ {FP, SA, CP}, u ̸= v.
AHDP-RO aims to find a set of routes for the vehicles and their relative visit-
ing schedules to perform deliveries while minimizing the overall costs given
by the vehicles travelling costs and the penalties associated with the recovery
actions computed by considering the probability expressed by the client for
each time window.

In the following, we propose a MILP formulation for the AHDP-RO. The
problem can be formulated over a set N of nodes, where each node corre-
sponds to a delivery request made by a client. For clients requiring a second
delivery attempt, two nodes with the same location are assigned. For each
client p ∈ PSA these are represented by the couple of nodes Np = {n1

p, n2
p}.

To avoid the double impact of the demand of the client on the vehicles ca-
pacity, the demand of the second node is always set equal to 0. To formulate
option CP, the overall number of drop-off points is represented by the set
C = {1, . . . , l} of collection points. Each client p ∈ PCP selects a specific
collecting cp ∈ C to which his packages need to be delivered. In order to
provide a compact formulation, we create a set Ns = {|N|+ 1, . . . , |N|+ |K|}
of |K| dummy nodes representing the same depot as a starting point for each
one of the m vehicles and a set Nc = {|N|+ |K|+ 1, . . . , |N|+ |K|+ |C| · |K|}
of |C| · |K| dummy nodes representing the collection points node specified
by delivery option CP and here duplicated for each vehicle. Therefore, each
client p ∈ PCP is associated with a collecting point cpk representing the cp · k-
th node in Nc.

The ending point for the vehicles is represented by the node e = |N| +
|K|+ |C| · |K|+ 1. The problem is defined over a directed graph G = (V, A)

where V = N ∪ Ns ∪ Nc ∪ {e} and A = {(i, j) : i, j ∈ N} ∪ {(i, j) : i ∈
Ns, j ∈ N} ∪ {(i, e) : i ∈ N} ∪ {(i, j) : i ∈ N, j ∈ Nc} ∪ {(i, j) : i, j ∈ Nc} ∪
{(|N| + |K| + c · k, e) : k ∈ K, c ∈ C}. For each set S ¢ V, let δ+(S) =

{(i, j) ∈ A : i ∈ S, j /∈ S} and δ−(S) = {(i, j) ∈ A : i /∈ S, j ∈ S} be the
set of arcs leaving from and entering set S, respectively. In this expanded
graph, the routing cycle for each vehicle k ∈ K is represented by an oriented
path starting at node |N|+ k and ending to node e, and visiting (if necessary)
one or more collection points represented by nodes |N|+ |K|+ |C| · |K|. This
allows us to use two-indexed binary variables representing the selection of an
arc without losing the information on which vehicle is visiting which client.
The formulation involving the duplicated depots was originally proposed in
(Luo et al., 2015). Finally, for each arc (i, j) ∈ A, we define as tij the positive
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time required to travel from node i to node j, respectively.

9.3 Mathematical Formulation

Let us define, for each arc (i, j) ∈ A, a binary variable xij taking value 1 if arc
(i, j) is traversed, and 0 otherwise, and a continuous variable zij representing
the arrival time at node j when coming from node i. Moreover, let us define,
for each node i ∈ N ∪ Ns ∪ Nc ∪ {e}, each time window t ∈ T, and each
vehicle k ∈ K, a binary variable yk

it taking value 1 if node i is visited in time
window t by vehicle k, and 0 otherwise. Finally, for each k ∈ K, the visit at a
collection point c ∈ C is regulated by the binary variable wkc taking value 1
if the node |N|+ |P|+ c · k is visited by vehicle k.

The objective function of the AHDP-RO can be formulated as the sum of
four different components

min fWT + fFP + fSA + fCP(9.1)

where

fWT := ∑
(i,j)∈δ−(e)

zij(9.2)

fFP := ∑
p∈PFP

∑
t∈T

∑
k∈K

³ (1− ρpt) yk
pt(9.3)

fSA := ∑
p∈PSA

1
2 ∑

i∈{n1
p,n2

p}

∑
t∈T

∑
k∈K

´ (1− ρit) yk
it(9.4)

fCP := ∑
p∈PCP

∑
t∈T

∑
k∈K

γc (1− ρpt) yk
pt(9.5)
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Subject to:

∑
(i,j)∈δ+(|N|+k)

xij f 1 k ∈ K(9.6)

∑
(i,j)∈δ−(e)

xij = ∑
k∈K

∑
(i,j)∈δ+(|N|+k)

xij(9.7)

∑
(i,j)∈δ+(i)

xij = ∑
(j,i)∈δ−(i)

xji = ∑
t∈T

∑
k∈K

yk
it i ∈ N(9.8)

∑
k∈K

∑
t∈T

yk
it = 1 i ∈ N(9.9)

∑
t∈T

yk
n1

pt
= ∑

t∈T

yk
n2

pt
p ∈ PSA, k ∈ K(9.10)

∑
k∈K

yk
n1

pt
+ ∑

k∈K

yk
n2

pt
f 1 p ∈ PSA, t ∈ T(9.11)

∑
(i,j)∈δ+(|N|+|K|+k·c)

xij = ∑
(j,i)∈δ−(|N|+|K|+c·k)

xji = wkc k ∈ K, c ∈ C(9.12)

∑
t∈T

∑
i∈N

diy
k
it f Q k ∈ K(9.13)

∑
t∈T

yk
|N|+|K|+k·c,t = wkc k ∈ K, c ∈ C(9.14)

yk
pt f wkcp

p ∈ PCP, t ∈ T, k ∈ K, c ∈ C(9.15)

∑
t∈T

∑
k∈K

aty
k
it f ∑

(j,i)∈δ−(i)

zji f ∑
t∈T

∑
k∈K

bty
k
it i ∈ N(9.16)

∑
(i,j)∈δ+(i)

zij − ∑
(j,i)∈δ−(i)

zji f ∑
(i,j)∈δ+(i)

(tij + sth)xij i ∈ N ∪ C(9.17)

(t|N|+1,i + tij + sti)xij f zij f (tmax− tj,e − stj)xij(9.18)

∑
t∈T

yk
jt g ∑

t∈T

yk
it + xij − 1 (i, j) ∈ A, k ∈ K(9.19)

(i, j) ∈ A\{|N|+ k, e}, k ∈ K

z|N|+k,i = t|N|+k,ix|N|+k,i i ∈ N, k ∈ K(9.20)

yk
|N|+k,0 = ∑

t∈T

yk
e,t = ∑

(i,j)∈δ+(|N|+k)

xij k ∈ K(9.21)

zij g 0 (i, j) ∈ A(9.22)

xij ∈ {0, 1} (i, j) ∈ A(9.23)

yk
it ∈ {0, 1} i ∈ N ∪ Ns ∪ Nc ∪ {e}, t ∈ T, k ∈ K(9.24)

wkc ∈ {0, 1} k ∈ K, c ∈ C(9.25)

The objective function is divided into four different parts, one for the trav-
elling times and three for the recovery-related penalty. Expression (9.2) rep-
resents the sum of arrival times of each vehicle k to the ending depot. Ex-
pressions (9.3), (9.4) and (9.5) describe the penalties related to the recovery
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options FP, SA and CP, respectively. The penalties are related to the proba-
bility of not finding a client at home (1− ρit) and to the cost dependent by
the selected recovery option, indicated as ³, ´ or γc. Constraints (9.6) – (9.12)
regulate the flow on the arcs. In particular, constraints (9.6) and (9.7) impose
that from each starting nodes will leave at most one vehicle k ∈ K that will
return to the common ending depot e. Constraints (9.8) force the visit of all
the clients, activating exactly one arc entering and exiting each node i ∈ N.
Constraints (9.9) impose that the visit is performed by only one vehicle k in
a specific time slot t. For clients included in PSA that require a double visit,
constraints (9.10) connect the two visits n1

p and n2
p to the same vehicle k while

constraints (9.11) impose that they happen in two different time slots. Con-
straints (9.12) are collection point flow constraints that force a vehicle k ∈ K

to visit the respective node |N|+ |K|+ c · k only if it is activated (wkc = 1).
The respect of vehicles’ capacity is guaranteed by constraint (9.13) where

it is imposed that the sum of the clients’ demands in a vehicle route does
not exceed its capacity. We remind that in the case of nodes {n1

p, n2
p} belong-

ing to a client p ∈ PSA, dn2
p

is always set equal to 0. Constraints (9.14) and
constraints (9.15) regulate the assignment of a visit in a specific time slot. In
particular, Constraints (9.14) ensure that the visit of a vehicle k ∈ K to its
collection point |N|+ |K|+ c · k can occur only if the node is activated. Con-
straints (9.15) impose the activation of the collection point cp for the vehicle
k (wkcp

= 1) if the customers p ∈ PCP is assigned to the vehicle (yk
pt) in any

given time slot t. Constraints (9.16) – (9.18) regulate the arrival time at client
nodes. In particular, constraints (9.16) establish that if node i ∈ N is visited
by a vehicle in time slot t the arrival time has to occur inside the correspond-
ing time window [at, bt]. The arrival time between two consecutive nodes is
regulated in constraints (9.17) ensuring that, if a vehicle visits node j immedi-
ately after node i, the time elapsed between the two arrival times is equal to
the service time sti at client i plus the time tij to travel from i to j. Finally, con-
straint (9.18) set upper and lower bounds on the duration of each route. Since
all the starting depots have the same location, using only the node |N|+ 1 as
starting point for all the vehicles allows us not to duplicate the constraint for
each k ∈ K. Constraints (9.19) to constraints (9.21) are logical and linking. In
particular, constraints (9.19) guarantee that two consecutive nodes are visited
by the same vehicle. The constraints set the variable xij = 0, when only one
of nodes i and j is assigned vehicle k. Constraints (9.20) initialize the arrival
time at the first node after the starting depot for each vehicle k ∈ K, while
constraints (9.21) ensure that the final node e is visited by vehicle k ∈ K only
if it left the starting depot. Finally, constraints (9.22) – (9.25) state binary and
non-negative conditions on the variables.

The model formulation in (9.2) – (9.25) is enforced by adding the follow-
ing more general type of connectivity constraints:
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∑
(i,j)∈δ+(S)

xij g ∑
t∈T

yk
ht S ¦ N, |S| g 2, h ∈ S, k ∈ K(9.26)

Constraints (9.26) strengthened the formulation preventing the generation of
sub-tours as in (9.18) imposing that for each subset of nodes S ¦ N assigned
to the same vehicle k (∑t∈T yhtk = 1), there is at least one arc (i, j) ∈ δ+(S)

connecting the nodes in S with the ones outside S.

9.4 Economic Analysis and Managerial Insights

This section presents an exhaustive economic analysis on the impact of re-
covery options and penalties in an AHD service. Our objective is to mea-
sure the benefits coming in assessing the probability of having failed deliv-
eries in the planning of operational activities of a delivery company. First,
we present the benchmark instances used to perform the analysis in Section
(9.4.1). Then, we divide our economical analysis in two parts with Section
(9.4.2) focused on the cost analysis and Section (9.4.3) centered on the anal-
ysis of probabilities and time slots impact. Section (9.4.2) explores, through
a two-level optimization, the cost variation and the trade-off coming from
prioritizing some elements of the objective function instead of others. The
results coming from analyzing each part individually can be beneficial to the
decision maker in choosing the more suitable service strategy, knowing the
impact on costs of, for example, prioritizing the reduction of penalties over
the travelling costs. Section (9.4.3) presents results related to hit rate,i.e. the
probability of having a successful delivery. In both sections is included an
analysis performed on instances with tripled penalties useful to simulate a
scenario in which penalties have a larger impact on the costs.

9.4.1 Instances Generation

We have solved and evaluated the problem on a set of 10 benchmark in-
stances characterized by the same number of clients |P| = 10 and vehicles
|K| = 4. In each instance, the recovery options are uniformly distributed
among clients with approximately one-third of clients per option. Clients
locations are uniformly and randomly generated in a 20x20 km area with a
vehicles speed limit constant and equal to 40 km/h. To each client p ∈ P is
associated a service time stp which is equal to 7 minutes and a demand dp

randomly generated in an interval of [5, 30] units. The subset of collection
points cp ¦ C that can be selected by client p ∈ PCP include only the collec-
tion point at a maximum travel time of 15 minutes from the client location.
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Vehicles capacity is constant among vehicles and equal to 3 ∑i∈N di

|K| . The work-
ing shift of couriers tmax is equal to 6 hours divided into |T| = {4, 8} time
slots. We implemented 7 different CAPs describing the clients daily behav-
ior, 6 inspired from the ones presented by (Florio et al., 2018) and one ran-
dom profile. Table (9.1) shows the probabilities of each CAP for |T| = 4 and
|T| = 8 time slots. Recovery options penalties ³, ´ and γ are time dependent
and computed as follows:

• ³ = sti ∀p ∈ PFP , the fixed penalty is set equal to the service time of
each client. In this way, the penalty is not location-dependent and do
not requires additional operational or routing activities, symbolizing
only the dissatisfaction of the client for not being at home during the
delivery.

• ´ = 2t|N|+1,i ∀p ∈ PSA, the penalty is computed as round trip from
the depot to the client to accounts the worse-case additional routing
necessary to perform the second attempt in case of failed delivery.

• γc = 2ti,|N|+|K|+ci·k ∀p ∈ PCP, the penalty is computed as round trip
from the client location to the selected collection point to symbolize the
cost of the additional routing that the vehicle has to perform to leave
the package in a collection point.

The 10 instances have been solved for both values of |T|, generating a total
of 20 benchmark instances.

APs %(t)

|T| = 4

V-Shape 90 10 10 90
A-Shape 10 90 90 10
Linear Dec 90 70 40 10
Linear Inc 10 40 70 90
M-Shape 10 90 10 90
W-Shape 90 10 90 10

|T| = 8

V-Shape 90 70 30 10 10 30 70 90
A-Shape 10 40 70 80 80 70 40 10
Linear Dec 90 90 80 70 60 50 30 10
Linear Inc 10 30 50 60 70 80 90 90
M-Shape 10 50 90 50 10 70 90 70
W-Shape 90 50 10 50 90 70 10 90

TABLE 9.1: Availability Profiles configurations for the |T| = 4
and the |T| = 8 time slots.

9.4.2 Sensitivity Analysis on Objective Function Components

We conducted a two-level optimization to evaluate how the total costs are
influenced by the four components of the objective function. In this process,
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we solve five different versions of our standard model AHDP − RO prior-
itizing different elements in each through a two-step optimization. In the
first step of this approach, we focused on minimizing only one part of the
objective function while keeping the others free. Then, in the second step,
we solved the overall problem, including all objective function components,
with the constraint that the prioritized component from the first step should
not exceed its minimized value. Let us indicate as AHDP− RO| f I the prob-
lem version in which the function f I is prioritized in the first step and as z∗

f I

the optimal value obtained. The second step solves the AHDP − RO stan-
dard model with the additional constraint f I f z∗

f I that bounds the value of

f I . Table (9.2) summarizes the function f I optimized in the first step for each
version.

Version f I

AHDP− RO fWT + fFP + fSA + fCP

AHDP− RO|HR fFP + fSA + fCP

AHDP− RO| fWT fWT

AHDP− RO| fFP fFP

AHDP− RO| fSA fSA

AHDP− RO| fCP fCP

TABLE 9.2: Prioritized functions in each version.

Except from the standard model AHDP − RO, we solved other 5 ver-
sions. In particular, AHDP − RO|HR prioritizes the minimization of the
three penalties all together that is the equivalent of maximizing the hit rate of
the service. Minimizing the penalties without including the times represents
a business strategy in which the company is more client-oriented. This can
help the decision-maker assess the trade-off that a fully customer oriented
model would have on the total costs. On the contrary, AHDP− RO| fWT rep-
resents a cost-oriented model that does not include the penalties of missed
deliveries. It represents the extreme situation in which the company is not
interested in the success of its deliveries but only in optimizing the oper-
ational costs. These two versions represent two opposite business strate-
gies that, if confronted, give the trade-off in including penalties in the study.
AHDP− RO| fFP, AHDP− RO| fSA and AHDP− RO| fCP have been solved,
prioritizing one recovery at a time to identify the minimum cost that can be
obtained in each. Table (9.3) shows the numerical results obtained divided
per version and value of |T|. Column ftot indicates the value of the total ob-
jective function while the four subsequent columns divides this value into
the four components. The last fours columns indicate the percentage of the
total objective function that can be attributed to the respective component.
For example, for AHDP − RO and |T| = 4, the overall costs are equal to
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31015 with the traveling costs fWT equal to 26404 that corresponds to an 85%
of the total value.

|T| ftot fWT fFP fSA fCP fTW% fFP% fSA% fCP%

AHDP− RO
4 31015 26404 644 3478 489 85 2 11 2
8 30259 25588 819 3150 702 85 3 10 2

|HR
4 41982 39756 287 1725 214 95 1 4 1
8 45140 42540 420 1906 274 94 1 4 1

| fWT
4 32197 25626 1372 4225 974 80 4 13 3
8 31808 24973 1344 4617 874 79 4 15 3

| fFP
4 33734 29585 273 3269 607 88 1 10 2
8 34033 29862 350 3182 639 88 1 9 2

| fSA
4 35393 32544 658 1715 476 92 2 5 1
8 36751 33341 805 1892 713 91 2 5 2

| fCP
4 32982 28884 777 3121 200 88 2 9 1
8 32861 28779 686 3129 267 88 2 10 1

TABLE 9.3: Results of problem versions divided into objective
function components

Figure (9.2) summarizes the results of the two-level optimization analysis.
The height of each column represents the average value of the total ob-

jective function divided into the four components by different colors. Figure
(9.2a) presents the results for instances with |T| = 4 and Figure (9.2b) for
the ones with |T| = 8. In both figures is maintained the proportion of costs
among the versions. As expected, AHDP− RO presents the minimum costs
since it optimizes all the functions simultaneously with an average objective
function of 29863 and 30013 for |T| = 4 and |T| = 8, respectively. When costs
are ignored the costs increases exponentially. AHDP− RO|HR results in be-
ing the most expensive options with a total objective function of 62559 for the
|T| = 4 case and 66323 for the |T| = 8 with an average increase of the 115%.
This is justified by the fact that fWT has the highest impact on costs with an
incidence of the 85% in the AHDP− RO case. Among the recovery options,
the most impacting is SA. This is justified by nature of the penalty of this op-
tion since it is computed as average on two visits, increasing the probability
of visiting clients in a time slot in which they are not at home. The difference
in costs between AHDP − RO and AHDP − RO| fWT is minimum with an
average increase of the 3%. This suggests that, with this problem structure,
prioritizing the travelling costs over penalties do not worsen the objective
function significantly. To deepen the analysis on the trade-off between trav-
elling costs and penalties we solved the problem changing the proportion of
penalties, multiplying the parameters ³, ´ and γc by a factor 3.

Tripled penalties: cost analysis

To delve deeper into the influence of penalties on overall work, we conducted
additional model runs with a higher proportion of penalties incorporated
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into the objective function. In particular, we multiplied all the penalties by
a factor of 3 without changing any other aspect of the problem. Results are
presented in Figure (9.3a) and Figure (9.3b) for scenarios with |T| = 4 and
|T| = 8, respectively. Each column’s height is determined using the formula
f 3

3 f , where f 3 is the value derived when penalties are multiplied by 3, and f

represents the value from the original model. In this way, we can assess the
variation in costs between the function components, isolating the increase
that comes from the increment of penalties from an actual change in the so-
lution structure. For instance, a column of height 1, i.e. for which f 3 = 3 f ,
indicates that the structure of the solution obtained in f 3 is equal to f with
the difference in magnitude of penalties. The solutions of f 3 is proportionally
better when the height is less than 1 and worse when the column is higher.

Examining the results of AHDP− RO it can be derived how, for both val-
ues of T, an increase in penalties leads to solutions in which it is improved the
optimization of the penalties in spite of travelling times. Specifically, under
the scenario of |T| = 4, increasing penalties significantly enhances the effec-
tiveness of recovery option SA. This is illustrated by a column fSA height 0.5,
signifying that costs in f 3 are six times less than in f . Exploring both |T| = 4
and |T| = 8 in AHDP− RO|HR and AHDP− RO| fWT it is evident how the
penalty proportion increase has no influence on the overall solution, with all
the columns of height equal to 1. This highlights the fact that both the op-
tions are penalty-independent. The AHDP− RO|HR in maximizing the hit
rate chooses the best time slots in terms of probability for each client, ignor-
ing the travel times but respecting the constraint of the maximum time shift.
Multiplying the penalty of a factor three does not impact on the selection of
these time slots but just increases proportionally the total penalties. In con-
trast, AHDP − RO| fWT, adopts the opposite tactic, disregarding penalties
and time slots initially to concentrate solely on minimizing the total travel
times. This approach results in identical optimal routes across both penalty
proportions, revealing a proportional relationship in costs, uninfluenced by
penalty variations. This trend extends to other versions where specific func-
tions are prioritized. In each case, the corresponding column consistently
reaches a height of 1, indicating that the initial choice of time slots remains
unaffected by escalated penalties. However, the role of fWT evolves with
variations in T. For instance, Figure (9.3a) reveals that at |T| = 4, in both
AHDPRO| fFP and AHDPRO| fCP the ratio between f and f 3 is around 1.1.
This suggests that increasing penalties slightly diminishes the efficiency of
travel time optimization in these scenarios. Yet, this trend does not hold for
|T| = 8, where the columns reach a uniform height of 1, indicating improved
routing optimization capability at higher time slot numbers, even with in-
creased penalties. However, it is important to highlight how the deteriora-
tion of fWT never exceeds a ratio of 1.1. This finding implies that prioritizing
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penalties does not correspondingly escalate travel times. This insights sug-
gests that, even in contexts where clients are more impacting than routing
operations, penalties can be effectively optimized with only a marginal in-
crease in routing costs.

9.4.3 Hit-Rate Analysis

In the context of AHD, the hit rate indicator is as crucial as the minimization
of costs. The hit rate is a performance metric employed to determined the
frequency of successful deliveries and having a high value corresponds to an
higher client satisfaction. In this section, we present the economical analysis
of the AHDP− RO regarding the hit rates of each recovery option. To this
purpose we computed the average hit rate amongst instances for each recov-
ery option, calculated as average probability of finding clients at home. This
value is then compared with the theoretical best, worst and average rates that
could be obtained from the data available. In particular, the best and worst
case are obtained visiting all the clients in their best and worst time slots, re-
spectively. Table (9.4) shows the results of the hit rate (HR) for each recovery
option and different values of T as well as the best, average and worst values.

|T| HR HRworst HRavg HRbest

FP
4 73.0 10.0 51.4 89.5
8 69.9 10.3 54.7 88.3

SA
4 67.2 12.3 51.8 87.9
8 69.3 9.8 54.2 87.0

CP
4 67.4 10.0 51.4 90.0
8 60.3 9.7 55.0 87.5

TABLE 9.4: Hit rates values for each recovery option and differ-
ent values of T

Figure (9.4) illustrates the difference in value that the obtained hit rate has
from these three values. An upward bar indicates a positive difference, hence
an obtained hit rate higher than the one it is compared to.

For instance, looking at the FP option for |T| = 4, the obtained hit rate is
the 62% higher than the worst-case (FPworst), 21% higher than the expected
average (FPavg) and 18% lower than the best case scenario (FPbest). In gen-
eral, it is positive that in all the three recovery options the obtained hit rate
is higher than the expected average. This indicates that including the min-
imization of penalties in the optimization process improves the results that
could be obtained only averaging the hit rates. It is also promising the fact
that our hit rates are closer to the best case than the worst. However, hit rates
are not the only indicator that we can obtained to measure the client-oriented
delivery efficiency. In fact, the average hit rate does not give any indication
of the quality of the visited time slots for individual clients. Therefore, we
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computed the average score for each recovery option. This score is obtained
arranging clients’ time slots in descending orders of probability and assign-
ing to each a numeric value ranging from |T| to 1 with 1 representing the
worst time slot. Figure (9.5) depicts the average scores of each recovery op-
tion obtained normalizing the scores of each client. A higher score implies
that clients have been visited in the higher probability time slots. The best
score belongs to the option FP went |T| = 4 while SA presents always the
lowest one. This means that the model promotes visits in higher probabil-
ity time slots for clients with less expensive options. The low value of SA it
is also justified by the double visits required by the option that lowers the
average score of the client.
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Tripled penalties: Hit-Rate analysis

As in section (9.4.2), we performed a sensitivity analysis on the magnitude
of penalties. As shown in Section (9.4.2), an increase in penalties leads to a
better optimization of clients penalties with a low increase in travelling costs.
Here, Figure (9.6) and Figure (9.7) present the same analysis performed in
Figure (9.4) and Figure (9.5). In general, both the hit rates and the clients’ time
slots scores significantly improve. Figure (9.6) shows a significant increase in
the obtained Hit-Rate in all the options. FPworst, for example, has a value of
71.3%, showing an increase of the 15% compared to Figure (9.4). For clarity,
Table (9.5) shows the hit rates (HR) of each option and the value of the worst,
average and best possible hit rates of the instance.

|T| HR HRworst HRavg HRbest

FP
4 81.3 10.0 51.4 89.5
8 75.7 10.3 54.7 88.3

SA
4 80.9 12.3 51.8 87.9
8 76.1 9.8 54.2 87.0

CP
4 74.2 10.0 51.4 90.0
8 75.7 9.7 55.0 87.5

TABLE 9.5: Hit rates values for each recovery option and differ-
ent values of T

It is interesting to point out how, in Figure (9.7), SA passes from being the
worse option to the best when penalties are tripled. This is justified by the
fact that SA is the most expensive option, hence the model tries to mitigate
the costs of these clients assigning to them better probability time slots.
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9.5 Conclusions

In this chapter, we have studied the complexity and challenges of the At-
tended Home Delivery Problem with Redelivery Options (AHDP-RO), a crit-
ical issue in the contemporary logistic and delivery sector. Our research
was aimed at developing a more efficient and customer-centric approach to
managing attended home deliveries, a domain that significantly impacts cus-
tomer satisfaction and operational costs. We proposed a Mixed Integer Lin-
ear Problem in which we try to minimize the operational costs composed of
both traveled times and penalties for missed deliveries. To give a realistic set-
ting, we modeled these probabilities dependent on both clients’ availability
during the day and the chosen recovery option. Computational results high-
light the trade-offs involved in prioritizing different elements of the objec-
tive function, such as balancing penalty reduction against travel costs. With
travel times being the most expensive part, they show how neglecting their
minimization in a pure maximization of hit rate scenario could increase the
overall costs exponentially. Moreover, the managerial insights on the proba-
bility of successful deliveries for different options is crucial in understanding
how delivery success rates are influenced by factors like time slots and cus-
tomer availability. In conclusion, we propose an economic analysis to deepen
the theoretical understanding of various factors impacting AHD services pro-
viding valuable insights for logistic companies.
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Conclusions

In this thesis, we have extensively studied Rich Vehicle Routing Problems
(RVRPs) in the domain of home healthcare and logistic applications. Through
compact Mixed Integer Linear Programming formulations (MILP), exhaus-
tive sensitivity analysis and meaningful managerial insights, and efficient
exact and heuristic solution approaches, we captured the complexity and the
variety inherent in real-world applications of VRPs. Precisely, we first ad-
dressed Nurse Routing Problems (NRPs) in which nurses must provide care
directly at patients’ houses. Through detailed mathematical modeling, we
have presented several fairness functions to capture the needs and goals of
the TOC (the central healthcare provider), the nurses and the patients. By de-
veloping both single-objective and multi-objective approaches, we provided
insights into the complex interplay of objectives among various stakeholders,
offering a more comprehensive understanding of their needs and priorities.
To efficiently solve large-size instances of the problem, we develop an inno-
vative concept of ALNS that can deal with multiple objective functions when
designing destroy and repair operators and acceptance ones. Computational
results reveal interesting managerial insights on different equity measures
defined for nurses and patients and highlight their relationship with goals
imposed by the territorial center in charge of home healthcare services. The
developed method is efficient and effective in small and large instances. The
comparison with a state-of-the-art MIP solver is highly favorable. On the
last part of our analysis on NRP, we proposed the SMHHP-C, a multi-period
stochastic and dynamic model with consistency constraints in which we per-
formed a sensitivity analysis on the consistency constraint proposing a new
set of patient-management policies differing from the degree of flexibility in
nurse-patient assignments and time of visit. The realistic-size instances of the
SMHHP-C have been solved using a dynamic approach and a multi-scenario
based approach to highlight the importance of including sample scenarios
of future information in a dynamic problem. Finally, we have delved into
the logistical and environmental aspects of last-mile delivery problems. We
proved that a locker-based delivery system is ecologically efficient only when
customers adopt an eco-conscious behavior. Then, in an Attended Home De-
livery (AHD) setting, we draw an operational model to assess the cost of
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the delivery system when failed delivery penalties are dependent on both
the probability of clients’ availability during the time horizon and on the re-
covery option performed by couriers to deliver the package to an alternative
location. In conclusion, our research has highlighted the importance of flex-
ibility and adaptability in VRP models to meet the changing demands of the
transportation sector. Integrating fairness considerations, advanced heuris-
tic approaches, and environmental consciousness into these models reflects
a forward-thinking approach to logistical challenges. The solutions we have
proposed are not only efficient but also mindful of the broader societal and
environmental impacts.
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