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Neuronal Differentiation Potential of Human Adipose-Derived 
Mesenchymal Stem Cells

Elena Anghileri,1,* Silvia Marconi,1,* Angela Pignatelli,2 Pierangelo Cifelli,2 Mirco Galié,3 Andrea Sbarbati,3 
Mauro Krampera,4 Ottorino Belluzzi,2 and Bruno Bonetti1

Adult mesenchymal stem cells derived from adipose tissue (A-MSC) have the capacity to differentiate in vitro 

into mesenchymal as well as endodermal and ectodermal cell lineages. We investigated the neuronal differen-

tiation potential of human A-MSC with a protocol which included sphere formation and sequential culture in 

brain-derived neurotrophic factor (BDNF) and retinoic acid (RA). After 30 days, about 57% A-MSC showed mor-

phological, immunocytochemical and electrophysiological evidence of initial neuronal differentiation. In fact, 

A-MSC displayed elongated shape with protrusion of two or three cellular processes, selectively expressed nes-

tin and neuronal molecules (including GABA receptor and tyroxine hydroxilase) in the absence of glial pheno-

typic markers. Differentiated cells showed negative membrane potential (−60 mV), delayed recti3 er potassium 

currents and TTX-sensitive sodium currents. Such changes were stable for at least 7 days after removal of dif-

ferentiation medium. In view of these results and the easy availability of adipose tissue, A-MSC may be a ready 

source of adult MSC with neuronal differentiation potential, an useful tool to treat neurodegenerative diseases.

Introduction

Mesenchymal stem cells (MSC) are elements with 

multi-differentiation potential isolated from bone 

marrow (BM) (1) and from other sources, including the 

adipose tissue (2, 3). In addition to their ability to differ-

entiate into osteoblasts, adipocytes and chondrocytes (4), 

BM-MSC display also neuro-ectodermic (5, 6) and endoder-

mic differentiation potential (7, 8). Neural differentiation 

has been achieved with different experimental protocols 

using chemical agents, growth factors or co-cultures with 

neural cells. In general, chemical agents induced transient 

morphological changes with general up-regulation of sev-

eral neural markers (9–12), growth factors promoted more 

speci3 c and prolonged neural modi3 cation (8, 13, 14), while 

complete neuronal differentiation has been obtained only 

after co-culture with astroglial or neuronal cells (5, 15, 

16). Most of these studies on the neural differentiation of 

MSC have been performed on BM-MSC, while few infor-

mation are available for MSC obtained from other sources. 

Adipose-derived MSC (A-MSC) may represent a valid alter-

native to BM-MSC, because of their pluripotency and abil-

ity to differentiate in mesenchymal and non- mesenchymal 

lineages; moreover, they are readily accessible and quickly 

proliferate in vitro, with lower senescence ratio than 

BM-MSC. In addition, the number of cells obtained by lipo-

suction aspirates is usually suf3 cient for some clinical uses, 

avoiding further manipulation (17). Regarding their neural 

differentiation potential, we and others have recently dem-

onstrated that A-MSC display a greater neuronal potential 

as compared to BM-MSC in vitro and after co-culture with 

Schwann cells (18–20).

Here we investigated the effect of brain-derived 

 neurotrophic factor (BDNF) and retinoic acid (RA) on 

A-MSC. As shown on BM-MSC (21), we found evidence of 

long-lasting morphological, immunophenotypical and, most 

interestingly, electrophysiological changes of early neuronal 

differentiation.

Material and Methods

Isolation and culture of human A-MSC

Human A-MSC were obtained from 40 ml lipoaspi-

rate samples of abdominal fat from female donors after 
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informed consent (22). Extracellular matrix was digested 

at 37°C in Hank’s balanced salt solution with 1 mg/ml 

collagenase type I. Enzyme activity was neutralized with 

Dulbecco’s modi3 ed Eagle medium (DMEM) containing 

10% fetal bovine serum (FBS) (Gibco, Milan, Italy) and cells 

were centrifuged at 1200 g for 10 minutes; the pellet was 

then resuspended in 160 mM NH4Cl to lyse contaminating 

red blood cells and 3 ltered through a 70-µm nylon mesh. 

The cells were cultured at 30 × 106 cells/cm2 in 25 cm2 T asks 

in DMEM with high glucose concentration, GLUTAMAX 

ITM, FBS, penicillin and streptomycin (all from Gibco). After 

72 hours, non-adherent cells were removed. When 70–80% 

conT uent, adherent cells were trypsinized, harvested and 

expanded in larger T asks. A homogenous cell population was 

obtained after 3 to 5 weeks of culture. All the experiments 

were performed at passages 7 to 16. Human A-MSC were 

characterized by the expression of CD105 (endoglin), CD73, 

CD29, CD44, CD90 class I HLA and lack of haematopoietic 

(CD45, CD14, CD34) and endothelial (CD31) markers. All the 

above monoclonal antibodies (mAb) were purchased from 

Pharmingen/Becton Dickinson. For immunophenotypi-

cal analysis, A-MSC were detached using trypsin/EDTA 

washed with PBS and resuspended at 106 cells/ml. Cell sus-

pension was incubated in 15% FBS, followed by incubation 

with the speci3 c mAb for 30 minutes. At least 10,000 events 

were analysed by T ow cytometry (FACScalibur, Becton 

Dickinson) using Cell Quest software.

Neuronal differentiation protocol

Neuronal differentiation was induced by culturing 

A-MSC for 72 hours in serum-free medium with 20 ng/mL 

basic 3 broblast growth factor (bFGF) and 20 ng/mL human 

epithelial growth factor (hEGF) (all from Peprotech), with 

the formation of T oating bodies within 2–6 days. Such 

spheres were then subjected to immunocytochemistry 

or dissociated and seeded on poly-L-lysinated coverslips 

(Sigma Aldrich, Saint Louis, MO) at 1000/cm2 in DMEM, 

2% FBS, 10 ng/mL BDNF (Peprotech) and 0.75 mM all-trans 

RA (Sigma). Medium was replaced every 5–6 days up to 

30 days, when the cells were subjected to morphological, 

immunocytochemical and electrophysiological analysis to 

assess the presence of neuronal features. Alternatively, neu-

ronal induction medium was replaced with basal medium 

for 7 days and the stability of the neuronal features was 

assessed as above.

Cytochemistry and immunocytochemistry

Cellular morphology was evaluated at light microscope 

after 3 xation in 4% paraformaldehyde and hematoxilin 

staining or at scanning electron microscope (DSM 950, 

Zeiss, Germany) after sequential 3 xation in glutaralde-

hyde and 1% osmium tetroxide for 15 minutes, dehydra-

tion and 3 nal 3 xation with colloidal silver and gold. The 

immunophenotype of A-MSC was evaluated with antibod-

ies directed against the mesenchymal marker CD105 (1:500, 

Caltag Laboratories, Burlingame, CA); the neuronal mark-

ers microtubule-associated protein 2 (MAP-2) and neuro-

nal nuclear antigen (Neu-N) (both 1:1,000); nestin (1:200), a 

protein of intermediate 3 lament expressed by neural stem 

cells; the oligodendroglial marker GalC (1:100) (all from 

Chemicon Inc., Temecula, CA), the astrocytic markers S-100 

(1:5,000) and glial 3 brillary acidic protein (GFAP) (1:10,000, 

Dako); tyroxine hydroxilase (TH), an enzyme of catechol-

aminergic neurons (1:2,000, Santa Cruz Biotechnolgy, Inc., 

Santa Cruz, USA); sodium channel (1:800) and α subunit of 

GABA-A receptor (1:400; Sigma). After washing, appropri-

ate biotynilated secondary antibody and ABC ampli3 cation 

kit (Vector Laboratories, Burlingame, CA) were added and 

the reaction visualized with diaminobenzidine. Negative 

control included the omission of primary antibodies. 

Experiments were performed in triplicate and the percent-

age of positive cells was blindly calculated. To determine 

the mitotic activity of A-MSC before and after neural induc-

tion, cells were exposed to 10 µM BrdU (Sigma) for 4 hours, 

3 xed with cold ethanol for 20 minutes, treated with 2N 

HCl and then with 0.1M NaBo, pH 9. Double immunoT u-

orescence was performed for MAP-2 and BrdU, whose sig-

nals were detected with secondary antibodies conjugated 

respectively with Streptavidine Texas Red (Vector) and 

FITC (Boehringer, 1:10). Nuclei were stained with 50 µg/ml 

DAPI (Sigma). Cells were observed at the T uorescent 

microscope (Zeiss MC80) and the rate of mitotic activity 

was calculated dividing the number of BrdU-positive (+)/

MAP-2+ cells and that of BrdU+/MAP-2− elements by the 

total DAPI+ cells.

Electrophysiology

Coverslips with A-MSC were placed in the recording 

chamber (1 cm3 volume) and mounted on Olympus BX50WI 

microscope. The cells were perfused at the rate of 2 ml/

min with arti3 cial cerebro-spinal T uid with the follow-

ing composition (mM): 125 NaCl, 2.5 KCl, 26 NaHCO3, 1.25 

NaH2PO4, 2 CaCl2, 1 MgCl2, and 15 glucose (all from Sigma). 

Saline was continuously bubbled with 95% O2/5% CO2; 

the osmolarity was adjusted at 305 mOsm with glucose. 

Cells were exposed to tetrodotoxin (TTX, 1 µM, Alomone, 

Jerusalem, Israel) or tetraethylammonium (TEA, 20mM, 

Sigma). The tight-seal whole-cell recording technique was 

used. Borosilicate glass pipettes (O.D. 1.5 mm; I.D. 0.86 mm; 

Hilenberg, Malsfeld, Germany) with internal 3 lament were 

adopted for recordings. The pipettes had a tip resistance 

ranging from 4 to 6 MΩ when 3 lled with these solutions. Seal 

resistance was always greater than 2 GΩ. The solution used 

for the recording pipette-3 lling solution contained (mM) 

120 KCl, 10 NaCl, 2 MgCl2, 0.5 CaCl2, 5 EGTA, 10 HEPES, 

2 Na-ATP, 10 glucose; the osmolarity was adjusted at 295 

mOsm with glucose, and pH at 7.2 with KOH. Membrane 

currents were recorded and acquired with Axopatch 200A 

ampli3 er (Molecular Devices, Sunnyvale, CA). The series 

resistance was around 15 MΩ; 60–70% compensation of 

the series resistance was routinely used. Data acquisition 

was performed by a Pentium-based computer using 12 bit 

A/D-D/A converters (Digidata 1200B; Molecular Devices). 

Prior to acquisition, the signals were 3 ltered at half the 

sampling frequency by a lowpass 4-pole Bessel 3 lter and 

digitised with sample times ranging from 10 to 100 µs. Off-

line analysis was performed using version 10.1 of pClamp 
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(Molecular Devices). Data were expressed as mean ± SEM 

and were statistically analysed using Origin 7.5 software 

(OriginLab, Northampton, MA).

Statistical analysis

The results obtained by cytochemistry and electrophysi-

ology in basal conditions and after neuronal induction were 

evaluated by Student’s t-test and the difference was consid-

ered statistically signi3 cant when p < 0.05.

Results

In basal conditions, conT uent A-MSC appeared as large 

and T at spindle-shaped elements (Fig. 1A) without expres-

sion of neuronal markers, with the ability to differentiate 

into adipocytes, chondrocytes and osteoblasts, as previously 

described (19, 20). As already reported for BM-MSC (21), in the 

presence of hEGF and bFGF, A-MSC formed spherical, T oat-

ing aggregates within 2–6 days (Fig. 1B), which expressed 

nestin, NeuN, and MAP-2 (Fig. 1C), but not the glial markers 

GalC, GFAP and S-100 (Fig. 1D) as well as CD105 (data non 

shown).

After 30 days of cultures in the presence of BDNF and 

RA, two populations were clearly distinguishable based 

on morphological and immunophenotypical criteria; about 

half (56.81 ± 2.26%) of A-MSC showed a characteristic neu-

ronal morphology with contracted cytoplasm, condensed 

nucleus and protrusion of two or three cellular processes 

(Fig. 1E): by immunocytochemistry, these cells expressed 

nestin (Fig. 1F) and the neuronal markers MAP-2 and NeuN 

(Figs. 1G, H). A very low proportion of these cells (about 1%) 

expressed also TH and GABA-A receptor (Figs. 1I, J), while 

we failed to detect immunoreactivity for the sodium chan-

nel. Interestingly, no signal for the glial markers S-100, GFAP, 

GalC was observed (Fig. 1K). The remaining A-MSC showed 

no apparent response to the differentiation protocol and 

remained large and T at, with abundant cytoplasm and did 

not expressed any neuronal markers. Exposure to the dif-

ferentiation medium greatly reduced the proliferation rate 

of A-MSC. In fact, none of the A-MSC with neuronal mor-

phology and MAP-2 staining showed incorporation of BrdU, 

while 5 ± 1.5% of MAP-2– A-MSC with basal morphology 

was BrdU+ (as compared to 7.5 ± 2.5% of untreated cells). 

Morphological and immunophenotypical changes sugges-

tive of neuronal differentiation persisted for at least seven 

days after the removal of differentiation medium (Figs. 1L, 

M). The formation of spherical, T oating aggregates before 

the treatment with BDNF/RA was fundamental to obtain 

neuronal differentiation: in the absence of this step, A-MSC 

subjected to the differentiation protocol continued to pro-

liferate and maintained the basal biological features (data 

not shown). We evaluated electrophysiological properties in 

basal condition and after neuronal differentiation using the 

patch clamp technique in whole-cell con3 guration. Focusing 

on treated A-MSC with neuronal morphology, we estimated 

the membrane potential under current-clamp conditions 

and the presence of voltage-gated channels in whole-cell 

voltage-clamp experiments. The resting membrane poten-

tial of A-MSC with neuronal morphology (−59.75 ± 5.41 mV, 

n = 12) was signi3 cantly more negative than that of basal 

A-MSC (−33.54 ± 3.1 mV, n = 26; p = 0.001 (Fig. 2). Although 

not statistically different, also the mean value of membrane 

capacitance for differentiated A-MSC was lower (62.70 ± 9.67 

pF, n = 10) than basal A-MSC (87.5 ± 9.51 pF, n =  28). A large 

outward current was isolated after blockage of inward cur-

rents with TTX. Depolarising pulses ranging from −50 to 

+40 mV in 10 mV increments from the holding potentials 

of −70 mV evoked a family of non-inactivating currents 

(Figs. 3A, B), signi3 cantly larger in differentiated A-MSC as 

compared to basal condition: at + 40 mV the mean ampli-

tudes were 522.86 ± 117 pA (n = 10) in differentiated cells 

versus 223.34 ± 37.55 pA (n = 19) in basal cells (p = 0.005) 

(Fig. 3C). Their selective block by a combination of TEA in 

the bath or equimolar ion substitution of K+ with Cs+ in the 

intracellular solution indicated that these currents were car-

ried by potassium ions.

Differentiated A-MSC also exhibited a prominent inward 

current (Fig. 3D), which was virtually absent on basal cells. 

This was isolated by equimolar ion substitution of intracel-

lular K+ with Cs+, and was evoked by voltage steps ranging 

from −50 to +40 mV after a complete removal of inactiva-

tion with a 200 ms step at −120 mV. At 0 mV the mean peak 

amplitude was −185.09 ± 4.65 pA (n = 7) in differentiated 

cells versus 4.65 ± 4.65 pA, n = 28 in basal cells (Fig. 3F). For 

their fast inactivation and their sensitivity to TTX these cur-

rents were de3 nitely mediated by classical voltage-depen-

dent sodium channels. The kinetic of the sodium current 

has been studied in detail. The development of inactivation 

was studied with a series of depolarising steps to the 3 xed 

potential of 0 mV after 180 ms conditioning pulses between 

−120 mV and −40 mV (Figs. 3G, H). The half-inactivation 

was at the potential of −57.7 mV and the time constant for 

the development of inactivation was 2.46 + 0.13 ms at 0 mV 

(n = 7). The removal of inactivation was studied using the 

protocol shown in the inset of Fig. 3I: two consecutive depo-

larising pulses to 0 mV from different holding potentials 

(−100 mV for the case represented in Fig. 3I) were separated 

by an interval of variable length. The longer was the time 

spent at the holding potential between the two steps, the 

larger was the removal of inactivation and the amplitude of 

the current in response to the second depolarising step; the 

time constant for the removal of inactivation was 2.0 ms at 

−100 mV.

The sub-population of A-MSC that maintained basal 

morphology and immunophenotype after the neural induc-

tion exhibited electrophysiological features very similar to 

untreated A-MSC (data not shown).

Discussion

Aim of this study was to evaluate the potential of A-MSC 

to assume long-lasting and selective features typical of neu-

ronal cells. We focused our attention on A-MSC because 

they can be obtained by less invasive procedure and cul-

tured with a greater proliferation rate than BM-MSC (17, 22). 

As MSC derived from other sources, A-MSC can be induced 

to differentiate also in non-mesenchymal lineages. Very few 

studies have assessed the neuronal differentiation potential 

of A-MSC in response to chemical agents or growth factors. 
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In addition, the data about the neuronal differentiation of 

A-MSC in terms of electrophysiological properties have pro-

vided not convincing results (23, 24), because of the use of 

chemical differentiation protocols, which promoted poorly 

speci3 c neural changes with atypical morphological and 

electrophysiological pro3 les (25, 26). Interestingly, the com-

parison of neuronal differentiation of A-MSC and BM-MSC 

has recently suggested a higher potential of A-MSC, as com-

pared to MSC from other sources. In this regard, we and 

others have found evidence that, in opportune culture con-

ditions, A-MSC expressed higher levels of neuronal mark-

ers and responded to differentiation stimuli more promptly 

than BM-MSC (18–20).

In the present study the neuronal induction protocol 

included BDNF and RA, two factors already used to lead 

neuronal differentiation from neural stem cells (NSC) (27) 

and early neuronal functional pro3 le or neurotransmetti-

tor syntesis in MSC (21, 28, 29). The induction phase was 

preceded by the stimulation of A-MSC with mitogenic fac-

tors, in order to obtain high numbers of nestin-positive, 

T oating spheres, very similar to the neurospheres derived 

from NSC (21). The subsequent exposure of A-MSC to 

RA and BDNF induced profound morphological, phe-

notypic and, more interestingly, electrophysiological 

changes suggestive of early neuronal differentiation. In 

fact, about 50% of A-MSC displayed morphological and 

immunocytochemical pro3 le of neuronal cells, including 

the expression of TH and α subunit of GABA-A receptor 

in a small subset of differentiated cells. In addition, these 

A-MSC with  neuronal features displayed resting mem-

brane potential close to −60 mV, delayed-recti3 er type 

K+ currents, as well as voltage-dependent Na+ currents, 

selectively inhibited by TTX, which in basal conditions 

were virtually absent. At variance with previous reports 

regarding BM-MSC (30–32), we and others have detected 

these features only after neuronal differentiation, but not 

in basal conditions or in A-MSC not responding to neural 

differentiating stimuli (14). The absence of immunoreac-

tivity for Na+ channel in differentiated A-MSC showing 

in-ward currents sensitive to TTX by patch-clamp is prob-

ably related to the different sensitivity between these two 

procedures, as already described (13).

Taken together, our results suggest that this protocol 

induced upon a high proportion of A-MSC early, though 

incomplete, neuronal differentiation. The possibility to 

obtain a full neuronal differentiation of MSC in vitro remains 

an intriguing challenge in the 3 eld of stem cells and central 

nervous system repair, particularly for neurodegenerative 

diseases. Cell-based therapy represents a promising tool, 

with NSC constituting the gold standard, because of high 

proliferation and neural differentiation potential. Apart 

from ethical considerations, allo-transplantation could limit 

the therapeutic ef3 cacy (33–35), while auto-transplantation 

is largely limited by procedure invasiveness and their poten-

tial involvement in the disease (36, 37).

MSC can be a safe stem cell reserve and the BM-MSC 

transplantation was experimented in several neurologi-

cal disease models, such as cerebral infarction (38), exper-

imental autoimmune encephalomyelitis (39) and spinal 

cord injury (40) with bene3 cial therapeutic effects. In 

these experimental models, different mechanisms proba-

bly accounted for the neuroregenerative process, including 

activation of endogenous precursors by cell-to-cell contact 

and/or cytokine release, neuronal differentiation in situ and 

immunomodulation. Although the data about A-MSC are 

more limited, their therapeutic effects have been shown 

in the rat model of ischemic stroke and spinal cord injury 

(41, 42). Although studies in animal models of neurode-

generative diseases are needed to assess the function and 

safety of A-MSC in vivo, the ability of these cells to undergo 

neuronal differentiation in arti3 cial sets indicates their 

potentiality to differentiate in the central nervous system 

microenvironment.
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FIG. 2. Electrophysiological features of A-MSC subjected 

to neuronal differentiation. Values of resting membrane 

potential recorded in A-MSC in basal conditions and in 

A-MSC with neuronal morphology after exposure to neuro-

nal differentiation protocol.

FIG. 1. Morphology and phenotype of A-MSC subjected to neuronal differentiation. (A) Morphology of A-MSC in basal 

condition at scanning electron microscope. Treatment with EGF and bFGF induced the formation of T oating aggregates, 

formed by MAP-2-positive (B), GFAP-negative (C) elements. After exposure to RA and BDNF, A-MSC exhibited contracted 

cytoplasm and long processes at scanning electron microscope (E), expressed nestin (F) and the neuronal markers MAP-2 

(G) and NeuN (H). A small portion of the differentiated A-MSC expressed TH (I) and α subunit of GABA-A receptor (J), but 

not the glial marker GFAP (K). Morphological and phenotypical changes persisted for at least 7 days, with expression of 

nestin (L) and MAP-2 (M). Bar: 50 µm.
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FIG. 3. Electrophysiological features of A-MSC subjected to neuronal differentiation. A-B: Activation of potassium currents 

evoked by depolarizing pulses ranging between −50 and + 40 mV and the corresponding current-voltage relationship in 

A-MSC with neuronal morphology (B). C: Voltage-clamp revealed a tendency for higher outward currents in differentiated 

A-MSC than in basal ones. D-E: Activation of sodium currents evoked by increasing depolarizing pulses as indicated in the 

inset and the corresponding current-voltage relationship in A-MSC with neuronal morphology (E). F: A-MSC with neuronal 

morphology exhibited inward currents signi3 cantly higher than basal cells. G, H: Inactivation of the sodium channels in 

A-MSC with neuronal morphology, obtained following the protocol shown in the inset. The corresponding current-voltage 

relationship (H), showing the peak amplitudes at the 3 xed test potential of 0 mV as a function of the conditioning pulse, has 

a midpoint centered at −57.7 mV. I: Removal of inactivation of the sodium current at −100 mV. Two pulses at 0 mV (inset) 

were separated by a variable delay to allow removal of inactivation, occurring in this case with a time constant of 2.0 ms.
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