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ARTICLE INFO ABSTRACT

Keywords: Chronic hyperglycemia favours the formation of advanced glycation end products (AGEs) which are responsible
Diabetes of many diabetic vascular complications. Keeping in view the medicinal properties of thel,2,3-triazole-
Adl_‘l’ance‘lj glycation end products conjugated analogs, the present study was designed to evaluate the possible effect of carbazole-linked 1,2,3-tri-
Atherosclerosis

azoles 2-16 against glucose- and methylglyoxal-AGEs-induced inflammation in human THP-1 monocytes. In vitro
antiglycation, and metabolic assays were used to determine antiglycation, and cytotoxicity activities. DCFH-DA,
immunostaining, immunoblotting, and ELISA techniques were employed to study the ROS and levels of proin-
flammatory mediators in THP-1 monocytes. Among all the synthesized carbazole-linked 1,2,3 triazoles, com-
pounds 2, 7, 8, and 11-16 showed antiglycation activity in glucose- and MGO-modified bovine serum albumin
models, whereas parent compound 1 only exhibited activity in glucose-BSA model. The metabolic assay
demonstrated the non-toxic profile of compounds 1-2, 11-13, and 15 up to 100 pM concentration in both HepG2
and THP-1 cell lines. We found that compounds 11-13, and 15 attenuated AGEs-induced ROS formation (P <
0.001), and halted NF-xB translocation (P < 0.001), likewise standard drugs, PDTC, rutin, and quercetin, in THP-
1 monocytes. Among the derivatives, compounds 12, and 13 also suppressed the AGEs-induced elevation of COX-
2 (P < 0.001) and PGE; (P < 0.001). Our data show that the carbazole-linked triazoles 12, and 13 hampering the
formation of glycation products, prevent the activation of AGEs-ROS-NF-kB signaling pathway, and limit the
proinflammatory COX-2 protein, and PGE, induction in human THP-1 monocytes. Both these compounds can
thus serve as leads for further studies towards the treatment and prevention of diabetic vascular complications.

Cyclooxygenase-2
Monocytes
Protein glycation

of atherosclerosis (ATH). Hyperglycemia associated pathogenic factors
that include the formation of advanced glycation end products (AGEs)

1. Introduction

Hyperglycemia is the leading cause of progression of cardiovascular
impairments in diabetes. These include micro- and macro-vascular
complications, such as coronary artery disease, peripheral artery dis-
ease, nephropathy, neuropathy, retinopathy, and others. This may lead
to organ failure or even death [1-3]. Studies conducted on in vivo animal
models suggested the putative role of hyperglycemia in the development

play a key role in the on-set and progression of ATH in diabetics [4-6].
AGEs are formed as a result of non-enzymatic glycation of proteins, also
known as Millard reaction, which lead to the modification in their
structures and functions [6]. During AGEs formation, the fragments of
Schiff base increase the reactive dicarbonyl intermediates production;
glyoxal (GO) and methylglyoxal (MGO). These highly reactive moieties
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trigger protein glycation reaction at a much faster rate than the pre-
cursor sugars (glucose, fructose, and ribose) [4,7]. The resulting AGEs
promote vasculitis and atheroma formation in diabetic patients [8].

Earlier studies have found that AGEs ligation with their receptor,
RAGE (receptor for AGEs), on blood monocytes causes intracellular
oxidative stress, with subsequent upregulation of nuclear factor kB (NF-
kB), and hence trigger inflammatory cascades [9,10]. It results in
increased levels of various proinflammatory genes, including
cyclooxygenase-2 (COX-2), tumor necrosis factor- a (TNF-a), inter-
leukin- p (IL-1B), interleukin- 6 (IL-6) [1,11-14]. COX-2 is associated
with increased levels of pro-inflammatory signaling mediator prosta-
glandin E; (PGE5) in blood monocytes [15] (Fig. 1). It has been found
that COX-2 induction, and increased PGE, levels are risk factors for
atherosclerotic plaque development in low-density lipoprotein (LDL)
receptor-deficient mice. PGE, interacts with cell surface scavenging re-
ceptors, expressed on blood monocytes, and causes uptake of LDL to
form fatty streak, and atheroma formation [16].

Animal models of atherosclerosis, genetic or induced, revealed
remarkable beneficial effects with the treatment of nonsteroidal anti-
inflammatory drugs (NSAID) [17-19]. Individuals on routine treat-
ment with aspirin or NSAIDs have 40-50% reduced risk of developing
cardiovascular diseases. Thus, although many commercially available
drugs, including rofecoxib, valdecoxib, etodolac, celecoxib, etoricoxib,
nimesulide, diclofenac, and indomethacin, have shown to inhibit COX-2
enzyme activity in ex vivo assays of prostaglandin formation in whole
blood, and the inhibitory activity of these drugs was only 50% [20].

Several studies have been conducted to identify the inhibitors of the
glycation process. So far, various glycation inhibitors, including pyri-
doxamine, metformin, kremezin, N-phenacylthiazolium bromide (cross-
link breaker), OPB-9195 (carbonyl amine blocker), alagebrium, ator-
vastatin, and guanidines, have been identified to interfere with different
stages of the Millard reaction [21,22]. Aminoguanidine, a prototype of
glycation inhibitor, was found to reduce AGEs-induced diabetopathies
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via inhibiting conversion of highly reactive dicarbonyl compounds to
AGEs, as well as formation of cross-links and free radical species
[23,24]. However, it was not approved for clinical use due to adverse
effects, such as vasculitis, gastrointestinal and liver impairment, anti-
nuclear antibody development, pernicious-like anemia, and neoplastic
tumors in pancreas and kidney [25]. Besides, other inhibitors were also
not attained much acceptance in clinical settings because of adverse
effect and/or reduced potency. Therefore, there is a need to identify
effective and safe protein glycation inhibitors to prevent chronic
inflammation, organs damage, and death in diabetic patients. Our
research group has initially identified 2, 4-dinitroanilino - benzoic acid
as a promising insulinotropic agent that helps control glycemic index in
diabetic rats [7]. Anthranilic acid derivatives have also shown to inhibit
the AGEs formation in hepatocyte model, ie., the cells of the major
glucose regulating and detoxifying organ [7]. Besides, we have also
reported that gliclazide alters macrophage polarization in diabetic
atherosclerosis [26]. We continued to work on the identification of novel
agents able to limit AGE-RAGE-mediated inflammatory pathways.

Over the last few decades, 9H-carbazole and triazole moieties have
attracted much attention in medicinal chemistry due to their wide range
of biological activities. The carbazole scaffold shows activities against
bacteria, cancer, and Alzheimer’s disease [27]. Whereas, triazole nu-
cleus prevents disorders by ligation with proteins, such as enzymes and
cellular receptors [28]. Currently, 1,2,3-triazole-conjugated analogs are
the focus of attention in medicinal chemistry. They are successfully
being used drug candidates, such as fluconazole, itraconazole, vor-
iconazole, posaconazole, a etc. [29].

Keeping in view a high prevalence of vascular complications in
diabetes, and involvement of AGEs as a key pathogenic factor, the cur-
rent study was designed to investigate the potential of carbazole-linked
1,2,3-triazoles as antiglycating agents. We hypothesized that carbazole-
linked 1,2,3-triazole analogs can inhibit the AGEs formation and asso-
ciated inflammatory cascade in in vitro diabetic environment, and thus
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Fig. 1. AGE-RAGE induce intracellular inflammatory cascade.
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can prevent / or delay the onset of cardiovascular complications in
diabetes. Therefore, we evaluate the potential of carbazole-linked 1,2,3-
triazole analogs against the AGEs formation, and to prevent the
signaling mechanism of AGE-RAGE-mediated ROS-dependent NF-xB-
induced COX-2 upregulation and associated PGE; production. In the
present study, we employed the human blood monocytes model, i.e.
THP-1 cells, to study the RAGE-ligation mediated upregulation of
proinflammatory cytokines signaling in hyperglycemic milieu
[22,30-32]. In contrast to lipopolysaccharide (LPS) model or tissue
macrophage system, the treatment of human monocytes with reducing
sugar (glucose) or dicarbonyl sugar (methylglyoxal) provides an excel-
lent model of diabetic pathological conditions to study the inflammatory
cascade. Hence, we employed this model to identify the potential of
carbazole-linked 1,2,3-triazoles analogs in RAGE-ligation mediated
COX-2 protein/PGE, inflammatory cytokine up-regulation [32]. To our
knowledge, this is the first study examining the antiglycation activity of
carbazole-linked 1,2,3-triazoles and their role in preventing AGE-
mediated up-regulation of COX-2 protein and PGE; formation.

2. Methodology

2.1. In vitro antiglycation activity of carbazole-linked 1,2,3 triazoles
analogs

Carbazole, and carbazole-linked 1,2,3-triazoles analogs were tested
for their antiglycation activity in two different models: glucose- and
MGO-modified BSA models. Rutin and quercetin (Sigma-Aldrich
Chemical Corporation, USA) were used as reference compounds, as they
are known to ameliorate glycation in the previously reported studies.
The antiglycation activity were performed as per the described protocol
of Jahan, et al [33]. Briefly, at first, in a 96-well black fluorescent plate,
10 mg/mL of bovine serum albumin (BSA; Thermo Fisher Scientific,
USA), 0.5 M of glucose (Scharlau, Spain), or 0.1 M of MGO (Sigma-
Aldrich USA) were added, and incubated for 7- and 1-day in the glucose
and MGO models, respectively, at 37 °C in a 0.1 M sodium phosphate
buffer. The buffer contained 0.1 mM sodium azide to prevent microbial
growth. Prior to incubation, all the compounds were solubilized at 1 mM
concentration in 10% of DMSO, and were added to the reaction mixture
in a plate.

After the incubation period, fluorescence intensity of glucose- and
MGO-modified BSA were measured at 340exc-440emi nm for glucose,
and 355exc-460emi nm for MGO. The percent inhibition was quantified
by the following formula:
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Fisher Scientific, USA) was used for both cell lines. Controlled atmo-
sphere containing 5% CO5 to become 80-90% confluent was thus pro-
vided. The passage numbers were carefully monitored, until they
reached 20.

The cells morphology was observed by using an inverted microscope
(Nikon E200, Japan). All the chemicals and compounds, used to study
the intracellular cascade, were diluted with the same assay medium.

2.3. Cellular toxicity

Cellular toxicity of carbazole and identified lead carbazole-linked
1,2,3-triazoles analogs in glucose- and MGO-mediated protein glyca-
tion assays were analyzed at various concentrations (10, 30, 50, 100,
200, and 500 pM) for their toxicity profile, using HepG2, and THP-1 cell
lines. The MTT, and WST-1 metabolic assay were performed for HepG2,
and THP monocytes. Briefly, 7 x 10* of HepG2 cells/mL, and 20 x 10* of
THP-1 monocytes/mL were seeded in 96-well sterile cell culture treated
plates, and treated with the compounds for 24 h. Followed by the in-
cubation, MTT (20 pL), and WST-1 (20 pL) reagents were added to each
well of HepG2 cells, and THP-1 monocytes, respectively. After 4 h of
incubation, the medium was carefully aspirated. The DMSO (100 pL)
were used to solubilize formazan crystals in MTT-treated HepG2 cells.
The metabolic activity was initiated by cleavage of tetrazolium salt
(MTT, and WST-1) to produce formazan in viable cells by the action of
mitochondrial dehydrogenases. The colorimetric measurement was
performed at 540, and 450 nm, respectively, using a microplate reader
(Varioskanmicroplate reader, Thermo Fisher Scientific, USA). The cells
without any treatment have served as negative control, while cells
treated with doxorubicin have served as positive control.

2.4. Glucose- and MGO-derived AGEs formation

The monocytes were stimulated by the exposure of glucose- and
MGO-derived AGEs (MGO-AGESs). The preparation of glucose-AGEs was
done by incubating fatty acid-free BSA (10 mg/mL, Calbiochem, Merck,
Germany) with glucose (500 mM), o-fructose (50 mM, Scharlau, Spain),
and MGO (3 mM) in PBS (100 mM; pH = 7.4) medium at 60 °C for 6
weeks in a dark, and sterile condition [38]. Whereas MGO-AGEs were
formed by slightly modifying the method of Shanmugam et al [22].
Briefly, fatty acid-free BSA (50 mg/mL) was incubated with MGO (500
mM) for 24 h under sterile conditions. The ionization power was criti-
cally controlled during the complete incubation period, and maintained
to 7.4 pH by using sodium hydroxide (NaOH; 1 M). Subsequently, the
prepared mixtures were dialyzed against PBS to remove free unbound

%Inhibition of fluorescence = (1 — Fluorescence of test compounds/Fluorescence of glycated BSA) x 100

Compounds those exhibited greater than 50% inhibition were
diluted serially to measure half-maximal inhibitory concentration
(ICs0), using EZ-FIT enzyme kinetics software [34,35].

2.2. Human monocyte and hepatocyte culture

Human THP-1 monocytes (European Collection of Authenticated
Cell Cultures (ECACC), Sigma-Aldrich, USA) and HepG2 (human hepa-
tocytes) (American Type Tissue Culture Collection (ATCC), USA) were
maintained as per the described protocols of Balakrishna., et al, and
Jiang., et al. with slight modifications [36,37]. Briefly, the monocytes
and hepatocytes were grown in tissue culture 75 cc flask containing
ATTC modified RPMI 1640 medium (Gibco, Thermo Fisher Scientific,
USA), and minimum essential medium (MEM, Gibco, Thermo Fisher
Scientific, USA), respectively. 10% Fetal bovine serum (Gibco, Thermo

glucose, and MGO. The fluorometric measurement (Vari-
oskanmicroplate reader, Thermo Fisher Scientific, USA), and estimation
of endotoxins levels (Lonza, Chromogenic LAL Assay Kit, Thermo Fisher
Scientific, USA) were carried out prior to use. Both the AGEs mixtures
were aliquoted in sterile vials to avoid the freeze-thaw cycles, and stored
at —80 °C till use.

2.5. Antioxidant property analysis via H2DCFDA assay

2',7'-Dichlorodihydrofluorescein diacetate (H,DCF-DA) was used to
evaluate the ROS generation in THP-1 monocytes, according to the
method described by Hu, Y., et al. with minor modifications [39]. The
H,DCF-DA is a non-fluorescent permeant probe that upon cleavage by
intracellular esterases becomes impermeant. Upon oxidation by intra-
cellular ROS, it generates fluorescent DCF [40]. Briefly, THP-1
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monocytes (1 x 10° cells/mL) were seeded in a 96-well black fluorescent
plate, and pre-treated with HoDCF-DA (10 pM; Sigma-Aldrich, USA) for
45 min at 37 °C in a dark. Followed by washing with phenol red free
modified RPMI to prevent false results, cells were exposed with potent
antiglycating analogs with non-toxic profile for an hour at 37 °C in a 5%
COs incubator. Standard antiglycating compounds: rutin and quercetin,
were used to compare the activity of active carbazole-linked 1,2,3-tria-
zoles analogs [41]. While pyrrolidine dithiocarbamate (PDTC), an kf
inhibitor, was used as a standard. All the compounds were used in
varying concentrations (10, 30, 50, and 100 uM). Following the treat-
ment with compounds, monocytes were stimulated to produce ROS by
using 50 pg/mL AGEs (glucose- and MGO-AGEs) for 24 h. Hy05 (10 pM),
and AGEs were used as positive controls, while BSA-treated monocytes
have served as a negative control.

Fluorescence was measured at 485exc-520emi nm, using spectro-
fluorometer (Varioskanmicroplate reader, Thermo Fisher Scientific,
USA).

2.6. NF-«B nuclear translocation analysis via immunochemistry

To detect nuclear translocation of NF-kB p65 subunit in human THP-
1 monocytes, immunocytochemistry technique was employed. Mono-
cytes (1 x 10° cells/mL) were pre-treated with 100 pM of selected an-
alogs for one hour, as this concentration exhibited a maximum
inhibition in AGEg-mediated ROS generation was observed. Subse-
quently, monocytes were exposed to AGEs (50 pg/mL) (glucose- and
MGO-AGESs) for one hour at 37 °C. Later, cells were washed thrice with
chilled PBS, fixed and permeabilized by paraformaldehyde (4%); 10 min)
and triton X-100 (0.2%; 10 min), respectively. To prevent the nonspe-
cific binding, the permeabilized monocytes were treated with blocking
solution (1% BSA dissolved in PBS and Tween-20 (0.1%)) for an hour at
room temperature. These monocytes were then incubated with NF-«B
p65 (primary antibody, 1:300, Thermo Fisher Scientific, USA) overnight
at 4 °C, and then with Fluorescein isothiocyanate (FITC)-conjugated
polyclonal antibody to rabbit IgG (secondary antibody, 1:1000 Abcam,
UK). The nucleus of monocytes was counterstain with DAPI (Thermo
Fisher Scientific, USA). The cells, treated with 50 pg/mL of BSA, and
AGEs, have served as negative- and positive controls, respectively. All
the images were taken by Nikon 90i microscope, fixed with DXM-1200
digital camera (Nikon, Japan). ImageJ (Image processing and analysis
Java program- NIH) was used for quantitative analysis of mean p65
fluorescence intensity with mean fluorescence of DAPI positive mono-
cytes in a six-random high-power field for each treatment.

2.7. Proinflammatory enzyme COX-2 analysis via immunoblotting

The immunoblotting was performed to identify the levels of COX-2
enzyme, and B-actin protein in human THP-1 monocytes. The cells
were pretreated with analogs (100 pM) for one hour, and then incubated
with 50 pg/mL of AGEs (glucose- or MGO-AGEs) for 6 h. To lyse the
monocytes, RIPA lysis buffer was used, and sonication was performed.
Later, monocytes were subjected to centrifugation at 12,000 rpm at 4 °C
for 20 min. The lysate was aliquoted, and stored at —20 °C till analysis.

10% gel (SDS-PAGE) was run to separate the 50 pg/mL of COX-2
enzyme, and p-actin protein bands. The bands were transferred to
nitrocellulose membrane, and membrane was incubated with a blocking
solution for one hour at room temperature to prevent it from nonspecific
binding. After that membranes were incubated with monoclonal COX-2
(Thermo Fisher Scientific, USA) and f-actin (Cloud-Clone Corp., China)
primary antibodies for 24 h at 4 °C to probe the protein bands. The
membrane was washed with tris buffer saline tween (TBST), and incu-
bated with HRP mouse mono anti-rabbit IgG (secondary antibody;
Abcam, UK) at room temperature for one hour. To visualize the bands,
chemiluminescence detection kit (ECL) (Sangon Biotech, China) was
used, and densitometric analysis was performed by using ImageJ (Image
processing and analysis in Java - NIH).
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2.8. Pro-inflammatory cytokine PGE, analysis via ELISA

Briefly, THP-1 monocytes (5 x 10° cells/mL) were plated in a 6-well
cell-culture treated plate to pre-expose with analogs (100 pM) for one
hour, and then activated with 50 pg/ml of AGEs for 6 h. The cells were
centrifuged at 1000 rpm for 10 min, pallets were discarded, and the
levels of PGE; in supernatant were measured by using the commercially
available PGE; competitive ELISA kit (Cloud-Clone Corp., China), in
accordance to the manufacturer’s protocol.

2.9. Statistical analysis

All the statistical analysis was conducted using IBM SPSS (Statistical
Package for the Social Sciences) version 21.0. The quantitative data
were represented as means + standard deviation (SD) of three to five in
vitro cellular model-based experiments. The significance among vari-
ables of various mechanistic activities at various concentrations of an-
alogs were compared with glucose- and MGO-AGEs (positive control)
and quercetin, rutin, and PDTC (standards) by applying one-way anal-
ysis of variance (ANOVA). Followed by post hoc Tukey Alpha test anal-
ysis, and P-value <0.05 was considered statistically significant.

3. Results
3.1. Inhibition of protein glycation via carbazole- linked 1,2,3-triazoles

In the present study, the conjugated carbazole-1,2,3-triazoles com-
pounds (Fig. 2) 2-16 were initially tested to examine their inhibitory
potential against in vitro glucose- and MGO-induced non-enzymatic BSA-
glycation. Our data revealed that the parent molecule carbazole (com-
pound 1) exhibit a weak inhibition (ICsq 763.3 + 15.2 pM) against
glucose-modified BSA, while was found inactive in MGO-modified BSA
model. The presence of triazole nucleus with carbazole moiety (com-
pound 2) dramatically increased the inhibitory potential by showing
IC5p 351.3 + 7.09 pM, and 797 + 7.0 pM in glucose- and MGO-BSA
models, respectively.

To compare the antiglycation potential of carbazole-triazole de-
rivatives, selected flavonoids rutin and quercetin, were selected as
reference molecules. The skeleton of these molecules carries poly-
hydroxy moieties serving as free radical scavengers in non-enzymatic
glycation reaction [42]. They found to have various medicinal proper-
ties, including anticancer, anti-inflammatory, and antiaging activities
[32]. Among the tested flavonoids, we found that rutin has relatively
higher antiglycation potential in both models (glucose-BSA: IC50 =83 +
1.0 pM, and MGO-BSA: 104 + 2.0 pM), as compared to quercetin
(glucose BSA: ICsg = 96 £ 4.0 pM, and MGO-BSA: 138 + 4.4 uM). These
results on rutin and quercetin were consistent with previous data [42].

To study the antiglycation activity of carbazole-linked 1,2,3-triazoles
derivatives, the compounds 3-12 having substitutions on aryl, such as X
(F, Cl, Br, I) Me, OMe, and NO, groups, compounds 13, and 14 bearing
nitrogen heterocycles (pyridyl, imidazolyl), and compounds 15, and 16
(dimers of carbazole triazole) were tested. The four halogenated con-
geners ie., compounds 3-6 carrying fluoro, chloro, bromo, and iodo
substitution at the C-3 position, were found to be inactive in both gly-
cation models.

Methylation at the C-2 (compound 7) has resulted in a moderate
inhibition in glucose-BSA (ICsg = 180.3 + 1.52 pM) and MGO-BSA (ICsq
= 275 £ 5.0 pM) models, as compared to reference molecules. To
explore the optimal carbon position for methyl substitution, a
regioisomer of compound 7, i.e., compound 8, was tested for anti-
glycation activity. Compound 8 carrying a methyl group at the C-3 po-
sition, revealed a remarkable higher inhibitory activity against glucose-
and MGO-BSA as showed by the reduced ICsp (glucose-BSA: IC5p = 65 +
10.0 pM, MGO-BSA: IC50 130 + 5.0 pM). Furthermore, it showed a
greater activity than the reference quercetin in both models, while rutin
only revealed inhibition in glucose-BSA model. On the other hand, the
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Fig. 2. Library of carbazole-1,2,3-triazole 2-16.

presence of methoxy group, instead of methyl, at C-3 (compound 9), and
C-4 (compound 10) positions causes a loss of antiglycation activity in
both models.

Next, nitro substitution at C-3 (compound 11) showed a moderate
inhibition in both models (glucose-AGEs: ICsqp = 125 + 5.0 pM, and
MGO-AGEs: ICsp = 147 + 10 pM), as compared to references (rutin, and
quercetin). To identify the substitution pattern that maximizes its anti-
glycation potential, a regioisomer of compound 11, i.e., compound 12
that possessed nitro group at the C-4 position was tested. Again,
remarkable change in inhibitory activity was observed against glucose-
and MGO- modified BSA with IC5¢ = 69.8 4 2.4 pM, and 76.1 + 6.0 uM,
respectively (See Table 1) than the reference molecules (rutin and
quercetin).

Furthermore, compound 13, possessing a pyridyl substitution at C-3
showed an excellent antiglycation activity in both models (glucose-
AGEs: 1C50 = 63 + 3.0 pM, and MGO-AGEs: 135 + 5.0 pM). Moreover,
compound 13 showed several fold better inhibition of protein glycation
than the reference compounds in glucose-and MGO-AGEs model, while
it showed similar inhibitory activity as the reference compound, quer-
cetin. Compound 14 that possesses nitro imidazole at C-5 has shown a
relatively lower activity against glucose-BSA model (ICsg = 250 £ 5.0
pM), while it was inactive in MGO-BSA model.

Besides these, dimer of carbazole triazole (compound 15) having
phenyl ring, sandwiched between two carbazole linked 1,2,3-triazoles
was also tested. Compound 15 has shown a moderate activity in both
models (glucose-AGEs: [Csq = 138 £ 2.0 pM, and MGO-AGEs: 333 £+ 0.2
uM). Compound 16, another dimer with biphenyl ring instead of phenyl,
was tested and it showed a weak inhibition with ICsy = 600 + 10.0 pM
in glucose-BSA model, while inactive in MGO-BSA model.

Table 1
Antiglycating activity of carbazole - traizole derivatives in glucose- and MGO-
AGEs models.

Compounds Glucose-AGEs MGO-AGEs
% Inhibition +  ICso® +5D° 9% Inhibition ICsp ® + SD®
sp® (uM) +SD (M)
Rutin ° 96.9 + 0.1 83.9 + 1.0 67.1 2.1 104 + 2.0
Quercetin®  88.8 + 1.3 96.0 + 4.0 58.7 £ 0.1 138.3 £ 4.4
1 60.9 + 0.8 763.3 +£15.2  26.6 + 2.0 NS
2 71.0 £ 0.5 351.3£7.09 58.3+15 797 £ 7.0
3 26.7 + 4.7 NS 18.2 £ 1.3 NS
4 25.5 + 5.04 NS 15.6 + 3.8 N%
5 29.0 + 6.98 NS 22.1 £1.6 NS
6 43.7 £ 3.14 N§ 39.5 £ 0.7 N%
7 79.2 £ 1.05 180.3+£1.52 72.0 +1.2 275 £ 5.0
8 92.7 £ 1.5 65 +10.0 79 £1.15 130 £ 5.0
9 41.5 £ 4.2 NS 18.1 4+ 1.01 NS
10 34.8 +7.4 NS 12.1 =2.70 NS
11 86.9 £ 0.6 125 £ 5.0 75.7 £ 0.95 147 £ 10
12 89.1 £0.8 69.8 + 2.4 83.7 £0.71 76.1 = 6.0
13 95.0 £ 0.36 63 +£3.0 77.8 £ 0.53 135 £ 5.0
14 74.1 +1.52 250 + 5.0 43.9 +0.76 NS
15 79.0 £ 1.92 138 & 2.0 71.8 £ 0.98 333 £ 0.2
16 65.8 + 2.49 600 + 10.0 41.5 + 3.0 NS

ICE,: Half minimum inhibitory concentration.
SDP: Standard deviation.

Nai: Non-active.

Rutin®, Quercetin®: Standard antiglycating agents.
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3.2. Carbazole- linked 1,2,3-triazoles cytotoxicity profile in human
HepG2 hepatocytes and THP-1 monocytes

To achieve our objectives, the toxicity of compounds was evaluated
on liver hepatocytes and monocytes. It is well known that drugs with-
drawal from clinical trials are often due to drug-induced hepatotoxicity.
In the current study, the toxicity of test compounds was evaluated on
hepatocytes as liver plays a major role in metabolic transformation of
drug. Therefore, testing the toxicity of compounds on hepatocytes, in the
early discovery phase, is an appropriate approach to assess the toxico-
logical and pharmacological status of potential drug. Moreover, the
cellular-based model for toxicological assessment is effective and
economical than an experimental animal model [43].

Because compounds 1-2, 7-8, and 11-16 of carbazole-linked 1,2,3-
triazoles, and parent carbazole (compound 1) exhibited the anti-
glycation activity, they were tested for cytotoxicity at different con-
centrations (10-500 pM) in human HepG2 hepatocytes and THP-1
monocytes by using MTT and WST-1 metabolic assays, respectively.
Rutin, and quercetin, as reference glycation inhibitors, and doxorubicin,
as reference toxic compound, were used to compare the toxicity profile
of different compounds. We found no toxic activity of 1-2, 11-13, and
15 up to 100 pM concentration either in human THP-1 monocytes or in
HepG2 hepatocytes. Though they exhibited varying levels of cytotox-
icity, from weak to moderate, at higher concentrations (250-500 pM), as
reported in Fig. 3. Whereas, compounds 7-8, 14, and 16 showed toxicity
in both THP-1 monocytes and HepG2 cell line. Percent viability of cells
treated with standards and compounds at each tested concentration is
presented in Supplementary Fig. la-c.

Therefore, the non-toxic compounds 1-2, 11-13, and 15 were
selected to study their effect in reverting AGE-RAGE-induced intracel-
lular ROS generation, increase of COX-2, and pro-inflammatory medi-
ators in THP-1 monocytes.

The non-toxic concentration of both glucose- and MGO-AGEs was
selected by assessing their effect on the viability of THP-1 monocytes at
different concentrations (10, 30, 50, 100, 200, and 500 pg/mL). We
found that the cell viability was not affected at 50 pg/mL of both
glucose- and MGO-AGEs, therefore, 50 pg/mL AGEs were selected to
study the effect of compounds against AGEs-induced ROS/NF-xB
signaling, and increasing COX-2 protein and PGE; levels in monocytes
(see Supplementary Fig. 2).

3.3. Carbazole- linked 1,2,3-triazoles impede glucose- and MGO- AGEs-
induced oxidative stress in human THP-1 monocytes

In chronic hyperglycemia, glycated proteins exacerbate oxidative
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stress by generating ROS, resulting in pathophysiological effects on
vascular system [7,22,45]. Our earlier study has highlighted the path-
ogenic role of AGEs through modulation of intracellular redox state in
macrophages through RAGE/TLR4 nexus that consequently cause dia-
betic vascular impairments [26]. In the current study, we investigated
the role of carbazole-linked 1,2,3-triazole derivatives 2, 11-13, and 15,
and compound 1 in inhibiting the AGE-RAGE- induced intracellular ROS
production in AGEs-treated THP-1 monocyte models. Our data revealed
that AGEs significantly elevate the ROS formation in activated THP-1
monocytes, as compared to untreated- and BSA-treated monocytes
controls, by showing P-value <0.05 (Fig. 4a). These findings were
consistent with previously reported studies [26,32]. The results showed
that compounds 11-13, and 15 reversed the RAGE ligation- mediated
ROS formation in AGEs-activated THP-1 monocytes, as compared to the
reference compounds (rutin, and quercetin), and PDTC (NF-«B inhibi-
tor). Among all the tested compounds, compounds 12, and 13 signifi-
cantly inhibited the ROS formation, as much as PDTC and rutin in
glucose-AGEs- treated THP-1 monocyte model. Compounds 2, 11, 15,
and quercetin exhibited a slightly lower antioxidant activity than com-
pounds 12, and 13 (Fig. 4).

Finally, compounds 12, and 13 exhibited a potent antioxidant ac-
tivity in MGO-AGEs-treated THP-1 monocyte model. They significantly
(P < 0.05) suppressed the ROS formation, as inferred from green fluo-
rescence intensity, in comparison to rutin. As shown in Fig. 4c, a slightly
decreased inhibition was produced by compounds 2 and 11, as
compared to standards PDTC and quercetin. Based on the antiglycation
and anti-oxidant activities, as well as on the nontoxic profile of
carbazole-linked 1,2,3-triazole derivatives, compounds 12 and 13 were
selected to study their possible inhibition of NF-kB activation. Parallel
evaluation of COX-2 induction and PGE, production was carried out in
AGEg-activated THP-1 monocytes. ROS inhibition produced by refer-
ence molecules and tested compounds at each concentration in glucose-
and MGO-AGEs models are presented in Supplementary Fig. 3a-d.

3.4. Carbazole- linked 1,2,3-triazoles suppress glucose- and MGO- AGEs-
induced NF-«B translocation

Compounds 12, and 13 role was further investigated in AGE-RAGE
ligation-mediated NF-xB translocation via immunocytochemistry of
p65 subunit. These compounds showed a potent antioxidant activity at
the cellular level among all the tested carbazole-linked 1,2,3-triazole
analogs. In agreement with previous study of Shanmugam, et al [22],
we found that AGEs caused NF-«xB translocation in THP-1 monocytes,
comparable to BSA-treated THP-1 monocyte control model. The pre-
treatment of THP-1 monocytes with compounds 12, and 13 significantly
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decreased the AGEs-treated NF-kp translocation (P-value <0.05). Com-
pounds 12, and 13 were found to be more active than standards PDTC
and rutin in both models. They expressed relatively higher suppressive
potential of NF-xkB translocation than standard quercetin in glucose-
AGEs model, whereas compound 12 was found more potent than
quercetin in MGO-AGEs model. Compound 13 exhibited similar activity
as quercetin in MGO-AGEs model, as shown in Fig. 5a, and b, and 6a, and
b. These observations suggest that the inhibitory effect of compounds
12, and 13 on NF-«B translocation was associated with AGEs-induced
ROS inhibition in THP-1 monocytes (See Supplementary Fig. 4a-d).

3.5. Carbazole-linked 1,2,3-triazoles reduce induction of glucose- and
MGO-AGEs- induced proinflammatory COX-2

Based on promising inhibitory effect on RAGE ligation-mediated
ROS/NF-xB, compounds 12, and 13 were further studied for their abil-
ity to prevent elevated COX-2 protein levels in AGEs-activated THP-1
monocytes. The cells were pretreated with compounds 12, and 13 at
100 pM for an hour, and then stimulated with AGEs for 6 h. Following

Caontrols
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protein extraction, western blotting and normalization with B-actin
protein were performed, and the levels of COX-2 were determined as
fold inductions. Our results were consistent with the previously reported
studies [22]. COX-2 levels were higher in AGEs-treated THP-1 monocyte
than in BSA-treated control (P-value <0.05), as depicted in Fig. 7a.
Compounds 12 and 13 produced 3- and 3.5-fold reduction of COX-2
(Fig. 7b), respectively. In MGO-AGEs-treated THP-1 model, the com-
pounds 12, and 13 produced 2.1-, and 1.34-fold decrease in COX2 levels,
respectively (Fig. 7c). Our data revealed that compounds 12, and 13
were more potent in decreasing COX-2 levels, induced by both AGEs, as
compared to standards PDTC (glucose-AGEs: 2.16-fold; MGO-AGEs:
1.60-fold) and rutin (glucose-AGEs: 2.09-fold; MGO-AGEs: 1.65-fold).
Compounds 12 and 13 exhibited a greater activity than quercetin
(1.6-fold) in glucose-AGE-treated THP-1 monocytes. Compound 12 also
exhibited a greater activity than quercetin (1.31-fold) in MGO-AGE-
treated model, while compound 13 showed a similar activity as
quercetin.
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Fig. 7. Reduction of glucose- and MGO-AGEs-mediated COX-2 levels via selected carbazole-1,2,3-triazole analogs. (A) It is represented that human monocytes pre-
treated with compounds 12, and 13 at 100 pM for an hour, and stimulated with glucose- and MGO-AGEs for 6 h significantly reduced the COX-2 protein expression.
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normalize COX-2 protein expression. Values of two independent experiments is presented as mean + SD. P value <0.05, 0.01, and 0.001 are denoted by *, **, and ***

respectively.
Abbreviations: P: PDTC, R: Rutin, Q: Quercetin.
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3.6. Carbazole- linked 1,2,3-triazoles alleviate glucose- and MGO-AGEs-
induced PGE, levels

AGEs induce the production of proinflammatory mediator PGE; via
COX-2 upregulation, which is associated with complex diabetic vascular
complications [22,32]. Considering the role of compounds 12, and 13 in
alleviating AGEs-mediated upregulation of COX-2, their inhibitory effect
was investigated on PGE; production in THP-1 monocytes. Compounds
12, and 13 significantly reduced the PGE; levels (P value <0.05) in
AGEs-treated THP-1 monocytes, as shown in Fig. 8a, and b. PDTC and
rutin exhibited a relatively greater suppression of PGE; levels in both
glucose- and MGO-AGEs models than quercetin.

These findings suggest that compounds 12, and 13 by interfering
AGE-RAGE-ligation, can decrease ROS generation and NF-kB activation
in human monocytes. Consequently, the levels of proinflammatory
markers, such as COX-2, and PGE, decline. The present study identifies
carbazole-linked 1,2,3-triazoles 12, and 13 as potential downregulators
of COX-2 protein via impeding AGEs-induced proinflammatory intra-
cellular cascade.
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4, Discussion

Chronic hyperglycemia accelerates the non-enzymatic protein gly-
cation [4,33]. The non-enzymatic protein glycation involves methyl-
glyoxal (MGO) as a highly reactive intermediate, which leads to the
formation of AGEs [44]. AGE-RAGE ligation leads to the activation of
intracellular inflammatory mediators, thereby it activates peripheral
monocytes and induces vascular dysfunction [32,45]. In the present
study, the MGO-BSA glycation model was employed by incubating BSA
with MGO. The formation of MGO-BSA (dicarbonyl sugar containing
AGEs) was quantified following 24 h of incubation, instead of 7 days
incubation as in the classical glucose-BSA model (single carbonyl sugar
containing AGEs) that we also used in comparison with MGO-BSA. Our
data demonstrate that carbazole-linked 1,2,3-triazole analogs possess
inhibitory activity in both glycation models.

The extent of inhibitory activity of test compounds was greatly
influenced by the substitution pattern, and carbonyl moieties. The
addition of acetophenone ring in carbazole-triazole skeleton has yielded
a remarkable increase in the inhibition of protein glycation in both
models. The compounds substituted with halogen moieties, such as
fluoro (compound 3), chloro (compound 4), bromo (compound 5), and
iodo (compound 6) at C-3 of acetophenone ring were found to be
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inactive in both models. Whereas, methylation at C-2 (compound 7) had
exhibited a relatively moderate inhibition in both models, as compared
to methyl group at C-3 position (compound 8) which contributed sub-
stantially in in vitro antiglycation activity. Furthermore, the methoxy
substitution at C-3, and C-4 (compounds 9, and 10), respectively
resulted in a loss of activity in both models. Next, nitro moiety at C-3
(compound 11) had shown a moderate inhibitory activity in both
models, while substitution of nitro moiety at C-4 produced a remarkable
outcome with an excellent inhibitory activity of compound 12 in both
models. Furthermore, pyridine substitution at C-3 in compound 13
suppressed the protein glycation, whereas nitro imidazole substitution
at C-5 in heterocyclic compound 14 showed a weak activity in glucose-
BSA model, and no activity in MGO-BSA model.

At last, dimer of carbazole triazole (compound 15) with phenyl ring
between two carbazole-linked 1,2,3-triazole displayed a moderate
antiglycation activity in both models. The dimer with biphenyl ring
(compound 16) further showed a decrease in activity in glucose-BSA
model, but no activity in MGO-BSA model.

Carbazole-linked 1,2,3-triazoles exerted a preventive influence
against AGEs-mediated dysfunction art cellular levels. We observed that
in downstream inflammatory cascades initiated by AGE-RAGE interac-
tion, the most active compounds 12, and 13 actively reduced AGEs-
mediated effects. Finally, we propose that nitro substitution at C-4 of
acetophenone and C-3' pyridyl substitution at the carbazole-1,2,3-
triazoles skeleton in compounds 12, and 13, respectively, confer the
compounds the inhibitory activity against AGEs-induced-inflammatory
mediators.

Numerous studies highlighted the role of AGEs-RAGE ligation in
oxidative imbalance and elevated pro-inflammatory mediators with
activation of monocytes [32,45] and other cell types, including macro-
phages, neutrophils, eosinophils, and cardiomyocytes, [46,47]. The
underlying mechanisms involve the activation of NADPH oxidase (NOX)
with stimulation of both the mitochondrial respiratory chain complex
[48] and NF-«B pathway [49]. Several studies have reported dispro-
portion from the baseline levels of endogenous pro-oxidative and anti-
oxidative enzymes, resulting in ROS formation. The overwhelming
intracellular oxidartive stress ilead to the on-set of diabetic vascular
complications [50,51]. ROS is one of the prominent players in AGEs-
stimulated pro-inflammatory pathway, associated with NF-xB activa-
tion [32,52]. In line with that evidence, the present study reports an
increase in ROS generation in THP-1 monocytes in response of AGEs
treatment. Carbazole-linked 1,2,3-triazoles 12, and 13 pretreatment has
caused a reduction in ROS formation, as reference antiglycation agents.
Our findings are consistent with the study by Shazia et al, that
demonstrated ROS inhibition via bicarbazole-linked triazoles in human
whole blood and isolated neutrophils abated inflammation [53].

Previous studies indicated that AGE-RAGE-ligation-mediated intra-
cellular ROS production stimulates NF-xB in diabetes [22,26,54]. The
AGE-RAGE ligation is associated with de novo RelA(p65) mRNA syn-
thesis, which persistently accumulates transcriptionally active NF-xB
[55]. Similarly, our study shows that the increase ROS formation causes
the activation of NF-kB, following treatment of THP-1 monocytes with
AGEs. Besides, monocytes pretreatment with PDTC, a standard NF-«xB
inhibitor, has inhibited RAGE-ligation induced ROS / NF-kB in cells. The
treatment with carbazole-linked 1,2,3-triazoles 12, and 13 also attenu-
ated the glucose- and MGO-AGEs-induced NF-xB (p65) translocation in
human THP-1 monocytes. This suggests that compounds 12, and 13 can
suppress the NF-xB mediated signaling by partly interfering with the
AGE-RAGE/ROS nexus in monocytes.

Increasing body of evidence supports the role of COX-2 in the
pathophysiology of atherosclerosis [22,23]. The COX-2 upregulation
increases inflammatory mediators that initiate vascular monocyte
adhesion and migration, and hence cause chronic vascular inflammation
[56 -57]. AGE-RAGE interaction is associated with accelerated inflam-
matory response by the upregulation of COX-2 expression, and associ-
ated PGEy secretion in monocytes [58,59], thereby playing a role in
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diabetes-associated vascular dysfunction [22,32]. Growing evidence
points out the relevance of COX-2 inhibition as therapeutic approaches
to avert atheroma formation [22,32,50]. Our findings also establish that
AGEs treatment elevates COX-2 protein and PGE, levels by activating
ROS/NF-xB signaling in the monocytes. Compounds 12, and 13 pre-
treatment effectively suppress the AGEs-induced COX-2 and PGE, levels
in THP-1 monocytes. Our findings are in agreement with the study of
Feng-Ming Ho et al. [60]. They reported that LCY-2-CHO (carbazole
derivative) downregulates proinflammatory iNOS, COX-2, and TNF-«
gene expression via inhibiting the p38 MAPK pathway, and AP-1 acti-
vation in macrophages [60]. Our findings are also in-line with the earlier
study of Taechowisan et al. that showed that 3- methylcarbazoles
(carbazole derivative) suppressed proinflammatory PGE, in LPS- and
pam3CSK-activated macrophages, and thus prevented inflammation
[61]. Moreover, the MAP kinases (extracellular signal-regulated kinase
and c-Jun N-terminal kinase), and NF-xB nexus are components of the
AGE-RAGE intracellular cascade and regulate COX-2 expression in
monocytes [59,62]. The present study further supports our findings
about the role of AGE-RAGE/ NF-kB nexus in COX-2 induction, and in-
hibition via PDTC (NF-xB nexus inhibitor) and carbazole-linked
triazoles.

5. Conclusion

Novel carbazole-linked 1,2,3-triazole derivatives, carrying a nitro
substitution at C-4 of acetophenone or a 3’ pyridyl substitution at the
ring of carbazole-1,2,3-triazoles skeleton, have shown to inhibit both the
in vitro formation of AGEs and their pro-inflammatory effect on THP-1
monocytes. By interfering with the protein glycation reaction, these
compounds were found as novel antiglycation agents with a potential to
prevent or delay the onset of vascular inflammation in diabetes. The
validation of this preliminary results towards the treatment of vascular
diabetic disease deserves further investigation in in vivo animal model.
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