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The current long-haul transmission and worldwide complex interconnection of
network infrastructure is based on single mode optical fiber which transports infor-
mation in the form of light pulses. Single mode fibers have low attenuation and
dispersion rate as all energy is confined to a single mode and no energy is lost into
the cladding. As a result, single mode fibre is suitable for long distance transmis-
sion whereas multimode fibre, is mainly used for short distance communication. In
addition, single mode fiber delivers diffraction limited high beam quality, guides
only Gaussian like field distributions and allows high coupling efficiency. However,
due to its core diameter size single mode fiber could not satisfy the future huge
communication bandwidth demand, and it is not suitable for very high power fiber
amplifiers and lasers.

Multimode optical fibers are designed to carry several modes, due to their large
core radius. In principle, graded index active multimode fibers could be used for
high power fiber amplifiers and fiber lasers. In addition, ytterbium doped mul-
timode fibers are used to overcome the current bandwidth deficit of single mode
fibers, through the techniques of spatial mode division multiplexing. Nowadays,
high beam quality fiber amplifiers and lasers are required for different applications.
However, multimode interferences that result in degradation of beam quality are the
main problem for developing high power fiber lasers and fiber amplifiers. So, the
question is how to overcome these constraints and use multimode fibers (step-index
or graded-index) for these and other applications. The most feasible approach is
to convert the Kerr nonlinearity from being a problem to an opportunity for beam
cleaning. We performed a numerical study by solving coupled mode equations to
investigate this phenomena further. By increasing the input signal power, we ob-
served the transfer of energy from the high order modes to the fundamental mode,
due to nonlinear and non-uniform gain coupling along the course of propagation.
As a result, the fundamental mode experienced higher gain due to the exchange of
power with the other high order modes, and beam cleaning is demonstrated.

Furthermore, to explore the nonlinear propagation in doped multimode fibers,
we implemented a 3D NLSE in the presence of saturated gain, Kerr nonlinearity
and disorder. Our numerical simulations reveal that by increasing the input signal
power, the speckled beam reshapes itself after a certain fiber distance, into a clean
beam close to single mode operation due to the laser gain and Kerr nonlinearity.
The spatial beam self-cleaning phenomenon is further confirmed by examining the
beam width at the end of the fiber length, which has reduced diameter than at the
beginning of the fiber. Analysis of our results show that numerical simulations agree
well with preliminary experimental results.
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Sommario
L’attuale trasmissione a lungo raggio e la complessa interconnessione mondiale dell’infrastruttura
di rete si basa su fibra ottica monomodale che trasporta le informazioni sotto forma
di impulsi luminosi. Le fibre monomodali hanno un basso coefficiente di attenu-
azione e la loro dispersione è contenuta poiché tutta l’energia è confinata in un unico
modo. Di conseguenza, la fibra monomodale è adatta per la trasmissione a lunga
distanza mentre la fibra multimodale viene utilizzata principalmente per la comu-
nicazione a breve distanza. Inoltre, la fibra monomodale fornisce un’elevata qualità
del fascio in uscita la cui distribuzione di campo trasverso è di tipo gaussiano. Tut-
tavia, la fibra monomodale non è in grado di soddisfare l’enorme domanda futura
di larghezza di banda di comunicazione e non è adatta per amplificatori e laser in
fibra ad altissima potenza.

Le fibre ottiche multimodali sono progettate per supportare la propagazione di
un larghissimo numero di modi, grazie all’ampio raggio del nucleo. In linea di prin-
cipio, le fibre multimodali attive con un profilo trasverso dell’indice di rifrazione
di tipo parabolico (graded-index), grazie alla loro bassa dispersione intermodale,
potrebbero essere utilizzate per amplificatori e laser in fibra. Inoltre, le fibre mul-
timodali drogate con itterbio (e quindi attive) potrebbero trovare applicazione per
superare l’attuale deficit di banda delle fibre monomodali attraverso le tecniche di
multiplexing a divisione di modo spaziale. Oggigiorno, amplificatori e laser in fibra
di alta qualità sono necessari per diverse applicazioni. Tuttavia, le interferenze mul-
timodali che provocano il degrado della qualità del profilo trasverso del campo, che
dopo una brevissima distanza non è più gaussiano, sono il problema principale per
lo sviluppo delle applicazioni. Quindi, la domanda è come superare questi vincoli e
utilizzare fibre multimodali (step-index o graded-index) negli amplificatori, nei laser
e nei sistemi di trasmissione.

L’approccio più fattibile è convertire la non linearità Kerr da problema a oppor-
tunità per la ripulitura del fascio (beam cleaning). Nel mio lavoro di tesi ho ese-
guito uno studio numerico approfondito di questo problema risolvendo le equazioni
modali accoppiate. All’aumentare della potenza in ingresso (o del guadagno della
fibra attiva), si osserva il trasferimento di energia dai modi di ordine elevato al
modo fondamentale, causato dall’accoppiamento non lineare o dalla distribuzione
non uniforme del guadagno. Quando il modo fondamentale può beneficiare di un
guadagno maggiore, anche a causa dello scambio di potenza con i modi di ordine
elevato, si raggiunge la ripulitura del fascio (che è ben visibile all’uscita della fibra).

Inoltre, per esplorare la propagazione non lineare nelle fibre multimodali dro-
gate, ho implementato un solutore per un’equazione 3D NLSE che include guadagno
(anche tenendo conto della saturazione), non linearità Kerr ed una perturbazione nel
profilo d’indice del nucleo che porta all’accoppiamento tra i modi. Le simulazioni
numeriche rivelano che, aumentando la potenza del segnale in ingresso, il fascio si
rimodella passando dal tipico profilo speckled, con una caotica distribuzione di pic-
chi e minimi di intensità dovuti all’interferenza tra i modi, ad un fascio ripulito. Il
fenomeno dell’auto-ripulitura (self-cleaning) del fascio spaziale è ulteriormente con-
fermato dall’esame della larghezza del fascio all’estremità della fibra e si sottolinea
come i risultati delle simulazioni numeriche concordino bene con i risultati speri-
mentali preliminari.
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Chapter 1

Introduction

The roots of optical fiber communications is retraced back to 1854, when John Tyn-
dall demonstrated to the Royal Society that light could be guided along a curved
stream of water, and proved that light signals can be bent by total internal reflection
[26]. In 1960s the very best bulk optical glasses at the time exhibited an attenuation
of 103dB/km. The problem was an attenuation of 20 dB/km or lower is required for
practical communications. By 1970 the scientists at Corning overcame this challenge
and created an optical fiber with an attenuation of 17 dB/km.

Ever since their birth, fiber optic communication systems revolutionized the telecom-
industry, and built today’s intercontinental communication network backbone. Nowa-
days optical fiber based technologies has entered nearly all fields of optics. Some of
the current optical fiber applications include: efficient light sources like fiber lasers,
supercontinuum sources, optical sensors, and fiber-based imaging techniques. The
existing fiber architectures are ranging from conventional step-index, graded-index,
to sophisticated micro-structured designs like multicore or photonic-crystal fibers.

For many fiber applications an important feature is the high beam quality deliv-
ered from so called single-mode fibers, where only a Gaussian-like field distribution
is guided, allowing for high coupling efficiencies and nearly diffraction limited out-
put beams. However, in the last decade, multimode fibers which support a certain
number of higher-order transverse eigenfunctions, called modes, were frequently
applied in the field of high-power fiber lasers and fiber optical communications, to
overcome nonlinear limitations. In the latter field, the parallelization of independent
data channels in multimode fibers offers a promising solution to ensure a further in-
crease in data capacity per single fiber [7]. In contrast, for the development of high
power fiber lasers and amplifiers, unwanted multimode interferences are currently
the main limiting factor [23] due to an associated degradation of the spatial beam
quality.

Today, the growth rate of traffic capacity is astonishing. In other words, the com-
munication capacity is progressively increasing per year, and has achieved more
than 100 Tbit/s in a system using the existing multiplexing technologies over stan-
dard fibre systems employing single mode fibres. These transmission technologies
using single-mode fibers are currently facing a capacity crunch. The limits are im-
posed, on the first hand by received optical signal-to-noise ratio, established by
Shannon theorem [57] [13] and, on the other side, by the fiber nonlinear transmis-
sion impairments [14] under the effect of the Kerr process and the increase of the
launched input power. It exists a large demand of high speed data rate because
of the approaching of the full capacity in the existing infrastructures. Transmitting
information in an optical fibre at higher bit rate is physically difficult because the
optical signal is impaired by several factors. The need for increased capacity of the
network is still the major challenge, and is difficult to achieve using standard single
mode fibre.
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A newly proposed technique, exploiting a multimode fibre to increase the capac-
ity is one of the existing solutions. Recent work has indicated that the use of multi-
mode fibres has become attractive in networks as they can propagate simultaneously
up to 100 modes and more, realising optical fibres with an increased capacity [63].

Figure 1.1: Evolution of transmission capacity in optical fibres as doc-
umented by experimental demonstrations [52].

To cope with an increasing bandwidth problems, the use of wavelength mul-
tiplexing techniques, with first wavelength division multiplexing and then dense
wavelength division multiplexing (DWDM), is implemented. Hence many rele-
vant techniques have been developed to obtain such higher bandwidths. However,
DWDM implementations, which are suitable for long haul fibre connection, tend to
be too costly for data centre applications and so alternative methods for more cost
effective solutions and increasing short haul bandwidths are actively being sought.

We need new multiplexing technologies as a new path for utilising and increas-
ing the transmission capacity by making use of a last option that is space [31],
which is known as space (spatial) division multiplexing (SDM) in new optical fi-
bres, the concept introduced by Paul Facq and et al.[10]. This multiplexing tech-
nology, employed in SDM systems, can obviously support the multiple numbers of
mode channels, and optical amplifiers operating with optical connectors and space-
(de)multiplexers (S-MUX, S-DEMUX) used with multimode fibres. The SDM ap-
proach aims to increase the capacity by the number of modes (i.e. a mode division
multiplexing (MDM)) or the number of spatial input channels in which there are
great advantages over the existing approaches, i.e. time or wavelength, promising
the potential for a reduction in cost and providing more energy efficiency per bit
transmitted.

Including mode-division multiplexing as a subset of SDM and using a new op-
tical fibre that has high power tolerance and suppresses undesired optical nonlinear
effects, a multimode fibre (MMF) can be used to map signal channels onto different
transmission modes. This is now being thought as a new way of increasing the ca-
pacity by using the multiple numbers of modes, channels, and cores. It is available
to be implemented in either free space (by multiple beams) or guided media. How-
ever, there is the need to overcome the major limitation of bandwidth that is brought
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about by modal dispersion in a MMF and the critical issue of modal crosstalk that
has required digital signal processing (DSP) techniques to compensate for unwanted
linear distortion and multiple input multiple output (MIMO) techniques, as em-
ployed in wireless communication, at the receiver to equalise the signal . At the
receiver end, the different group dispersion (DGD) affects the original signal so that
it cannot maintain its shape which will eventually result in more difficulties for the
DSP-MIMO equaliser. Therefore, it is necessary to minimise the distortion by mea-
suring each mode coherently across the beam and sending these modes to the DSP-
MIMO that can unscramble the signal and equalise the group delay and hence be
able to reconstruct the input field. These are the reasons why today researches have
been intensively investigating SDM along with the new transmission fibre types to
maximise the capacity and mitigate nonlinear optical effects.

1.1 Research Motivation

Optical fibers provide the backbone of today’s global communication networks, and
enable compact, low cost light sources for a variety of industrial and biomedical
applications. In most of these and other applications, single mode fibers are used.
Replacing single mode fibers with multimode fibers leads to a dramatic growth of
transmission capacity, and a substantial increase of average power and pulse energy
from fiber lasers (amplifiers).

Multimode fiber has a relatively larger core diameter than single mode fiber, that
allows multiple modes of light to go through at a given time. Graded index multi-
mode optical fibers are explored to overcome the current capacity crunch of single-
mode fibers. In single-mode fiber, it requires adding more and more single-mode
fibers to satisfy this demand which is expensive. The promising solution to this
potential bandwidth problem is utilizing multimode fibers which enhances the ca-
pacity of optical communication systems through the technique of spatial or mode
division multiplexing due to its large core size [15] [52]. Furthermore, multimode
fibers are being explored as a means of adding new degrees of freedom to optical
technologies such as telecommunications, fiber lasers, imaging and measurement.
Multimode interferences which results in degradation of spacial beam quality cur-
rently are the main problem, for developing high power fiber lasers and amplifiers.

Due to spatial dispersion and resulting mode interference, multimode fibers suf-
fer from an inherent randomization of the spatial transverse beam profile, resulting
in a beam scrambling in a complex speckled pattern. On the other hand, high beam
quality simultaneously with high power fiber amplifiers are required for different
applications. The main question is how to overcome these constraints and use mul-
timode fibers. The best approach is to convert the problem of Kerr nonlinearity to
an opportunity through beam cleaning phenomenon.

My research activity explores the techniques to suppress the effect of high order
modes that creates inter-modal interferences, in multimode fiber by using parabolic
and ring dopant profiles. Along the course of propagation in active multimode fiber
there is exchange of power from the high order modes to fundamental mode, via
mode coupling due to the nonlinearity and the non uniform gain distribution. As a
result, the fundamental mode experiences higher gain or amplification due to ex-
change of power from the high order modes. To study this complex activity in
multimode fiber, we implemented the coupled mode equation and the 3D NLSE
(3 Dimensional Nonlinear Schrödinger Equation) in the presence of gain from the
rare-earth dopant and Kerr nonlinearity along the fiber length. Furthermore, the
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effects of disorder and gain saturation are explored to understand how beam clean-
ing operation can be obtained by exploiting the wide opportunities of doped GRIN
(graded-index) multimode fibers.

To investigate the beam propagation and amplification in active multimode fiber
we began from considering a small number of guided modes. We used rate and
propagation equations with different configurations of pumping schemes; forward,
backward, both forward and backward pumping. Then, we moved on considering
a large number of modes with complex coupled mode equations and 3D NLSE’s.
Though multimode fiber amplifiers are the current research topics, most of the stud-
ies so far are based on passive multimode fibers and the research papers based on
active multimode fibers are mostly experimental to the best of my knowledge. Pow-
erful numerical simulations tools, taking into account the physical effects will be
investigated in our research. Furthermore, the computational efficiency and similar-
ity of our modelling tools with respect to experimental results are explored in our
research activity.

1.2 Outline of the Dissertation

This research dissertation is organized under a total of seven chapters. The first
chapter is dedicated to the background of the study behind multimode fibers and
the motivations for the thesis work. In the second chapter graded-index multimode
fibers are introduced and their properties, like self-imaging, will be thoroughly in-
vestigated. Hermite and Laguerre-Gaussian spatial mode profiles and their corre-
sponding propagation constants with the underlying mathematical equations are
presented. In addition, mode expansion, 3D NLSE and coupled mode equations
which will be used further in the up-coming chapters are introduced in chapter 2.

Chapter 3 deals about modelling ytterbium-doped fiber amplifiers with limited
number of modes and uniform active medium distribution in the fiber core. Solving
wave equations using Comsol Multi-physics and modelling multimode fiber ampli-
fiers are introduced. The basic rate and propagation equations are applied to under-
stand the evolution of pump and signal powers along the fiber length. The power of
the fundamental mode is varied with respect to the high order modes to investigate
the gain competition among the spatial modes in multimode fiber amplifiers.

Chapter 4 is basically an extension of chapter 3, signal and pump intensities
are used to determine excited and ground state populations for core and cladding
pumping schemes. Forward, backward and combination of both pumping configu-
rations are thoroughly studied for continuous wave input signal. Saturation inten-
sity for continuous wave input and saturation fluence for pulsed input laser signals
are formulated and numerically investigated. Local saturation in self-imaging in-
put signal propagation is examined and numerical results are presented. Generally
speaking the goal is how to obtain high power fiber amplifiers and fiber lasers which
are used for different applications in communications, military domain, welding in-
dustry, imaging or others. The technique to maximize the gain of fiber amplifiers
by optimizing parameters and using our modelling equation is also discussed in
chapter 4.

Moving on, in chapter 5, mode coupling in unperturbed multimode fibers is thor-
oughly investigated numerically. The coupling factors in this chapter are gain and
Kerr nonlinearity. Coupled mode equations due to these factors is developed using
modal expansion approach. In addition to uniform gain distribution, parabolic and
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ring dopant profiles are investigated and numerical results under different situations
are discussed and presented.

Chapter 6 explores propagation of modes in active perturbed multimode fibers.
Here the perturbation factor is caused by random disorder, which is externally ap-
plied, though multimode fibers are manufactured to be resistant against bends or
other external factors. In addition to gain and Kerr nonlinerity discussed in chap-
ter 5, effects of gain saturation and disorder are analysed in detail in this chapter.
3D NLSE is used to study the propagation of modal powers and beam self-cleaning
phenomenon. Furthermore, the 3D NLSE equation is extended to include the pump
power, excited state populations to explore the propagation of modal power in ac-
tive multimode tapered fibers. The beam self-cleaning is rigorously examined by
including and then excluding pump power in the propagation equation.

Finally, conclusions of the whole thesis work and about the possible future ex-
tensions are discussed in chapter 7.
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Chapter 2

Graded Index Multimode Fibers

In the first section of this chapter, we will introduce one of the most commonly used
type of fiber: the graded-index (GRIN) fiber. Next we will explore the modal expan-
sion approach used to study the self-imaging property in GRIN multimode fibers,
the 3D non-linear Schroedinger equation; and then the self-imaging behaviour, which
results from multimode interferences will be examined in detail accordingly.

There are many types of multimode fibers, each offering unique properties and
advantages for different applications. Based on the number of modes supported and
the core diameter we define single mode and multimode fibers. Similarly, depend-
ing on refractive index profile we have graded index and step index fibers. In this
chapter, we will examine graded-index ( GRIN ) multimode fibers ( MMF ) in depth.
Graded-index multimode fiber ( GRIN MMF ) uses a parabolic refractive index pro-
filing inside the core to compensate for the different path lengths of the modes, ac-
cording to an approach based on ray optics. Graded-index fiber offers hundreds of
times more bandwidth than step index fiber, in addition for reducing the effect of
dispersion, and providing unique important feature for self-imaging phenomenon.
Graded-index fiber is made with a range of materials in the core which are chosen
to minimize modal dispersion caused by different path lengths of different modes
being transmitted along the fiber. The core index profile of graded-index fiber is
curved, nearly parabolic to be exact, with lower refractive index glass on the outer
region of the core. Index of refraction is related to the speed of light in the fiber, n
= c/v, so a higher index of refraction indicates that light travels at a slower speed
(v) relative to the speed of light in a vacuum (c). When the light propagates into
a lower index of refraction material in the outer region of the core, its speeds is
higher compared to the speed at the center of the core. By carefully designing and
manufacturing the fiber, you can get the average speed of a higher-order mode ap-
proximately the same as the modes going straight down the fiber, reducing modal
dispersion which is an important feature of graded-index multimode fibers.

2.1 Graded-index Fibers

Graded index fibers do not have a constant refractive index in the core as step-index
fibers, but a decreasing core index from its maximum value n1 at the center to the
lower cladding index n2 [4]. Radial distance dependent refractive index of a graded-
index multimode fiber is given by:

n2(r) =

{
n2

1(1− 2∆( r
a )

α), 0 ≤ r ≤ a
n2, r > a

(2.1)
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where a is core radius, r2 = x2 + y2 is radial distance, ∆ =
n2

1−n2
2

2n2
1

is relative refractive
index difference and α is the profile parameter which give the characteristics refrac-
tive index profile of the fiber core. For parabolic profile α = 2 and for triangular
profile α = 1. In step-index fiber, instead, the refractive index is constant throughout
the core, and it doesn’t vary with the radial distance.

n(r) =

{
n1, r ≤ a
n2, r > a

(2.2)

In GRIN fiber the modes cluster into nearly degenerate groups ( modes having
similar propagation constant ), and modes that belong to the same group have a
minimal modal dispersion between one another. For this reason, the modal dis-
persion in graded-index fibers is the minimum possible [65]. Graded-index fibers
are commonly used in fiber-optic communications to reduce modal dispersion, as
the group velocities of all modes are nearly identical at the design wavelength [44].
Moreover, GRIN fibers exhibit another unique property that makes them very at-
tractive for multimode interference applications, where the propagation constants
of their modes are equally spaced [4]. As a result, their self-imaging lengths can
be very short, even less than 1mm. Hence, its possible to make extremely short (
submillimeter ) practical multimodal interference.

(a) (b)

Figure 2.1: Refractive index profile of graded-index fiber, and mode
propagation phenomena inside GRIN MMF [55].

The modes of GRIN fibers are obtained by solving the Helmholtz equation [6].

∇2ψmn(x, y) + n2(x, y)k2
0 ψmn(x, y) = 0 (2.3)

where k0 = 2π
λ is the wavenumber, λ being the vacuum wavelength of the monochro-

matic source, r = (x, y) denotes the position in the transverse plane, and∇2 is the cor-
responding transverse Laplacian. In the weakly guiding approximation ( ∆ << 1
), both the electric and magnetic fields of all modes lie in a plane transverse to the
fiber’s axis ( Ez = Hz = 0 ), and the modes are denoted as LPmn ( linearly polar-
ized modes ) , where m and n are two integers used for labeling different modes.
Their modal distribution ψmn(x, y) and propagation constants βmn are known, but
have different forms depending on whether the Helmholtz equation (2.3) is solved
using Cartesian or cylindrical coordinates. Laguerre-Gaussian (LG) and Hermite-
Gausssian (HG) modes are obtained when equation (2.3) is solved in cylindrical (r,
φ, z) and Cartesian (x, y, z) coordinates, respectively. Figure 2.2 shows Hermite-
Gaussian and Laguerre-Gaussian intensity profile of modes.
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Figure 2.2: Hermite and Laguerre-Gaussian modes intensity profile

At the waist plane z = 0, the field distribution of an arbitrary Laguerre-Gaussian
beam is expressed as follows [70] [11]:

ψlp(r, φ) = E0 exp
(
−r2

w2
0

)
L(l)

p

(
2r2

w2
0

)
exp(−ilφ) (2.4)

where E0 is normalized amplitude, l and p are the mode indices, w0 is the waist of
the fundamental Gaussian beam, L(l)

p (x) is the generalized Laguerre function given
by equation (2.5):

L(l)
p (x) =

p

∑
i=0

(−1)i Γ(p + l + 1)
Γ(p− i + 1)Γ(i + l + 1)

xi

i!
(2.5)

where Γ is Gamma function. Using equation(2.5) the first few Laguerre polynomial
functions are given as follows [18]:

L(l)
0 (x) = 1

L(l)
1 (x) = l + 1− x

L(l)
2 (x) =

1
2
(l + 2)(l + 1)− (l + 2)x +

1
2

x2

(2.6)

The corresponding propagation constant in cylindrical coordinates is also given by
equation (2.7) [18].

βlp = k0n1

[
1− 2(2p + l − 1)

k0n1

√
2∆
a2

] 1
2

(2.7)

In all of our numerical modelling we used Hermite-Gaussian modes, except in
Chapter 2 where we conduct modal analysis for graded-index fibers by COMSOL
Multiphysics.

Figure (2.4) below shows some of the fundamental and high order Hermite-
Gaussian spatial intensity profile of modes used in our numerical simulation. Her-
mite–Gauss solution (HGmn) modes can be obtained by separation of the variables
in x and y. Using the weak-guidance approximation, a closed-form solution for the
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ideal modes of the MMF can be obtained in Cartesian coordinates. We define the
normalized two-dimensional Hermite–Gaussian modes as [18] [58]:

ψmn(x, y) =

√
2
π

w
√

2m+nm!n!
Hm(
√

2
x
w
)Hn(

√
2

y
w
)e−

x2+y2

w2 (2.8)

where w is the mode radius (different from frequency ω) is given by equation (2.9),
Hm(x) and Hn(y) are Hermite polynomials and solutions to differential equation.

w2 =

√
2a

k0n1
√

∆
(2.9)

d2Hn

dx2 − 2x
dHn

dx
+ 2nHn = 0 (2.10)

Hn(x) = (−1)n ex2 dn

dxn e−x2
(2.11)

Using equation (2.11) the first five Hermite polynomials are given by equation (2.12)
below:

H0(x) = 1
H1(x) = 2 x

H2(x) = 4 x2 − 2

H3(x) = 8 x3 − 12 x

H4(x) = 16 x4 − 48 x2 + 12

(2.12)

Similarly, the modal propagation constants of Hermite-Gaussian modes in the Carte-
sian coordinates are given by equation (2.13) [4]:

βmn = n1k0

[
1− 2(m + n− 1)

n1k0a

√
2∆
] 1

2

(2.13)

For most GRIN fibers k0a >> 1 and ∆ << 1, as a result, as long as m+n is not too
large, we can expand βmn in a binomial series and approximate it as [4]:

βmn ≈ n1k0 − (m + n− 1)

√
2∆
a

(2.14)

Equations (2.13) and (2.14) above reveals the most important features of the modes
of a GRIN multimode fibers. It shows that the propagation constants of all non-
degenerate modes ( modes with different propagation constants ) form a ladder
like structure with equal spacing between any two neighbouring modes as shown
in figure (2.3). This kind of characteristics is similar to the quantized energy lev-
els of a harmonic oscillator and is the physical mechanism behind the self-imaging



10 Chapter 2. Graded Index Multimode Fibers

phenomenon in GRIN multimode fibers. In figure (2.3), the mode numbers are,
the total number of modes considered with their respective propagation constants,
moving sequentially from the fundamental mode (mode number 1, ψ0,0) to the fi-
nal high order mode (mode number 25, ψ4,4 ). More precisely, if the indexes m, n
(here used to identify the Hermite-Gauss modes) vary from 0 to mmax, one can move
from a two-index notation m and n to a notation with a single mode number by
calculating m · (mmax + 1) + n + 1. From this expression the fundamental mode
m = 0, n = 0 is mapped into mode number 1, while the largest mode number is
given by (mmax + 1)2. The spatial shape of the modes are provided by equation
(2.8), and their particular propagation constants are given by equation (2.13). In
addition from figure (2.3), we can understand that the mode number 1 (fundamen-
tal mode) has the largest propagation constant, whereas the mode number 25 (the
highest order mode), has the smallest propagation constant. Furthermore, there are
mode groups with the same propagation constants, but in general the propagation
constant reduces moving from mode number 1 towards mode number 25.

Figure 2.3: Graded-index multimode fiber propagation constant plot.
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Figure 2.4: Intensity patterns of Hermite-Gaussian (HGmn) modes

2.2 Mode Expansion

We start with a description of the propagation of light in a multimode fiber in the
absence of gain or absorption, and choose a set of transverse modes ψn, n=1,2,...N
which best represent the fiber’s eigenmodes. Here it’s basically assumed that the
modes propagate with negligible coupling to each other, changing only the phase
terms of their complex amplitudes. Due to the orthogonality of eigenmodes, the total
guided field ( optical field ) Eg(x, y, z) (

√
W

m ) inside the fiber can be expressed as the
superposition of all eigenmodes in the core [20] [61]. In other words the propagating
field can be expanded through the base of guided modes ψn(x, y) and the optical
field at any point along the fiber’s axis of propagation z is written as:

Eg(x, y, z) = ∑
n

an(z)ψn(x, y)eiβnz + radiation modes (2.15)

where (x,y) are the transverse coordinates, ψn(x, y) ( 1/m ) is the n-th normalized
bound eigenmodes, an is the complex amplitude (

√
W ) which describes both am-

plitude and phase of the corresponding mode, and βn is the n-th modal propagation
constant. Because the field transformation of guided eigenmodes into radiation ones
is a negligible effect for typical fiber parameters, hence we will ignore the radiation
modes. When this set of modes constitutes an orthonormal basis, the modal am-
plitude an(z) is given by the projection of the optical field at the input facet over
the n-th modal field [20] [4]. In other words, since the eigenmode set is a base for
any guided light fields, the injection amplitudes are determined as the coefficients
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of decomposition upon this base, of the optical field injected at the fiber input facet:

an(0) =
∫ +∞

−∞

∫ +∞

−∞
Eg(x, y, 0)ψ∗n(x, y)dxdy (2.16)

In equation (2.16) above the slowly varying amplitude is obtained when input inci-
dent beam is normal ( not inclined ). Considering a Gaussian input beam launched
into the GRIN fiber inclined at angle θ we use the following general equation to
determine the amplitude.

Eg(x, y, 0) = A0 exp
(
− x2 + y2

w2

)
exp(j k x sinθ) (2.17)

an(0) =
∫ +∞

−∞

∫ +∞

−∞
A0 exp

(
− x2 + y2

w2

)
ψ∗n(x, y) exp(j k x sinθ)dxdy (2.18)

Where k is the wave number in radians per meter for a free-space wavelength λ, A0

is the field amplitude at the fiber input in square root of watts per meter (
√

W
m ), and

w is the radius of the beam at which the field amplitude falls to 1/e of its axial values
that is related to the full width at half maximum ( FWHM ) as follows:

w =
FWHM√

2ln2
(2.19)

For an orthonormal modal basis we have:

∫ +∞

−∞

∫ +∞

−∞
ψn(x, y)ψ∗m(x, y)dxdy = δm,n (2.20)

The optical intensity (W/m2) is normalized in such a way that it can be obtained
by squaring the modules of the guided field given by equation 2.15. Here we can
rewrite the intensity in terms of the transformed guided field.

I(x, y, z) =
∣∣Eg(x, y, z)

∣∣2
= ∑

n,m
an(z)a∗m(z)ψn(x, y)ψ∗m(x, y)ei(βn−βm)z (2.21)

The total local-modal power ( W ) is also simply calculated by integrating the inten-
sity across the fiber cross section. The total power in multimode fiber could also be
obtained by summing up the square of all the guided modes amplitude as shown in
equation (2.22).

P(z) =
∫ +∞

−∞

∫ +∞

−∞
I(x, y, z)dxdy

=
∫ +∞

−∞

∫ +∞

−∞
∑
n,m

an(z)a∗m(z)ψn(x, y)ψ∗m(x, y)ei(βn−βm)zdxdy

P(z) = ∑
n
|an(z)|2

(2.22)



2.3. 3D Nonlinear Schroedinger Equation 13

Likewise, the power evolution of each mode across the propagation direction is
given by equation (2.23) [20]. The power of each mode is obtained by squaring its
modal amplitude at the propagation direction.

Pn(z) = |an(z)|2 (2.23)

The width of input Gaussian beam should be relatively close to the beam width
of the fundamental mode, in order to use small number of mode for simulations.
Otherwise, large number of modes need to be considered for numerical simulations
in graded-index multimode fiber. One important method to check this is the input
power that could be determined by summation of the modes square amplitude, and
the power calculated by integrating the square of the Gaussian input beam across
the fiber transverse should closely match.

(a) Gaussian input beam width (b) Fundamental mode beam width

Figure 2.5: Gaussian input beam diameter of 10µm FWHM and fun-
damental mode width.

In other words, if a proper number of modes and input Gaussian beam width is
set for numerical simulations, the following input power equations ( Equation 2.24 )
should be equal at z = 0.

P(x, y, 0) =
∫ +∞

−∞

∫ +∞

−∞

∣∣∣∣A0 exp
(
− x2 + y2

w2
0

)
exp(j k x sinθ)

∣∣∣∣2 dxdy

P(x, y, 0) =
N

∑
n
|an(0)|2

(2.24)

2.3 3D Nonlinear Schroedinger Equation

An essential tool for analysing multimode non-linear optical beam propagation, will
be introduced in this section. To probe the non-linear behaviour of multimode fibers,
we first present the most common theoretical model used for this task, the gen-
eralized multimode non-linear Schrodinger equations ( GMMNLSE ). Multimode
non-linear graded-index fibers will be examined using generalized multimode non-
linear Schroedinger equation. The generalized MMNLSE was first derived by Poletti
and Horak [50]. Generalized MMNLSE, however suffers from increasing complex-
ity particularly with increasing number of modes. In a highly multimode fiber, it
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may be computationally much more efficient to use a direct numerical solution of
the 3D NLSE. Hence, for a GRIN MMF the complex guided field Eg(x, y, z) [

√
W/m]

equation is approximated and simplified as follows [32]. In situations where many
guided modes must be considered, this equation will offer computational advan-
tages over the GMMNLSE. Such equation is also called the Gross-Pitaevskii equa-
tion.

i
∂Eg

∂z
+

1
2β
∇2
⊥Eg −

β∆
a2 r2Eg +

ωn2kerr

c
(1− fr)|Eg|2Eg = 0 (2.25)

where ∇2
⊥ = ∂2

x + ∂2
y is transverse Laplacian, β = ωn1

c is propagation constant, ω is

carrier frequency in rad/s, ∆ =
n2

1−n2
2

2n2
1

is the relative index difference, a is the fiber
core radius, n1 is the maximum core refractive index, n2 is the cladding refractive
index, n2kerr is non-linear refractive index having a value of 3.2× 10−20 m2/W for
fused silica used to fabricate silica fibers, fr ≈ 0.18 is the fractional contribution of
the Raman response to the total non-linearity. Equation 2.25 is a powerful tool to
study the effects of diffraction, waveguide and Kerr non-linearity in beam propaga-
tion. A simplified case with only spatial dependency is investigated in this equation,
a slowly varying envelope approximation, unidirectional propagation, a simplified
waveguide contribution, and a constant group velocity dispersion are some of the
assumptions at the base of this model. We neglected the effects of gain, dispersion
and saturations from the 3D NLSE for the moment. Except dispersion, the effects of
gain saturation and dopants in GRIN MMF will be examined further in our research.

In [37][41] it is assumed that the beam diameter is much smaller than the core
radius, and the real graded index profile of the fiber is also approximated. Our nu-
merical model is based on Hermite-Gaussian modes (solutions for parabolic profile)
which is a good approximation for practical implementations in a GRIN multimode
fibers. In the beam propagation method (BPM) of our model, the real refractive index
profile having a constant refractive index value for the cladding is used. The com-
parison between the coupled mode equation (based on the modes of the parabolic
profile) and the BPM (based on the real profile) shows a good agreement even in
the nonlinear regime and this confirms that the parabolic approximation works well
with our input beam width.

2.3.1 Coupled Mode Equation

Here we will investigate the coupled mode equation in passive graded-index multi-
mode fibers, due to Kerr nonlinearity. By substituting the modal expansion equation
(2.15) into the 3D NLSE given by equation (6.1), we could find non-linear coupled
equations given as follows for passive multimode fibers [6]:
where Eg = ∑n An(z)ψn(x, y) and An(z) = an(z)eiβnz

∑(
∂An

∂z
)ψn −∑ iβn Anψn = i

n2kerrω

c ∑
m,p,q

Am A∗p Aqψmψ∗pψq (2.26)

Now exploiting the orthogonality among the modes which is given by equation
(2.20) and projecting over ψ∗n, and by substituting for An(z) = an(z)eiβnz we can
obtain the following coupled mode system:

∂An

∂z
= iβn An + i

n2kerrω

c ∑
m,p,q

Am A∗p Aqψmψ∗pψqψ∗n (2.27)
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∂an

∂z
+ iβnan = iβnan + i

n2kerrω

c ∑
m,p,q

Qm,p,q,nama∗paqei(βm−βp+βq−βn)z (2.28)

dan

dz
= i

n2kerrω

c ∑
m,p,q

Qm,p,q,n am a∗p aq ei∆βm,p,q,nz (2.29)

where an represents the slowly varying complex amplitude of mode n, Qm,p,q,n =∫ ∫
ψmψ∗pψqψ∗ndxdy is an overlap integral, ∆βm,p,q,n = βm− βp + βq− βn is the phase

mismatch, and ψn(x, y) is the n-th orthonormal basis of guided modes, for the mode
group with indices m, n, p, q.

Non-linearity introduces coupling between different modes, and in multimode
propagation it introduces opportunities and at the same time problems. Non-linear
effects in optical fibers arise due to interactions between propagating light and the
fiber. Non-linear effects are weak in optical fiber at low power, but becomes stronger
when light reaches certain threshold values, which occurs when the power is in-
creased. There are different categories of non-linear effects, however in our study
we will focus on effects that arises from the power dependent refractive index, such
as self-phase modulation, cross-phase modulation and four-wave mixing. These
non-linear effects leads to interferences, distortions, noise and excess attenuation of
optical signals which limits the system performance.

Self-phase modulation (SPM) is non-linear effects that corresponds to Qm,m,m,m
and terms of the form |am|2am [65] in equation (5.7). Similarly, cross phase modula-
tions (XPM) have terms of the form Qm,n,m,n and Qm,m,n,n where m 6= n, and are of
the form |an|2am. XPM can lead to asymmetric spectral broadening when two pulses
are travelling at different speeds. SPM and XPM are pure phase modulations, and
cannot cause energy exchange between modes. All other non-linear coupling terms
can be described as four-wave mixing (FWM), which is defined as terms that can
cause transfer of energy.

2.4 Self-imaging in GRIN Fiber

When an electromagnetic field is coupled into a graded-index multimode fiber, a
set of eigenmodes are excited and each of them propagates along the fiber indepen-
dently with its own propagation constant. The excited modes interfere with each
other and the field at any position inside the multimode fiber is a superposition of
their mode field. The self-imaging of the input field inside graded-index multimode
fiber can be obtained at certain positions where the excited modes are in phase [22].
The optical field Eg(x, y, z) at any point inside the GRIN fiber is obtained by mul-
tiplying each mode with a phase factor, because all excited modes propagate inde-
pendently inside the MM fiber, and the field Eg(x, y, z) along the fiber is given by
equation 2.15. Consider the case of two consecutive modes that are mostly excited,
with propagation constants β1 and βn. Lets say β1 is the propagation constants of
the fundamental mode and βn the propagation constants of n-th excited mode of
the MM fiber. At certain positions inside the MM fiber, the reproduction of the in-
put field occurs [71], that is, Eg(x, y, zsel f−image) = Eg(x, y, z = 0), if the following
condition is satisfied for all N modes.

(βn − β1)zsel f−image = 2πm (2.30)
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Equation 2.30 indicates that the phase difference between any two excited modes is
an integer multiple of 2π, that is, all excited modes are in phase. Self-imaging occurs
at points zsel f−image along the multimode fiber. The self-image distance or the period
(Λ) of longitudinal spatial oscillation is given by the following equation where a is
fiber core radius and ∆ relative index difference.

Λ =
aπ√
2∆

(2.31)

To investigate the self-imaging phenomenon in graded-index multimode fiber, we
used modal expansion approach discussed in section 1.2 above, and 3D NLSE. In
addition, for the numerical simulation I considered passive GRIN multimode fiber,
and Kerr non-linear effect. For continuous-wave ( CW ) excitations, the propagation
of a beam in a parabolic GRIN MMF experiences self-imaging.

(a) Larger core end (b) Smaller core end

Figure 2.6: Self-imaging phenomena in GRIN MMF: (a) Core radius
61µm (b) Core radius 18.4µm

Figure 2.6 shows self-imaging phenomena in GRIN multimode fiber having the
core radius of 61µm and 18.4µm. The self imaging period which is directly related
to the core radius is calculated using equation 2.31, and found to be 1.263mm and
0.381mm respectively. We used mode expansion approach to determine the self
imaging period with normal input beam inclination in passive multimode fiber.
Likewise, figure 2.8 shows inclined Gaussian input beam propagation in GRIN MMF,
keeping other parameters the same as in the normal input or no inclination case. The
input beam is inclined at the input facet of the fiber about 2.5◦ from the longitudinal
axis, as it could also be visualized from figure 2.7.

Figure 2.7: Inclined input beam injected at the input facet of graded-
index MMF.

It can be seen from the figure that, the self-imaging period remains the same, but
the interference shows zigzag behaviour inside the core.
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(a) (b)

(c) (d)

Figure 2.8: Self-imaging in GRIN MMF with inclined input beam: (a)
Numerical simulation results with large core size (b) Experimental
result with large core size (c) Simulation result with smaller core size

(d) Experimental result with smaller core diameter

Figure 2.8 shows inclined input beam propagation across passive GRIN MMF.
Panels (a) and (c) refers to my numerical simulations using equation (2.15) and the
analysis developed in section 2.1, while panels (b) and (d) refer to an experimental
visualisation of the self-imaging period carried out by the colleagues at the XLIM
laboratory. The two fiber diameters are taken from short segments of fiber near the
small and the large section of a tapered multimode fiber, which was experimentally
analysed in [46]. The period of self-imaging in numerical simulation and experi-
mental results are in a relative good agreement. In the experiment a laser beam at a
wavelength of 1064nm with CW Gaussian spatial shape is launched into the smaller
core size of the tapered GRIN MMF. Self replicating spots of the beam at equal dis-
tance appears along the fiber length. The distance between each spot is equivalent to
the self-imaging distance or period calculated by using equation (2.31) and the same
as in the numerical simulations.

2.5 Chapter Summary

In this chapter graded-index multimode fibers and their properties are introduced,
parabolic refractive index and step-index profiles are defined and formulated. So-
lutions to Helmholtz wave equation using Cartesian or cylindrical coordinates are
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thoroughly investigated and their corresponding mode intensity profiles are plot-
ted. Hermite-Gaussian and Laguerre-Gaussian spatial mode equations with their
respective propagation constants are discussed.

Mode expansion is the way of representing the guided optical field as a super-
position of eigenmodes inside the core. The basic equation that relates modal ampli-
tude to modal power is developed and analysed. We also presented mathematical
derivation that shows how the coupled mode equations are determined from the 3D
NLSE using the mode expansions.

Finally, the self-imaging property of graded-index multimode fiber that results
from the modal interference inside the core is explored. We have investigated the
self-imaging under normal and inclined input laser beam. The period of self-imaging
remains the same under both conditions, but a zigzag displacement of the signal is
observed in the latter. Furthermore, we also compared the self-imaging period we
obtained numerically with experimental value, and found out that the two results
are in a good agreement.
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Chapter 3

Modelling of Ytterbium-doped
Fibers

In this chapter we will investigate ytterbium doped fiber amplifiers that support few
number of modes. First we will consider the modelling of graded-index fibers with
Comsol Multiphysics, and solve wave equations to obtain spatial modes. The spa-
tial modes are then used in propagation and rate equations to determine the power
carried by each mode. Propagation equations of signal and pump are solved using
the Runge-Kutta method given the initial conditions, to determine the signal and
pump powers at any distance in the propagation direction. Finally our numerical
simulation results will be shown and discussed. This chapter is a foundation for
up-coming chapters where more complex effects are included, and large number of
modes are considered. Here the fiber core is uniformly doped and the power of each
mode (fundamental or higher order) is controlled manually. In other words, the
power of each mode is set in the numerical simulation system. However practically
as the number of modes increase and other effects are included this model has its
shortcomings.

The need for higher output powers and the growth of fiber-based applications
beyond the telecommunication industry, triggered the study of other rare earth dopants
such as ytterbium (Yb). Ytterbium-doped fibers in particular, were found to have a
number of advantages due to their distinctive electronic structure, which favours
their use in high power laser systems. Ytterbium-doped fibers were not regularly
used at the beginning, though Yb-doped fiber laser was discovered in 1988 [21]. This
was due to the popularity of other rare-earth dopants like erbium and neodymium.
Erbium doped fibers have the advantage that their emission wavelength (1520 to
1600 nm) lies in the telecommunication wavelength region and they can be pumped
at a number of wavelengths from 510 to 1480nm. Neodymium doped fibers ex-
hibit a four-level behaviour with highly efficient emission at 1060 nm wavelength for
pumping at about 800 nm. However, these rare-earth dopants have explicit pitfalls,
for instance, there is excited state absorption in erbium-doped fibers, and a limited
emission bandwidth in neodymium-doped fibers. These drawbacks undoubtedly
curbs the gain as well as applications of such fibers. For these and other reasons,
ytterbium-doped fibers were of a great interest and studied in detail by Paschotta et
al. in 1997 [48].

Applications of ytterbium-doped fiber amplifiers includes power amplification
for spectroscopic measurements, free space laser communications, and small-signal
amplifiers in fiber sensing [48]. Ytterbium-doped fiber amplifiers provide broad-
gain bandwidth for high output power with excellent power conversion efficiency.
In Yb-doped fibers many of the shortcomings which are well-known from erbium-
doped amplifiers are avoided. Hence, high doping levels is possible which leads
to high gain in a short length of fiber. The broad bandwidth is also ideal for the
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amplification of ultra-short pulses, and the high saturation fluence allows for high
pulse energies. There is also a wide range of possible pump wavelengths ( 860nm to
1064nm ), allowing a variety of pumping schemes, including the use of diode lasers
or even high-power neodymium lasers.

3.1 Yb-doped Fiber Amplifier Modelling

This section explores my research activity at university of Parma with the research
team in the department of Engineering and Architecture. We used Comsol Mul-
tiphysics a general finite-element modelling tool mode solver to obtain electric and
magnetic field components of optical modes in Yb-doped graded-index fibers. Com-
sol can be linked with the general computing software Matlab through the use of a
scripting language. Consequently, the user can program in the Matlab environment,
and then call Comsol to solve the physical modelling problems. Finally, the numer-
ical solutions given by Comsol are extracted and processed in Matlab. The eigen
solutions ( modal effective indices and electro magnetic fields) of the user-defined
optical fiber obtained from Comsol are vector solutions. For weakly guiding fibers,
the vector modes obtained from Comsol are then processed in Matlab to produce
intensity modes ( LP modes ), for the scalar-model ytterbium-doped fiber amplifier
simulations. In addition, as modal effective indices and modal profiles can be at-
tained from Comsol directly, other basic modal properties such as modal dispersion
and modal effective area can be acquired through simple post-processing in Matlab.

3.1.1 Determining Modes with Comsol Multi-physics

When solving wave electromagnetics problems with Wave Optics module, we use
the finite element method for the governing Maxwell’s equations. COMSOL Mul-
tiphysics uses finite element method to solve for electromagnetic fields within the
modelling domains. The governing Maxwell’s equations in three dimensions can be
solved for the electric field, E = E(x, y, z), throughout the modelling domain, where
E is a vector with components E =< Ex, Ey, Ez >. All other quantities (such as mag-
netic fields, currents, and power flow) can be derived from the electric field. It is also
possible to reformulate the above equation as an eigenvalue problem, where a model
is solved for the resonant frequencies of the system, rather than the response of the
system at a particular frequency. We can break down the finite element method into
four steps:

1. Model set-up: Defining the equations to solve, creating the model geometry,
defining the material properties, setting up metallic and radiating boundaries,
and connecting the model to other devices.

2. Meshing: Discretizing the model space using finite elements. Whenever solv-
ing a wave electromagnetics problem, you must keep in mind the mesh resolu-
tion. Any wave-type problem must have a mesh that is fine enough to resolve
the wavelengths in all media being modeled. This idea is fundamentally simi-
lar to the concept of the Nyquist frequency in signal processing. The sampling
size (the finite element mesh size) must be at least less than one-half of the
wavelength being resolved, 1064 nm in our case.
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(a) (b)

Figure 3.1: Fiber geometry modelling with Comsol: (a) Fiber cross
section (b) Meshed fiber cross section

3. Solving: Solving a set of linear equations that describe the electric fields. Once
we have properly defined the problem and meshed our domains, COMSOL
Multiphysics will take this information and form a system of linear equations,
which are solved using either a direct or iterative solver.

4. Postprocessing: Extracting useful information from the computed electric fields.
Once we have solved the model, we can extract data from the computed elec-
tromagnetic fields. COMSOL Multiphysics will automatically produce a slice
plot of the magnitude of the electric field, but there are many other post-
processing visualizations we can set up, like numerical information from our
models.
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(a) (b)

(c) (d)

Figure 3.2: Fundamental and high order modes obtained by Comsol
Multi-physics mode solver: (a) LP01 (b) LP11 (c) LP21 (c) LP31

Parameters Value Parameters Value

Rcore(µm) 26 λs(nm) 1064

Rclad−1(µm) 175 λp(nm) 976

Rclad−2(µm) 225 n1 1.466

n2 1.45 n3 1.37

Table 3.1: Parameters and respective values used for modelling with
Comsol.

3.1.2 The Amplifier Model

Once we solve the wave equation using Comsol Multiphysics and obtain the modes,
we will extract required parameters like intensity of signal (modes), intensity of
pump, overlap integrals and etc., then its time to model our ytterbium-doped fiber
amplifier. The operation of ytterbium-doped fiber amplifier is described by coupled
differential equations [56], which involves:
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1. Evolution intensities of the various signal and pump modes along the ampli-
fying medium. This includes, the intensity evolution equations for signal and
amplified spontaneous emission (ASE) in the i-th signal mode at the wave-
length λs, and intensity evolution equation for the power in the pump mode
at wavelength λp.

2. Population inversion along the amplifying medium. This involves, population
density equations for lower level population ( N1(r, φ, z) ), upper level popu-
lation ( N2(r, φ, z) ) and total doping population ( NT(r, φ) ).

The Equations can then be solved by using the standard fourth-order Runge-Kutta
method given initial conditions for pump and signal power. Gains and noise figures
for all signal modes may similarly be calculated.

The gain and noise performance of doped fiber amplifiers can be described by
means of a set of coupled differential equations containing population and propa-
gation equations. In order to determine the differential equations which form the
ytterbium-doped fiber amplifier (YDFA) model, we need to consider a cylindrical
coordinate system (r, φ, z) with the z-axis as the fiber axis. NT(r, φ) is the ytterbium
ions concentration in the transverse field, generally speaking a point function. At
first, we ignore the ASE and we consider a photon beam at frequency νs = c

λs
and

signal intensity Is.
Although the propagation and rate equations to solve for the case of single mode

and multimode signals are similar. For this reason, we will split the model into single
mode and multimode cases.

3.1.3 Single Mode Signal

Here we will discuss the propagation and rate equations when the signal is single
mode. The propagation equation of signal intensity Is(z) at each fiber length z is
provided by:

dIs(z)
dz

= [σesN2 − σasN1] Is(z) (3.1)

where absorption cross section σas, emission cross section σes and the intensity of the
pump beam Ip(z) with frequency νp = c

λp
is also given by similar equation of (3.1).

The intensity Is of the transverse field corresponds to the magnitude of the Poynting
vector of the fundamental mode of at the fiber wavelength (λs) 1064 nm. The optical
power of the beam travelling along the fiber length of z is:

Ps(z) =
∫ 2π

0

∫ ∞

0
Is(r, φ, z)rdrdφ (3.2)

Since the functions of the modes do not depend on z, the intensity can be written as,

Is(r, φ, z) = Ps(z)is(r, φ) (3.3)

where is is the normalized optical intensity, corresponding to,∫ 2π

0

∫ ∞

0
is(r, φ)rdrdφ = 1 (3.4)
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The power propagation equation is thus obtained by using equations 3.1, 3.2 and
3.3, and by integrating over the transverse coordinate.

dPs(z)
dz

= σesPs(z)
∫ 2π

0

∫ ∞

0
is(r, φ)N2(r, φ, z)rdrdφ

− σasPs(z)
∫ 2π

0

∫ ∞

0
is(r, φ)N1(r, φ, z)rdrdφ (3.5)

The same process can be followed for the propagation equations of the pump and
ASE powers, thus obtaining equations similar to (3.5). If then we associate these
equations to those indicating the populations N1 and N2 as functions of the beam
powers, we are able to calculate the amplifier parameters.

Assuming the ytterbium ions are uniformly distributed in a disk of radius b con-
centric to the core radius a, then integrals in equation (3.5) simplified. Furthermore,
since the variations of the normalized intensities is and ip in the doped region are
very low, the population inversion is generally uniform along the doped fiber. Con-
sequently, N1 and N2 only depend on z and can be taken out of the integrals in
equation (3.5).

dPs(z)
dz

=

[
σesN2(z)

∫ 2π

0

∫ b

0
is(r, φ)rdrdφ

− σasN1(z)
∫ 2π

0

∫ b

0
is(r, φ)rdrdφ

]
Ps(z)

(3.6)

The overlap integral, Γs, between the dopant and the mode at νs signal frequency is
given by:

Γs =
∫ 2π

0

∫ b

0
is(r, φ)rdrdφ (3.7)

Equation(3.5) can be simplified and finally written as:

dPs(z)
dz

=

[
σesN2(z)− σasN1(z)

]
ΓsPs(z) (3.8)

It is useful to introduce two further parameters, the absorption coefficient αs =
ΓsσasNT, and the gain coefficient gs = ΓsσesNT. The two parameters are functions
of the wavelength, their dimensions is inverse length (m−1), and they describe the
spectral characteristics of a doped fiber. They can be calculated directly, or after find-
ing the overlap integral, the absorption cross sections, and the doping concentration.
Equation (3.8) thus becomes,

dPs(z)
dz

=

(
gs

N2(z)
NT

− αs
N1(z)

NT

)
Ps(z) (3.9)

Similarly, we can obtain the pump propagation equation, considering the stimu-
lated emission cross-section being negligible in ytterbium,

dP±p (z)
dz

= ±αp
N1(z)

NT
P±p (z) (3.10)
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The superscript ” + ” refers to the co-propagating pump beam and the superscript
”− ” refers the counter propagating pump beam where,

αp = ΓpσapNT

Γp =
∫ 2π

0

∫ b

0
ip(r, φ)rdrdφ

Finding the ASE equation is a bit more complicated. To start with, ASE is not
described by an intensity, but by a power spectral density p(ν), expressed in [W/Hz
m2]. Secondly, it is no longer possible to ignore the spontaneous emission, because
without the spontaneous emission the ASE would not exist.

We can overcome the first problem by dividing the spectrum into smaller fre-
quency intervals ∆v, each centered at a different frequency vj. We then substitute
the spectral density with a sequence of intensities Ij of the type [56],

Ij =
∫ vj+

∆v
2

vj− ∆v
2

p(v)dv

each centered in vj. The situation is thus similar to several signal beams propagating
at the same time. The only difference is that for each j there is both a co-propagating
and a counter-propagating ASE beam. As for the second aspect, spontaneous emis-
sions, it will not be treated in the present discussion because it would require the
equations of quantum electro-dynamics. We will thus only include the final re-
sult, which consists in adding to the propagation equations a term proportional to
mhvj∆vj, where m indicates the number of modes which can propagate through the
guide. In a single mode fiber m is 2, because its fundamental mode shows two po-
larizations. Thus ASE will be given by equation (3.11) [56]:

dP±j (z)

dz
= ±

(
gj

N2(z)
NT

− αj
N1(z)

NT

)
Pj(z)± gj

N2(z)
NT

2hvj∆vj (3.11)

The powers of the co-propagating beams are assigned at z = 0, whereas the powers
of the counter-propagating beams at z = L, where L is the length of the doped fiber.
Notice that the co-propagating ASE is zero at z = 0, while the counter-propagating
ASE is zero at z = L.

In order to complete the doped fiber amplifier model it is necessary to formulate
the equations describing the populations, N1, N2 and NT as functions of the powers
of the signal, pump and ASE beams propagating through the fiber. These equations
are known as population equations. The population density of the metastable state
is given as [56]:

N2(r, φ, z) = NT(r, φ)

τ

(
σas

Is
hvs

+ σp
Ip

hvp

)
1 + τ

[
(σas + σes)

Is
hvs

+ σp
Ip

hvp

] (3.12)

where τ is the lifetime of the excited state and corresponds to the inverse of the
spontaneous emission rate, and σas, σap are absorption cross sections of signal and
pump respectively. Is and Ip are signal and pump intensities with optical frequency
(νs) of signal at λs, and pump frequency (νp) of pump at λp. Finally the population
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in the ground state can be found through the ion conservation equation.

N1(r, φ, z) = NT(r, φ)− N2(r, φ, z)

By means of integration equation (3.12) over the transverse plane and thanks to the
approximations introduced for propagation equations we finally obtain,

N2(z)
NT

=
∑k ταk

Pk(z)
hvkπb2 NT

1 + ∑k τ(αk + gk)
Pk(z)

hvkπb2 NT

(3.13)

where the summations include all the co and counter-propagating signal, pump,
and ASE beams. Apart from some exceptions, these equations cannot be solved
analytically, so that it is necessary to solve them numerically.

3.1.4 Multimode Signal

In our previous discussion we have seen the propagation equations for single mode
signal. Following the same procedures, we will discuss under this section when the
spatial signal is multimode. The solver is based on the spatial model, describing
the propagation of guided modes by dividing the fiber into constant discrete steps
for applying a numerical solver to the amplifier propagation equations, which are
assembled according to the number of propagating modes of signal and pump. As-
suming loss to be negligible in the doped fiber, the evolution of power Psl of mode l
of signal (or pump) s is given by equation (3.14) [56]:

∆Psl

∆z
=

(
gsl

N2(zi)

NT
− αsl

N1(zi)

NT

)
Psl(zi) (3.14)

and solved at each step zi by the variable coefficient linear multistep Adams method.
NT is the total population of doping ions, calculated by pump absorption measure-
ment. The population densities of doped atoms N1 and N2 at the fundamental and
metastable state (lower and upper levels) are then calculated from the population
rate equations of the active medium, whereas absorption (αsl) and gain (gsl) coeffi-
cients are determined from experimentally given ytterbium cross-sections ( absorp-
tion σasl , and emission σesl cross-sections ), overlap integral of signal Γsl and total
dopant concentration NT [56].

αsl = Γslσasl NT (3.15)

gsl = Γslσesl NT (3.16)

By using the model field distributions we can determine the signal overlap integrals
Γsl with the doped region S of the fiber core as follows [53]:

Γsl =
∫∫

S
isl(x, y) dx dy (3.17)

where isl(x, y) is the signal mode normalized intensity distribution. This is simpli-
fied for the pump as the strong air-cladding confinement gives a highly multimodal
pump distribution so that the pump overlap can be approximated by the ratio of the
active core and inner cladding areas.

In WDM systems, the input to the doped fiber amplifier comprises M signal
beams, each with a different frequency νsk and a different power Psk with k = 1,..., M.
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We will thus obtain M number of different equations given by equation(3.18) below.

dPsk(z)
dz

=

(
gsk

N2(z)
NT

− αsk
N1(z)

NT

)
Psk(z) (3.18)

3.1.5 Core and Cladding Pumping

In the core-pumping scheme, and for a single mode fiber, the pumping light source
is single mode and launched to the single mode core to amplify the signal, and the
amplified signal is also single mode. Core pumping in multicore optical amplifier
uses multiple pumping light in order to launch the amplification source light into
each core individually. In other words, core pumping injects multiple source light
into each core individually. Both the pump and signal lights are multiplexed with
a wavelength division multiplexing (WDM) coupler and launched into an erbium-
doped core through a fan-in (FI), and the amplified signals are output through a
fan-out (FO). The benefits of core pumping includes, high pump efficiency and ap-
plicability of components and high-speed control used in conventional single-core
EDFA. Reducing size, cost, and power consumption are the main challenges of core
pumping. The refractive index of the polymer coating around the cladding is set
higher than that of the cladding, such that light guidance in the cladding is pre-
vented.

In the cladding-pumping scheme, the pumping light source is multimode and
launched into the cladding (referred to as the first cladding). In other words, cladding
pumping injects one source light into the cladding region. The first cladding is fur-
ther surrounded by the second cladding with a lower refractive index, such that the
pump launched to the first cladding is guided by total-internal reflection. The pump
interacts with the signal when the light crosses the core, and the signal maintains
its single modeness during amplification, because the signal core is single mode.
The cladding pumping scheme is expected to reduce the power consumption com-
pared with that in the core pumping scheme. The fibers used for cladding pumping
are often called as double-clad fibers, as there are two claddings (first and second
cladding). Improving pumping efficiency, developing pump/signal combiner, and
achieving high-speed control are the challenges of cladding pumping.

3.1.6 Gain and Optimum Length

The propagation equation for the signal can be used to derive a convenient relation-
ship for the signal gain. The signal gain can be expressed in terms of the average
inversion of the ytterbium ions along the fiber. Assuming zero background loss, and
integrating signal propagation equation yields wavelength and position dependent
gain. By integrating equation 3.8, the total gain G for a YDFA of length L is obtained
using [3][9],

G = exp
[ ∫ L

0
(N2(z)σes − N1(z)σas)Γsdz

]
(3.19)

Equation (3.19) suggests that the gain is a complex function of the shape of the in-
version along the length of the fiber. The gain can be related simply to the average
inversion, by defining upper and lower state population as,

N̄2 =
1
L

∫ L

0
N2(z)dz (3.20)
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N̄1 =
1
L

∫ L

0
N1(z)dz (3.21)

Equation (3.19) can then be simplified to,

G = exp
[
(N̄2σes − N̄1σas)ΓsL

]
(3.22)

This shows that the signal gain after traversal of the fiber is dependent only on the
average inversion of the ytterbium ions in the fiber, and does not depend on the
details of the shape of the inversion as a function of position along the fiber length.
The ASE, on the other hand, will depend on the detailed shape of the inversion, due
to the local nature of ASE generation. This also implies that the figure will depend
on the profile of the inversion, and not just the average inversion.

Population density varies considerably along the fiber length due to the effect
of gradual pump absorption. In doped fiber amplifiers, fiber may thus be strongly
absorbent or they can be active media. Hence, it is possible to identify an optimum
length of the doped fiber to maximise the gain. Let us consider the case of a single
signal, a co-propagating pump and no ASE. On the input side of the amplifier, the
high pump power allows an almost total population inversion, so that the signal
power increases exponentially. As the power transfers from the pump to the signal,
Pp decreases, while Ps increases, thus determining a gradual reduction of the popu-
lation inversion and, consequently, of Ps growth rate. Beyond a certain position, the
absence of population inversion makes the material absorbent for the signal wave-
lengths. The distance between the input port and the the fiber section at which
the population inversion ceases is called optimum length, Lopt, of the amplifier. If
L = Lopt and the parameters are constant, the amplifier gain is maximised.

G =
Ps(L)
Ps(0)

Both the optimum length and G increase if the input pump power Pp(0) increases.
The higher Pp(0) is the longer the length of the fiber in which the pump is able to
create a population inversion.

Gain in doped fiber amplifier is achieved due to population inversion of dopant
ions. As there are limited number of dopant ions, increasing pumping power to
a level at which all the dopant are excited will not increase the population of the
excited level any further and the gain saturation will take place. As the input signal
power increases, inversion level reduces and there will be no further amplification.
The maximum output power beyond which no amplification occurs is called gain
saturation.

3.1.7 Simulation Results

An active multimode fiber of 100/350 µm core and single cladding diameter with
parabolic graded-index profile is considered. Assuming the doped region has the
same size as the core (core fully doped), fundamental and two high order modes
power evolution along 3m fiber length can then be visualized from figures 3.3 and
3.4, by varying the signal powers with respect of the fundamental mode. Table (3.2)
below shows the main parameters and their corresponding values used in the sim-
ulation. Core pumping configuration for single cladding fiber is considered.
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Parameters Value Parameters Value

a(µm) 50 Dclad(µm) 350

σas(m2) 5.0× 10−27 NA 0.216

σes(m2) 2.89855× 10−25 τ(ms) 1

σap(m2) 2.358× 10−24 αp(dB/m) 200

σep(m2) 2.358× 10−24 Length (m) 3

NT(ions/m3) 1.95807× 1025 λs (nm) 1064

λp (nm) 976

Table 3.2: Parameters used in the modelling and numerical simula-
tion.

To approximate the graded-index fiber profile with Comsol Multiphysics, we
used concentric circles and determined refractive index n(r) as a function of radial
distance for each circle. As it can be observed from figure (3.3a), the power in the
fundamental mode (LP01) is higher than that of high order modes (LP11 and LP21) in
the simulation. In the same figure (3.3a) 40dBm pump, 30dBm fundamental mode,
25dBm and 20dBm high order modes power are utilized. In this model as it’s stated
at the beginning, factors that can not be neglected in experiment like Brillouin scat-
tering, Raman scattering and others at high input power are not considered. The
reason for this is partly, we considered a short fiber amplifier length which can com-
pensate low input power in long fiber amplifiers, and a simplified models with spa-
tial dependency are implemented. Similarly, in figure (3.3b) equal amount of pow-
ers for fundamental and high order modes is set. In general, from figure (3.3 ) it
could be understood that, the power of high order modes affect the signal ampli-
fication or gain of the fundamental mode. Setting the power of high order modes
equal or higher than the fundamental modes as shown in figures 3.3b and 3.4 re-
spectively, reduces the gain of the signal, which is due to the gain competition of
high order modes. Along the propagation distance the power of fundament and
high order modes, ceases amplification and stays constant after the point where the
pump power is totally absorbed. The power stays stable and constant as no loss is
considered for this model, and also due to material property of ytterbium ion, which
keeps the signal from degradation for certain fiber length.
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(a) (b)

Figure 3.3: Amplification of signal power along fiber length: (a)
Higher fundamental modes (LP01) power than high order modes (b)
Power of fundamental mode (LP01) the same as other high-order

modes (LP11, and LP21)

Figure 3.4: Amplification of signal power with 40dBm pump power,
high-order modes have higher power than the fundamental mode

In figure (3.4) the power of high order modes is set to be higher than the fun-
damental mode. In normal conditions the power of fundamental mode is higher
than high order modes, and preferentially amplified. In the figure the power of the
pump signal is 40dBm, the power of fundamental mode is 30dBm, the first high or-
der mode (HOM1 LP11) is 34dBm, and the second high order mode ((HOM1 LP21))
is 32dBm. The amplification of the fundamental mode (blue color plot) along 3m
fiber length is further reduced than the previous cases we have seen in figure (3.3).

3.2 Chapter Summary

Ytterbium-doped fiber amplifier modelling equations and techniques are presented
under this chapter. In the fiber amplifier modelling procedures of this chapter, first
the fiber geometry is defined, and thoroughly meshed, then the wave equation is
solved by using Comsol Multiphysics. Parameters like effective refractive index, and
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modal intensity profiles are extracted from Comsol which are essential in determin-
ing overlap integrals, pump and signal propagations along the fiber length. In this
fiber amplifier model the dopant is uniformly distributed inside the fiber, and core or
cladding pumping could be applied. Rate and propagation equations are exploited
to study the power evolution of pump, fundamental mode and other few high order
modes. The populations at excited and ground state levels are determined using the
rate equation given by equation (3.12), then signal propagation equation (3.9) and
pump propagation equation (3.10) are solved to compute the amplification situation
of signal (fundamental mode) along the fiber. Equation(3.18) is manipulated when
many modes are considered, to determine the signal power evolution.

We varied the power of each mode and pump, to investigate the gain competi-
tion inside the fiber amplifier. When the input power of high order modes is equal
or larger than that of the fundamental mode (LP01), the overall gain is reduced and
spatial beam close to the fundamental mode is not expected at the output end as
shown in figure 3.4. As we are dealing with multimode fiber amplifier that support
large number of modes, this model is not very suitable to excite a number of guided
modes. In addition, this model is limited as it does not include factors that affects
our signal propagation(like nonlinearity, gain saturation and etc.), and also different
dopant profiles. For these and other reasons, we considered the modelling tech-
niques in this chapter, which includes the population at higher and lower energy
level, the signal and pump power propagation, as well as the signal gain along the
fiber length as stepping-stone to look for other more flexible and powerful models.
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Chapter 4

Rate and Propagation Equations

Silica fibers have lower losses(α ≈ 0.2 dB/km) in the wavelength region close to
1.55µm or in C (1530 - 1565 nm) and L (1565 - 1625 nm) bands. Though the loss is
small for a shorter span, the accumulated attenuation of the optical signal is higher
over a longer fiber distance. For this reason, the development of loss compensation
technique is vital to enable long-haul transmission successfully. Yb doped fibers are
the results of important technologies today that can provide high optical gain and
that are largely used to build high energy lasers for industrial applications.

When rare-earth elements are embedded in silica or other glass fibers, they be-
come triply ionized. Many different rare-earth ions, such as erbium, holmium, samar-
ium, thulium, neodymium and ytterbium, can be used to make fiber amplifiers that
operate at wavelengths covering a wide range, from visible to infrared. Amplifier
characteristics, such as the operating wavelength and the gain bandwidth, are char-
acterized by dopants rather than by the fiber, which plays the role of a host medium.
In this paper we have considered Yb-doped double clad fibers amplifiers, mainly
due to their interesting applications for broad gain bandwidth with excellent beam
quality, unique simple energy level structure, high pump absorption and efficiency
[12]. Although ytterbium rare-earth dopants have efficient performance, low quan-
tum defects, and interesting spectroscopic characteristics, the capacity of generating
high powers labels them very attractive in which the output power of 10-50 kW
at continuous wave single mode, multimode schemes has been recently reported.
Ytterbium (Yb3+)-doped materials have been widely used for high efficiency high
energy laser sources at the 1µm wavelength region because of their very low quan-
tum defect and the unique energy level structure of Yb3+. The observation reported
in [67] is interesting and here is reported verbatim: "it has been generally recognized
that these ion-ion interaction processes have very little influence on the operation
of ytterbium-doped fiber lasers at low and moderate power levels. However, our
recent study shows that the performance of Yb3+−doped fiber amplifiers operating
at low power levels still influenced by the ion-ion interaction processes due to the
large amount of population at the upper laser level 2F5/2".

4.1 Spectroscopic properties of Yb-doped silica glass

The spectrum of a rare earth doped fiber laser and amplifier ranges from visible (400-
780nm) to mid-infrared (2-5µm), and includes almost all of the interesting wave-
lengths for optical fiber communication, biomedical, and aerospace applications. All
rare–earth doped fiber amplifiers intensify the seed signal light through stimulated
emission. The stimulated emission of ytterbium ion involves transitions between
Stark levels of 2F5/2 and 2F7/2 electronic states called manifolds [39]. The dynamics
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of emission and absorption process of doping ions inside the host material is de-
scribed by the rate equations. This can be achieved by making use of the dopant
atomic energy structure as well as spectroscopic properties. The McCumber theory
determines the relation between the absorption and emission cross sections for two
energy–level gain media, which is given by equation (4.1) [42]

σe(ν) = σa(ν)exp
(

ε(T)− hν

KBT

)
(4.1)

where σa and σe are the absorption and emission cross sections, h is Planck con-
stant, ν is the frequency of light, KB is the Boltzmann constant, T is the absolute
temperature in Kelvin, and ε(T) is the mean transition energy between two mani-
folds. The mean transition energy ε(T) at temperature T do not depend on the op-
tical frequency, and can be determined from the energies of the single Stark levels.
ε(T) for ytterbium doped gain mediums is often close to the photon energy of the
zero–phonon, that is, the transition between the lowest sublevels of both manifolds.
Emission and absorption cross sections are equal (σe = σa), at a wavelength of 975
nm, where the ε(T) = 1.27eV. Based on the McCumber investigation, the emission
cross section and the radiative lifetime are related by equation (4.2)

1
τ
=

8πn2

c2

∫
ν2σe(v)dν (4.2)

where n is the refractive index, τ is the lifetime of atoms at excited state level, and c
is the speed of light in vacuum.

Figure 4.1 shows a model for the Yb3+ ions energy–level structure, consisting
of two manifolds: a ground state 2F7/2 (with four Stark levels denoted as L0, L1,
L2, and L3) and a well–separated excited state 2F5/2 (with three Stark levels labelled
as U0, U1, and U2), approximately placed at 104cm−1 above the ground level. As
a result, at both the pump and laser wavelengths, there is no excited state absorp-
tion (ESA) [12]. Furthermore, concentration quenching and nonradiative decay via
multiphonon emission from 2F5/2 are prevented due to this high energy gap.

Figure 4.1: Energy level diagram of ytterbium silica glass [12]



34 Chapter 4. Rate and Propagation Equations

The absorption and emission of the pump is the first transition between the two
ytterbium manifolds. Subsequently, the absorption and stimulated emission of the
signal, along with the spontaneous decay from the manifold 2F5/2 appear concur-
rently. The spectroscopic diagram of figure 4.2 shows the absorption and stimulated
emission cross sections of ytterbium doped silica glass optical fibers. The zero line
transition between the excited state (U0) and the lowest energy level of the ground
state (L0) in the manifold is represented by the absorption (fluorescence) peak at 975
nm, which is shown by point A in figure 4.2. The operation of a laser at a wavelength
of 975nm is the three level process which is due to an emission to the lowest Stark
level. The absorption peak at a shorter wavelength (point B in the plot) corresponds
to a transition from the ground level L0 to either of the excited level U1 or U2. The
absorption peak at longer wavelength (point C in figure 4.2 ) is attributed to the tran-
sition from level L1 which can produce re-absorption and leads to higher thresholds
in the ytterbium laser systems operating at around 1µm.

Moreover, the emission spectrum peak (D) correlates to the energy transfer from
level U0 to the levels L1, L2, and L3, whereas the one at (E) belongs to the transi-
tion from level U1, creating weak emissions around 900 nm. The broad absorption
spectrum of ytterbium ions enables the easy configuration of the pump wavelength.
Based on the demand of the laser systems, the laser signal wavelength can be con-
figured in the range 970 nm - 1200 nm because of the wide emission spectrum of
ytterbium ions.

Figure 4.2: Absorption and emission spectra of ytterbium ions in ger-
mano silicate host [12]

4.2 Rate Equations

The dynamics of energy level populations in laser gain media like rare-earth-doped
crystals or fibers are often modelled using a system of rate equations. These are dif-
ferential equations, describing the temporal evolution of level populations under the
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effect of optically induced and non-radiative transitions. The rate equations are typ-
ically introduced here with the definition of the relevant parameters for the quasi
three energy level structures of the rare-earth elements. The fourth order Runge-
Kutta method will be implemented, by neglecting the effects of ASE (Amplified
Spontaneous Emission) parasitic noises in our numerical simulations.

The rare-earth dopants determine the amplifier characteristics, comprising the
operating wavelength and the gain bandwidth. It is the dopant that characterise the
amplifier properties rather than the host medium. The performance of fiber ampli-
fiers also relays on the rates of radiative and nonradiative decays that are caused by
mechanisms related to lattice vibrations, cooperative up conversion to higher levels,
and ion–ion interactions. Fiber amplifiers delivers high optical gains at moderate
pump power levels over a relatively large spectral bandwidths.This makes the fiber
amplifiers a preferable entity for many applications like signal processing, material
processing, and telecommunications.

For active multimode fiber doped with ytterbium rare-earth element, the rate
and propagation equations provide population density at each energy level, signal
and pump power evolution across the fiber propagation direction. Our assumption
here is that, the rare-earth ions are only doped in fiber core and pump laser will
distribute homogeneously in fiber core cross section which is cladding pumping. We
follow the standard treatment where the electronic levels are modelled as a two-level
gain system, with N1 and N2 representing, respectively, the fractional lower and
upper level populations. With steady state two-level rate equation given by (4.4),
the upper level population fraction N2(x, y, z) of fiber cross section can be expressed
as follows in Cartesian coordinates [59] [64]:

N2(x, y, z) = NT(x, y, z)
Ip(z)λpσap + λsσas ∑k Ik

s (x, y, z)
hc
τ + Ip(z)λp(σap + σep) + λs(σs

as + σes)∑k Ik
s (x, y, z)

(4.3)

where h is Planck’s constant, c is velocity of light in vacuum, τ is upper-level lifetime
of Yb-ions representing the spontaneous decay from the upper excited level to the
lower ground state, Ip is intensity of pump laser, Ik

s is intensity distribution of k-
th eigenmode, λp and λs are pump and signal wavelength respectively, σa and σe
are absorption and emission cross sections (m2) of Yb-ions and superscript p and s
means pump and signal, respectively. For steady state condition, the populations are
time invariant [28] and the doping profile of the ytterbium ions NT(x, y, z) satisfies
the equation NT(x, y, z) = N1(x, y, z) + N2(x, y, z) [28].

d
dt

Ni(x, y, z) = 0 (i = 1, 2) (4.4)

Here intensity distribution for uniform pump field distribution across the cladding
(cladding pumping), the pump intensity could be expressed by equation 4.5 [1].
Where Ppump(z) is pump power and Rclad is inner cladding radius.

Ip(z) =
Ppump(z)
πR2

clad
(4.5)

In population equation given by equation 4.3 above the intensity distribution of
eigenmodes (Ik

s ) at signal wavelength could be obtained from the guided field [35]
as:
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Is(x, y, z) =
∣∣Eg(x, y, z)

∣∣2
where,

∣∣Eg(x, y, z)
∣∣2 is guided field of eigenmodes which is explored in chapter 1.

Normalized modal intensity distribution in(x, y) of the n-th mode in the fiber’s trans-
verse plane could be provided as the ratio of modal intensity distribution and modal
power in the longitudinal direction [25].

in(x, y) = In(x, y, z)/Pn(z)

Pn(z) =
∫ +∞

−∞

∫ +∞

−∞
In(x, y, z)dxdy∫ +∞

−∞

∫ +∞

−∞
in(x, y)dxdy = 1

(4.6)

where Pn(z) is the power of the nth mode, and it is equivalent to the integration of the
light intensity In(x, y, z) over the transverse coordinates as given by equation (4.6).
Intensity of pump in the case of core pumping is not uniform across the transverse
direction and hence equation (4.5) may not be valid under this situations. We need
to modify equation (4.3) for the case of core pumping and the population fraction at
the higher level will be given by equation (4.7) below. In this case the pump signal
absorption is higher and as a result the pump power is absorbed in a short segment
of fiber length.

N2(x, y, z) = NT(x, y, z)
λpσap ∑k Ik

p(x, y, z) + λsσas ∑k Ik
s (x, y, z)

hc
τ + λp(σap + σep)∑k Ik

p(x, y, z) + λs(σas + σes)∑k Ik
s (x, y, z)

(4.7)

In the situations where the dopant distribution is non-uniform inside the fiber core
the variations of rare-earth dopant is given by equation (4.8). For parabolic dopant
profile, the dopant concentration varies as a function of radial distance from the
fiber core where is nominal (maximum)[59][40], whereas zero outside the core (in
cladding), and its determined by using equation (4.8). Figure 4.3 below shows
parabolic dopant concentration where the nominal is 2x1025 (ions/m3), and reduced
from the core to cladding areas where its zero outside the fiber core diameter.

N(x, y) = N0

(
1− r2

a2

)
, r < a

= 0, r > a
(4.8)

where r2 = x2 + y2 and N0 is the maximum doping concentration at the core center
and reduces towards the fiber cladding.



4.2. Rate Equations 37

Figure 4.3: Dopant distribution inside the fiber core for parabolic
dopant profile

The gain coefficient in units of per meter g(x,y,z) (m−1) in core cross section is
related to the population of the rare-earth ions, the emission and absorption cross
sections at signal wavelength and is provided by equation (4.9) [59][64]. The gain
coefficient is a parameter introduced by emission and absorption cross sections, and
is used to determine the gain of fiber amplifier per unit distance.

g(x, y, z) = (σas + σes)N2(x, y, z)− σasNT(x, y, z) (4.9)

Once we found the populations at lower or excited levels using the rate equations
we have seen so far, its time to determine the evolution of power (signal or pump)
along the evolution direction using propagation equations for fiber lasers and am-
plifiers. From the propagation equations we can obtain the variation of pump laser,
as well as the signal modes at each segment of fiber length [8] along the propaga-
tion direction. Doped fiber amplifiers could be pumped in the forward or backward
direction, the propagation equations are used to show the evolution of the pump
power along the fiber length. The differential equations for forward pump power
propagation, P+

p (z), and backward pump power propagation, P−p (z), are given by
the following equations [49]:

+
dP+

p (z)
dz

= Γp

(
σae

p N2(z)− σapNT

)
P+

p (z)− αpP+
p (z) (4.10)

−
dP−p (z)

dz
= Γp

(
σae

p N2(z)− σapNT

)
P−p (z)− αpP−p (z) (4.11)

Similarly, the evolution equations for forward signal power propagation, P+
s (z), and

backward signal power propagation, P−s (z), are also given by:

+
dP+

s (z)
dz

= Γs (σ
ae
s N2(z)− σasNT) P+

s (z)− αsP+
s (z) (4.12)



38 Chapter 4. Rate and Propagation Equations

− dP−s (z)
dz

= Γs (σ
ae
s N2(z)− σasNT) P−s (z)− αsP−s (z) (4.13)

where NT is the total Yb3+concentration, which is assumed constant along the fiber
laser, αs and αp are background absorptions, σas (σap) is the absorption cross section
at the signal (pump) wavelength shown in figure 4.2, σes (σep) is the emission cross
section at signal (pump) wavelength, σae

p = σap + σep, and σae
s = σas + σes. The frac-

tion of pump power that is coupled to the doped core of the gain fiber is represented
by Γp. Γp can be approximated as the ratio of the doped core area to the area of the
inner cladding, in a double-cladding configuration, where the pump mode is fully
scrambled. Similarly, Γs is the fraction of the signal power that overlaps the doped
core area.

Parameters Value Parameters Value

a(µm) 26 λs(nm) 1064

Rclad(µm) 150 λp(nm) 976

FWHM(µm) 20 Ppump(W) 10

Length(m) 2 τ(ms) 1

h(m2kg/s) 6.626× 10−34 nclad 1.45

σas(m2) 5.0× 10−27 N0(ions/m3) 9.0× 1025

σes(m2) 2.8985× 10−25 ncore 1.467

σep(m2) 2.358× 10−24 c(m/s) 3.0× 108

σap(m2) 2.358× 10−24

Table 4.1: Parameters and respective values used in numerical simu-
lations [49] [62]

For continuous wave (CW) bulk lasers, the upper manifold populations (N2(z))
is determined by equation (4.14) as provided by [29]:

N2(z)
NT

=

Γpσap(P+
p (z)+P−p (z))
hνp A + Γsσas(P+

s (z)+P−s (z))
hνs A

Γpσae
p (P+

p (z)+P−p (z))
hνp A + 1

τ + Γsσae
s (P+

s (z)+P−s (z))
hνs A

(4.14)

where σae
p = σap + σep, σae

s = σas + σes. Equation (4.14) describes the variation of
the upper-level population density of the Yb3+ ions along the fiber through its de-
pendence on the z-varying pump and signal powers. The differential equations for
forward and backward pump and signal propagation equations are given by equa-
tions (4.10) and (4.13).

Pump and signal power propagations given by equations (4.11) and (4.13) could
be solved using the fourth-order Runge–Kutta method and shooting algorithm, given
initial boundary conditions. Equations (4.11) and (4.13) are resolved by a two-point
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boundary problem, which are the system of n first-order differential equations miss-
ing some boundary values [36]. There are many numerical algorithms for solving
two-point boundary value problem such as shooting algorithm. Shooting method
is the most commonly used algorithm, it begins from a guessed initial values and
treats the problem as an initial value problem which can be solved by Runge-Kutta.
When the initial guessed value is not reasonable, the initial guessed value can be
corrected based on the relative error between the truth value and the guessed value
by means of the different convergence algorithms until the boundary conditions are
satisfied. Whereas the shooting algorithm must generally know the initial or termi-
nal value, the laser powers at the two ends are unknown for the high-power fiber
laser system and we only know the relation between them. Generally speaking, a
shooting algorithm applicable to the two-point boundary value problem of a set of
differential equations consists of three parts, namely, the determination of accurate
initial guesses, a correction mechanism for the improvement of the initial guesses,
and a numerical integration procedure [24]. For the numerical integration, any com-
putational method can be used as long as it performs the integration accurately. The
Runge–Kutta method with adaptive step size is used in this work. In general, the
initial guesses and their correction mechanism are crucial for a shooting algorithm
to converge quickly and stably.

The population N1 at the ground state is higher, and the population N2 at the
excite state is zero before applying the pump power. When the active medium is
pumped, the populations are excited to the upper energy level or population inver-
sion takes place. Here it should be noted that even if N1 is larger than N2, as there
are populations at a higher energy level, there is a signal amplification by stimulated
emission. In addition, when the pump power is absorbed along the fiber length, the
populations at excited state drop to the ground level and the total population NT is
the same as N1 as it can be seen from figure 4.4b. At this point there is no signal
amplification, and the amplified signal will also decrease due to absorptions. Fur-
thermore, from equation (4.9) the gain is proportional to σesN2 − σasN1 and since σes
is much larger than σas, the gain can be positive even if N2 is smaller than N1.
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(a) Pump and signal powers (b) Populations N2 and N1 in forward pump

(c) Gain coefficient in forward pump

Figure 4.4: Signals, population and gain coefficient in forward pump-
ing.

The solution of the propagation equations provided by (4.10) and (4.12) for pump
and signal propagation along 2m fiber length are plotted in figure 4.4. A forward
propagating 10W pump power, 1mW signal power, with fiber mode distribution
should be used. Similarly populations of ytterbium ions at higher and ground lev-
els, and gain coefficient are depicted in figure 4.4b, and 4.4c respectively. Its could
be observed from figure 4.4a, that as the pump power is depleted after 1m of fiber
length, the signal power ceases amplification after the same fiber distance. In other
words, after 1m of fiber length the population at excited state (N2) is depleted, and
populations at ground layer are maximized, which indicates there is no amplifica-
tion via stimulated emission.
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(a) Pump and signal powers

(b) Populations in forward-backward pump-
ing scheme

(c) Gain coefficient in forward, backward
pump

Figure 4.5: Signals, population and gain coefficient in forward and
back pumping.

Figure 4.5 shows plots of signal and pump power propagation, populations of
Yb+ ion at higher and lower energy levels. In figure 4.5a the pump power propa-
gation in forward P+

p (W) and backward P−p (W) evolution along 2m fiber length is
considered. From the same figure we can also see the power evolution of signal
P+

s (W) in forward propagation directions. In figure 4.5b it is plotted the population
fraction at higher excited energy level N2 and at lower lower N1 for both forward as
well as backward pumping scheme simultaneously. Similarly position or z depen-
dent gain coefficient in forward and backward pumping scheme is shown in figure
4.5c. The position dependent gain coefficient g(z) which varies along z direction is
given by equation (4.15) as follows:
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g(z) = Γs [(σas + σes)N2(z)− σasNT]− αs (4.15)

4.3 Saturation Intensity and Fluence

Before diving into the discussion of saturation power and energy of continuous
wave and pulsed input laser signals, let’s see some basic characteristics of pulsed
lasers first. Pulsed lasers emit discrete pulses at a given repetition rate or frequency
as shown in figure 4.6. Regularly repeating train of optical pulses have a period (T)
related to repetition rate (frep) reciprocally, i.e, T = 1/ frep. Assume the energy (E)
contained in every pulse constant, power is just the time rate of change of the energy
flow (energy per unit time). So this leads us to define two different types of power,
peak power and average power. Pulse peak power is estimated from pulse energy
and pulse width also called pulse duration (τpulse = ∆t). Similarly, pulse average
power is determined from pulse energy (E) and pulse period (T). Assuming uni-
form power distribution, the peak (Ppeak) and average (Pavg) powers of pulsed laser
are given by:

Ppeak =
E

τpulse
(4.16)

Pavg =
E
T

= E frep (4.17)

Rearranging variables allows us to define a new quantity called duty cycle, which
indicates the fractional amount of time the laser is ON during any given period. The
duty cycle is thus given by the ratio of pulse duration to pulse period, or by the ratio
of average power to peak power, as provided by equation (4.18) below.

Duty cycle =
τpulse

T
=

Pavg

Ppeak
(4.18)

Figure 4.6: Temporally separated pulses of a pulsed laser

Continuous wave and pulsed lasers both can be described by the same intensity
saturation parameter if pulse duration is longer than fluorescence lifetime (upper-
state lifetime). On the contrary, we must apply energy density saturation parameter
instead of intensity saturation when pulse time duration is lower than fluorescence
lifetime. Saturation energy is a measure of the incident optical pulse energy required
for achieving significant saturation of an absorber or a gain medium. Other parame-
ter is saturation fluence which is the saturation energy per unit area [12]. Saturation
power (Psat−CW) for continuous wave lasers and saturation fluence Fsat (energy of
pulsed laser per unit area ) for pulsed lasers are given as follows:
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Psat−CW =
h A νs

τ(σas + σes)
(4.19)

Isat−CW =
Psat−CW

A

=
h νs

τ(σas + σes)

(4.20)

Isat−pulse =
τ

2τpulse
Isat−CW

=
h νs

2τpulse (σas + σes)

(4.21)

Esat−pulse =
h νs A

2 (σas + σes)
(4.22)

Epulse = Ppeakτpulse (4.23)

Fsat =
Epulse

A
(4.24)

where τ upper state lifetime, τpulse pulse duration, A is mode area, νs signal fre-
quency, σas and σes are absorption and emission cross sections of the laser signal,
Isat−CW is saturation intensity of continuous wave, Isat−pulse is saturation intensity of
pulsed laser, Esat−pulse is saturation energy for pulsed lasers, and Epulse is energy of
pulsed laser.

Let us use ytterbium doped multimode fiber parameters implemented in exper-
iment [46], to determine the saturation power and saturation intensity. In fiber am-
plifiers and fiber lasers, saturation power and saturation energies are parameters
that affects and determines their performance. In unsaturated regimes, fiber ampli-
fiers and fiber lasers are characterised normally, that is, input conditions have direct
effect on the output. For instance, increasing the input power have direct conse-
quence on the output power, the output power is also increased. However, in the
saturated region this kind of relation is no more valid. Hence it is essential to know
the saturation powers in continuous wave signal or saturation energy as well as in
pulsed type of input seeds. To calculate these saturations we use saturation equa-
tions given by (4.19) through (4.24). The main parameters used in experiment by
Niang and et al. [46] are: core and cladding diameters of 47/114µm input average
power 22.5mW, 1.1dB/m linear attenuation, 5m Yb-doped graded-index multimode
fiber length, 10W continuous wave pump power, 500ps pulse duration, input pulse
laser with 500Hz repetition rate at 1064nm signal and 940nm pump wavelengths. We
found out that the saturation power of continuous wave signal, Psat−CW = 1.1015W,
continuous saturation intensity, Isat−CW = 6.3488× 108 W/m2, saturation intensity
of pulsed laser, Isat−pulse = 6.3488 × 1014 W/m2, and saturation energy of pulsed
laser, Esat−pulse = 5.5074 × 10−4 J. Determining these saturation intensities and
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power is essential in fiber amplifiers and laser, to know weather they are oper-
ating in maximum achievable power level or normal operation region (below the
saturation point). To investigate this point further, let’s see scenarios under which
there could be local pulse energy saturation in self replicating beam propagation in
graded-index multimode fiber. With 10W peak signal power and pump power of
20W, the pulse energy is determined to be, Epulse = 5nJ. If the saturated energy
is less than, this pulse energy (Epulse = 5nJ), then it is said to be the pulse energy
is saturated, this could be achieved when the signal (beam) diameter is 0.1µm, and
the saturated pulse energy at this signal diameter is, Esat−pulse = 2.493nJ. To sum
up, the pulse is saturated, when the saturation energy of the pulse is lower than the
pulse energy (Esat−pulse < Epulse). Saturation energy of the pulsed fiber laser or am-
plifier is the maximum achievable energy, and once the pulse is saturated increasing
the input laser signal or other input conditions could not increase the output fiber
amplifier and fiber laser signal.

As we can see from figure 4.7 the mode diameter when there is high intensity is
7.4µm, and at the position where there is low intensity is 55µm. This shows energy
of the pulse is not saturated locally along the propagation direction, as the beam
diameter is larger than 0.1µm at high intensity point. In other words, for this situa-
tion, the pulse energy is, Epulse = 5nJ, and saturated pulse energy at larger beam
diameter (55µm) is, Esat−pulse = 754.18µJ, and at lower beam diameter (7.4µm),
Esat−pulse = 13.653µJ. Under both these situations the saturation pulse energy is
higher than, the pulse energy which confirms there is no local saturation along the
pulse propagation direction.

Generally, we have shown that the pulse saturation properties are strongly de-
pendent on mode area, peak power, repetition rate and pulse duration. From the
energy conservation point of view as well, the gain of the amplifier have to satu-
rate, because we cannot extract more output power from the amplifier than it was
[12]. Operating fiber amplifiers in saturation region could have also advantages [12],
some of which are: small fluctuations in the seed signal do not reflect to the same
extent in the output amplified signal, fiber amplifier which has multiple spectrally
close input signals with variable intensity, may work as a gain equalizer because
smaller input signal powers have higher gain (through less saturation), and higher
input powers have lower gain (due to a higher degree of saturation), and saturated
optical amplifier presents a high energy extraction efficiency.
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(a) Self-imaging in GRIN MMF

(b) Beam width under maximum intensity (c) Beam width under minimum intensity

Figure 4.7: Local intensity saturation phenomenon in GRIN MMF

4.4 Optimization of Parameters and Maximizing Gain

Now let’s explore how to optimize parameters to investigate maximum gain in Yb3+

doped multimode fiber amplifiers, from bulk medium rate and propagation equa-
tions. In other words, here we will see how we can maximize the gain of pulsed
signal power and control the output power by optimizing pulsed laser parame-
ters given in table 4.2. These parameters in active multimode fibers include, input
power of signal, input pump power, dopant concentration, fiber length, beam width,
fiber core radius and filling factor ratios. In addition to input parameters pumping
schemes, i.e, cladding or core, backward or forward pumping could also affects the
amplification phenomenon.
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Parameters Value Parameters Value

Dcore(µm) 96 λs(nm) 1064

Dclad(µm) 275 λp(nm) 940

FWHM(µm) 75 Ppump (W) 20

L (m) 1 τ(ms) 1

ncore 1.47 nclad 1.457

σas(m2) 5.0× 10−27 N0(ions/m3) 9.0× 1025

σes(m2) 2.89855× 10−25 Ppeak(W) 10

σep(m2) 2.358× 10−24 ∆t(ps) 500

σap(m2) 2.358× 10−24 frep(Hz) 500

Table 4.2: Pulsed laser parameters used in [19]
numerical simulations.

Rather than increasing the pump power, and dopant concentration to have gain
maximization or signal power amplification we have increased the signal beam di-
ameter and achieved higher seed gain in backward pumping scheme. Using param-
eters listed in table 4.6 with pump power of 20W in backward pumping, and peak
signal power of 10W, we can observe pump power, signal power and gain coefficient
propagation. In figure 4.8, 40µm signal diameter is considered all other parameters
kept constant with respect to the plot in figure 4.9 where 75µm signal width diameter
is examined.

(a) Pump and signal power (b) Gain coefficient per meter

Figure 4.8: Signal and backward pump power propagation with
40µm signal diameter.

A gain more than 6dB is obtained as it could be observed from figure 4.9, using
10W peak input power at 1m fiber length. The same input conditions are used as
when the input beam width is 20µm, but here it is incremented to 75µm, and we
obtained higher gain six times larger.
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(a) Pump and signal power (b) Gain coefficient per meter

Figure 4.9: Backward pump and signal power propagation with
75µm signal diameter.

Figure 4.10 shows propagation of pump and signal powers both in forward direc-
tion. Except the pumping scheme (forward in this case), other parameters remains
the same as the previous two figures, where the pump was propagating backward,
with signal having a diameter of 75µm full width at half maximum, and 20W pump
power. In the first half meter of the fiber the signal propagates linearly, from its mini-
mum to 8.5dB maximum signal power gain. After the first half of the fiber the pump
power is totally absorbed, and the signal power gain remains constant, where there
is no more increment.

(a) Pump and signal power (b) Gain coefficient per meter

Figure 4.10: Forward pump and signal power propagation with 75µm
signal diameter.

4.5 Chapter Summary

In this chapter, rate and propagation equations for highly multimode fiber amplifiers
by considering core and cladding pumping schemes are formulated and studied.
The evolution of pump power, signal and populations are plotted under different
circumstances of pumping: forward, backward, and both forward and backward.
Saturation intensity for continuous wave signals, and saturation fluence for pulsed
laser inputs are also formulated and investigated.
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Local intensity saturation for self-imaging input signal in graded index multi-
mode fiber is analysed, and discussed. After making numerical investigations and
analysis, we realized that local saturation could happen inside fiber amplifiers, at
high intensity (pinch) point. Conditions that maximize the signal gain by optimiz-
ing the given fiber amplifier parameters are also thoroughly studied in this chapter
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Chapter 5

Nonlinear and Gain Coupling in
Unperturbed Multimode Fibers

In a perfect multimode optical fiber, mode coupling would not occur because each
mode is orthogonal to the others. However, because of imperfections in fibers, such
as bends, local gain and temperature modes can couple [38]. Mode coupling could
also occurs in a tapered multimode fiber, where the core radius varies along the
fiber length [59]. Each time when the core radius varies, power is exchanged among
the modes, and mode coupling happens. In [27][68] it is defined that there is weak
mode coupling, when the coupling is between modes having similar propagation
constants, and strong mode coupling is a coupling between modes having unequal
propagation constants.

In our research activity, we have investigated mode coupling in ytterbium doped
multimode fibers due to active medium (gain), Kerr nonlinearity and random disor-
der. In this chapter we will investigate coupling in unperturbed active multimode
fiber, that is, excluding disorder which will be discussed in the next chapter. Uni-
form gain distribution is considered first and position dependent gain across the
fiber propagation distance is contemplated. In addition, we probed mode selection
techniques to achieve single mode regime beam quality of the laser output in large
mode area fiber. This could be realized by suppressing the excitation or propagation
of high order transverse modes in active GRIN multimode fibers, by carefully ad-
justing the launch conditions of the signal beam and modifying the dopant profiles.
Input seed beam with inclined angle, parabolic and ring dopant profiles are exam-
ined in our numerical simulations for mode selection and beam cleaning activity.

Let us start by examining the sole effect of non-homogeneous gain distribution,
in which the evolution equation is provided by:

∂Eg(x, y, z)
∂z

=
1
2

g(x, y, z)Eg(x, y, z) (5.1)

where g(x, y, z) is intensity gain and obtained from equation (4.9) in chapter 4. This
gain term is related to the rare-earth dopant populations at lower and higher energy
level after excitation by pump power, and determined from the rate equations. Ex-
panding equation 5.1 with the modal basis or by substituting guided electric field
given in chapter 1 into equation 5.1 we can obtain:

∂

∂z

(
∑
n

an(z)ψn(x, y)eiβnz

)
=

1
2

g(x, y, z)

(
∑
n

an(z)ψn(x, y)eiβnz

)
(5.2)



50 Chapter 5. Nonlinear and Gain Coupling in Unperturbed Multimode Fibers

All elements of the base are here identified by a single index, namely n. Now ex-
ploiting the orthogonality among the modes and projecting over another mode, say
ψk one obtains the following coupled mode system

dak

dz
=

1
2 ∑

n
an(z)

∫ ∫
g(x, y, z)ψn(x, y)ψk(x, y)∗ei(βn−βk)zdxdy (5.3)

where,

∫ ∫
ψn(x, y)ψk(x, y)∗ei(βn−βk)zdxdy = 1 , when n = k

From equation (5.3) we can make the following general main points:

1. In case when the gain g(x, y, z) is homogeneous in x,y as it happens for uniform
dopants and uniform pump distribution the equation reduces to:

dak

dz
=

1
2 ∑

k
g(z)ak(z) (5.4)

This fact implies that each mode sees exactly the same gain and modes are
not coupled by gain. In other words, there is no selection of modes by gain.
Coupling can still be possible due to other factors like, linear mode coupling
(fiber bending) or nonlinear mode coupling, but these terms are not present
here.

2. In case the gain g(x, y, z) is not homogeneous in x,y dopants or pump beam
should feature non homogeneity at the scale of the mode sizes, then equation
(5.3) shows that a non uniform gain brings mode coupling. Some coupling
terms are fast oscillating due to the beating terms among the modes. In GRIN
multimode fibers some of these terms are not fast oscillating due to the de-
generacy of modes (resonant coupling), mode coupling induced by gain is dis-
cussed for instance in [43]. In this case when the gain is not uniform, one can
rewrite equation (5.3) in the following way:

dak

dz
= ∑

n,k
Gn,k(z)an(z)ei(βn−βk)z (5.5)

where,

Gn,k(z) =
1
2

∫ ∫
g(x, y, z)ψn(x, y)ψk(x, y)∗dxdy (5.6)

It is evident that to have a modal selection by gain the gain non uniformity
should be at the scale of the modal distribution. The gain per mode, Gn,k(z),
provided by equation (5.6) depends on the transverse dopant distribution and
pump modal profile.
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3. Note that this model consider only the possible coupling induced by non uni-
form gain. The presence of gain implies also other mechanisms of mode cou-
pling here not considered: Thermal variation of the refractive index, gain satu-
ration (non uniform in x,y), variation of the refractive index close to resonance.

Another important feature is when modal dependent gain (as the one arising
from non uniformity of dopants) meets a coupling mechanism, especially when the
two scales (differential gain and coupling length) have similar size. For the case
of mode dependent gain and linear mode coupling (especially for two modes) this
point has been investigated in several papers [20] [66]. A much less explored case
is a multimodal system where the coupling mechanism is both linear and nonlinear.
Limiting first our analysis to the nonlinear coupling only in presence of gain, our
modelling equation to solve numerically is derived in chapter 2 from evolution of
optical beam governed by multi-dimensional nonlinear equation, and here we will
add the effect of gain on nonlinearity [5]. The general coupled mode equation due
to non-uniform distribution of gain and nonlinearity we implemented to study the
evolution of modal power along the fiber length is given by equation (5.7). In other
words, we need to add the gain term for active multimode fiber, formulated by equa-
tion 5.5 into coupled mode equation only due to nonlinearity, and the coupled mode
equation given by (5.7):

dan

dz
= ∑

k
Gk,n(z)ak(z)ei(βk−βn)z + iγ ∑

m,p,q
Qm,p,q,nama∗paqei∆βm,p,q,nz (5.7)

where the function an represents the slowly varying complex amplitude of mode n,
with corresponding linear propagation constant βn. ∆βm,p,q,n = βm − βp + βq − βn
is the phase mismatch for the mode group with indices m,n,p,q and overlap coeffi-
cients Qm,p,q,n =

∫ ∫
ψmψ∗pψqψ∗n where ψn(x, y) is the n-th element of the orthonor-

mal basis of guided modes. γ = n2kerrω
c is the nonlinear coefficient ( m/W ) of the

fiber at the angular frequency ω ( rad/sec ), with n2kerr being nonlinear index having
a value of 3.2x10−20(m2/W) for silica fibers.

The total input power Pin in our numerical model is determined by integrating
intensity across the fiber area using equation (5.8) at z = 0. The power evolution of
each mode Pn(z) is plotted both in linear and the dBW (decibel watts) scale, where
the dBW scale is given by equation (5.9).

Pin(z = 0) = ∑
n
|an(z = 0)|2 (5.8)

Pn(dBW) = 10 log10

(
Pn(W)

1W

)
(5.9)

5.1 Coupling with Uniform Gain Profile

Here we will illustrate the case of flat gain and an input Gaussian beam of diameter
10µm at FWHM (full width at half maximum) an input tilt angle so not to excite
preferentially the fundamental mode. The small input tilt angle is also considered to
compensate the disturbance that occurs in experiment or practically. The refractive
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index and gain profile for uniform dopant distribution are illustrated in Figure 5.1a
(top left panel). In the figure 5.1 it is also plotted the propagation of modal power for
2m long GRIN multimode fiber length. The blue curve shown in the figure is the fun-
damental mode, labelled HG00, where HG stands for Hermite-Gaussian mode. For
the first meter of propagation the evolution in logarithmic scale is linear, all modes
grow with the same gain as expected and the fundamental mode has not the largest
component due to the initial tilt (2.5◦). In the second meter the propagation starts
to exhibits a nonlinear evolution, and modes exchange energy. Modes are more and
more coupled by the nonlinear terms as soon as the beam is amplified. The frac-
tional contents depends (for a fixed input condition) on the input power. To solve
equation 5.7 numerically we limited the sum only to those terms having a low (< 50
rad/m) phase mismatch (both for gain and FWM). However it is known that rapidly
varying coupling terms are responsible for an effect of gain equalization (gain non
uniformity can be equalized by rapidly varying terms) and new simulations should
consider also these rapidly varying terms [64]. In this first study the fast oscillat-
ing terms are removed to increase the computational efficiency. Evolution of modal
powers and gain per mode for a total of 25 simulated Hermite-Gaussian modes for
uniform dopant profile is illustrated in Figure 5.1.

(a) Refractive index and gain profile (b) Evolution of modal powers

(c) Modal power evolution

Figure 5.1: Evolution of modal power upon amplification with flat
gain profile.

In figure 5.2 the input power is increased from 565.234W to 1017.422W with re-
spect to figure 5.1, but other parameters are kept the same. Here we can observe that
increasing power has significant effect in modal power coupling, as the effect of Kerr
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nonlinearity is higher. For uniform gain profile, all the guided modes (25 Hermite-
Gauss modes) have equal gain per mode (G(n,k)) in units of per meter. Table 5.1
indicates some of the guided Hermite-Gauss modes used in our numerical simula-
tions as indicated also in the legend of the figures. The tables shows the number of
modes that corresponds to the Hermite-Gaussian (HGmn).

Hermite-
Gauss Modes

Mode
Number

Hermite-
Gauss Modes

Mode
Number

HG00 1 HG10 6

HG01 2 HG11 7

HG02 3 HG12 8

HG03 4 HG13 9

HG04 5 HG14 10

Table 5.1: Fundamental and high order modes (not the whole guided
modes) used in our numerical simulations.

(a) Refractive index and gain profile (b) Evolution of modal powers

(c) Modal power evolution

Figure 5.2: Propagation of modal power upon amplification with uni-
form gain profile.
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5.1.1 Position Dependent Gain Coefficient

Here we will see numerical simulations when the gain coefficient in equation 5.5
varies across fiber length or simply position dependent. The gain for each eigen-
mode Gn,k(z) can then be calculated as follows:

Gn,k(z) =
1
2

∫ +∞

−∞

∫ +∞

−∞
g(z)ψn(x, y)ψ∗k (x, y)dxdy, for n = k (5.10)

where g(z) is position dependent gain or gain coefficient determined from pump
power and dopant concentrations, using shooting and Runge-Kutta algorithms dis-
cussed in chapter 4.

Numerical simulations in figure 5.3 and 5.4 below shows the case in the pres-
ence of Kerr nonlinear effect, uniformly distributed dopant concentration with 10W
pump power and back pumping scheme. The power evolution of modes in this case
shows, there exist modal interaction along the fiber length irrespective of the mag-
nitude of position dependent gain coefficient. The mode coupling is more complex
after the first meter of fiber length which is due to higher amount of gain coefficient
in that region. Furthermore, the interaction and modal power exchange is higher
when the input power is increased from 565.23W to 5.652kW, as it could be seen in
figure 5.4a and 5.4b.

(a) Gain coefficient in backward pump (b) Modal power evolution in dBW

(c) Modal power evolution in linear scale

Figure 5.3: Modal power evolution for z dependent gain and with
nonlinearity.
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Figure 5.3 and 5.4 are numerical simulation results under the same input param-
eters, except the input power is increased in the later figure. Both gain and nonlinear
effects are included, but the coupling is due to nonlinearity, because the gain distri-
bution is uniform along the fiber length. As we can observe in figure 5.4 there is
high modal coupling among the fundamental mode (blue plot) and other high order
modes, and power is transferred from one mode to another.

(a) Modal power evolution in dBW (b) Modal power evolution in linear scale

Figure 5.4: Modal power evolution for z dependent gain and with
nonlinearity.

5.2 Non-uniform Gain Coupling

We now consider, with the same input condition as before, a fiber with a parabolic
graded-index (GRIN), but with a non uniform doping concentration. Under non-
uniform distribution of active medium, we will see parabolic and ring dopant pro-
file. Ring is a dopant profile where we have nearly zero gain in the center, and large
gain for low and high order modes. These situations are, of course, difficult to ob-
tain because the doping concentration also modifies the refractive index which in
turn can be hardly kept parabolic unless with the insertion of other types of dopants
to compensate. The index and gain profiles for ring dopant distribution is illustrated
in Figure 5.12 (top left panel). The right panel of the same figure shows the evolu-
tion of the fractional contribution of modes. Again the first meter of propagation is
nearly linear and it is possible to see how the fundamental mode (blue curve) is am-
plified less than the other modes as a result of the non uniform gain. Surprisingly
when the nonlinear coupling get stronger then fundamental mode also grows up.
Note that the mode is not amplified directly but it is driven by the coupling of the
other modes.

5.2.1 Parabolic dopant profile

Evolution of modal powers, gain per mode for a total of 25 simulated Hermit-Gaussian
modes for parabolic dopant profile is illustrated in figure 5.5. From figure 5.5c we
can see that the gain per mode for fundamental mode (HG00) is higher than that
of other high order modes, that is in fact due to pump distribution and the dopant
concentration which is higher inside the core, and favours the fundamental mode
which has the same profile. From the same figure (figure 5.5c) we can see that, dif-
ferential modal gain (the gain difference between modes) is small. Further we will
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investigate numerical simulation results for parabolic doped profile by increasing
the input power, the effects of input source inclination and normal input incidence,
the effects of reducing and increasing the dopant radius with respect to the radius of
refractive index profile with 25 Hermite-Gaussian modes. First let’s consider under
low and then high input power, inclined incident input beam, and with the same
size of dopant radius as that of core refractive index size (it could be observed from
figure 5.5a).

Figures 5.5 to 5.7 shows numerical simulations of parabolic dopant distribution
under the same input conditions (25 guided modes, 10µm input beam width FWHM,
inclined to 2.5◦) but the input power is increased from 565.23W to 5.6523kW. The re-
fractive index profile, power gain profile, modal power evolution in dBW scale, gain
per mode for each guided modes, and modal power propagation in linear scale (W)
is provided in each figure respectively from top left to bottom right. Increasing the
input power has significant effect for mode coupling due Kerr nonlinearity as well
as non-uniform gain distribution. In other words, the modes are coupled strongly
(complex) throughout the fiber length when the input power is higher, than when
the input power is lower as it could be seen from figure 5.5b. As a result, there is
high power transfer from high order modes to fundamental mode and among high
order modes as well.

(a) Refractive index and gain profile (b) Evolution of modal powers

(c) Gain per mode (d) Modal power evolution

Figure 5.5: Propagation of modal power for parabolic gain profile.
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(a) Refractive index and gain profile (b) Evolution of modal powers

(c) Gain per mode (d) Modal power evolution

Figure 5.6: Evolution of modal power for parabolic gain profile.
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(a) Refractive index and gain profile (b) Evolution of modal powers

(c) Gain per mode (d) Modal power evolution

Figure 5.7: Evolution of modal power for parabolic gain profile and
higher input power.
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Furthermore, under the same parabolic dopant profile, we will see the results
when reducing the radius of dopant concentration, with respect to refractive index
profile. I reduced the radius of the dopant concentration to half of the radius of the
core that is 13µm, and the simulation result is shown for two values of input power.
Likewise, the modal power propagation results with larger radius of dopant con-
centration (40µm), is also shown in figure (5.11). It is understood from numerical
simulation results that, by increasing the radius of rare-earth dopant distribution
with respect to parabolic index profile, large number of modes could be supported
and the output power is higher. This effect is only visible if the number of modes are
higher, and increasing the dopant distribution is able to accommodate. Otherwise
for smaller number of modes increasing the dopant radius may not bring any dif-
ferences. The plots shown in figures (5.10) and (5.11) indicate propagation of modes
along a 2m fiber length under 565.23W and 1017.42W input power respectively, with
distribution of dopants covering larger fiber cross section. From the same figure it
could be seen how the power of each mode vary under each input power, both in
logarithmic and linear scales.

(a) Refractive index and gain profile (b) Evolution of modal powers

(c) Gain per mode (d) Modal power evolution

Figure 5.8: Evolution of modal powers with reduced radius of
parabolic gain profile.
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(a) Refractive index and gain profile (b) Evolution of modal powers

(c) Gain per mode (d) Modal power evolution

Figure 5.9: Evolution of modal powers with reduced radius of
parabolic gain profile.
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(a) Refractive index and gain profile (b) Evolution of modal powers

(c) Gain per mode (d) Modal power evolution

Figure 5.10: Evolution of modal powers with larger radius of
parabolic gain profile.



62 Chapter 5. Nonlinear and Gain Coupling in Unperturbed Multimode Fibers

(a) Refractive index and gain profile (b) Evolution of modal powers

(c) Gain per mode (d) Modal power evolution

Figure 5.11: Evolution of modal powers with larger radius of
parabolic gain profile.

To summarize, what we have seen up to now are numerical simulation results
for parabolic doped GRIN multimode fiber under different input power and dopant
radius. It is clear that by increasing input power nonlinear length and modes non-
linear coupling distance is reduced. Decreasing the dopant radius towards the core,
results in reduced output power. This is mainly due to the fact that, by reducing
the dopant the input beam of light excites limited number of modes confined in
that region of rare-earth elements and suppress the other high order modes outside
the active region, which results in reduced output power amplification. In addition
by reducing the dopant area, the differential modal gain as we can observe from
the gain per mode plot (figures 5.8c and 5.9c) is higher as expected. Increasing the
dopant concentration area however, have the opposite effect. Increasing the active
medium region, will able to amplify all the high order modes supported by the GRIN
multimode fiber. In the simulation, it is important to consider the number of modes
used with respect to the dopant area. That means that if a few number of modes
are considered in the simulation than the multimode fiber supports, increasing the
dopant area might not have a significant difference or effect.

5.2.2 Ring dopant profile

The ring gain profile is shown in Figure 5.12a where the dopant is concentrated close
to the cladding and sparse or null close to the core center. In ring dopant profile light
in the spatially coherent high order mode is amplified and then coupled to the low
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(fundamental) mode [51]. This kind of dopant distribution has the advantage of in-
creasing the efficiency of energy extraction in the amplifier, when the doped ring
position coincides with a maximum in the high order mode intensity pattern. Here
from the figure the radius at which we have a zero gain (no dopant concentration)
is 10µm. From the same figure we can see how the fundamental mode plotted with
blue color is amplified less than the other high order modes due to the dopant distri-
bution in addition to input tilt. This dopant profile in general favours amplification
of higher order modes and transfers modal powers (due to exchange of energy) to
the fundamental mode which is facilitated by nonlinear and non-uniform gain cou-
pling. Furthermore, we will study the effects of increasing input power, and shrink-
ing the dopant concentration towards the cladding, in other words increase the ra-
dius at which we have a zero gain around the center. It is expected that by shrinking
the dopant concentration the output power amplification will decreases, due to the
reduction of dopants. In other words this means, for lower dopant distribution, the
output power is also reduced.

(a) Refractive index and gain profile (b) Evolution of modal powers

(c) Gain per mode (d) Evolution of modal powers

Figure 5.12: Evolution of modal powers upon amplification with ring
gain profile.
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(a) Refractive index and gain profile (b) Evolution of modal powers

(c) Modal power evolution

Figure 5.13: Evolution of modal powers upon amplification with ring
gain profile.

Finally from our numerical simulation results we presented until now under
uniform and non-uniform dopant distributions, we can summarize main results as
shown in table (5.2). From the table Pout(W) is the total output power at the end
facet of fiber length obtained from the whole considered modes (guided modes).
The power in decibel scale (dB) is given as the ration of output to input power in
logarithmic scale. It is clear from the table that under the same input conditions, the
total gain in dB scale is lower for ring dopant profile.

Gain(dB) = 10 log10

(
Pout(W)

Pin(W)

)
(5.11)
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1. Flat dopant profile

Pin(W) Pout(W) Gain (dB)

565.24 8.389× 104 21.71
1017.42 1.5100× 105 21.71
5652.34 8.3888× 105 21.71

2. Parabolic dopant profile

565.24 5.5142× 104 19.8926
1017.42 9.9179× 104 19.8892
5652.34 5.5129× 105 19.8915

3. Ring dopant profile 565.24 1.5550× 103 4.3950
1017.42 2.7930× 103 4.3857
5652.34 1.5340× 104 4.3359

Table 5.2: Total gain, input and output power at the end of fiber
length

5.3 Random Phase Distribution and Beam Cleaning

Random phase distribution and input beam tilt angle have direct consequences on
the propagation of fundamental and higher order modes in active GRIN multimode
fibers. Under this section we will scrutinize effects of uniform random phase dis-
tribution on output guided field. Intensity profile of output guided field shows
speckle, as the random phase distribution increases. The random phase distribution
angle (θR) is controlled by multiplying the uniform random number by an angle in
the range of 0− 2π. In addition, large number of modes and a wide transverse spa-
cial window are required to visualize a speckled beams using coupled mode equa-
tion. The spatial field envelope A(x,y) of a Gaussian input beam for initial condition
are related to tilt angle (θ) and random phase distribution (θR) by equation (5.12).

A(x, y) =
∫ +∞

−∞

∫ +∞

−∞
A0exp

(
− x2 + y2

w2

)
ψ∗n(x, y)exp(jθR(x, y) + jkxsinθ)dxdy

(5.12)

Intensity profile of output guided field could be visualized from figure 5.14, for
uniform dopant distribution in the fiber core, by neglecting Kerr nonlinearity, and
with uniform random phase distribution. A coupled mode equation given by equa-
tion (5.7) is used for the numerical simulation with 20µm input Gaussian beam di-
ameter full width at half maximum (FWHM). Figure 5.14 shows intensity profiles
of guided modes at the output end of the multimode fiber in the absence of gain
and Kerr. The output modal power propagation in the logarithmic scale is constant
throughout the fiber length, and the spatial intensity profile of output beam is speck-
led under this scenario.
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Figure 5.14: Transverse intensity profile of a speckled output guided
field at random phase

5.4 Kerr Nonlinear Effect and Beam Cleaning

Optical fibers provide the backbone of today’s internet communication networks,
and enable compact, low cost light sources for a variety of industrial and biomedical
applications. In most of these applications, single-mode fibers are used. Replacing
single-mode fibers with multimode fibers leads to a dramatic growth of transmis-
sion capacity, and a substantial increase of average power and pulse energy from
fiber lasers. However, because of mode interference, multimode fibers suffer from
an inherent randomization of the spatial transverse beam profile, leading to a beam
scrambling in a complex speckled pattern. Kerr beam self-cleaning exploits the in-
tensity dependent refractive index, or Kerr nonlinearity, of glass fibers to recover the
beam quality of a multimode wave, and compensate for temporal modal dispersion.

The physical mechanisms responsible for Kerr induced beam self-cleaning is due
to the self-imaging property in GRIN multimode fiber and nonlinear mode mixing
effects. In fibers with a parabolic index profile, the equally spaced propagation con-
stants of the modes lead, through the coherent mode beating, to a periodic local
intensity oscillation along the fiber, which in combination with the Kerr nonlinear-
ity creates a periodic longitudinal modulation of the refractive index [32]. Modal
FWM interactions introduce quasi-phase-matching conditions allowing for numer-
ous mode coupling processes, and thus energy exchanges among the modes, which
may favor the fundamental mode of the fiber. Parabolic profile of the refractive
index provides the highest value of mode overlap between the input multimode
field and the fundamental mode. The energy exchanges, which involve the fun-
damental mode, become irreversible because of its highest self-phase modulation
coefficient; if the initial power distribution is in favour of the fundamental mode
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at a sufficiently large input power, one observes an irreversible decoupling of the
fundamental mode, allowing the power to remain in this mode.

We will demonstrate how to control the beam quality in active graded index
multimode fibers, by exploiting the effect of Kerr nonlinear dynamics using cou-
pled mode equations. In a fiber with parabolic index profile, the average intensity
will be bell shaped and peaked at the centre of the fibre, this is because light tends
to be more concentrated in regions with higher refractive index [66]. Fundamental
mode (HG00) completely overlaps with parabolic index profile and is preferably am-
plified, with respect to the high order modes that show smaller overlap integrals.
Numerical simulation in figure 5.15 and 5.16 are in the presence of the nonlinear
effect, the beam width of Gaussian input is 20µm in diameter full width at half max-
imum (FWHM), with normal input beam inclinations. Random phase distribution
is considered and an angle of 3/2π ( the angle θR in equation (5.12) ) is multiplied
by uniformly varying random number. The angle θR has to be controlled in such a
way that, it should neither be very small nor very large, otherwise the output signal
is highly speckled (distorted). The effect of amplification is excluded, as it can be
understood from the intensity profile plots of figures (5.15b and 5.16d) that by in-
creasing the input power (Pin), a reorganized and stable beam at the output end is
observed due to Kerr nonlinear effect. With higher input power, there is high modal
interaction (coupling), hence transfer of energy among the modes, particularly to
fundamental mode which results in beam reorganization and cleaning at the fiber
end. The beam cleaning is not only observed at the output end of the fiber, but even
beyond some section of the fiber length.

Beam cleaning is the process that transforms the output speckled beam pattern
into a high quality, quasi single mode bell-shaped beam, accompanied by a low
power background of high order modes (HOM) [33]. The beam cleaning leads to
the transition form a speckled pattern to a more regular pattern where power is con-
centrated around the axis of the fiber and the cleaned beam remain cleaned for the
entire length of the fiber.

There are a well known beam quality metrics for high energy fiber lasers and
amplifiers. The M2 factor also called beam quality factor is a common measure of
the beam quality, which represents the degree of variation of a beam from an ideal
Gaussian beam. It provides a quantitative means to establish how well a given laser
beam will focus or diverge and is always relative to a diffraction limited condition of
the same beam size and wavelength. The best possible beam quality is a diffraction-
limited Gaussian beam having an M2 equal to 1. Mathematically, M2 is given by:

M2 =
θπw0

λ
(5.13)

where θ is the beam divergence, w0 is the measured beam waist and λ is the wave-
length of light.

The M2 method is useful for a quick estimate of beam cleaning, but it is not re-
ally appropriate especially in the nonlinear regime and for multimode beams. This
is because, by definition it only characterizes nearly Gaussian beams. So it is not
suitable to characterize the quality of speckled beams, and even of a bell-shaped
beams that could result from the superposition of many low order modes. For mul-
timode beams it is necessary to evaluate the distribution of their energy among the
individual linear modes of the guiding structure. The proper approach to charac-
terize beam self-cleaning is the mode decomposition method, which provide a more
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effective approach to qualitatively and quantitatively characterize the beam quality,
rather than the M2 parameter [17] [30]. The existing mode decomposition methods
are based on genetic algorithms, adaptive optics, or digital holograms produced by
spatial light modulators (SLM).

In our simulations, the quality of the beam is evaluated based on the metrics
like, fraction of fundamental mode power evolution relative to that of the high or-
der modes, FWHMI (full width at half maximum intensity) as a function of input
power and distance, as well as by observing the iso-intensity surfaces along the fiber
length. We have used these beam quality measurement methods together, to evalu-
ate and characterize the beam quality. The iso-intensity surface (the surface at half
of the maximum) diameter should decrease across the fiber length, and the fraction
of power in the fundamental mode should also be larger than the other high order
modes when there is a beam cleaning.

The input powers (Pin) and (Pin−Gauss) shown in the title of the figures are calcu-
lated from the total N guided modes and from the input Gaussian beam respectively
as in equation (5.14). The input power Pin is determined from the total guided modes
amplitude at z = 0, and the input power Pin−Gauss is calculated by integrating the
input Gaussian beam across the transverse.

Pin−Gaus =
∫ +∞

−∞

∫ +∞

−∞

∣∣∣∣A0 exp
(
− x2 + y2

w2
0

)
exp(j θR(x, y) + j k x sinθ)

∣∣∣∣2 dxdy

Pin =
N

∑
n
|an(0)|2

(5.14)

Figure 5.15 shows fraction of modal power propagation, and intensity profile of
output guided field for an input power of 126W and 1260W. Modal power evolution
plot (figure 5.15a) indicates, propagation of power across the fiber length is constant
in lower input power case and there is no interference among the modes throughout
the fiber length, but there is weak oscillation in figure 5.15c due to relatively high
power. Similarly, the intensity profile plots (figure 5.15b and 5.15d) show speckled
output beam.
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(a) Modal power (b) Intensity profile

(c) Modal power (d) Intensity profile

Figure 5.15: Modal power and intensity profiles with Kerr at low in-
put power

Figure 5.16 presents numerical simulation under the same input conditions as in
figure 5.15, but input power, Pin(0), is increased for this situation. We can observe
from the figures that Kerr nonlinear effect due to high input power enhances modal
power coupling which transfers energy from high order modes (yellow curve) to the
fundamental mode (blue curve) and among the high order modes. As a result, the
power transfers from high order modes to the fundamental mode (HG00) enables
beam cleaning, as we can observe from both the intensity profile of output beam
(figure 5.16d), and modal power propagation (figure 5.16c) across 2m of fiber length.
Under this scenario the gain is neglected, and the transfer of energy is caused by
Kerr nonlinear effect when the input power is higher. As we have seen so far, we
have showed that at high input power the spatial self-cleaning into the fundamental
mode (HG00) occurs due to Kerr nonlinear effect. Further investigations as presented
in [47] also reveals self-cleaning into high order mode (LP11) of the fiber arises, due
to the nonlinear polarization dependence.
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(a) Modal power (b) Intensity profile

(c) Modal power (d) Intensity profile

Figure 5.16: Modal power and intensity profiles with Kerr at higher
input power

5.5 Chapter Summary

This chapter discussed the inevitable mode coupling process in multimode fiber am-
plifiers. There are different factors responsible for this phenomenon, but we consid-
ered here the coupling due to non-uniform dopant distribution and Kerr nonlin-
ear effect. We began the study by formulating the coupled mode equations in the
presence of those two factors (gain and nonlinearity) as it could be visualized in
equations (5.7). After that the gain and Kerr nonlinear effects are introduced in the
coupling equation, the effects on the propagating power of each guided modes, and
the total output beam situation at the output end of the multimode fiber have been
studied. We examined different dopant (gain) distribution inside the multimode
fiber core; flat (uniform), parabolic, and ring gain distributions.

Section 5.1 presents the investigation with uniform dopant distribution in the
multimode fiber core. The gain per each guided modes are similar, and the modal
power propagation shows linear evolution at the initial stage of propagation, but
mode coupling shows up at the end fiber length due to Kerr nonlinearity. Figures
5.1 and 5.2 shows this phenomenon. The two figures are different in the sense that
the input power is increased in the later, and its evident that at higher input power
mode coupling is stronger and Kerr nonlinear effect emerges faster than when the
input power is lower. In subsection 5.1.1 we have analysed modal power propaga-
tion with backward pumping scheme, and uniform dopant distribution. Figures 5.3
and 5.4 shows the modal power evolution at 565.23W and 5.652kW input power by
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including the effect of Kerr. It could be understood from the plots that by increas-
ing the input power and considering Kerr nonlinearity the mode coupling becomes
stronger.

Moving on to section 5.2, non-uniform gain coupling (parabolic and ring dopant
profiles) are described and thoroughly investigated. Figures 5.5, 5.6 and 5.7 presents
guided mode power propagation along multimode fiber in the presence of Kerr non-
linearity, for parabolic dopant profile by increasing the input peak power respec-
tively. The coupling of modes is complex when the input power is incremented as it
could be clearly visualized from the figures.

Ring dopant profile is another non-uniform gain distribution considered in this
chapter and we found out that this dopant profile in general favours amplification
of higher order modes and transfers modal powers to the fundamental mode which
is facilitated by non-linear and non-uniform gain coupling.

In the final section of chapter 5, we have also explored the beam self-cleaning
due to Kerr nonlinear effect. Speckled output beam is obtained as it is observed
from figure 5.15 at low input powers, but due to power transfer from other high
order modes towards the fundamental mode, a clean beam is obtained when the
input power is incremented, as it could be seen from figure 5.16.
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Chapter 6

Propagation in Perturbed Active
Multimode Fibers

An amplifier device such as a laser gain medium cannot maintain a fixed gain for ar-
bitrarily high input powers, because this would require adding arbitrary amounts of
power to the amplified signal. Therefore, the gain is reduced for high input powers,
and this phenomenon is called gain saturation or gain compression. If the amplifier
operates at power levels such that Ps(z)/Psat

s (z) << 1 for all z, the amplifier is said
to operate in the unsaturated regime, where Ps(z) is power signal power and Psat

s (z)
is saturated signal input power. Saturation refers to the dependence of the gain on
the power of the input signal. As the input power increases, the gain decreases un-
til it reaches the saturation point, at which the output power doesn’t vary with an
increase of the input. The saturation power is typically defined as the input power
required in order for the gain to drop by 3dB from the small-signal gain g0. Beyond
the saturation point, the gain falls abruptly and tends towards unity for which Pout
= Pin. In the up coming sections we will explore the effects of gain saturation in ac-
tive multimode fibers using 3D NLSE. Perturbation in multimode fiber that affects
propagation of input laser signal is also another main issue to be investigated in our
research. Perturbations (disorder) such as bending in multimode fiber is the effect
that contributes to generate linear coupling and beam cleaning [60]. Although mul-
timode fibers are resistant to perturbations, these inevitable factors could affect the
propagation of modal power, and alter the outcome from the normal expectations.

In this chapter first we will investigate numerical simulation models, coupled
mode and 3D NLS equations (universal model governing the evolution of complex
field envelopes in nonlinear media) introduced in chapter 1. We will discuss how the
two modelling equations perform under the same conditions, to make sure weather
we can use them interchangeably. Next we will dig into using 3D NLSE model by
considering the effects of gain saturation, disorder and Kerr nonlinearity. Lastly, we
will explore the phenomenon of beam cleaning by making use of 3D NLSE with
the effects of disorder, saturated gain and Kerr nonlinearity. Our numerical simula-
tion results are visualized for further analysis with respect to theoretical modelling
equations, and laboratory results are also presented for comparison.

6.1 3D NLSE and Coupled Mode Equations

In Chapter 2 we have seen that the coupled mode equations are used for numeri-
cal simulations with mode expansion, where gain and nonlinearity are the only two
coupling factors investigated. Here we will compare the difference of using cou-
pled mode equations and 3D NLSE tools to conduct numerical simulations. The
3D NLSE we analysed accounts for disorder and saturated gain, but the coupled
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mode equations do not consider these effects (consider only gain and nonlinear-
ity). For this reason, we neglected the presence of disorder and saturated gain in
the 3D NLSE and used equal parameters in both equations. A Gaussian beam di-
ameter full width at half maximum (FWHM) of 40µm, uniform dopant distribution,
no random phase and normal inclination of input beam are considered. Gain and
Kerr nonlinear effects are included in both numerical tools and a total of 81 guided
modes are propagated across a 2m GRIN MMF. The guided modes are excited differ-
ently in coupled mode equations and 3D NLSE. Gaussian beam is projected on each
Hermite-Gaussian modes in the case of coupled mode equations, whereas Gaussian
beam is projected on the modes after propagation in 3D NLSE. Furthermore, we
will increase the number of guided modes and reduce the input beam diameter, to
confirm how the two equations can be used interchangeably (that is if they perform
similarly).

To begin with, let’s use 81 guided modes and 40µm input beam diameter and
then compare the power evolution of modes particularly that of the fundamental
mode. Similarly we will see intensity profile of input and output guided modes by
using the two modelling equations. As it could be observed from figure 6.1 the blue
curve represents fundamental mode power fraction evolution when coupled mode
equations are used, and the dashed red curve represents fundamental mode power
in logarithmic scale when 3D NLSE is implemented. Likewise, figures 6.1c and 6.1d
are intensity profiles of input Gaussian beam and intensity profiles of guided output
beam, with coupled mode equation and 3D NLSE.



74 Chapter 6. Propagation in Perturbed Active Multimode Fibers

(a) (b)

(c) (d)

Figure 6.1: Numerical simulation comparison in the presence of gain
and Kerr: (a) Fraction of fundamental modes power propagation us-
ing CME (coupled mode equation) and 3D NLSE (b) Fraction of high
order mode power propagation using CME and 3D NLSE (c) Inten-
sity profile of input beam and output guided field using 3D NLSE (d)
Intensity profile of input beam and output guided field using CME

Now reducing the Gaussian beam full width at half maximum (FWHM) diame-
ter to 20µm, we will demonstrate numerical simulation results using both coupled
mode and 3D NLSEs. Effects of Kerr and gain without saturation are included, with
81 total guided modes in both equations. Like the previous simulation, similar input
initial conditions are considered for comparison.
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(a) (b)

(c) (d)

Figure 6.2: Numerical simulations using CME and 3D NLSE in the
absence of saturated gain and disorder: (a) Fraction of fundamental
modes power propagation using CME (coupled mode equation) and
3D NLSE (b) Fraction of high order mode power propagation using
CME and 3D NLSE (c) Intensity profile of input beam and output
guided field using 3D NLSE (d) Intensity profile of input beam and

output guided field using CME

To summarize, as we can understood from the previous consecutive figures, it is
clear that figure 6.2 shows an agreement of fundamental modes power propagation
in 2m of fiber length for the two models. This is achieved by reducing the beam
width of input Gaussian beam and increasing the number of guided modes. In the
same figure it is shown that the input powers (Pin) and Pin−Gaus calculated by using
equations in chapter 4 are getting closer by using reasonable number of modes and
input Gaussian beam width. Under such conditions, computed numerical simula-
tions using coupled mode and 3D NLS equations resembles. In addition, the time
complexity, though it could be reduced down are comparable, which roughly scales
as N3 − N4 with N being the number of modes included in the simulation [32] [34].
In fact, modal-expansion and coupled mode method displays a nearly linear scaling
of numerical complexity with mode number. The numerical solution algorithm of
3D NLSE and its complexity was analysed in [32] showing that, although in prin-
ciple the time complexity grows proportionally to the fourth power of the number
of modes N, it can be reduced to scale as N3 by exploiting the fiber symmetries and
selection rules. Likewise, the time complexity of coupled mode expansion method
roughly scales as N3 − N4 [34].



76 Chapter 6. Propagation in Perturbed Active Multimode Fibers

6.2 3D NLSE with Gain Saturation and Disorder

Multimode nonlinear propagations will be studied, by considering the effects of sat-
urated gain and disorder, using 3D MM-GNLSE other than the coupled mode equa-
tions we analysed in gain and nonlinear coupling. In highly multimode fiber, it may
be computationally much more efficient to use a direct numerical solution of the
3D NLSE. In the case of a GRIN MMF, the equation for the complex field envelope
Eg(x,y,z) [

√
W/m] is as follows (such equation is also called the Gross-Pitaevskii

equation)[32].

i
∂Eg

∂z
+

1
2β
∇2
⊥Eg +

1
2

g0

1 + I(x,y,z)
ISAT

Eg − β∆(
r
a
)2Eg +

ωn2kerr

c
(1− fr)|Eg|2Eg = 0 (6.1)

where ∇2
⊥ = ∂2

x + ∂2
y is transverse Laplacian, β = ωn1

c is propagation constant, ω

is carrier frequency in rad/s, ISAT = FSAT
τpulse

saturation intensity, FSAT is saturation

fluence, τpulse is pulse duration, g0 is small signal gain, ∆ =
n2

1−n2
2

2n2
1

is the relative
index difference, a is the fiber core radius (26µm), n1 is the maximum core refractive
index 1.47, n2 is the cladding refractive index 1.457, n2kerr is non-linear refractive
index having a value of 3.2 × 10−20 m2/W for fused silica used to fabricate silica
fibers, fr is Raman fraction found to be about 0.18 for silica fibers. Equation 6.1 is
a powerful tool to study the effects of diffraction, active medium, waveguide and
Kerr nonlinearity in pulse propagation. Furthermore, it’s used to investigate the
propagation of optical pulses in non-linear active multimode fiber in the presence of
saturated gain and disorder.

Disorder arises from stochastic density fluctuations of the glass and dopants,
as well as small manufacturing errors and environmental effects such as bending,
twisting, and core ellipticity. The effect of disorder is included here in our numerical
model by changing the transverse profile of the refractive index by deforming the
circular core into an elliptical core. In other words, the fiber is perturbed by elliptical
deformation along the orientation of the coordinate axes which varies randomly.
Here it should be understood that we didn’t make statistical study, however we are
able to change the fiber refractive index profile, by changing the orientation of the
ellipse randomly. This is how the effect of disorder is included in the 3D NLSE.
In fact, the model of disorder is not directly introduced into equation (6.1) rather
it is included through the waveguide refractive index profile change. Still the 3D
NLSE given by equation (6.1) is used, but we can insert an arbitrary refractive index
given by equation (6.2), which is different from a parabolic index profile. Rotating
an ellipse by certain angle θrand provides the following coordinate points, and the
corresponding refractive index is given by equation (6.2).

xe = xcos(θrand)− ysin(θrand)

ye = xsin(θrand) + ycos(θrand)

n2(xe, ye) = n2
1(1− 2∆(

x2
e

a2 +
y2

e
b2 )) (6.2)

The model considered here includes a coarse step of 5mm where the fiber is de-
formed, to introduce random variations in the fiber on both polarization axis. In
other word, the orientation of the ellipse is randomly changed every 5 mm, and the
random orientation of the ellipse is a good model (despite its arbitrariness) as it can
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be deduced from the fact that, in the linear regime, the numerical solution shows
the formation of speckled patterns at the fiber output. In this model the gain, which
could be non uniform in the transverse coordinate, is considered together with disor-
der (linear random coupling) and Kerr effect (nonlinear coupling). In these numer-
ical simulations the input Gaussian beam is straight and not tilted. Disorder causes
coupling between modes with similar propagation constants, primarily within mode
groups. Fundamental mode is less affected by disorder, while the high order modes
are the most affected [66].

The 3D NLSE equation (6.1) is a simplified case of GNLSE with only spatial de-
pendency, the Brillouin and Raman scattering which are time dependent are not
included. We are aware of these effects at high input powers. However, there was
no evidence of any role of the Raman effect in the beam reshaping process, and beam
cleaning can be achieved in the absence of this dissipative process [33]. Even with
the strong assumption of neglecting time and spectrum, the numerical simulations
require a very heavy computational burden due to large fiber cross-section and large
number of modes, and to numerically observe the onset of beam cleaning we have
to increase the input power. In order to speed up the simulations we have shortened
the fibers, by limiting their lengths to a few meters, from 10m in the experiments to
2m in the simulations, and we have increased the power to obtain the same nonlin-
ear evolution observed in the experiments.

The Raman threshold, the power level at which the Raman process becomes
stimulated and transfers most of the signal power to the Stokes wave is estimated
using equation(6.3)[2] for the continuous wave (CW) case.

PRth = 16
Ae f f

gRLe f f
(6.3)

where gR s the Raman gain coefficient, Ae f f is the effective core area, and Le f f is
effective length. For short segment of fibers, as in our case, the effective interaction
length Le f f coincides with the physical length of the fiber L.

By applying equation (6.3) the Raman threshold power at a relatively short and
long fiber lengths of Le f f = 2m and Le f f = 10m using gR = 10−13m/W and core
radius of 26µm are 170kW and 34kW respectively. The results for Le f f = 10m shows
that the Raman threshold power remains below the laser power used in the experi-
ments. It is then a reasonable assumption to neglect the Raman contribution in the
numerical simulations.

Similarly, the Brillouin threshold power PBth can be estimated using the following
equation

PBth = 21
Ae f f

gBLe f f
(6.4)

where gB is the Brillouin gain coefficient. The Brillouin effect which is efficient only
with continuous wave signals or extremely long pulses was not observed in the ex-
periments we conducted.

Mode coupling enables transfer of energy from one ideal mode to another dur-
ing propagation. The coupling strength between modes depends on the difference
between the two modal propagation constants. Mode-coupling in GRIN MMF is
primarily local, where the perturbation may strongly couple modes having nearly
equal propagation constants, but weakly coupled modes have highly unequal prop-
agation constants [27].
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(a) (b)

(c) (d)

Figure 6.3: Mode coupling among similar and different propagation
constants in the presence of Kerr and gain: (a) Hermite-Gaussian
mode profiles (b) Mode coupling between similar propagation con-
stants (c) Two different mode profiles (d) Mode coupling between

different propagation constants

6.3 Gain with Saturation

The effect of saturated gain in equation (6.1) are accounted by:

∂Eg

∂z
=

1
2

g0

1 + I(x,y,z)
ISAT

Eg (6.5)

where the saturation intensity ISAT = FSAT/τpulse, FSAT is saturation fluence in J/m2

and τpulse is pulse duration in second. The FSAT and τpulse in our numerical simula-
tions have a values of 3.1744× 105 J/m2 and 500ps respectively. To neglect the gain
saturation effect we set I(x,y,z)

ISAT
in equation (6.5) to zero and we obtain, ∂Eg

∂z = 1
2 g0Eg,

where g0 is small signal gain.
In this section we will investigate the effect of saturated gain using 3D NLSE. In

most of the doped multimode fibers studied, the saturated gain effect is not included
[32]. In our study we will explore saturated gain and other effects in Yb3+ doped
multimode fiber amplifiers. First let’s study the effects of saturated gain, disorder,
but without Kerr nonlinearity in the 3D NLSE. Our numerical simulation considers
uniformly distributed Yb3+ ions across the core cross section of the graded index
MMF. Gaussian input beam of 40µm in diameter FWHM, and 25 guided modes are
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propagated across 2m fiber length without input beam inclination angle.
Higher gain at distance z, and modal power is obtained in the absence of satu-

rated gain as we can observe from figure 6.4, and on the contrary, low modal power
is obtained when saturated gain is considered. Furthermore from the same figure,
it is understood that mode coupling is stronger due to the presence of both linear
(disorder and gain) and nonlinear coupling. The red dotted curves in figure 6.4a
shows power evolution of high order modes (HG1,0 and HG0,1) and energy transfer
between those modes. In figure 6.4a the curves in cyan and blue shows the power
evolution of high order and fundamental modes.

(a) (b)

Figure 6.4: Modal power propagation and power ratio including
gain, disorder and saturation, but excluding Kerr: (a) Modal power
propagation (b) fraction of modal power at input and output end of

fiber length

6.4 Saturated gain and Kerr

Kerr non-linear effect is a factor responsible for mode coupling and beam cleaning
in graded index multimode fibers as we have seen in the previous chapter, but the
effect of saturated gain was not considered in the coupled mode equation (5.7). Now
in 3D NLSE both nonlinear and saturated gain are included, in which the Kerr effect
is modelled by:

∂Eg

∂z
=

iωn2kerr

c
(1− fr)|Eg|2Eg

where n2kerr is nonlinear refractive index, for fused silica used to fabricate silica fibers
having a value of 3.2× 10−20 m2/W, fr is Raman fraction found to be about 0.18 for
silica fibers, and ω is carrier frequency in rad/s. We investigated the effect of Kerr
by excluding (including) nonlinear refractive-index from 3D NLSE, but keeping the
factors of gain, gain with saturation and disorder in the two cases.

Figures 6.4 and 6.5 illustrates fractional modal power plots in the absence and
presence of Kerr nonlinearity respectively. In the presence of Kerr as shown in fig-
ure 6.5c, the high order modes (dashed red and solid cyan curves) experience cou-
pling and modes exchange power. On the contrary, smooth evolution of modes is
observed in the absence of Kerr as it could be understood from figure 6.4a. The effect
of Kerr could clearly be observed more by increasing power at the input side of the
fiber length.
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(a) (b)

(c) (d)

Figure 6.5: Modal power propagation and power ratio including
gain, Kerr and disorder but excluding saturation: (a) Refractive index
and gain profile (b) Fraction of modal power in bar plots (c) Modal
power propagation (d) Normalized power across propagation dis-

tance

6.5 Kerr Beam Self-cleaning

Apart from gain and Kerr nonlinear effects in graded index multimode fibers, we
also examined the impact of saturation and disorder using 3D NLSE. The technique
of introducing disorder, that causes linear coupling is explained in section 6.2 of this
chapter. In this section we will investigate beam cleaning in the presence of Kerr
by neglecting disorder (perturbation) at the beginning and introducing the effect of
disorder next in active graded index multimode fiber.

Now let’s see beam cleaning and mode power evolutions by neglecting the ef-
fects of disorder (perturbation) to begin to understand more the beam cleaning tech-
nique. numerical simulations are performed using 3D NLSE with gain and Kerr, ex-
cluding disorder and saturation, with Gaussian input beam of 10µm radius FWHM,
26µm core radius with 81 total guided modes, and increasing the input power con-
sequentially. It could be seen from figure 6.6b that by excluding linear coupling
(disorder) and saturated gain the modal power evolution is smooth (mode coupling
is low ), with respect to propagation in the presence of disorder. By increasing the
input power as it is shown in figure 6.7c, the fact that due to Kerr nonlinear effect
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the coupling of modes starts to emerge. Increasing the input power further, we can
observe from figures 6.7a and 6.7b that the beam cleaning is evident both in the bar
graph and intensity profiles plot.

(a) (b)

(c) (d)

Figure 6.6: Simulations with Kerr and gain, in the absence of disorder
and saturation: (a) Fraction power of modes at beginning and end
of fiber length (b) Intensity profile plot of input and output guided
modes (c) Fractional power evolution of modes (d) Iso-intensity plot

across fiber length
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(a) (b)

(c) (d)

Figure 6.7: Simulations with Kerr and gain, in the absence of disorder
and saturation: (a) Fraction power of modes at beginning and end
of fiber length (b) Intensity profile plot of input and output guided
modes (c) Fractional power evolution of modes (d) Iso-intensity plot

across fiber length

In the first part of this section we have exploited the 3D NLSE by neglecting
the effect of disorder, now let’s consider perturbation and explore further the beam
cleaning phenomenon. In figure 6.8a, it’s shown that at z=0.01m and z=2m the fun-
damental mode carries a large power fraction, but there are high order modes, as
well. It’s also observed from the figure 6.9 that along the 2m of fiber the beam width
does not change. From the studies on multimode passive fibers, we know that when
there is beam cleaning, the output beam width shrinks [33]. On the other hand in
figure 6.10a, we can see from the first figure the power fraction of 81 total guided
modes at the beginning (z=0.01m) where there are both fundamental as well as high
order modes, but at the output end (z=2m) of the fiber only the fundamental mode
is observed (the tall blue bar): high order modes are suppressed and a clean beam
is obtained. Similarly, in the lower part of figure 6.10a, the beam can be clearly seen
reshaping itself after half of the fiber length. Furthermore, the beam at the fiber
end (z=2m) have reduced beam width than at the fiber input (z=0m) as it could also
be observed from figure (6.11d and 6.11a), which confirms the beam cleaning phe-
nomenon.
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(a) (b)

(c) (d)

Figure 6.8: Kerr, gain and disorder without saturation: (a) Fraction
power of modes at beginning and end of fiber length (b) Intensity
profile plot of input and output guided modes (c) Power evolution of

modes (d) Iso-intensity plot across fiber length

To further realize the beam cleaning phenomena in perturbed multimode fibers
we can compare the mode diameter with respect to the input laser. It is verified that
the beam cleaning can be confirmed when the beam width is reduced across the fiber
length [33], the beam width reduces when beam cleaning takes place. Figures 6.9
and 6.11 show the beam width of the guided input laser at different spatial distances
from z=0 to z=2m (fiber end). The beam width is reduced along the propagation
distance due to the beam cleaning phenomenon.
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(a) (b)

(c) (d)

Figure 6.9: Beam width as a function of input and output power
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(a) (b)

(c) (d)

Figure 6.10: Kerr, gain and disorder without saturation: (a) Fraction
power of modes at beginning and end of fiber length (b) Intensity
profile plot of input and output guided modes (c) Fractional power

evolution of modes (d) Iso-intensity plot across fiber length
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(a) (b)

(c) (d)

Figure 6.11: Beam width as a function of input and output power

Figure 6.12 shows FWHMI (Full Width at Half Maximum Intensity) diameter of
Gaussian input signal as a function of output power and distance along the propaga-
tion direction, where the output power is indicated on the plots of figure 6.13 at each
fiber distance z. As it could be observed, the FWHMI diameter decreases from ini-
tial 20µm (input Gaussian beam width) down to less than 10µm as the output power
increases along the evolution direction. At a fiber length of z=0.7m the power is
found to be 85.51kW (figure 6.13a), whereas at z=1.8m the power is 280.1kW (figure
6.13e), and the beam width is significantly reduced than it was at z=0, which clearly
shows the beam self-cleaning phenomenon [33]. Similarly, the FWHMI width de-
creases along the propagation direction as it could be clearly seen in figure 6.12b. In
general, the beam width decreases along the fiber propagation direction under the
same input power.
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(a) (b)

Figure 6.12: FWHMI as a function of output power and distance plot:
(a) FWHMI vs output peak power (b) FWHMI vs distance, for the

intensity profile plotted in figure 6.13.
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(a) (b)

(c) (d)

(e)

Figure 6.13: Beam width as a function of input and output power at
different distances across fiber propagation
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6.6 3D NLSE Coupled with Population Density

Equation (6.1) is a good approximation because it accounts for saturation, neverthe-
less a more complete model based on the coupling between pump, population in
the excited state and electric field envelope can lead to more accurate results. The
model presented here is the result of a combination between transversally resolved
rate equations including the pump power Pp(z) and propagation equation for the
signal electric field Eg(x, y, z). By assuming pumping in the forward direction, the
pump evolution is given by:

dPp

dz
=

[
(σap + σep)

∫
S N2(x, y, z)ds

ACl
− σap

∫
S NT(x, y)ds

ACl

]
Pp − αpPp (6.6)

where σap and σep are absorption and emission cross sections at the pump wave-
length, N1 (N2) is the ground (excited) Yb ion density, NT = N1 + N2 is the total
Yb density, ACl is the inner cladding area, and αp is the linear pump absorption.
Since we consider that the pump is uniformly distributed (i.e. it does not depend on
x, y) in the inner guiding cladding, the pump intensity reads as Ip(z) = Pp(z)/ACl .
As the pump power is uniformly distributed inside the inner cladding of radius
150µm and inner core radius of 26µm, the fiber is cladding pumped with continuous
pump power. In equation (3.10) the population varies along longitudinal coordinate
z, but in equation 6.6 the density of ions (N2 and N1) depends on the three spatial
coordinates. Here the populations N1 and N2 vary not only along the longitudinal
coordinate z but also in the transverse x, y plane, and the two integrals are calculated
on the section S where doping is present, as it can be seen in equation (6.6). Even
if different doping profiles are possible, there are technological limitations and chal-
lenges to manufacture and obtain such fibers in the market, so the easiest and most
available doping is where the dopant is uniformly distributed across the core. The
pump is continuous wave and we assume a steady state behaviour of the amplifica-
tion, nevertheless, when writing the rate equations, we must take into account that
the signal pulses have a duration τpulse, a repetition rate T and an intensity which is
time dependent Is(x, y, z, t). This is an approximation in this context, although gen-
erally adopted in fiber lasers [54]. We can define the time-average signal intensity
as Īs(x, y, z) = 1/T

∫
I(x, y, z, t) dt ' maxt[I(x, y, z, t)] τpulse/T. Thanks to the previ-

ous approximation the density of excited ions N2(x, y, z) can be explicitly written as
function of pump and signal intensities:

N2(x, y, z) = NT
σap Ip(z) + σas Īs(x, y, z)λs/λp

(σap + σep)Ip(z) + (σas + σes) Īs(x, y, z)λs/λp + Pτ
(6.7)

where τ is the excited level lifetime and Pτ = hc/(λpτ), where h is the Planck’s
constant and c the speed of light. It should be noted that the population density
equations are different based on the pumping scheme (core or cladding), and based
on the pulsed signal approximation techniques. Equation 4.3 and 6.7 are similar,
except in the later the signal intensity is given by a time averaged approximation of
a pulsed signal intensity. The evolution of the complex envelope of the electric field
Eg(x, y, z), normalized in such a way that the intensity is I(x, y, z) = |Eg(x, y, z)|2), is
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governed by the following equation:

∂Eg

∂z
=

i
2k0

{
∇2
⊥Eg +

[
β2− β2

0

]
Eg

}
+ iγ|Eg|2Eg−

αS

2
Eg +

1
2

[(
σas +σes

)
N2−σasNT

]
Eg

(6.8)
where β0 = 2πn1/λS is the reference propagation constant, β = 2πn(x, y)/λs and
n(x, y) is the refractive index distribution, which in the case of a GRIN fiber fulfills
n2(x, y) = n2

1

(
1− 2∆ x2+y2

a2

)
, where the reference index is the core refractive index

n1 and ∆ = (n2
1 − n2

2)/2n2
1. It could be noted that equations (6.8) and (6.1) are the

same except introducing the population density (gain term without saturation) and
writing the propagation constant in different form in equation (6.8). In equation (6.8)
the term in curly brackets describes the guiding structure, the term iγ|Eg|2Eg is the
instantaneous Kerr nonlinearity with γ = n2kerrω

c , αs is the linear loss of the silica
glass host and the last term is the gain g(x, y, z) caused by the population inversion:

g(x, y, z) =
1
2

[(
σas + σes

)
N2(x, y, z)− σasNT(x, y, z)

]
(6.9)

It is worth observing that even if Kerr coefficient and doping are homogeneous over
the fiber cross section, both Kerr term and gain function depend on the transverse
coordinates and can lead to an exchange of power among the modes carried by the
optical fiber.

We developed our simulations around an ideal sample case whose set of param-
eter values are summarized for simplicity in table 6.1.
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Symbol Parameter Value

σap Pump absorption cross section 2.358× 10−24m2

σep Pump emission cross section 2.358× 10−24m2

σas Signal absorption cross section 5× 10−27m2

σes Signal emission cross section 2.89× 10−25m2

λp Pump wavelength 979nm

λs Signal wavelength 1064nm

αs Linear absorption (signal) 1.1dB/m

αs Linear absorption (pump) 1.1dB/m

τ Radiative lifetime 1ms

NT Yb3+ concentration 9.0× 1025m−3

τpulse Signal pulse duration 500ps

T Signal pulse repetition rate 250µs

n1 Maximum core refractive index 1.47

n2 Cladding refractive index 1.457

a Core radius 26µm

ACl Inner cladding area 7.06× 10−8m2

L Fiber length 4m

n2kerr Kerr nonlinear coefficient 2.6× 10−20m2/W

DFWHMI Signal beam diameter FWHMI 40µm

Table 6.1: Parameters used in modelling and numerical simulations
[19]
.

Whether necessary, in some simulations the parameters are modified ( example:
suppression of the Kerr effect) and explained in the corresponding sections. The dis-
order along the propagation, which is responsible for the formation of a speckled
pattern in the linear regime and also for the acceleration of the beam-cleaning pro-
cess in the nonlinear regime [16], is implemented in the GRIN fiber with core radius
a = 26 µm and ∆ = 8.8× 10−3.
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(a) (b)

Figure 6.14: Beam cleaning in a nonlinear GRIN fiber. (a) Input signal
maximum intensity 5GW/cm2. (b) The same as (a), but with input

signal maximum intensity 0.5GW/cm2.

The numerical simulations confirm that the beam cleaning has a threshold power.
A cleaned beam in the case of Fig. 6.14a is obtained with a maximum peak intensity
5GW/cm2. Whereas, with ten time less input intensity as shown in Fig. 6.14b the
beam cleaning effect is substantially vanished, and it is very similar to the case of
propagation in the absence of Kerr nonlinear effect (i.e. n2kerr = 0).

We consider now the presence of a uniform doping, keeping the same linear re-
fractive index profile. The active medium is not pumped Pp(0) = 0 for this particular
situation. Figure 6.15 shows that it is possible to observe an effect of beam cleaning
with an input signal maximum intensity of 5GW/cm2 (panel (a)). The effect of beam
cleaning vanishes when the same simulation is carried out in the absence of Kerr
effect (n2kerr = 0). Figure 6.16 shows the modal decomposition corresponding to
the case of panel (a) of figure 6.15. In particular we observe that all the modes are
attenuated by the linear losses in absence of a pump able to invert the population
in the active medium. The blue curve shows the power carried by the fundamental
mode ψ0,0. The red and green curves show the powers carried by the modes ψ0,1 and
ψ1,0. The other modes ψk,h are shown in grey (we considered the projections with
h, k ∈ [0, 9], a total of 100 modes).

(a) (b)

Figure 6.15: (a) Beam cleaning in a nonlinear Yb-doped GRIN fiber,
in absence of pump. Input signal maximum intensity 5GW/cm2 (b)

The same as in panel (a), but without Kerr nonlinearity n2kerr = 0.
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Figure 6.16: Beam cleaning in a nonlinear Yb-doped GRIN fiber in
absence of pump: modal evolution. Input signal maximum intensity

5GW/cm2

It is also instructive to calculate the corresponding power evolutions, where
Ps(z) =

∫
S |Eg(x, y, z)|2ds is the signal peak power. The nonlinear effect takes place

substantially before the signal is attenuated along the propagation.
It is then interesting to observe the beam dynamics when the pump is switched

on. The iso-intensity levels are shown in Fig. 6.17: in particular it is possible to
observe that with a pump of 20 W, beam-cleaning is obtained with a signal of maxi-
mum intensity 0.5GW/cm2. Note that with such input signal level was not possible
to see beam cleaning in a passive GRIN fiber (see panel (b) of Fig. 6.14). We can con-
firm numerically the tendency observed in the experiments reported in [46], where
the beam cleaning threshold power reduces in an active fiber, owing to the signal
amplification along the propagation.
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(a) (b)

Figure 6.17: (a) Beam cleaning in a nonlinear Yb-doped GRIN fiber.
Forward pump of 20W; input signal maximum intensity 0.5GW/cm2

(b) The same as in panel (a), but without Kerr nonlinearity n2kerr = 0.

The gain g experienced by the complex electric field Eg is neither uniform along
the fiber (owing to the progressive pump absorption), nor uniform in the transverse
domain, owing to the different population inversion. In particular the effect of gain
saturation is more concentrated at the point of minimum waist for the signal beam.
The periodic evolution of the beam in a parabolic refractive index profile causes then
a periodic fluctuation of the signal intensity and in turn this fact causes a periodic
evolution of the inverted fraction N2(x, y, z) along the coordinate z. To show this
effect we present the evolution of g(x = 0, y = 0, z) as defined in equation (6.9), in
figure 6.18. The inset shows a detail of the evolution over a shorter scale highlighted
by the blue bar.
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Figure 6.18: Signal gain evolution a nonlinear Yb-doped GRIN fiber.
Forward pump of 20W; input signal maximum intensity 0.5GW/cm2

In particular it is possible to observe how the maximum of gain is experienced
at the beginning of the propagation and how the gain gradually drops as the pump
is absorbed during the propagation. However the evolution is caracterized by a fast
varying contribution of submillimetric scale, related to the coherent beating of all
the modes.



96 Chapter 6. Propagation in Perturbed Active Multimode Fibers

Figure 6.19: Beam cleaning in a nonlinear Yb-doped GRIN fiber:
modal evolution. Forward pump of 20W; input signal maximum in-

tensity 0.5GW/cm2

It is interesting to observe the evolution of the powers carried by the different
modes (see Fig. 6.19). In particular it is possible to observe how all the modes
are amplified and how the amplification is not uniformly distributed among the
modes. This process culminates in a strong nonlinear shaping nearby z=1 m. Af-
ter the power carried by the modes vary less than before being at the end nearly
constant.



6.7. Multimode Active Tapers 97

Figure 6.20: Powers of pump and signal evolution along the fiber

The situation can be possibly clarified by inspecting the evolution of powers as
reported in figure 6.20. The strong nonlinear reshaping at z=1 m corresponds to the
maximum amplification of the signal (here above 1.5MW in peak power). At that
distance the pump is entirely absorbed and the remaining part of the propagation
reduces the signal power.

6.7 Multimode Active Tapers

Fiber tapers are currently used in amplifiers so it is important to study the non-
linear beam dynamics in optical fibers whose radius a(z) varies significantly along
the course of the propagation direction z. Equation (6.1) can be easily extended
to tapers, where the radius a(z) varies from a value ain (radius at the beginning
side of the taper) to a value aout (taper radius at the end) . For the sake of sim-
plicity we will model the evolution of the core radius by a linear function a(z) =
aout + (z − L)(aout − ain)/L, where L is the taper length. In practical implementa-
tions of fiber tapers, the variation upon distance of the core radius is not necessarily
linear. We refer here to the case ain > aout (the taper has larger core radius at z=0) so
to try to reproduce, in a qualitative way, some of the experimental results reported
in [46]. The decrease of core radius upon fiber length causes an acceleration of the
nonlinear process along the propagation. Here we considered the pump power is
combined with the signal in the forward direction, that is both pump and signal
powers are propagating in forward direction. In order to establish a comparative
analysis with simulations in constant core radius, we have considered the same set
of parameter values used for the case of homogeneous fibers. In order to match some
of the features of the taper of [46], we have considered ain = 61µm, aout = 18µm. The
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cladding radius linearly varies from 350 µm down to 90 µm, the taper length has
been extended to L = 9m. Figure 6.21a summarizes the numerical propagation with
an input diode pump of 20W in the absence of Kerr effect (n2kerr = 0), and the output
beam presents a speckled patterns. On the other way, when we add the contribution
of the Kerr nonlinear effect the result is qualitatively different, as shown in figure
6.21b; in particular it is possible to see how the beam pattern at the output presents
a large spot in the center surrounded by a weak background. In other words, the
speckled beam in the absence of Kerr is reshaped and a beam self-cleaning is ob-
tained by introducing Kerr nonlinear effect. Note that in this situation the pump
is absorbed in the first meter of propagation and that the signal is later reabsorbed
along the propagation. The grey circles represent the local size of the fiber core.

(a) (b)

Figure 6.21: Signal power propagation in multimode tapered fiber:
(a) Iso-intensity surface at half width of maximum intensity in a Yb-
doped active taper fiber in the absence of Kerr effect (n2kerr = 0).
The blue (red) curve reproduces the qualitative evolution of the signal
(pump) power. The grey circles show the local size of the fiber core.
The inset shows the output beam pattern. (b) The same as in figure

6.21a, but here in the presence of Kerr nonlinear effect (n2kerr 6= 0)

To further strengthen our numerical simulation results on active tapered mul-
timode fibers ( Fig. 6.22 ), we made a comparison with experimental results (Fig.
6.23) which is reported in [46]. Fig. 6.22 shows numerical simulation results of sig-
nal power propagation along a 9m tapered multimode fiber by increasing the pump
power of wavelength 979 nm from 1W to 31W. The pump and signal powers are con-
figured in co- propagating scheme. With a weak pumping (a) the input signal cannot
reach the beam cleaning and the output beam is clearly speckled. Upon increase of
the input forward pump, the signal is amplified till the point that the nonlinearity
can modify the beam shape. The iso-intensity surface at 50% of the maximum inten-
sity exhibits a gradual contraction upon increase of the input pump power. Notably
in panel (c) it is possible to observe a local split of the beam in two lobes. This repre-
sents a transient effect and tend to vanish upon further increase of the pump power
till the formation of bell shaped beam shown in panel (d). In figure 6.22 the input
signal peak power is PS(0) = 3.6 kW for all cases, and the output peak power in
each panels are: (a) PS(L) = 6.3 W, (b) PS(L) = 0.026 kW, (c) PS(L) = 0.05 kW, (d)
PS(L) = 0.2 kW.
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(a) (b)

(c) (d)

Figure 6.22: Numerical simulation shows signal power propagation
for different input pump powers, input signal maximum intensity is
0.2 GW/cm2, and diameter of 40µm FWHMI: (a) 1 W (b) 13 W (c) 19 W

(d) 31 W

For experimental comparison we considered a laboratory activity performed on
active tapered multimode fiber and which is described in [46]. In this experiment
the beam self-cleaning is investigated by switching on and off the CW laser diode
pump source. First, as shown in Fig. 6.23(a) the pump power is switched off. The
transverse content of light at the taper output involved a superposition of the fun-
damental and higher-order modes in this situation, and the speckled beam is visu-
alized at the output end. Next, the laser diode pump is switched on, and gradually
increased its power, thus adding a growing amount of gain (G) to the fiber. The gain
indicated in Fig. 6.23 corresponds to the ratio between the measured output and
input average power of the signal. From Figs. 6.23(b) – 6.23(e), a progressive reshap-
ing of the guided input beam profile into a cleaned beam can be observed. The beam
self-cleaning started to form for G = 0.21, and it remained preserved up to G = 1.34,
which is the maximum net gain. The limited net gain G is due to pump absorption
taking place beyond the first meters of taper, where the laser diode pump has been
fully depleted. It should be noted that, these observations clearly shows the signal
amplification due to the variation of gain along the active multimode tapered fiber
leads to the spatial beam self-cleaning. To recap, the results of both experimental
and numerical simulations confirms that, by increasing the pump power or gain,
reshaping of the transverse spatial beam pattern at the tapered multimode fiber out-
put is obtained. On the contrary, at lower pump power, the randomly excited fiber
modes would lead to a highly speckled or irregular intensity patterns at the fiber
output end.
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Figure 6.23: Experimental result shows beam reshaping obtained by
increasing the gain [46].

Another experimental result reported in [46] [45], discusses the spatial beam self-
cleaning with decelerating nonlinearity, that is, by moving from the smaller to larger
multimode tapered fiber end. The Kerr nonlinear effect decelerates with increasing
mode area as the input signal laser propagates from the smaller core radius size to
larger end. In this experiment continuous wave laser diode pump of 10W output
power with counter-propagating pump scheme, and uniform core doping profile
is considered, but in our numerical simulation the pumping is in forward direction.
The main effect of changing the pumping scheme is that of varying the gain, but for a
sufficiently high gain (pump power) it is always possible to observe beam reshaping.
Figure 6.24 shows the beam self-cleaning phenomenon as a function of input peak
power. The input peak power varied progressively from 280W to 51kW, and the
beam intensity profile shows distorted output at lower input peak power. When the
input power is increased above 20 kW, the output beam spatial pattern self-organises
into a bright spot with a bell shape, surrounded by a low-power background, which
is a typical manifestation of spatial beam self-cleaning.

Figure 6.24: Left panel: Near-field spatial field distributions at differ-
ent input peak powers (Pin) for a tapered multimode fiber. [46].
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6.8 Chapter Summary

In chapter 5 we have studied the mode coupling inside graded index multimode
fiber due to gain and Kerr nonlinear effects using coupled mode equation. In this
chapter 3D NLSE is implemented to study modal power propagation and beam
cleaning, by considering effects such as disorder, Kerr and gain saturation. Com-
parison between coupled mode equation and 3D NLSE is also made under the same
conditions. Kerr beam self-cleaning phenomenon is analysed and investigated in
depth, first we neglected the effects of disorder as its shown in figures 6.6 and 6.7.
We then moved on re-introducing the effects of disorder, saturated gain and Kerr
by increasing the input power. The beam self-cleaning is then examined by deter-
mining the beam width at different power levels, and found out the beam width is
reduced when the beam self-cleaning takes place.

Furthermore, we also coupled the population density from the rare-earth dopants
into the 3D NLSE to study the beam self-cleaning with different pump configura-
tions. We extended the beam self-cleaning phenomenon in multimode active ta-
pered fiber using the same modelling equation that is, 3D NLSE. Besides, by analysing
numerical simulation results, and experimental values, we found out the same trend
of beam cleaning phenomenon.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this research thesis we have studied nonlinear propagation in graded-index mul-
timode fiber amplifiers. The physics of the rare-earth doped multimode fiber devices
has been explored thoroughly and their properties have been investigated in depth.
Single-mode high beam quality performance is achieved by exploiting Kerr nonlin-
earty in active multimode fibers, which is crucial for high power fiber amplifiers and
fiber laser production. The high beam quality obtained from multimode fiber is very
essential in many applications such as biological imaging, LIDAR ( Light Detection
and Ranging, that is detection and estimation of distance by light), spectroscopy,
microspectroscopy and others.

Self-imaging a property in graded-index multimode fiber which is the exact re-
production of input electromagnetic field at certain distance due to multimodal in-
terference was investigated in the second chapter of our manuscript. Theoretically
we studied self-imaging phenomenon by projecting input beam shape into a set of
guided modes and then propagating the modes for few millimetres, using modal ex-
pansion and propagation approach. A wide and well defined Gaussian input beam
causes a periodical evolution with a regular spacing of local peak intensities. If these
intensity values will generate nonlinear effects (frequency conversion) a regular se-
ries of spots will appear along the fiber longitudinal axis. The distance among these
spots is related to the self-imaging period. When the power is large enough to gen-
erate spatial beam distortion along the propagation and possibly close to collapse,
one can imagine that the beam is no longer Gaussian and self-imaging property is
broken. For this reason, it is important to use a low laser power to preserve the beam
shape and hence self-imaging in graded index multimode fibers. Furthermore, we
have confirmed that the self-imaging period (distance) of longitudinal spatial oscilla-
tion determined theoretically, which is related to the core diameter and relative effec-
tive index differences among modes, completely agrees with experimental results.
We also evaluated the self-imaging period when the input laser beam is inclined
from the normal horizontal axis, and found out that the though the beam propa-
gates in zigzag the distance between consecutive spots (period) doesn’t change.

Fiber amplifier characteristics, such as the operating wavelength and the gain
bandwidth, are determined by dopants rather than by the fiber, which plays the
role of a host medium. In this research thesis we have considered ytterbium-doped
fiber amplifiers, mainly due to their interesting applications for broad gain band-
width with excellent beam quality, unique simple energy level structure, high pump
absorption and efficiency. In addition to the low quantum defects, and superb spec-
troscopic characteristics, the capability of generating high powers makes them very
attractive. Ytterbium-doped materials have been widely used for high efficiency
and high energy laser sources at 1µm wavelength region because of their very low
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quantum defect and the unique simple energy level structure. Quantum defect is
the energy difference between pump and laser photons. A reduction in the quan-
tum defect may offer significant mitigation of issues associated with fiber heating,
and for scaling high-power fiber laser systems [69]. To investigate the input signal
and pump power propagation in multimode fiber amplifiers, we applied rate and
propagation equations, with different pumping schemes. In both forward and back-
ward pumping schemes, the fiber amplifier is pumped from the initial and the end
side of the fiber simultaneously. Furthermore, we have analysed and formulated
rate equations for both core and cladding pumping in multimode fibers.

Mode coupling is on of the main occurrences in multimode fibers when each
mode have the same propagation constant or effective refractive index. Propagation
constants in multimode fiber locally change due to imperfections, bends, local gain,
temperature or core radius variation. As a result, it can happen that the modes could
have the same propagation constant at a given point and mode coupling occurs. We
have studied mode coupling in multimode fibers due to non-uniform and nonlin-
ear effects, using coupled mode equations. Modal expansion approach where the
total guided optical field is expressed as the superposition of eigenmode is utilized
to simplify the 3D NLSE and develop the coupled mode equation. For non-uniform
gain (dopant) distributions in our numerical simulations, we considered parabolic
and ring dopant profiles. As a result, our extensive numerical simulations indicates
their is selective amplification of the modes in active multimode fibers with non-
uniform dopant profiles. In parabolic gain distribution fundamental mode is selec-
tively amplified, whereas the high order modes are suppressed. This is mainly be-
cause intensity profile of the fundamental mode overlaps with dopant distribution
having the same profile which results in selective amplification. On the contrary,
ring dopant profile enables the selective amplification of high order modes, but sup-
presses that of the fundamental mode. Furthermore, by increasing the input signal
power we have discovered that the modes exchange energy, due to Kerr nonlinear-
ity and transfers power to the fundamental mode. This transfer of power from high
order modes to the fundamental mode enables beam cleaning in multimode fibers,
which is crucial for high power fiber amplifiers and laser.

In addition to the coupled mode equation, we also investigated nonlinear propa-
gation in active multimode fibers by applying 3D NLSE. In this situation the fiber is
perturbed, in the sense that we have introduced disorder randomly along the fiber
length. In addition to Kerr nonlinear effect, linear coupling, which are, gain satu-
ration and disorders are considered. Our numerical simulation reveals that by in-
creasing the input signal power, the speckled beam reshapes itself after certain fiber
distance, into a clean beam close to single mode operation due to Kerr nonlinearity.
The beam cleaning phenomenon is further confirmed by examining the beam width
at the end of fiber length, which has smaller diameter than the one at the begin-
ning of the fiber. Furthermore, we also extended the 3D NLSE for multimode active
tapered fibers, to study the beam self-cleaning. The gain from the pump power is
included in the 3D NLSE and beam self-cleaning in active multimode tapered fiber
is thoroughly investigated.

Finally, we performed comparison between coupled mode equation and 3D NLSE
under the same parameters, but this time only in the presence of Kerr nonlinearity
and gain. Due to the complex process in multimode fibers,it’s very essential to ob-
tain a computationally efficient numerical modelling and simulation tools to inves-
tigate the phenomenon happening inside the core. Coupled mode equations and 3D
NLSEs are two of the tools we utilized to perform numerical simulations. We found
out that by using proper input beam width and number of guided modes, the two
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numerical modelling tools perform similarly.

7.2 Future Work

Further investigations would focus on ytterbium-erbium codoped multimode fiber
amplifiers and lasers, particularly on numerical simulation tools. The coupled mode
equation we explored considers non-uniform gain and Kerr nonlinearity, further-
more it could be extended by considering other factors like disorder and gain sat-
uration. More extension on our already developed numerical simulator could be
done with large number of modes, to investigate their effects in energy transfer,
beam cleaning and high power fiber amplifiers and lasers production. Moreover, in
coupled mode equations, modal power propagation could be studied in depth by
identifying the properties of each high order modes, that is which particular modes
are responsible for exchange of power towards the fundamental mode and useful for
high power fiber amplifiers development. Another possible extension of this thesis
work could be, investigating the computational efficiency and performance of cou-
pled mode equations and 3D NLSE’s under the same effects, that is by considering
disorder and gain saturation in coupled mode equations.

It is necessary if we want to study the propagation of short pulses (as those that
can be generated in a mode-locked laser) to include the time domain propagation
equations in addition to the spatial domain we explored in depth. For these and
related investigations our analysis has to be expanded to include the time domain.
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