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Abstract. We obtain the exact explicit super rogue wave solutions of the classical
massive Thirring model system, using a nonrecursive Darboux transformation method
along with some algebraic manipulations. We reveal that in such a vector system, both
rogue wave components, whenever they take the fundamental Peregrine soliton struc-
ture or the super rogue wave ones, may possess the same maximum peak-amplitude
factor, behaving like those occurring in scalar nonlinear systems. However, due to the
coherent coupling, the two super rogue wave components may exhibit drastically dif-
ferent spatiotemporal distributions, despite that they evolve from almost the same back-
ground fields. The modulation instability responsible for the rogue wave excitation in
such a coupled system is also discussed.

Key words: Super rogue wave, Peregrine soliton, Modulation instability, Mas-
sive Thirring model system.

1. INTRODUCTION

The terminology of rogue wave, also known as freak wave, originates from
oceanography [1,2]. It was coined to depict the extreme surface waves occurring
in the open ocean, who appear without a presage [3], while carrying a tremendous
devastating power that may endanger the cruising ships [1]. Afterwards, scientists
and researchers vivified the rogue wave term and referred to it as the one whose
amplitude is greater than twice the significant wave height of surrounding waves,
but follows an unusual L-shaped statistics [4—6]. Nowadays, invoked by the seminal
realization of optical equivalents in a microstructured optical fiber [7], this rogue
wave concept has unfolded and flourished in many disciplines such as hydrodynamics
[8-11], plasma physics [12], nonlinear optics [13—16], acoustics [17], Bose-Einstein
condensation [18-20], and even finance [21].

In the context of nonlinear dynamics, rogue waves generally feature a steep-
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sided peak on a nonzero background, accompanied by unusually deep troughs. Such
localized structures can be regarded as particular types of solitons or breathers in a
broad sense, and mathematically can be described by the rational solutions of the
integrable nonlinear partial differential equations [22]. The typical example is the
Peregrine soliton, which was first discovered by Peregrine in 1983 as the fundamental
rational solution of the focusing nonlinear Schrédinger (NLS) equation [23]. Because
of its transient doubly-localized structure, this special type of soliton, sometimes
termed soliton on a finite background [6], has now been thought of as the prototype of
realistic rogue waves [24], and has become a hot topic of intense research in the past
decade, on both theoretical [25-28] and experimental sides [8, 12,29]. Meanwhile,
there has also been much research interest in the multiple rogue waves that consist of
several Peregrine solitons [30—32] and in the super rogue waves that form as a result
of the maximum superposition of three or six Peregrine solitons [33-35].

On the other hand, in a variety of practical scenarios, the physical systems un-
der consideration would involve multiple components of different polarizations and
frequencies [36,37]. When these components interact in a nonlinear manner, com-
plex vector rogue wave dynamics would appear, exhibiting characteristics that are in-
accessible to scalar integrable models [22]. As examples, multi-component systems
could admit the dark counterpart of optical rogue waves [38], the existence of rogue
wave solutions in defocusing nonlinear systems [39], the coexistence of different
rogue wave structures on the same background [40], the appearance of anomalous
Peregrine solitons in nonlinear media involving the self-steepening effect [41, 42],
and the formation of Peregrine rogue waves on a periodic-wave background caused
by interference [43], to name a few. This is not surprising as the coupled nonlinear
systems can allow the energy transfer among the wave components involved, giving
rise to peculiar vector rogue wave dynamics.

The classical massive Thirring model (MTM) system [44] is, in form, one of
the simplest integrable vector nonlinear systems. It has some resemblance to the
well-known Manakov system [45, 46], but with the group-velocity dispersion and
self-phase modulation (SPM) terms being neglected. However, this model involving
a simple form does not mean simplicity in physics; it has included the linear cou-
pling term that can induce the effective dispersion, and thus, in principle, supports
the formation of solitons, when the induced effective dispersion counterbalances the
nonlinear cross-phase modulation (XPM) effect [44,47]. These properties make the
MTM system interesting and appealing, not only in the understanding of Dirac soli-
tons arising in the quantum field theory [48-51], but also in the description of the
Doppleron resonance in nonlinear atom optics [52] as well as the soliton propagation
in optical Bragg gratings [53-56] or in periodic lattices [57]. As regards this MTM
system, the fundamental rogue wave solutions [58, 59] as well as their higher-order
versions [60] were reported previously, revealing that such rogue wave states can
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even be excited in coherent resonant media at extremely low powers [58].

In this paper, we aim to derive the general exact explicit super rogue wave so-
lutions of the MTM equation, which, to the best of our knowledge, were not reported
before. Here, for the sake of simplicity, we only consider the super rogue wave states
resulting from the nonlinear superposition of three Peregrine solitons, but emphasize
that the super rogue waves coming from six or more Peregrine solitons can be de-
rived in a similar fashion. We find that, in such a coupled system, both rogue wave
components possess the same maximum peak-amplitude factor, no matter whether
they take the fundamental Peregrine soliton or the super rogue wave structures. This
is quite different from what one might expect from other vector nonlinear systems,
where the fundamental and super rogue waves always feature a variable peak am-
plitude due to energy exchange [36-42,46]. Additionally, we will present a study
of the modulation instability (MI) for such a vector model and give the condition of
existence of these rogue waves. The paper is organized as follows. In Sec. 2, we
present the classical MTM system and the corresponding rogue wave solutions. The
rogue wave dynamics is investigated in Sec. 3. Our conclusions are given in Sec. 4.

2. THE CLASSICAL MTM SYSTEM AND ROGUE WAVE SOLUTIONS

In an optical context, the MTM system [44,47,53] that governs the propagation
of the forward and backward waves in the fiber Bragg gratings can be expressed as

i(ure +ouiy) 4+ ug —|—u1]u2|2 =0, (1)

i(uat — VUgy ) 4+ uy +us|ug[* =0,
where w1 2(z,t) are the complex envelopes of counter-propagating waves, v is the
linear group velocity, and = and ¢ are the laboratory coordinate and time, respectively.
Here the subscripts stand for partial derivatives. It is seen that the MTM system
contains only two ingredients: the linear coupling and the XPM, denoted by the
second and third terms on the left-hand side of Eq. (1), respectively, without taking
the group-velocity dispersion and SPM effects into account. This is more obvious
when Eq. (1) is equivalently expressed in terms of the light-cone coordinates & =
$(t+z/v) and 7 = 3(t —x/v):

Z'ulg =+ U9 —|—u1]u2\2 =0,

. ) )
iugr +uy +uglug[* = 0.

Although simple in form, this model still entails the effective dispersion induced by

the linear coupling effect and the nonlinearity caused by the XPM term, and there-

fore admits the complicated soliton or solitary wave solutions. From the point of

view of atom optics, such combination of linear coupling and XPM can be realized
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in resonant nonlinear media involving the electromagnetically induced transparency
effect [61] or the Doppleron resonance effect [52], which may lead to the giant en-
hancement of XPM with the simultaneous suppression of SPM. On the other side,
this model is also an example of the nonlinear Dirac equation and was widely used
in quantum field theory in the past decades, due to its close relation to the quantum
sine-Gordon theory [48-50]. Concerning this model, both the soliton and rogue wave
solutions, including their higher order versions, have been obtained [49, 50, 58-60],
thanks to its complete integrability [62]. In the following, we are only concerned with
the MTM form (2) and proceed to derive its general super rogue wave solutions [33],
using the nonrecursive Darboux transformation method [35].

First, one can cast the MTM system (2) into the following 2 x 2 linear eigen-
value problem:

R, =UR, R;=VR, 3)

where R = [r, 5] (here T means a matrix transpose, and r and s are functions of the
variables 7 and &), and

_ 0w\ i (1 0
U= ﬁ(ul 0> 2(A+|u1\)<0 _1>,

_ L (0w il N0
V=l §) 75 Gerer) (o )

with A being the complex spectral parameter and the asterisk indicating the complex
conjugate. It is easily shown that the MTM equation (2) can be exactly reproduced
from the compatibility condition U¢ — V., +UV — VU = 0.

Then, based on the one-fold Darboux transformation that relates the new solu-
tions with the old ones [59,60], one can formulate the nth-order rational rogue wave
solution of Eq. (2) as

“)

n] { 1yt det(M
= Y
“ ulo( |u10| 1> <det (M") )’ )
ul™ = gy [ 1+ —Y N™ lYT det(N
2 20 ’ 20’ det (N*) ’

where the dagger T denotes the complex-conjugate transpose, det means taking the
determinant of the matrix, and u;o (j = 1,2) are the plane-wave seeds defined by

u1g = aexp|—i(k§ +wt)], w20 = bexp[—i(k+wT + )], 6)

with the amplitudes a and b, the wavenumber k, and the frequency w obeying the
dispersion relations:
a w

= k=Y 7
a? 4w’ (a®+w)? 7)
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It should be noted that the plane-wave seeds possess the same propagator, except for
a phase delay of 7 at the second component. Here Y1 2 are the 1 X n row vectors
determined through

[ 2 } SCIRR G SR ®)

where ®(™) are the series coefficients of the Taylor expansion of the factorized
column vector ®(\) = G 'R()\) about the given spectral parameter A = )\ (here
G = diag(1,u10/a) is a diagonal matrix), and M and N are the n x n matrices
whose elements can be obtained via the Taylor expansions of ®X® /(A — \*) and
I\ @TX*® /(A — \*), respectively, with

X:(? _\%ﬁ). )

To do this, one can substitute the plane-wave solutions (6) into the Lax pair (3),

and find the general form of eigenfunction R()), which can be expressed by a linear
superposition of two independent vectors W; (j = 1,2), viz.

R(A) =G®(}), ®(\) =T Wi+ Wy, (10
where I'. are two arbitrary complex constants, and
1 .
W; = _i(a2+/\+21/j) eI ;= pi T, (1)
2av/\
with
—1)J
y= 2+ EY 220w+ @t A (12)

o (a® 4+ w)(2vj —w) + Aw

Hi= 2X\(a? +w)? '

Let now the spectral parameter in Egs. (10)—(13) be A = Ao + (Ao — /\E"))e2 and the

n .
complex constants be I'y = > (y2-1 % %)62(3_1), where A\ = ¢%, ¢ = a+iy/w
j=1

(w>0), and € and ~y, (s =1,2,---,2n) are arbitrary complex constants. For con-

venience of discussion, we will term -y, the structural parameters, as they can affect

significantly the spatiotemporal structures of rogue waves under study. In these cir-
cumstances, one can expand ®()) in Eq. (10) into the series in powers of €2:

BN =00+ dD2 13Dty O, (14)

from which the row vectors Y1 2 can be found by means of Eq. (8). Correspond-
ingly, the element M;; of the matrix M and the element /V;; of the matrix N can be

13)
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determined through

n

XD A .
X _ ZMij‘E*z(Z_l)EQ(]_l) —I—O(|6|4n>,
]

A—A*

(15)
NeTxe 2(i—1) 2(i— n
‘)\_)\*:ZNZ]E 2( 1)62(] 1)+O(|€|4 )
ij

As a result, when these matrix expressions are substituted back into Eq. (5), one can
obtain the explicit rogue wave solutions for any order n. Usually, the larger the order
n, the more complicated form the solutions will take.

One may note that, in contrast to what might be naively expected, the analytical
seeking of the rogue wave solutions of the MTM system is not as simple as its form
shows. It is seen that the rogue wave solution defined by Eq. (5) takes a more sophis-
ticated form (as two different matrices M and N are involved therein), compared to
those found in other most-studied vector systems [36-43,46]. This strengthens our
belief that the MTM system, although contracted in form, may admit some intriguing
rogue wave dynamics unseen in other vector systems.

Below let us write the explicit rogue wave solutions up to the second order
(n = 2), namely,

J2 {1 _ix[RE(Somaz — Simoar) + Ry (S1mai — Somas)] }
el

a(miimaoz —miamar)

" <m11m22 — mmmm) "
10,
* * * *
M1 Moy — MygMigg

2 _ ). ix[Rp(Sonzz — Sina1) + Ri(S1in11 — Sonaz)]
a(ni1ng2 — nignat)

« <n11n22 — n12n21> u
205
* * * *
M11Mgg — NNy

(16)

where x = \g — \j = ida\/w, and the entry polynomials m;; = xM;; and n;; =
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xNij/(a® +w) are given by
mi1 = ¢| Ro|* — ¢"[So[*,

R 2 * * *
_ X‘qu‘ +¢RE Ry — ¢*S3S1 —mai,
S 2 * * *
Moy = X|2¢(1‘ +¢Ro Ry — ¢ SoST —mau,
N SgS1  RoR;
maa =0l = 7151 5 (252 T (g )
2\ ¢ ¢
n11 = ¢*|Ro|* = ¢|So|* = mi, 17
* R 2 . . *2
nig = —W +¢ Ry Ry — 95051 — (3)27111,
X’RO‘Z % " " a?—w
n21 = — 2" +¢" RoRY — 5057 — W”lla
2 9 X [ 9"RoRi  $5i5
ngg = ¢*|R1|” — ¢| 51| 2< 52 52
2 *2
- <$2n12+d(;2n21>.
The other polynomials in Eqgs. (16) and (17) are determined by
Ry =2(71 +720),
9
So=—2i [’Yl +72 <’l9— Zfﬂ )
93 16ia’wé (18)
Ry =y — 0= | + 273+ 2740
1=m +V2<3+ (a2+w)¢4>+ V3 + 274,
. 9?2 20w 2w 2i\/w
S1=—2 [71 (2— 5 ¢2> +720+73+ 7 <?9— 5 )] ;
where
£
V=2
av/w |:7'+ el
P PV 2w 9 SidPwE iywet?

6 0 @2 (@rwet P
In terms of these exact rational solutions given by Eq. (16), general rogue wave dy-
namics can be demonstrated. As one might check, when 5 # 0, these solutions
can describe the superposition of three Peregrine solitons, exhibiting the multiple
rogue wave patterns or the super rogue wave states, depending on the values of the
other three structural structures. However, when 2 = 0 and ~y; # 0, these solutions
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become exactly the fundamental Peregrine soliton solutions, always showing three-
time peak amplitude relative to their respective background heights, as occurred in a
scalar nonlinear system [35].

In the next Section, we will present the simplified fundamental rogue wave
solutions and the novel super rogue wave solutions, and then discuss their intriguing
rogue wave dynamics.

3. SUPER ROGUE WAVE DYNAMICS AND DISCUSSION OF THE RESULTS

The form of the solutions (16) is compact but less understandable, as it involves
many complex parameters and polynomials. As a matter of fact, these solutions can
be simplified greatly, by an appropriate translation on the plane (7, &).

For example, when 72 = 0 and 7; # 0, one can obtain readily the simplified
Peregrine soliton solution by doing the translation operations 7 — 7+ 79 and £ —
&+ &p in Eq. (16), where 7y and & denote the magnitudes of translation along the 7
and £ axes, respectively, given by [35]

1 PBIm(y/v)  Re(y/n)

7 :4a\@  4d’w 2a+/w
9 3 (19)
g —— a’Im(ys/71)
0 dar/w dalw
with
a=ad’+w, B=d’—w. (20)

Here, Re and Im denote the real and imaginary parts of a number, respectively. With
the above translation operations, the resultant Peregrine soliton solutions can read

o Sia%a(f + 2war) + 40

U1 =10 [1 44262+ 16a%wa?72 + a® — dica?(0 — 2a2a7)] ’ 21
Ps 8ia*a(f +2wat) +4a’ -

e = [1 40202 +16a%wa?7? + o3 + diaa (0 — 2‘120‘7)] ’

where 119 and ugqg are defined by Eq. (6) and
0=¢&+apT. (22)

It is obvious that these rational solutions are nonsingular everywhere only when w >
0, which is therefore deemed as the existence condition of rogue waves.

We emphasize that the resultant solution form given by Eq. (21) does not in-
volve any structural parameters, all of which disappear after these translation op-
erations. Besides, it is shown that both Peregrine soliton components possess the
identical three-time peak amplitudes occurring on the origin, as seen in Fig. 1, where
we use a =1/2, b=2/5, and w = 1. This is different from the case in other vector
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(a) 15

|u1/al

3
2
1
0
5

—_

Juz /0]

—_

Fig. 1 — Surface (a,c) and contour (b,d) plots of the fundamental Peregrine solitons defined by
Eq. (21), obtained witha = 1/2,b=2/5, and w = 1.

systems, in which the rogue wave components may involve variable peak ampli-
tudes [37-43,46]. We also observe from contour plots that the two Peregrine soliton
components have almost the same peak orientation, but drastically different hole ori-
entations, as implied by the fractional polynomials in Eq. (21), which possess the
same numerator form but a conjugated pair of denominators.

By comparison, the derivation of the super rogue wave solutions, which occur
at 2 # 0, from Eq. (16) is quite challenging. We find that, when performing the
following translations:

-1 Plm(n/v)  Re(yi/72)
0 day/w 4a2w 2a/w
o a®Tm(y1/72)

fo=- dar/w dalw

(23)

and employing an appropriate value of 3, the super rogue wave solutions can be ob-
tained. Usually, to simplify the derivation, one can set v = 1 and y; = 0 in Eq. (23).
In this case, the value of 3 can be readily found to be

2w
3a3

9

g = (302 —w)? — Z;*éa(zaa? —w)(a® - 3w). (24)
o

As a result, the super rogue wave solutions can be expressed as

srw _ C+iD — G+iH
Uy —u10<1 M—iN)’ Uy = = U20 (1 M—i—iN), (25)
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where C, D, G, H, M, and N are real polynomials, given by
192 2 _ 2
C = 94“ <Q 8a C§>+288 2[ 24 2(5a 2W)T§ /Bi
a? o
768&45 <3 2.2, 3wTé L§2>

4aS 192a%38¢3
p=38 “€Q2 19207567 2902 (74 ) 4
ab a? a? a? a?
(27)

G—1924a Q(Q+8a TC)—!—QS&L [52—{—(5610700)5_57-]_36, (28)

] —36, (26)

3a24§2 N 3wt m'?) ’
a

6 4103
H— 384a CQ2 192GGBC — 724> (97+ 62>+768a47'< 2
@ o @
(29)
6 4 2,2
=S B (0 1) -
) X ) (30)
el ;swx -
2 2
= R0t 106 g 8246 st ve) +9], o
Qa Oé

with ¢ = 3a® +w, ( = £+ a7, andQ:CQ/a—llef.

15 (b)

s @

Fig. 2 — Spatiotemporal structures of the super rogue wave solutions given by Eq. (25), obtained with
a=1/2,b=2/5,and w = 1. (a), (c) Surface plots; (b), (d) Contour distributions.

We point out that the super rogue wave solutions obtained above are unique in
form, which do not depend on any of structural parameters ;. It is seen that these
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super rogue wave solutions take more complicated solution form, with the numera-
tors in fractional polynomials being also different for two rogue wave components,
in comparison with the fundamental Peregrine soliton solutions (21). They always
possess the fixed five-time peak amplitude relative to their respective background
heights, as occurring in the scalar nonlinear systems [35]. Figure 2 demonstrates
such super rogue wave states defined by Eq. (25), using the same background pa-
rameters as in Fig. 1. It is shown that apart from the five-time peak amplitude, both
rogue wave components feature totally different spatiotemporal distributions, despite
the fact that they evolve from almost the same cw backgrounds defined by Eq. (6).

@

3
2

w1 /al

—_

[
=R}

§ -15 -6 T

Fig. 3 — Evolution of the superposition of three Peregrine solitons, defined by Eq. (16), from (a), (b)
the multiple rogue waves and (c),(d) the composite rogue waves to (e), (f) the super rogue waves,
using another set of background parameters a = 1, b = 1/2, and w = 1. The structural parameters in
each case are specified by (a),(b): 72 =1, v3 =50, 1 =4 = 0; (¢),(d): y2 =1, v3 =1+ 21,
Y1=71=0;¢), :v2=13=-1/34+i/3,v1 =71 =0.

Basically, the formation of second-order super rogue waves is a direct result
of the nonlinear superposition of three Peregrine solitons. For this reason, the max-
imum peak amplitude of the superposed rogue waves can never exceed five-fold the
background height, as revealed by our analytical solutions (25). Figure 3 shows the
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Fig. 4 — Map of the logarithmic MI gain, In(~y), versus Q2 and w for given parameter a = 1/2.

evolution of the superposition of three Peregrine solitons, defined by Eq. (6), using
the same background parameters a = 1 and w = 1, but different sets of structural
parameters. It is exhibited that depending on the choice of structural parameters, the
superposed rogue wave states can evolve from the multiple rogue waves [see Figs.
3(a) and 3(b)]) and the composite rogue waves [see Figs. 3(c) and 3(d)]) to the super
rogue wave states [see Figs. 3(e) and 3(f)]), with their maximum amplitude factor
never exceeding 5.

Lastly, let us find the condition of existence of rogue waves in the MTM system
using the baseband MI conjecture, which states that the existence regime of rogue
waves coincides with that of the MI of background field as its modulation frequency
approaches zero [22,32,39]. To do this, one can assume that the background fields
are perturbed according to u; = ujo{1+p; exp[—iQ2(k€ —7)] + ¢} exp[iQ(x*E —T)]}
(j = 1,2), where p; and g; are the complex small perturbation amplitudes, and the
parameters €2 and x denote the real frequency and the complex wave number of the
perturbation, respectively. By inserting the perturbed background fields into Eq. (2),
one can obtain a system of four linear equations about p; and ¢;, which admits non-
trivial solutions only when & satisfies a quadratic equation:

[ B )]2 02 — 40w

k= a(@2—a?)|  a?(Q2—a2)?

=0. (32)

As one knows, MI occurs whenever Eq. (32) permits a complex root x with a nonzero
imaginary part. Hence, at a sufficiently low modulation frequency €2 — 0, this re-
quires w > 0, which gives the condition for rogue waves to be observable in the
MTM system [58]. This result is indeed consistent with the one seen from our an-
alytical solutions (21) and (25), which also requires w > 0 for arbitrary a. For a
clear illustration, we plot in Fig. 4 the map of the logarithmic MI gain, defined by
In(vy,) = In[|QIm(k)|], versus © and w for a = 1/2. It is clear that the gain spectrum
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displays a baseband MI that could generate rogue waves in the regime of w > 0, as
predicted above.

4. CONCLUSIONS

In conclusion, we presented the second-order super rogue wave solutions of the
MTM system, using a nonrecursive Darboux transformation method. It was revealed
that in such a vector nonlinear system, both rogue wave components, when taking the
fundamental Peregrine soliton structure or the super rogue wave ones, may possess
the same peak amplitude factor as compared to their respective background heights,
different from many other vector systems in which the rogue wave components may
involve variable peak amplitudes due to the energy exchange between them.

In addition, we showed that due to the coherent coupling, the super rogue
wave states may feature complicated spatiotemporal distributions for two compo-
nents, despite that they evolve from almost the same background fields. Finally, we
confirmed the existence regime of the rogue waves using the baseband MI theory.
We expect that our results obtained for the classical MTM system may help un-
derstand the rogue wave dynamics occurring in periodic or Bragg nonlinear optical
media [53-56, 58,61, 63].
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