How does the Emerald Ash Borer (*Agrilus planipennis*) affect ecosystem services and biodiversity components in invaded areas?

G. Schrader¹, R. Baker², Y. Baranchikov³, L. Dumouchel⁴, K. S. Knight⁵, D. G. McCullough⁶, M. J. Orlova-Bienkowskaja⁷, S. Pasquaï⁸ and G. Gilioli⁹

¹Julius Kuehn Institute (JKI)-Federal Research Centre for Cultivated Plants, Institute for National and International Plant Health, Messeweg 11/12, 38104, Braunschweig (Germany); e-mail: Gritta.schrader@julius-kuehn.de
²Formerly: Plant Health Risk and Horizon Scanning Team, Defra, National Agri-food Innovation Campus, York, YO41 1LZ (UK)
³V.N. Sukachev Institute of Forest FRC KSC Siberian Branch, Russian Academy of Sciences, 50/28 Akademgorodok, Krasnoyarsk, 660036 (Russia)
⁴Formerly Plant Health Risk Assessment Unit, Science Division, Canadian Food Inspection Agency (CFIA), 59 Camelot Drive Ottawa, Ontario, ON K1A 0Y9 (Canada)
⁵USDA Forest Service Northern Research Station, 359 Main Rd., Delaware, OH 43015 (USA)
⁶Department of Entomology and Department of Forestry, Michigan State University, East Lansing, MI 48820 (USA)
⁷A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninskiy prosp., 119071, Moscow (Russia)
⁸CNR-IMATI, Via A. Citti 12, 20133, Milano (Italy)
⁹Dipartimento di Medicina Molecolare e Traslazionale, Università degli Studi di Brescia, Viale Europa 11, 25123, Brescia (Italy)

Environmental risk assessment (ERA) is an important component of risk analysis for plant pests and invasive alien species (IAS), and a standardized and consistent methodology has recently been developed for evaluating their impact on ecosystem services and biodiversity. This paper presents the application of this innovative methodology for ERA to *Agrilus planipennis*, the emerald ash borer, which causes significant mortality to *Fraxinus* (ash) species in forests and urban areas of North America (here: USA and Canada, excluding Mexico) and Russia. The methodology follows a retrospective analysis and summarizes information and observations in invaded areas in North America and Russia. Uncertainty distributions were elicited to define quantitatively a general pattern of the environmental impact in terms of reduction in ecosystem provisioning, supporting and regulating services, and biodiversity components. The environmental impacts of *A. planipennis* are time- and context-dependent, therefore two time horizons of 5 and 20 years after introduction and two ecosystems (urban and forest) were considered. This case study shows that the quantitative assessment of environmental impacts for IAS is both possible and helpful for decision-makers and risk managers who have to balance control costs against potential impacts of IAS.

1. Introduction

The emerald ash borer, *Agrilus planipennis* Fairmaire, 1888 (Coleoptera: Buprestidae), is native and widespread in North-Eastern China, Japan, North and South Korea, and the Russian Far East (Haack et al., 2015). Though Mongolia and Taiwan are indicated as a part of the native range of emerald ash borer in many articles, no documented records for these countries are available (Orlova-Bienkowskaja & Volkovitsk, 2018).

The beetle was introduced into Canada, the USA and the European part of Russia most probably in the early 1990s. Recently, it was found in the Ukraine (Drogvalenko et al., 2019; EPPO, 2019). Detailed information on introduction history in North America (in this article, North America refers to USA and Canada) and Russia can be found in, for example, Baranchikov et al., 2008; Siegert et al., 2014; Haack et al., 2015). Recently, the beetle has also been found in St. Petersburg, Russia, close to the EU border (Volkovish & Suslov, 2020).

In invaded areas, the beetle may kill trees in the genus *Fraxinus* and thus harm ecosystems, since *Fraxinus* often plays an important role in riparian habitats and in remnant forests (e.g. McKenney et al., 2012, citing others). For this reason, a detailed environmental risk assessment (ERA) was deemed important to assess properly the full scale of the impact *A. planipennis* can have. A pest risk analysis (PRA) for *A. planipennis* in the EPPO (European and Mediterranean Plant Protection Organization) region was conducted by EPPO (2013) in which the probability and/or magnitude of entry, establishment, spread, impact and different management options for this invasive alien species (IAS) were assessed. However, environmental impacts were not assessed in detail. The intent of this paper is to conduct
an in-depth analysis of the beetle’s impact on the environment and to assess quantitatively the impact of this species on ecosystem services and biodiversity in newly invaded areas. Ecosystem services are benefits recognized by humans as obtained from ecosystems that support, directly or indirectly, humans’ survival and/or quality of life. They include provisioning, regulating and cultural services that directly benefit people, and the supporting services needed to maintain the direct services (MEA, 2003; Harrington et al., 2010). In this study, impacts to urban areas and forested areas were rated separately for selected ecosystem services grouped into provisioning, regulating and supporting services (see also Gilioli et al., 2014). To fulfil this aim, this study focused on the introduction and spread of A. planipennis in North America and the European part of Russia.

Assessing evidence of adverse impacts of IAS on native species and ecosystems requires the development of consistent, standardized tools to identify, prioritize and manage the environmental impact of IAS, which can be used by risk assessors with varied knowledge.

Recently, a novel standardized approach has been developed to obtain comparable and reproducible outputs for ERA based on the impact on ecosystem services as a part of PRA. The quantitative methodology, described in detail by Gilioli et al. (2014) and applied to the apple snail Pomacea spp. (EFSA, 2014a; Gilioli et al., 2017), assesses the environmental risks by integrating the impacts of a pest on different components of the environment, with ecosystem services and biodiversity as the key elements of the analysis, and the probabilities of occurrence of these impacts, taking into account the uncertainties related to the estimations (EFSA, 2018). An expert knowledge elicitation (EKE) procedure can be applied (EFSA, 2014b) that allows a transparent method of rating, even if data are scarce (EFSA, 2018).

The impacts for the two categories of habitat and the two time horizons are assessed based on an in-depth review of the published information available for North America and Russia. To conduct the assessment, a panel of experts on the pest from these recently invaded regions was created.

2. Methodology

Five emerald ash borer experts (Y. Baranchikov, L. Dumouchel, K.S. Knight, D.G. McCullough, M.J. Orlova-Bienkowska – co-authors of this paper) from North America and Russia assessed the impact of A. planipennis on ecosystem services and biodiversity. Questionnaires were sent to these experts with a detailed description of how they should be completed. The experts selected the relevant publications by systematic literature review. Their own publications and direct observations were considered as well. They applied their expert judgment with regard to the impacts on ecosystem services and biodiversity components, and identified the relevant biological and ecological circumstances and conditions as well as any management measures that had been applied.

The methodology described in EFSA (2011, 2014a) and Gilioli et al. (2014, 2017) for environmental risk assessment was originally proposed to prospectively assess impacts in a specific area. In this paper the methodology is applied to describe the sequence of events and impacts from the introduction of the emerald ash borer into new areas in order to derive a general pattern for environmental risk associated with A. planipennis based on observations and studies conducted in those areas. In this retrospective analysis, to account for the temporal evolution of the environmental consequences of A. planipennis, the analysis considered two time horizons and two broad habitat categories.

2.1. Components of the retrospective analysis

Emerald ash borer affects plant growth, reproduction and survival. This triggers a cascade of effects on one or more components of biodiversity and ecosystem functions that provide the ecosystem services. The ERA is undertaken at the level of the service providing units (Vandewalle et al., 2008) – functional units in which the components (individuals, species or communities) are characterized by functional traits defining their ecological role and contributing to the generation and regulation of ecosystem services. The influence of the pest on the ecosystem services provision level and biodiversity is assessed by expert judgment (Fig. 1). Components of uncertainty that have to be taken into account when such a retrospective analysis is done are the variability in the population abundance, and the influence of resistance, resilience and management (EFSA, 2011; Gilioli et al., 2014).

2.1.1. Population abundance

Population abundance is seen as the main driver of the environmental impact of an IAS (Gilioli et al., 2014). The typical spatial pattern of A. planipennis abundance is characterized by areas with high density, with large areas with very low densities surrounding those (Taylor et al., 2010; Siegert et al., 2015; Mercader et al., 2016). Long-distance spread of A. planipennis can be attributed to human transport of infested ash trees from nurseries, unprocessed logs and firewood causing numerous infestations, which has substantially accelerated spread in Michigan, for example (Prasad et al., 2010; Siegert et al., 2014, 2015). From Moscow, the beetle has spread mainly along roads and railways, via train and car (Prasad et al., 2010; Selikhovkin et al., 2017). As of August 2020, A. planipennis infestations have been identified in 35 US states and five Canadian provinces (www.aphis.usda.gov/aphis/ourfocus/planthealth/plant-pest-and-disease-programs/pests-and-diseases/emerald-ash-borer; www.emeraldashborer.info). In Russia, the invasive range of A. planipennis has now expanded over 17 administrative districts in the Russian Federation (Musolin et al., 2017; Orlova-Bienkowska & Bieękowski, 2018; Baranchikov &
Recently, the beetle was found in Ukraine (Drogvalenko et al., 2019, EPPO, 2019). High densities of host plants may decrease spread rates of the beetle and will eventually increase local density. Attempts to reduce pest populations by cutting large numbers of host trees may reduce available food resources, thereby increasing dispersal and local spread rates (Mercader et al., 2011). In European Russia, the rate of spread encompassing natural and possibly human-assisted dispersal was estimated to be 10 km per year since the beetle’s introduction (early 1990s) which is found now more than 250 km west of Moscow. Though most of the ash trees in Moscow have been damaged by *A. planipennis*, a large proportion of these have survived (Orlova-Bienkowskaja & Bieńkowski, 2018). It is possible that the *A. planipennis* population is suppressed by the parasitoid *Spathius polonicus* (Orlova-Bienkowskaja & Belokobylskij, 2014; Orlova-Bienkowskaja, 2015) and furthermore the climate in Moscow is colder than in most regions of North America affected by *A. planipennis*, which might have an effect on *A. planipennis* abundance. However, it has to be noted that at the south-western front of the emerald ash borer’s expansion (the city of Voronezh, Orel) the damage is still ongoing.

Following Gilioli et al. (2017) the methodology for ERA presented here disregards the spatial dynamics and focuses the assessment on a scenario considering ideal service-providing units representing the conditions favourable for *A. planipennis*. In these habitats the emerald ash borer population abundance per area unit is assumed to vary according to the environmental conditions, the availability of resources (e.g. the host plant density and susceptibility), the ecosystem resistance and resilience (see Section 2.1.3), and management measures applied (see Section 2.1.4). The variability in the population abundance and its role in explaining the variability of the impact are taken into account in the elicited uncertainty distributions (Gilioli et al., 2014; EFSA, 2014a, 2018).

2.1.2. Identification of the service-providing units in relation to the impacts of emerald ash borer

Emerald ash borer feeds primarily on ash tree species (*Fraxinus* spp.), with some interspecific differences in preference or resistance (Herms & McCullough, 2014). In addition to *Fraxinus*, *A. planipennis* may colonize and develop on white fringetree, *Chionanthus virginicus* L. (Cipollini, 2015).

Damage is caused by larvae feeding on the phloem and cambium in serpentine galleries, disrupting transport of nutrients and water (Cappaert et al., 2005; Flower et al., 2013a). Trees generally die within a few years once external symptoms become apparent (Knight et al., 2013; Herms & McCullough, 2014). Details on damage in North America can be found in Aukema et al. (2011) and Herms & McCullough (2014). With its impacts on forest and urban ecosystems, *A. planipennis* initiates a cascade of effects on other species and ecosystem processes, ultimately affecting ecosystem services and biodiversity components.

Based on the observed impacts in North America and Russia, and to cover the most important habitats, two service-providing units were defined: urban areas (streets, urban and suburban parks, and gardens where ash trees are dominant) and forests (pure or mixed forest stands where ash trees are dominant).

2.1.3. Ecosystem resistance and resilience

The impact of *A. planipennis* can be modified or mitigated by its interaction with the invaded ecosystems. Resistance of most North American ash trees to *A. planipennis* is low, given the lack of a co-evolutionary history with this or related insects (Herms & McCullough, 2014). A small percentage of ash trees appear to survive *A. planipennis* infestation (Knight et al., 2012) and may exhibit resistance to the beetle (Koch et al., 2015). Interspecific (Tanis & McCullough, 2012, 2015) and intraspecific (Koch et al., 2015) differences in *A. planipennis* host preference and ash resistance or tolerance have been identified; multiple mechanisms may be responsible for tree survival (Koch et al., 2015). Effects of parasitoids and predators may also contribute to resilience (Lindell et al., 2008; Orlova-Bienkowskaja & Belokobylskij, 2014; Flower et al., 2014; Orlova-Bienkowskaja, 2015; Duan et al., 2017). The time needed to develop significant ecosystem resistance to emerald ash borer is estimated to be at least 20 years. In Moscow it took approximately 25 years for local biota to counter *A. planipennis* invasion.

2.1.4. Influence of management measures

In general, the first steps in managing *A. planipennis* are early detection techniques and mechanical control. Although a lot of effort has been made to manage *A. planipennis* (see, e.g., McCullough et al., 2009; Herms & McCullough, 2014; Knight, 2014; Iverson et al., 2016; Siegert et al., 2017; Flower et al., 2018), it is too early to determine the degree to which these efforts may mitigate the ecological effects of *A. planipennis*. It has been found that, if the stem of the ash tree dies or is cut off, the epicormic or basal sprouts may survive and grow (Kashian, 2016). Many ash trees in Moscow have been replaced by their epicormic shoots, which are already 10 cm in breadth and produce seeds. Biocontrol by native or introduced natural enemies allows ash seedlings, saplings and young trees to recover in forest ecosystems in Michigan (Duan et al., 2017). The combination of these tactics can significantly reduce emerald ash borer population growth rates and decrease the rate of ash decline and mortality (Mercader et al., 2015).

2.1.5. Temporal horizon

The environmental impact of emerald ash borer relates to the local pest population abundance influenced by environmental conditions and the interactions with the communities in newly invaded areas. In North-Eastern China,
A. planipennis completes one generation usually in 1 year, some individuals take 2 years, and in some parts of China 2 years are more common (Wei et al., 2007). Reasons for this are suggested by Cappaert et al. (2005), EPPO (2013), and Flo et al. (2014). The semivoltine cycle slows population growth in newly established, low-density populations (Mercader et al., 2011; Herms & McCullough, 2014). In European Russia, the complete life cycle for most of the specimens took 2 years (Orlova-Bienkowskaja & Bienkowski, 2016).

Taking into account the information available, two relevant time horizons have been chosen so that a comparison can be made on the short- and long-term prevalence of the pest in the two service-providing units. For short-term effects, mainly dependent on ecosystem resistance, a temporal horizon of 5 years was set, a period considered necessary for the first significant impacts, close to the time of introduction. Then 20 years were set to account for the more long-term effects of the pest when it is already widespread in the receiving ecosystem, also taking into account ecosystem resilience. The variability in the population abundance in the area in which the beetle could establish at the end of the two selected temporal horizons is considered in the estimation of the uncertainty distribution of the impact.

2.1.6. Assessed ecosystem services and biodiversity components

In this study, the five experts separately rated the impacts to urban areas and to forested areas for each of the following ecosystem services:

- provisioning services: food, fibre, biochemical and natural medicines, ornamental resources, genetic resources, freshwater
- regulating services: air quality regulation, climate regulation, water regulation and cycling, erosion regulation
- supporting services: nutrient cycling, photosynthesis and primary production, pest and disease regulation

Furthermore, impacts on the following biodiversity components were assessed: genetic diversity, native species diversity, composition and structure of habitats, communities and/or ecosystems, rare or vulnerable species, and habitats of high conservation value (see also Gilioli et al., 2014).

2.2. Uncertainty distributions of the reduction in ecosystem service provision levels and biodiversity components

Experts were asked in a semiformal EKE (EFSA, 2014b) to evaluate the percentage of reduction in the level of ecosystem services and biodiversity components. The impacts have been estimated using the above-mentioned questionnaires by applying a quantitative scoring system to ensure consistency and transparency (Fig. 1). Five classes of ratings were considered: minimal, minor, moderate, major and massive, which are defined in detail in EFSA (2011) and Gilioli et al. (2014, 2017). The rating system was developed based on the estimation of uncertainty distributions representing the percentage reduction in the different ecosystem services and of the pest’s impacts on components of structural biodiversity. Experts worked independently to assign a probability for each interval of magnitude of impact for each ecosystem service and biodiversity component, thus creating a discrete probability distribution which quantified uncertainty in the magnitude of the impact. Uncertainty distributions also account for the variation in impacts reported for North America and Russia as a consequence of the interaction of the beetle with the community and the ecosystem functioning of the receiving ecosystems. The contribution of management measures to uncertainty has also been considered. Figure 1 gives an example of the rating process. Large differences between these distributions were discussed by experts afterwards to come to closer agreement based on published evidence and strict adherence to the specified scenarios.

3. Results and discussion

3.1. Overview of ecosystem services assessed

Table 1 gives an overview of the ecosystem services that were considered in this study.

Table 2 shows the ratings obtained by the experts.

In the following sections, some explanations are given for the ratings chosen by the experts. The rating is based on areas where ash is dominant; the actual impact depends on the proportion of host plants within the service-providing units, on the role played by natural enemies of A. planipennis and on biological control of the pest over time. Uncertainty is often due to the inter- and intraspecific resistance among ash species and the occurrence of environmental stresses (e.g. drought events) affecting tree vulnerability to A. planipennis, to the amount of ash trees affected, time since infestation, the use and effectiveness of systemic pesticides, and the replacement of ash trees with other species. Considerable uncertainty in the magnitude of effects stems also from variation in landscape features, precipitation and mechanisms related to the removal of pollutants from air and water, how quickly ash trees are replaced and with which species, and the time it takes for replacement trees to reach similar properties (height, root system etc.).

3.2. Provisioning services affected by A. planipennis

Fibre

Initially, due to the infestation with emerald ash borer, the availability of wood fibres is expected to increase. In North America, urban trees, even if not valuable as sawn timber, have been harvested in some areas invaded by A. planipennis, and in forests large white ash trees have been pre-emptively harvested and salvaged, so even in highly impacted forest areas, there was and still is a significant amount of timber that can be processed. In the long term,
the availability of fibre is reduced. At the urban level, only ash trees not protected with insecticides die and investment in treatment may reduce harvesting, but since in urban areas timber of *Fraxinus* is rarely harvested, the impact remains low. In forests, in the long term, the entire industry has to use other hardwood species or switch to different products.

Ornamental resources

The reduction in impacts depends on the availability of management measures and the presence of (effective) natural enemies. In urban areas, impacts mainly depend on the effectiveness of systemic insecticides (Herms et al., 2009) and the extent to which *Fraxinus* have been killed/replaced with other trees. In forests, impact also depends on whether these forests are used for ornamental purposes. Since the emerald ash borer is able to kill its hosts and the detection of an infestation leads to host destruction, this is a seriously affected service.

Genetic resources

Planted urban trees are typically a few clonally propagated genotypes, and therefore unlikely to be genetically important. However, naturally regenerated ash in urban parks and the species that depend on them would likely represent some genetic diversity.

Freshwater

Effects may vary depending on the size of trees and the topography and hydrology of the landscape.

3.3. Regulating services affected by *A. planipennis*

Air quality regulation

In particular in urban areas, ornamental trees contribute to the removal of pollutants with possible direct consequences for human health (e.g. Escobedo et al., 2001; Freer-Smith et al., 2004). Larger trees would likely have a greater effect on air quality, so even if all urban ash trees are replaced, the replacement of large ash trees with small trees of other species will not make up for the air quality losses in the 20-year time scale assessed. Donovan et al. (2013) suggest that increased tree mortality by *A. planipennis*, which may have led to a decrease in air quality, was linked to an increase in cardiovascular and lower respiratory tract illness in 15 US states.

Climate regulation

In all regions, and in particular in areas with abundant ash, tree mortality caused by *A. planipennis* reduces cooling
Table 1. Overview of ecosystem services discussed in this study including a short description, and why these were or were not considered

<table>
<thead>
<tr>
<th>Ecosystem service</th>
<th>Provisioning services</th>
<th>Regulating services</th>
<th>Supporting services</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food</td>
<td>Fraxinus species are in general not a food source (except from some very indirect effects). The effects of A. planipennis on Fraxinus spp. food production are therefore considered negligible in all scenarios considered and are not discussed here.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fibre</td>
<td>White ash (F. americana) is a valued timber and veneer species used for tool handles, furniture, cabinets, flooring, etc. F. angustifolia has the potential to produce high-quality wood fibres and to be used in the pulp and paper industry; F. pennsylvanica is planted not only for landscaping purposes but also as merchantable saw timber and pulpwood.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochemicals and natural medicine</td>
<td>The effects of A. planipennis on the extraction of biochemicals from ash trees is considered to be negligible and is not further considered here.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ornaments</td>
<td>Fraxinus spp. has a high ornamental value in urban areas, including parks, and a moderate to high ornamental value in forests that depends on the use and management of the forest itself (e.g. numbers of visitors, recreational activities, etc.).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genetic resources</td>
<td>All ash tree species seem to be vulnerable to emerald ash borer (with some difference between the severity of impacts) and a number of species depend on ash (Gandhi & Herms, 2010), thus A. planipennis has the capacity to reduce genetic resources especially over longer time periods as impacts spread regionally.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freshwater</td>
<td>Large ash trees in urban areas provide major services in terms of stormwater capture. Ash trees take up stormwater, with the associated pollutants and debris that would otherwise eventually end up in rivers and lakes.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air quality regulation</td>
<td>In urban areas ornamental trees contribute to the removal of pollutants with possible direct consequences for human health (e.g. Escobedo et al., 2001; Freer-Smith et al., 2004).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Climate regulation</td>
<td>In urban areas, trees play a key role in modifying the urban microclimate: they humidify the surrounding atmosphere, ameliorate the urban heat island effect, and provide shade and wind shelter.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water regulation and cycling</td>
<td>The loss of ash can reduce stormwater retention and alter the hydrology of forests, generally increasing water yields and increasing moisture in the soil (Slesak et al., 2014).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erosion regulation</td>
<td>Urban ash trees play a key role in erosion prevention along riverbanks and streams, but also streets and railroads. Ash tree mortality and felling may increase erosion in urban sites and the probability of urban landslides (Pfeil-McCullough et al., 2015). Tree removal leaves soils vulnerable to increases in soil erosion by wind and water.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nutrient cycling</td>
<td>Species composition changes resulting from ash mortality or replacement affects litter quality and abundance, subsequently altering nutrient profiles.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photosynthesis and primary production</td>
<td>Fraxinus spp. primary production is reduced due to the alteration of plant physiology and mortality caused by A. planipennis.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pest and disease regulation</td>
<td>The establishment of A. planipennis can cause cascading ecological effects, in particular the introduction and spread of wood-damaging species.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.4. Supporting services affected by *A. planipennis*

Nutrient cycling

In forests, nutrient cycling is affected by the nutrient composition of leaf litter inputs. The loss of ash, with its high-nitrogen litter, may affect nutrient cycling if the leaf litter of the species that replace ash differ in the chemistry of their leaves (Nisbet et al., 2015). This change will increase from the short term to the long term as more ash trees die and the species composition of ecosystems changes. While some ecosystems may experience little change, others, for example ash swamp forest replaced with herbaceous swamp communities dominated by invasive plants, could experience a large impact on nutrient cycling, affecting the long-term biogeochemical cycle.

Photosynthesis and primary production

The impact in forests will depend on the dominance of ash and the presence of species that can rapidly grow to

© 2021 The Authors. EPPO Bulletin published by John Wiley & Sons Ltd on behalf of European and Mediterranean Plant Protection Organization, EPPO Bulletin 51, 216–228
replace ash (Flower et al., 2013b). In both service-providing units, if dead ash trees are not replaced, net primary production (NPP) is reduced over the long term. However, loss of black ash or other ash species that are highly vulnerable, abundant and unlikely to be replaced are likely to have serious effects on NPP.

Pest and disease regulation

The establishment of *Agrilus planipennis* has resulted in some ecological effects, e.g. the frequent appearance of other xylophagous beetles in *A. planipennis*-infested trees which may have impacts on ash and other host plants (Orlova-Bienkowskaja & Volkovitsh, 2014; Orlova-Bienkowskaja, 2015).

3.5. Overview of biodiversity components assessed

Table 3 gives an overview of the biodiversity components that were considered in this study.

Table 4 shows the ratings obtained by the experts.

3.6. Biodiversity components affected by *A. planipennis*

Genetic diversity

Genetic diversity is generally not high in urban areas where *A. planipennis* is established, and genetic diversity is also limited in landscape trees produced in nurseries, which

Table 2. Results of the assessment of estimated impacts on ecosystem services caused by *Agrilus planipennis* for the two service-providing units (urban areas and forests) and the two time horizons (5 years and 20 years) [Colour table can be viewed at wileyonlinelibrary.com]

<table>
<thead>
<tr>
<th>Ecosystem services – Urban areas –</th>
<th>Ecosystem services – Forests –</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ecosystem service</td>
<td>Short-term risk/uncertainty</td>
</tr>
<tr>
<td>Fibre</td>
<td>0.01/0.46</td>
</tr>
<tr>
<td>Ornamentals</td>
<td>0.19/0.87</td>
</tr>
<tr>
<td>Genetic resources</td>
<td>0.02/0.52</td>
</tr>
<tr>
<td>Freshwater</td>
<td>0.01/0.46</td>
</tr>
<tr>
<td>Air quality</td>
<td>0.07/0.79</td>
</tr>
<tr>
<td>Climate</td>
<td>0.03/0.65</td>
</tr>
<tr>
<td>Water regulation</td>
<td>0.06/0.73</td>
</tr>
<tr>
<td>Nutrient cycling</td>
<td>0.023/0.57</td>
</tr>
<tr>
<td>Primary production</td>
<td>0.05/0.71</td>
</tr>
<tr>
<td>Pests/diseases</td>
<td>0.02/0.49</td>
</tr>
</tbody>
</table>

Risk ratings are demonstrated by colour coding. Colour codes do not consider uncertainty. Values for impacts: 0, minimal/negligible; >0–0.05, minor (light green); >0.05–0.2, moderate (yellow); >0.2–0.5, major (orange); >0.5, massive. Values for uncertainty: 0–0.33, low; >0.33–0.67, moderate; >0.67–1, high.
Table 3. Overview of biodiversity components discussed in this study, including a short description and why these were considered

<table>
<thead>
<tr>
<th>Biodiversity component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genetic diversity</td>
<td>Changes in species richness are expected due to the loss of ash species, insects and other species that depend on ash trees with these taxa potentially experiencing significant changes in genetic diversity.</td>
</tr>
<tr>
<td>Native species diversity</td>
<td>In urban areas, the effects will depend on the abundance of ash relative to other tree species. Organisms that require ash in their life cycle can be negatively affected. In forested areas, loss of canopy ash reduces canopy diversity, and a decline in native species diversity can promote the establishment of invasive species.</td>
</tr>
<tr>
<td>Composition structure</td>
<td>Where ash trees are replaced by multiple species, diversity increases but the vertical structure is negatively affected until the trees mature.</td>
</tr>
<tr>
<td>Rare and vulnerable species</td>
<td>Massive or complete loss of ash trees could impact rare or vulnerable species that depend on ash for some aspect of their life cycle.</td>
</tr>
<tr>
<td>Habitat conservation</td>
<td>Ash forests play a more important role than urban ash in terms of habitat conservation value. There may be a few examples of urban areas where relatively rare ash species are growing, but these are uncommon.</td>
</tr>
</tbody>
</table>

may be used as replacements. In the short term there will still be numerous live ash trees or parts of trees (e.g. root systems) available to arthropods that feed exclusively on ash trees. However, in the long term, if the whole tree dies, insect diversity and the species, which depend on them, decline as well. Early succession species not previously present in some older forests are able to take advantage of gaps created by dead ash trees, thus in some sites the local diversity of native trees and plants may increase slightly or remain unchanged. However, if non-native invasive plants or very aggressive native plants take advantage of the disturbance and become very abundant, local decreases in plant species diversity are possible. Therefore, in forests, species and genetic diversity of native insects is likely to be seriously impacted (Wagner & Todd, 2015; Musolin et al., 2017).

Native species diversity

Efforts to replant other tree species following A. planipennis infestation may increase diversity, given the major emphasis on using a variety of trees in landscapes, however, native species diversity related to ash will be reduced or lost. Local changes in native species diversity vary tremendously among different types of ash ecosystems, while regional-scale diversity will likely experience negligible or small changes.

Composition and structure of habitats, communities and/or ecosystems

In forests, the gaps in the canopy that occur when A. planipennis-infested ash trees are killed in a relatively synchronous timing cause direct and indirect effects on forest composition by altering the understory vegetation, affecting nutrient cycling, changing successional patterns, facilitating the spread of shade-intolerant plants, facilitating woody (invasive) plant species and increasing the amount of dead wood (Herms & McCullough, 2014; Hoven et al., 2017; Higham et al., 2017; Costilow et al., 2017). Uncertainty depends on ash species, their relative importance in the habitat, community and ecosystem under consideration, and potential non-native plant invasions (see review Wagner & Todd, 2015).

Rare or vulnerable species

In urban areas, blue ash (F. quadrangulata) and the flooded jellyskin lichen (Leptogium rivulare) are examples of threatened species of special concern that are directly or indirectly affected by A. planipennis (Environment Canada, 2013, 2016). In the short term, as in the case of blue ash, noninfested individuals of the rare or vulnerable species are still present both inside and outside of the A. planipennis-infested areas plus, in the case of L. rivulare, any infested ash trees present in the habitat of the threatened species might not yet have lost the bark with which the lichen is associated. In the long term, populations of L. rivulare may be severely impacted where lichen is abundant and growing principally on the bark of ash trees. In forests, local populations of invertebrates or other organisms that require ash can be affected, especially in the long term.

Habitats of high conservation value

Concerning forest environments little is known about the most vulnerable habitats, making it difficult to project A. planipennis impacts. For example, black ash dominated swamps are likely to support unique populations or communities.

3.7. Summarizing risks and uncertainties

The overall impact (Table 5) has been calculated according to the methodology in EFSA (2011, appendix C) and is rated as minor (short term) and moderate (long term). For the provisioning services the overall risk is rated as minor (short term) and moderate (long term), with highest impacts (long term) on ornamental resources (urban area) and fibre (forests). For the regulating and supporting services the same overall risk applies as for the provisioning services. Here the strongest impacts can be seen on photosynthesis and primary production for both urban areas and forests (Table 2). The biodiversity services are expected to be most affected by A. planipennis, in particular because of the impact on the composition and structure of habitats, communities and/or ecosystems (Table 4). The long term impact on biodiversity components in forests is major (Table 5).
The overall uncertainty (in terms of the Shannon Entropy from 0 to 100%) is rated medium for the short term and high for the long term. The highest uncertainties derive from the evaluation of the biodiversity components. Especially in the long term, impacts on composition and structure of habitats, communities and/or ecosystems and rare or vulnerable species are difficult to estimate. The sources for these uncertainties are the same for all services: the impact of management measures on \(A. \) planipennis abundance, the reaction of the ecosystem in terms of resistance and resilience, the variation in impacts in different ecosystems across the landscape, and the different impacts on urban areas and forests.

4. Conclusions

The assessment of impacts caused by \(A. \) planipennis on the environment, based on consequences on ecosystem services and biodiversity, shows the implementation and practicability of the method described in Gilioli et al. (2014, 2017) and in EFSA (2014a). It demonstrates how the impacts on ecosystem services can be assessed quantitatively, including

Table 4. Results of the assessment of biodiversity components for the two service-providing units (urban areas and forests) and the two time horizons (5 years and 20 years) [Colour table can be viewed at wileyonlinelibrary.com]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Genetic diversity</td>
<td>0.04/0.68</td>
<td>0.08/0.73</td>
<td>0.21/0.79</td>
<td></td>
</tr>
<tr>
<td>Native species diversity</td>
<td>0.02/0.55</td>
<td>0.06/0.54</td>
<td>0.23/0.76</td>
<td></td>
</tr>
<tr>
<td>Composition structure</td>
<td>0.08/0.82</td>
<td>0.4/0.8</td>
<td>0.3/0.83</td>
<td></td>
</tr>
<tr>
<td>Rare and vulnerable species</td>
<td>0.02/0.52</td>
<td>0.12/0.84</td>
<td>0.3/0.92</td>
<td></td>
</tr>
<tr>
<td>Habitat conservation</td>
<td>0.02/0.52</td>
<td>0.08/0.81</td>
<td>0.2/0.71</td>
<td></td>
</tr>
</tbody>
</table>

Table 5. Overall risk and uncertainty for provisioning, regulating and supporting ecosystem services, and for biodiversity components, defined as the average of the risks and uncertainties for each category for the short (5 years) and the long (20 years) term (see appendix C in EFSA, 2011) [Colour table can be viewed at wileyonlinelibrary.com]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Provisioning services - urban</td>
<td>0.039/0.45</td>
<td>0.104/0.449</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provisioning services - forest</td>
<td>0.023/0.47</td>
<td>0.08/0.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regulating and supporting - urban</td>
<td>0.05/0.68</td>
<td>0.11/0.77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regulating and supporting - forest</td>
<td>0.044/0.66</td>
<td>0.107/0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biodiversity components - urban</td>
<td>0.036/0.618</td>
<td>0.148/0.744</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biodiversity components - forest</td>
<td>0.03/0.61</td>
<td>0.248/0.802</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
the consideration of uncertainties. The method makes these uncertainties transparent by explicitly considering and presenting the probability of different levels of impact, confirming that the approach is particularly useful when uncertainties are present.

The analysis presented here is based on the general patterns of the temporal evolution of the impact. The authors did not deal with the spatial variation of the impacts, nor did they interpret the factors that locally influence impact (the host plant and the other components of the ecosystem). Applying this approach, the assessed invaded areas (in Russia, Canada and the USA) could be considered together to acquire a general view of potential or realized impacts, although the level of impact between the two macro-areas (Russia and North America) differs for several reasons, e.g. the effect of natural enemies and the fact that in Russia affected *F. excelsior* usually does not die but develops epiphloic shoots. Differences between the two macro-areas of North America and Russia were considered a component of variability.

A more detailed analysis that considers the mechanisms at the origin of the variability in the impacts must first consider that the population abundance of the pest is the fundamental driver of impacts. Simply, the higher the abundance of the pest, the higher the impact. For this reason, a more local, in-depth knowledge of the relation between abundance and impact, and the spatial distribution of abundance is necessary for a more detailed and point-based analysis of environmental consequences. The availability of this local information would allow for the definition of more specific interpretative and forecasting tools that permits more detailed predictions or assessments to be made. However, for the purpose of the assessment presented here, the focus was on the general analysis of the impacts of *A. planipennis* on ecosystem services. That means that in this assessment a nomothetic approach was followed, generalizing the service-providing units, looking at certain general properties in comparison to an idiographic approach, where the individual situation is considered, looking at each service-providing unit separately and divided into the different areas.

Continued improvement in the techniques outlined above, as well as the development of new techniques to control or mitigate the effects of *A. planipennis* (including early detection and survey, Schrader et al., 2020), may lead to future reductions in the risks estimated in this assessment. For example, a program to breed ash trees with increased resistance to emerald ash borers is underway in the USA and could provide planting stock in urban and forested areas for future restoration efforts (Koch et al., 2015). By combining more sophisticated tools and techniques to respond to *A. planipennis*, managers may be able to reduce the future impacts of this pest.

In this case study, it was shown that the quantitative assessment of environmental impacts for IAS is both possible and helpful for decision-makers and risk managers who have to balance control costs against potential impacts of IAS.

Acknowledgments

The study by M.J. Orlova-Bienkowska was supported by the Russian Science Foundation, Project No 16-14-10031. Open access funding enabled and organized by Projekt DEAL.

Comment l’agrile du frêne (*Agrilus planipennis*) affecte-t-il les services écosystémiques et les composantes de la biodiversité dans les zones envahies ?

Как ясеневая изумрудная узкотелая златка (*Agrilus planipennis*) воздействует на функции экосистемные услуги и элементы биоразнообразия в зонах инвазии ?

Оценка экологического риска (ОЭР) является важным элементом анализа риска для вредных организмов и вредных чужеродных видов (ИЧВ). Недавно была разработана стандартизированная и согласованная методология для оценки их воздействия
References

