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Abstract—When considering coded modulation schemes for the
AWGN channel, two main practical limitations prevent achieving
channel capacity, namely the need to use a finite constellation
and coding inefficiencies. Constellation shaping was given new
impetus in recent works by Bocherer et al., which combined
probabilistically shaped ASK constellations with LDPC coding.
One open question is how far their results are from optimal
solutions based on the use of finite constellations. We investigate
this issue and show through experimental analysis that most of
the loss is due to inefficient coding design and little benefits should
be expected by adding two-dimensional geometric shaping.

Index Terms—AWGN channel, constellation shaping, power
constraints.

I. INTRODUCTION

A well-known choice for the transmission of information
in a communication system is the coded modulation paradigm
[1], i.e., the combination of a coding block and a modulator
that maps the codewords to symbols of a constellation, which
are then sent to the channel. The performance can be raised
in two ways. The first is the design and proper statistical
use of the constellation, which brings an improvement called
the shaping gain. The second is the adoption of an efficient
code, causing an enhancement called the coding gain. The
total gain is the combination of the two quantities, which can
be considered separable and additive at high data rates [1].
This, in turn, means that the capacity of the communication
channel in use may not be achieved if the constellation design
is sub-optimal or the coding scheme is inefficient.

The constellation design can be improved by using con-
stellation symbols with a non-uniform probability distribu-
tion (probabilistic shaping [2]) and/or non-uniformly spaced
symbols (geometric shaping [3]). For the AWGN channel,
the maximum shaping gain possible is 1.53 dB [4], [5], [6],
[7, Section 4.3]. Both types of shaping were used in [8],
which studies the convergence to the AWGN capacity as the
constellation cardinality approaches infinity.

Recently, Bocherer et al. [2] proposed a novel constellation
shaping for the AWGN channel. Their work raised the interest
of the community because it provides a fine-tuning mechanism
for the achievable rate and SNR parameters. This enables oper-
ating at 1-10~3 frame error rate using length 64800 bit DVB-
S2 LDPC codes, with a maximum gap to the channel capacity
of 1.1 dB over a wide range of SNR values using Maxwell-
Boltzmann distributions on equidistant ASK constellations.
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When designing a coded modulation system it is important
to know if the focus should be on the constellation design
or on the choice of the coding algorithm. To evaluate possible
improvements over the scheme presented in [2], it is important
to appraise what is the impact of the constellation choice on
the overall performance and whether the chosen constellation
is used optimally. A reasonable question is what kind of
constellation one should expect when the constellation design
is done by both probabilistic and geometric shaping, and what
margins of improvement one should expect. While [2] uses
ASK modulation with Maxwell-Boltzmann probability distri-
butions, we studied the margin of improvement, in terms of
achievable input-output mutual information (MI), when adding
geometric shaping in one and two dimensions, optimizing
both positions and probabilities jointly. Our conclusion is that
only little improvements are to be expected from constellation
optimization and the focus should be on the coding scheme.

The paper is structured as follows. Section II shows the
methods used to compute the optimal input distribution in
the scalar and quadrature cases, while Section III presents the
results and consequent discussions. The algorithms discussed
here were implemented in MATLAB, using the built-in opti-
mization function finincon.

II. COMPUTATION OF THE OPTIMAL DISTRIBUTIONS
A. Scalar case with peak amplitude constraint

The discrete-time memory-less Scalar Gaussian Channel
(SGC) is defined by the equation y; = z; + n;, where
Yi» x;, and n; denote the output, input, and noise of the
communication channel at the (discretized) time instant 7. The
noise elements n; are independent and identically distributed
(i.i.d.) normal random variables that are independent of z;.

Under the average power constraint E [|z|?] < P,, the
capacity is achieved by a Gaussian input, which induces a
MI I(z;y) = $log(1 + SNR). Any modulation scheme uses
a finite set of input values, i.e., a constellation, and this
implies that such an input-output MI is not really achievable
in such practical schemes. It is important then to re-set
the reference of what is achievable and what is not under
practically unavoidable system constraints. In this respect, we
observe that the need for practical schemes to use a finite
contellation is not really an inefficiency once one accepts
the fact that practical schemes will never be able to use
arbitrarily large input values. Indeed, under this assumption,
Smith [9] proved that the distribution maximizing the input-
output MI has finite support and one might then conceive a
scheme using that support as the underlying constellation. So,
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a reasonable reference for rates which could conceivably be
achieved in practical systems can be established by considering
the capacity of the AWGN channel under both average and
peak power constraints. Computing the optimal support and
probability mass function (pmf) of z, then requires solving
a constrained optimization problem where the function to be
maximized is I(z;y) and the power constraints are defined
above. The rate of practical coding schemes should then be
compared to the mutual-information achieved by such finite
distribution.

In order to evaluate the efficiency of the different blocks of
the method proposed in [2], we consider the same conditions
of average power and peak input power and optimize the input
support and distribution following the method proposed in [9].

B. Quadrature case with amplitude constraint

We also consider the discrete-time memory-less Quadrature
Gaussian Channel (QGC) [10], defined by the equation

yi= [l =zi+ni=[z2]+[n]. (1)
Again i denotes the discretized time instant, whereas z, y,
and n are complex random variables that denote the input,
output, and noise of the QGC. The noise elements {n;} are
iid. Gaussian random variables independent of {x;} with
components {n;,,n,,} that are independent normal random
variables. We consider for the input the peak and average
power constraints P, and P, in the form lz;|? < P,, Vi and
E[|z|?] < P,. We consider (1) in its polar form [10]

r=re® g:ReN’ rnR>0 ©,U ¢ [-m,7) (2)

since it is known that the distribution maximizing the input-
output MI is supported on a finite number of radii, with
uniform phase independent of the radius [10]. For every
working point of interest in [2], the pmf of r is computed
by doubling both power constraints to account for the 2-
dimensionality of the problem (see Section II-A) and following
the procedure described in [10]. The optimal distribution found
has uniform phase and thus, contrarily to the scalar case, the
MI achieved by this distribution is not a feasible target for
practical modulation schemes which are constrained to use a
finite constellation of points.

C. Phase quantization

One approach to determine a practical constellation is
to quantize the support of the optimal uniform-phase in-
put distribution. This process introduces the MI loss € £
I(z;y) —I(xzg; yg)|, where the @ subscript denotes the phase
quantization. The loss can be made as small as desired using
a sufficiently fine quantization.

In order to test the quantizer proposed in [11] we set a
maximum allowed ¢, then we obtain a sufficiently high number
of mass points ([11, eq. (13a)]) and their distribution over
the circles of the optimal constellation ([11, eq. (16)]). The
quantized constellation is computed by arranging the mass
points on each circle in an equidistant manner. Finally, the
actual MI loss is then computed

In our experiments, we considered here an acceptable MI
loss of € = 35 I(z; ).

D. Actual number of required points

The procedure adopted in Section II-C is based on the
results of [11] which provide a sufficient number of points
that limits the MI loss to an acceptable value, but the actual
number of points required may be much lower. In other words,
the number of points derived in [11] actually allows for a much
smaller value of e than originally set. Also, when considering
a finite number of usable points, quantizing the support of
the optimal distributions may not be the optimal approach.
So, we studied the optimal discrete input distributions that
achieve the maximum of I(x;y) for a given cardinality of the
support. The algorithm that computes the minimum number
of points required and the corresponding distribution starts by
considering 2 possible points and continues as follows:

o The candidate input distribution is obtained by maxi-
mizing I(x;y) subject to the peak and average power
constraints.

o It checks if the information loss w.r.t the theoretically
optimal one in Section II-B is higher than e.

« If this happens, it increases the number of points by one
and repeats the process, else it stops.

E. Circularly symmetric distributions

The optimal finite constellations found in the previous
section have a geometry which renders them not very easy
to deal with in terms of coding. The reference scheme [2]
which we take as our reference work for our analysis is based
on the idea of mapping information bits to channel input
amplitudes by means of Constant Composition Distribution
Matcher (CCDM) [12]. The signs of the inputs are partially
taken from information bits and partially from the parity bits
of an LDPC code. In the quadrature setting this corresponds to
associating amplitudes given by a CCDM to a certain quadrant
of the Cartesian plane and then index the four quadrants
using either information or parity bits. In order to apply this
scheme, a symmetry condition is then required on the support
of the used constellation. So, we also computed the optimal
finite support input distribution under the constraint that it be
symmetric with respect to the coordinate axes. By calling the
set of points of the target constellation as X we have then
that (x1,22) € X = {L£z1,L22} € X, Vo € X where
{1, 22} denotes the coordinates of the points on the Cartesian
plane. The algorithm used to compute the adjusted distribution
starts by considering 1 mass point in each quadrant and works
as follows:

« The power constraints are computed as per Section II-B.

o The candidate distribution is obtained by maximizing
I(z;y) subject to the power constraints and the constraint
of symmetry with respect to the coordinate axes.

o The MI loss is computed with respect to the MI obtained
by using the optimal distribution in Section II-B.

« If the loss is higher than e, it doubles the number of mass
point in each quadrant and retries, otherwise it stops.
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Fig. 1. Comparison between ASK (dots) constellations of [2] and correspond-
ing constellations optimized as per Section II-A (squares). We also report the
transmission rates obtained in [2].

III. RESULTS AND DISCUSSIONS

A. Results in the scalar case

We begin this section with a comparison between the shape
of the constellations used in the reference scheme [2] and the
shape of the constellations optimized as per Section II-A. This
comparison shows what one should expect when the design
is done by both probabilistic and geometric shaping. Figure
1 shows the comparison between the ASK distributions used
in [2] (dots) and the optimal distributions computed as per
Section II-A (squares). In particular, the figure shows one
working point for the 4-ASK, one for the 8-ASK, and two for
the 16-ASK cases for conciseness. We also report the rates
achieved in [2] with block error probability near 10~3. This
section considers the working points of [2] that require up to
16-ASK constellations due to limited computational resources.

The optimized distributions have a slightly higher cardinal-
ity and are characterized by not equidistant mass points.

Figure 2 shows the losses in the two cases. The squares
represent the loss of I(x; y) as per Section II-A. The plus signs
represent the loss of transmission rates obtained in [2]. The
dots are the loss of I(x;y) as per [2]. The remaining markers
will be explained in section III-B. The data in the figure
was divided by the Gaussian channel capacity for improved
visibility. In a coded modulation system, the choice of the
constellation lowers the channel capacity to the corresponding
value of I(z;y) because of the sub-optimality of the chosen
constellation. In [2] this MI loss has an average value of
1.1-1072 [bits]. The capacity is further lowered by losses due
to the inefficiency of the coding block. When both losses are
considered, the average rate loss as per [2] is 10~} [Chbl%]
Optimizing the input distribution as per Section II-A lowers
the MI loss to the average value of 4.4 - 10~3[bits]. As shown
in figure 2 most of the loss is due to the inefficiency of the
coding block. The figure also shows that before the cardinality
of the ASK constellations in [2] changes (from 4 to 8 at the
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Fig. 2. Comparison of losses between Probabilistically Shaped ASK (PS-

ASK) constellations of [2] and corresponding constellations optimized as per
Sections II-A, II-B, and II-D.

fourth working point and from 8 to 16 at the twelfth working
point) the MI losses become more relevant. In [2] this behavior
is due to the limited cardinality of the chosen constellations.
When the input distribution is optimized as per Section II-A,
the problem is the sub-optimal choice of the power constraints.

B. Results in the 2-dimensional case

As seen in figure 2, the losses assume more relevant values
in the low SNR regime. It is thus interesting to observe if
this behavior changes in the quadrature case. As such, figure
2 compares the losses (with respect to the channel capacity)
in the scalar and quadrature cases in the low SNR regime.
The asterisks represent the loss in the quadrature case as per
Section II-B and the crosses represent the loss obtained when
the constellation is optimized as per Section II-D. The data
in the figure was divided by the respective channel capacity
for improved visibility. As in the scalar case the cardinality of
the optimized constellations is K = 5, the cardinality of the
constellations optimized as per Section II-D is constrained to
be K? to ensure a fair comparison. The figure shows that the
constellations optimized as per Section II-B provide the lowest
losses, while the constellations optimized as per Section II-D
provide lower losses than the ones in the scalar cases, (note
here that the peak power constraint is in 2D).

C. Results of the phase quantization

Using the phase quantization algorithm of Section II-C
with a target maximal MI loss of € = 45 I(x;y) provides
constellations that ensure acceptable losses. The cardinality of
these constellations is greater than 1.6 - 103, which is shown
to be two orders of magnitude higher than required in Section
III-D. The proposed assignment of the quantized mass points
[11, eq. (16)] must be slightly modified to assign points at
circles with small radii.
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Fig. 3. Distributions with minimal number of points (bigger points are more
probable). The circles represent the optimal constellations as per [10].

D. Results on the actual number of required points

The algorithms presented in Section II-D and Section II-E
were used over the working points of [2] up to an ASK
cardinality of 8 for limited computational capabilities. The
actual number of required points ranges from 14 to 17 when
the corresponding QAM cardinality is 16. When the cardinality
is 64 the values range from 19 to 43 as the power constraints
become more relaxed. Figure 3 shows the optimal distributions
in two cases: the first one corresponds to an achievable rate
[2] (by extension to the 2-dimensional case) of 2.26 [C:"‘ie]
while the second one corresponds to a rate of 2.8 [C}?ll‘]ie]

When the constellation cardinality of [2] is 16 (2 < rate <
2.4) the number of points required increases slowly with the
rate and the mass points usually don’t intersect the theoretical
circles. When the constellation cardinality of [2] is 64 (2.6 <
rate < 3.8), the distributions become more similar to phase
quantizations of the optimal ones as the rate increases.

E. Results on the circularly symmetric distributions

At lower rates (rate < 2.4) the number of points required to
get an acceptable MI loss ranges from 16 to 32. The first con-
stellation resembles a cross-QAM with the lower energy points
being more probable than the others, while the remaining three
constellations are similar to phase quantizations of the optimal
ones. At middle rates (2.6 < rate < 3.2) the number of
points is halved w.r.t. the QAM cardinalities (X = 32) and the
constellations are similar to cross-QAM, while at higher rates
(3.4 < rate < 3.8) the number of points is the same as the
QAM cardinalities (K = 64) and the constellations become
more similar to phase quantizations of the optimal ones. Figure
4 shows two cases: in the first, the distribution (the discrete
set of points) resembles a probabilistically shaped 16-QAM
while in the second case it resembles a 32 cross-QAM.

IV. CONCLUSIONS

We considered the AWGN channel subject to peak and
average power constraints. We studied the performance of the
method proposed in [2] investigating the loss due to coding
and the loss due to the constellation choice and probability
shaping. We then studied practical constellations obtained with
different methods, focusing on the required cardinality. Our
results provide evidence that most of the loss in [2] is to
be attributed to coding and little margin of performance are

MI = 2.6479,K = 16 MI = 3.3532, K = 32

90 90
120 6 60
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Fig. 4. Circularly symmetric distributions (bigger points are more probable).
The circles represent the optimal constellations as per [10].

to be expected from further optimization of the probabilistic
and geometric shaping of constellations. Future work should
be divided in three parts. A possible follow-up could be
the extension of the results provided by [9] and [10] to
optimize the constellation under the assumption of a bit-metric
decoder. Then for the QGC it would be interesting to find
a closed-form expression for the number of mass points of
the constellation required to achieve capacity as a function
of the power constraints. Finally, specific bit mapping and
coding should be tested on circularly symmetric distributions
as to evaluate the potentially achievable results with a scheme
similar to what is proposed in [2].
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