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A B S T R A C T

Ionic polymer metal composites (IPMCs) consist of an electroactive polymeric membrane plated
with metal electrodes. They hold promise as actuators and sensors for soft robotics and
biomedical applications. Their capabilities ensue from the motion, within the membrane, of
a fluid phase consisting of ions dispersed in a solvent. Toward a thorough understanding
of IPMC multiphysics, we propose a large deformation theory combining electrochemistry
and poromechanics. Namely, we modify the theory recently developed by Porfiri’s group
by introducing the transport of the solvent, whose redistribution determines the volumetric
deformation of the fluid-saturated membrane, and we further account for the cross-diffusion
of solvent and ions. In actuation, the imposed voltage drop across the electrodes triggers
ion migration, such that the solvent is transported toward the cathode by electro-osmosis.
This determines the initial bending toward the anode; then, back-relaxation occurs because
of both the solvent counter-diffusion and the asymmetric redistribution of ions near the
electrodes. In short-circuit sensing, the applied load triggers solvent motion, such that ions
are mainly transported toward the cathode by convection with the solvent. This determines
charge accumulation; then, ion counter-diffusion leads to a decrease of the charge stored at
the electrodes. We demonstrate that these behaviors can be predicted by the proposed theory
on the basis of relevant finite element benchmarks. Additionally, our analysis encompasses the
assessment of the role of the membrane elastic moduli in the counter-diffusion of solvent and
ions in IPMC actuation and sensing.

. Introduction

Ionic polymer metal composites (IPMCs) are micron-scale layered devices (Shahinpoor and Kim, 2001) whose core, denoted
s the membrane, consists of a negatively charged polymer soaked in a fluid phase constituted by a solvent and positively charged
obile ions, referred to as counterions. The membrane is plated with thin metal sheets, assuming the roles of electrodes and sandwich

kins for the electrical and mechanical behaviors, respectively. Belonging to the broader category of ionic electroactive polymers,
PMCs can potentially find application as actuators and sensors for soft robotics and biomedicine (Shahinpoor and Kim, 2005; Pugal
t al., 2010; Jo et al., 2013), also fostered by recent advancements in their manufacturing (Carrico et al., 2015).

IPMCs are characterized by an inherently complex response, resulting from the nonlinear interplay among electrostatics, ion and
olvent transport, and mechanics. Since the pioneering contributions of Nemat-Nasser and Li (2000) and Shahinpoor and Kim (2004),
everal models have been proposed for actuation and sensing of IPMCs. Our contribution builds on the thermodynamically consistent
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electrochemomechanical theory recently developed by Cha and Porfiri (2014). This finite deformation theory is inspired by previous
efforts of Hong et al. (2010) on polyelectrolyte gels and encompasses mechanical, mixing, and polarization contributions to the free
energy density stored within the membrane. In particular, the mixing free energy of counterions and polymer chains is written in
terms of counterion concentration and volume ratio. First, this results into an osmotic stress that, along with the Maxwell stress, plays
the role of an active stress (or eigenstress), to be balanced by the mechanical stress, the latter being associated with deformation.
Second, it provides a contribution to the counterion flux that depends on the volume ratio gradient, balancing the electrodiffusive
contribution at equilibrium. These two features of the theory underlie the modeling of actuation and sensing, respectively.

On the basis of this theory, several studies have been later conducted. Volpini et al. (2017) and Volpini and Bardella (2021)
ave focused on modeling the short-circuit sensing response elicited by through-the-thickness compression. Porfiri et al. (2017,
018) have proposed an alternative explanation of the back-relaxation phenomenon in actuation, based on the competition between

osmotic and Maxwell stresses. Recent works have revealed the importance of considering complex deformation states, with the
consequent need for sophisticated structural theories if, toward efficient design and optimization, one wants to avoid cumbersome
numerical models of IPMCs treated as continua (Leronni and Bardella, 2019; Boldini and Porfiri, 2020; Boldini et al., 2020).

As many other theories in the literature, the Cha and Porfiri (2014) framework disregards the solvent transport within the
membrane, assuming that the IPMC electroactive properties are exclusively established by the counterion motion (Farinholt and
Leo, 2004; Branco and Dente, 2006; Chen et al., 2007; Pugal et al., 2011; Nardinocchi et al., 2011). However, a few works highlight
the importance of modeling the solvent dynamics, contributing to explain the back-relaxation (Shahinpoor and Kim, 2004; Schicker
and Wallmersperger, 2013; Zhu et al., 2013).

Here, we develop a theory for IPMCs that combines relevant features from the Cha and Porfiri (2014) theory, the mixture
theory (Bowen, 1980; Ateshian, 2007; Bluhm et al., 2016), and the recently developed theories for polyelectrolyte gels (Hong et al.,
2010; Zhang et al., 2020). Specifically, we describe the membrane as a mixture of a charged polymer and a fluid phase consisting of
solvent and counterions, all coexisting within each macroscopic point in our continuum formulation. Moreover, each constituent is
assumed to be intrinsically (that is, at the microscopic scale) incompressible, such that the volumetric deformation of the membrane
depends on the flow of the fluid phase only.

The model relies on four balance equations, written with respect to the reference configuration, which is undeformed and
electroneutral: the overall momentum balance, two individual mass balances for solvent and counterions, and the Gauss law.
The free energy density is assumed to consist of three contributions, namely accounting for the stretching of the polymer chains
(macroscopically resulting in compressible hyperelasticity of the membrane), the mixing of solvent and counterions, and the dielectric
polarization of the membrane. The dissipation is due to the fluxes of solvent and counterions, in which, noticeably, we also
account for their cross-diffusion, whereby the flux of each species is governed by the (electro)chemical potential gradients of both
species (Vanag and Epstein, 2009; Zhu et al., 2013; Zhang et al., 2020).

Aiming at providing the essential multiphysical framework, including solvent transport, to thoroughly explain IPMC actuation
and sensing, we assume that the fluid phase is a dilute and ideal solution, and we neglect both entropic and energetic interactions
between the fluid phase and the polymeric solid phase. That is, we assume that the IPMC membrane is an ideal mixture (Ateshian,
2007).

Our effort results in a theory coupling electrochemistry and poromechanics of IPMCs. Specifically, the electrochemistry describes
the distribution of counterions within the membrane and the related electric potential field; it is governed by a Poisson–Nernst–
Planck system of equations, which ensues from the mass balance for the counterions and the Gauss law, and results to be modified,
with respect to its classical version (Porfiri, 2008), by both the addition of the convective flux of counterions with the solvent and
the background membrane deformation. The poromechanics describes the overall deformation field of the membrane by accounting
for the solvent flow in the porous network; with respect to classical poromechanics (Coussy, 2004; MacMinn et al., 2016), both
the electro-osmotic flux of the solvent and the Maxwell stress enter the governing equations, which rely on the overall momentum
balance and the mass balance for the solvent.

Previous efforts on IPMCs have already resorted to the theories of mixtures and porous media, although by either limiting the
theoretical development or disregarding relevant phenomena to more easily focus on specific aspects of the IPMC behavior. For
instance, Del Bufalo et al. (2008) and Tixier and Pouget (2020) have applied their mixture theory-based models to analyze the steady
state actuation of IPMCs regarded as Euler–Bernoulli beams, under small and large strains, respectively. By taking advantage of the
theory of porous media, Leichsenring et al. (2017) have derived a model neglecting both solvent flux and membrane deformation
to study the influence of the solvent volume fraction on IPMC electrochemistry.

Here, we apply our proposal to a continuum IPMC cantilever strip subjected either to a fixed voltage across the electrodes
(actuation problem) or to a uniformly distributed load under short-circuit condition (sensing problem). We solve these problems
by resorting to the commercial finite element code COMSOL Multiphysics®. In actuation, as an original contribution of this work,
we predict and explain the back-relaxation phenomenon (Asaka et al., 1995) in terms of the interplay between the solvent counter-
diffusion (Shahinpoor and Kim, 2004) and the asymmetric growth of the Maxwell stress near the electrodes (Porfiri et al., 2017).
Dually, in sensing, our theory can anticipate the discharge under a sustained mechanical stimulus (Farinholt and Leo, 2004) and
explain it in terms of the counterion counter-diffusion. We demonstrate how these behaviors are influenced by the membrane elastic
2

moduli entering the selected hyperelastic strain energy density, where volumetric and deviatoric deformations are coupled.
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2. An electrochemo-poromechanical theory for IPMCs

2.1. Fundamental kinematics-related assumptions

We assume that the IPMC membrane consists of a solid phase identifying with a charged polymer and of a fluid phase represented
y an uncharged solvent in which counterions are immersed. Analogously to mixture theory, all the phases coexist within each single
aterial point (Ateshian, 2007). By definition, the deformation gradient, written in terms of the displacement vector 𝐮, reads

𝐅 = 𝐈 + ∇𝐮 (1)

and describes the motion of a material point from the reference (initial) configuration, which is undeformed and electroneutral (Cha
and Porfiri, 2014), to the current configuration.1

Importantly, the solvent always saturates the membrane. This aspect distinguishes our model from most on the swelling of
polymeric gels, which identify the reference configuration with the space region occupied by the dry polymer (Hong et al., 2008;
Chester and Anand, 2010).

Throughout the manuscript, we refer to nominal molar concentrations, that is, molar concentrations per unit reference total
volume. Alternatively, in the literature, molar concentrations are often expressed per unit volume of the fluid phase only (Ateshian,
2007). Noticeably, in this first investigation on the IPMC electrochemo-poromechanics, we assume that the solution of solvent and
counterions is dilute, that is,

𝐶 ≪ 𝐶s , (2)

where 𝐶 and 𝐶s are the nominal molar concentrations of counterions and solvent, respectively. This is convenient in the light of the
hallenging computational models ensuing from such multiphysical theories, even when neglecting the solvent transport (Boldini and
orfiri, 2020; Boldini et al., 2020). Accordingly (Ateshian, 2007), we neglect the volume occupied by counterions and hypothesize
hat both solvent molecules and polymer chains are intrinsically incompressible, which is a common practice for polyelectrolyte gels
s well (Zhang et al., 2020). Therefore, volumetric deformations are inextricably related to variations of the solvent concentration
nly, such that the following kinematic constraint holds:

𝐽 ≡ det 𝐅 = 1 + 𝑣s
(

𝐶s − 𝐶0
s
)

, (3)

whose rate form is

𝐽𝐅−T ⋅ 𝐅̇
⏟⏞⏟⏞⏟

𝐽̇

−𝑣s𝐶̇s = 0 . (4)

Here and henceforth, 𝐽 is the volume ratio, 𝑣s is the solvent molar volume, and 𝐶0
s is the initial value of 𝐶s. Moreover, the symbol

⋅ denotes the inner product and ̇ indicates partial time derivative, such that 𝐶̇s(𝐗, 𝑡) ≡ 𝜕𝐶s(𝐗, 𝑡)∕𝜕𝑡, with 𝑡 representing time.
We anticipate that we assume a purely elastic 𝐅. Hence, the allowed volumetric deformation due to solvent transport will require

he selection of a compressible hyperelastic strain energy, as for instance proposed by Hong et al. (2010) for polyelectrolyte gels. We
bserve that the elastic deformation could be constrained to be isochoric by adopting a richer kinematics in which 𝐅 would involve

inelastic contributions, such as the swelling term in the theory of Chester and Anand (2010) for polymeric gels.

2.2. Balance equations

The present model relies on four balance equations, written in the reference configuration: the overall momentum balance (that
is, the momentum balance for the mixture as a whole), the mass balances for the solvent and counterions, and the Gauss law.

We assume that mechanical equilibrium is rapidly attained in comparison to the time scale characterizing the fluid phase
transport (Hong et al., 2010; Cha and Porfiri, 2014). Hence, by neglecting inertial effects, the overall momentum balance in the
absence of body forces reads

Div𝐏 = 𝟎 , (5)

where Div is the material divergence and 𝐏 is the nominal stress tensor, such that (Div𝐏)𝑖 = 𝜕𝑃𝑖𝐽∕𝜕𝑋𝐽 .2
The mass balance for the solvent reads

𝐶̇s + Div 𝐉s = 0 , (6)

in which 𝐉s is the nominal molar solvent flux, that is, the molar flux per unit reference total area.

1 In Eq. (1), 𝐈 is the second order identity tensor and the symbol ∇ denotes the material gradient, such that (∇𝐮)𝑖𝐽 = 𝜕𝑢𝑖∕𝜕𝑋𝐽 , in which 𝐗 is the material
position vector and small case and capital case subscripts indicate the spatial and material coordinates, respectively.

2 Although here, by following Hong et al. (2010), 𝐏 is referred to as the nominal stress tensor, for the sake of clarity, we note that in the literature it is also
3

denoted as the first Piola–Kirchhoff stress tensor (Ogden, 1984).
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Fig. 1. Cantilever IPMC subjected to an applied voltage 𝜓̄ across the electrodes (non-zero in the actuation problem) and to an imposed nominal surface load
𝑇 (non-zero in the sensing problem): geometrical parameters, reference system, and physical constituents.

Analogously, the mass balance for the counterions is

𝐶̇ + Div 𝐉 = 0 ,

ith 𝐉 denoting the nominal molar counterion flux.
The Gauss law reads

Div𝐃 = 𝐹 (𝐶 − 𝐶0) , (7)

here 𝐃 is the nominal electric displacement, 𝐹 is the Faraday constant, and 𝐶0 is the nominal molar concentration of the anions
ixed to the polymer. In Eq. (7), we assume that both fixed anions and mobile counterions have unit valency, which is usually the
ase for IPMCs. These two ionic species are the only ones that contribute to IPMC electrochemistry (Shahinpoor and Kim, 2001;
orfiri, 2008).

We treat the electrodes as perfect electric conductors that are impermeable to both solvent and ions. Therefore, they establish
oundary conditions for both the solvent transport and the electrochemical problems in the membrane and, of the foregoing balance
aws, are subject to Eq. (5) only.

.2.1. Boundary and initial conditions
With reference to Fig. 1, the IPMC has length 𝐿, membrane thickness 2𝐻 , and thin electrodes of thickness ℎ. We consider the

sual case of a very slender IPMC, such that 𝐿 ≫ 2(𝐻 + ℎ).
About mechanics, in both the actuation and sensing problems, we consider a cantilever configuration with clamped side at the

eft end, such that

𝐮 = 𝟎 at 𝑋 = 0 .

he rest of the boundary is subjected to static boundary conditions. Specifically, the edges at 𝑋 = 𝐿 and 𝑌 = 𝐻 + ℎ are always
tress-free, while the remaining side is either stress-free in the actuation problem or subjected to

𝐓 ≡ 𝐏𝐍 = −𝑇𝐍 at 𝑌 = −𝐻 − ℎ (8)

in the sensing problem. In Eq. (8), 𝐓 is the nominal traction (that is, 𝑇𝑖 ≡ 𝑃𝑖𝐽𝑁𝐽 ), 𝐍 is the outward unit normal to the reference
boundary, and 𝑇 is the magnitude of the uniformly distributed nominal load. In the benchmark of Section 3.4, this load will be
applied in a suitably short time to unveil the effect of the counter-diffusion of mobile ions.

We assume that the electrodes are impermeable to both solvent and counterions by imposing the zero-flux boundary conditions

𝐉s ⋅ 𝐍 = 0 and 𝐉 ⋅ 𝐍 = 0 at 𝑌 = ±𝐻 .

Given the IPMC slenderness, we may disregard the edge effects at the IPMC ends, such that, in the simulations, we find it convenient
to extend these boundary conditions to 𝑋 = 0 and 𝑋 = 𝐿.

Finally, we express the boundary conditions for the electrostatics as

𝜓 =
𝜓̄
2

at 𝑌 = 𝐻 and 𝜓 = −
𝜓̄
2

at 𝑌 = −𝐻 ,

in which 𝜓 is the electric potential and 𝜓̄ is the applied voltage drop across the electrodes. Specifically, 𝜓̄ ≠ 0 in the actuation
problem, while 𝜓̄ = 0 in the short-circuit sensing problem. In the actuation benchmark of Section 3.3, 𝜓̄ will be suddenly applied
4
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to unveil the phenomena behind back-relaxation. At the IPMC ends 𝑋 = 0 and 𝑋 = 𝐿 it is convenient to prevent accumulation of
surface charge by imposing 𝐃 ⋅ 𝐍 = 0.

The mass balances also need initial conditions, which are

𝐶s = 𝐶0
s at 𝑡 = 0 , (9a)

𝐶 = 𝐶0 at 𝑡 = 0 . (9b)

Eq. (9b) implies the electroneutrality of the reference configuration.

2.3. Thermodynamic restrictions

We follow the approach of Gurtin et al. (2010) for coupled problems of mechanics and species transport, augmented to take into
account that counterions are electrically charged species. Given that we focus on isothermal conditions, we disregard the heat terms
in the thermodynamic laws. Hence, the energy balance encompasses mechanical, electrical, and species transport contributions:

𝑈̇ = 𝐏 ⋅ 𝐅̇ + 𝐄 ⋅ 𝐃̇ + 𝜇s𝐶̇s + 𝜇𝐶̇ − 𝐉s ⋅ ∇𝜇s − 𝐉 ⋅ ∇𝜇̃ ,

in which 𝑈 is the nominal internal energy density,

𝐄 = −∇𝜓 (10)

is the nominal electric field, 𝜇s is the solvent chemical potential (with units of energy per mole), 𝜇 is the counterion chemical
potential, and

𝜇̃ = 𝜇 + 𝐹𝜓 (11)

is the counterion electrochemical potential.
By introducing the nominal Helmholtz free energy density 𝑊 , and by accounting for the constraint (4), the second law of

thermodynamics reads
(

𝐏 + 𝑝s𝐽𝐅−T) ⋅ 𝐅̇ + 𝐄 ⋅ 𝐃̇ +
(

𝜇s − 𝑣s𝑝s
)

𝐶̇s + 𝜇𝐶̇ − 𝐉s ⋅ ∇𝜇s − 𝐉 ⋅ ∇𝜇̃ − 𝑊̇ ≥ 0 , (12)

where 𝑝s is a Lagrange multiplier (Chester and Anand, 2010; Zhang et al., 2020). We assume that 𝑊 is a function of the primal
variables 𝐅, 𝐃, 𝐶s, and 𝐶. Hence, substituting 𝑊̇ in Eq. (12), by chain rule, leads to

(

𝐏 + 𝑝s𝐽𝐅−T − 𝜕𝑊
𝜕𝐅

)

⋅ 𝐅̇ +
(

𝐄 − 𝜕𝑊
𝜕𝐃

)

⋅ 𝐃̇ +
(

𝜇s − 𝑣s𝑝s −
𝜕𝑊
𝜕𝐶s

)

𝐶̇s +
(

𝜇 − 𝜕𝑊
𝜕𝐶

)

𝐶̇ − 𝐉s ⋅ ∇𝜇s − 𝐉 ⋅ ∇𝜇̃ ≥ 0 .

By resorting to the Coleman–Noll procedure, we obtain the general constitutive relations

𝐏 = 𝜕𝑊
𝜕𝐅

− 𝑝s𝐽𝐅−T , 𝐄 = 𝜕𝑊
𝜕𝐃

, 𝜇s =
𝜕𝑊
𝜕𝐶s

+ 𝑣s𝑝s , 𝜇 = 𝜕𝑊
𝜕𝐶

, (13)

uch that the dissipation inequality reduces to

−𝐉s ⋅ ∇𝜇s − 𝐉 ⋅ ∇𝜇̃ ≥ 0 . (14)

e assume that each flux is a linear combination of ∇𝜇s and ∇𝜇̃, that is

𝐉s = −𝐌ss∇𝜇s −𝐌s∇𝜇̃ , (15a)

𝐉 = −𝐌s∇𝜇s −𝐌∇𝜇̃ , (15b)

here the constitutive operators can be collected into a symmetric mobility matrix (Onsager, 1931)

 =
[

𝐌ss 𝐌s
𝐌s 𝐌

]

(16)

o be defined such that Eq. (14) is fulfilled. The assumption that the flux of a species also depends on the (electro)chemical potential
radient of the other species (that is, 𝐌s ≠ 𝟎) is usually referred to as cross-diffusion (Vanag and Epstein, 2009). The description of
his phenomenon, which has been observed to be relevant for IPMCs (Zhu et al., 2013), constitutes one of the main concerns of our
nvestigation.

.4. Free energy density

We assume that 𝑊 admits the additive decomposition

𝑊 (𝐅, 𝐶, 𝐶s,𝐃) = 𝑊mec(𝐅) +𝑊mix(𝐶,𝐶s) +𝑊pol(𝐅,𝐃) , (17)

in which 𝑊mec, 𝑊mix, and 𝑊pol are the contributions due to the membrane stretching, the mixing of counterions and solvent
molecules, and the membrane polarization, respectively.
5
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To describe the mechanics of the membrane, we select the isotropic compressible Neo-Hookean material model proposed by Simo
nd Pister (1984):

𝑊mec(𝐅) =
𝐺
2
(tr 𝐂 − 3) − 𝐺 ln 𝐽 + 1

2
𝜆 ln2 𝐽 , (18)

in which 𝜆 = 𝐸𝜈∕[(1 + 𝜈)(1 − 2𝜈)] and 𝐺 = 𝐸∕[2(1 + 𝜈)] are the Lamé parameters, with 𝐸 and 𝜈 denoting the Young modulus and
the Poisson ratio, and 𝐂 = 𝐅T𝐅 is the right Cauchy–Green deformation tensor. Eq. (18) describes a coupled hyperelastic material,
that is, 𝑊mec cannot be decomposed into the sum of isochoric and volumetric contributions (Holzapfel, 2000). This is known to be
a desirable feature if one aims at capturing the large deformation behavior of elastomers (Boyce and Arruda, 2000). With respect to
the material models usually employed in electrochemo-poromechanics, such that of Hong et al. (2010) for polyelectrolyte gels, the
constitutive prescription in Eq. (18) involves an additional volumetric term modulated by 𝜆. The use of both Lamé parameters allows
a better tuning of the overall volumetric response, which is important for it influences the solvent flux, as demonstrated in Section 3
with particular reference to the counter-diffusion phenomena occurring in actuation and sensing. Cha and Porfiri (2014) also adopt
a mechanical constitutive law involving both Lamé parameters, although they simply assume a Saint-Venant–Kirchhoff model for
they are mainly interested in obtaining analytical solutions through asymptotic expansions, requiring appropriate linearizations.
The importance of employing both Lamé parameters for the IPMC membrane has been unveiled by the study of Boldini and Porfiri
(2020) on the multiaxial deformations experienced by IPMCs.

For the metal electrodes, we simply adopt the Saint-Venant–Kirchhoff isotropic material model:

𝑊 e
mec(𝐅) =

𝜆e
2
(tr )2 + 𝐺e tr

(

2) ,

in which 𝜆e and 𝐺e are the Lamé parameters of the electrodes, whose Young modulus and Poisson ratio are 𝐸e and 𝜈e, and
 = (𝐂 − 𝐈)∕2 is the Green–Lagrange strain tensor.

We assume that the fluid phase behaves as an ideal solution of solvent and counterions, such that the free energy of mixing is
purely entropic and reads (Ateshian, 2007)

𝑊mix(𝐶,𝐶s) = 𝑅𝑇
(

𝐶 ln 𝐶
𝐶 + 𝐶s

+ 𝐶s ln
𝐶s

𝐶 + 𝐶s

)

, (19)

in which 𝑅 is the gas constant and 𝑇 is the absolute temperature. We remark that Eq. (19) describes the mixing of solvent and
counterions only, and this turns out to be consistent with an ideal mixture theory in which the solution of solvent and counterions
identifies with the fluid phase (Ateshian, 2007), whereby we expect that the solid phase, consisting of the polymer chains, is much
less relevant for mixing in IPMCs.3 Under the assumption (2) of dilute fluid phase, Eq. (19) is substituted by the approximation

𝑊mix(𝐶,𝐶s) = 𝑅𝑇𝐶
(

ln 𝐶
𝐶s

− 1
)

. (20)

We remark that our addition of the solvent mass balance (6) allows us to avoid the sophisticated modification of the Borukhov
et al. (2000) mixing free energy proposed by Cha and Porfiri (2014), whose purpose is the inclusion in the theory of an osmotic
stress related to the counterion electrodiffusion in the absence of the primal variable 𝐶s. To this aim, the mixing free energy of Cha
and Porfiri (2014) describes the interaction between the counterions and the polymer chains, resulting in an energy contribution
dependent also on the deformation gradient 𝐅. Then, Cha and Porfiri (2014) define the osmotic stress as the partial derivative of
the mixing free energy density with respect to 𝐅. Instead, in our framework, as specified in Eq. (13), we have a solvent pressure
𝑝s entering both the stress and the solvent chemical potential 𝜇s, in addition to an osmotic contribution to 𝜇s deriving from the
dependence of the mixing free energy (20) on 𝐶s.

Finally, by following Hong et al. (2010), Cha and Porfiri (2014), and Zhang et al. (2020), we treat the membrane as an ideal
dielectric, such that the polarization contribution reads

𝑊pol(𝐅,𝐃) =
|𝐅𝐃|2
2𝜀𝐽

, (21)

where 𝜀 is the absolute permittivity of the membrane.

2.5. Resulting conservative constitutive laws

2.5.1. Total stress tensor
By combining Eqs. (13)(a), (18), and (21), we obtain the total nominal stress

𝐏 = 𝐺(𝐅 − 𝐅−T) + 𝜆 ln 𝐽𝐅−T

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐏mec

−𝑝s𝐽𝐅−T

⏟⏞⏞⏟⏞⏞⏟
𝐏s

+ 1
2𝜀𝐽

[

2𝐅(𝐃⊗ 𝐃) − 𝐂 ⋅ (𝐃⊗ 𝐃)𝐅−T]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐏pol

,

3 For perspective, we briefly recall the mixing free energies proposed in the literature on the swelling of polymeric gels. Hong et al. (2008) and Chester
nd Anand (2010) account for the mixing of solvent with polymer macromolecules on the basis of the Flory–Huggins solution theory (Flory, 1942; Huggins,
941). All the coupled interactions in the mixing of mobile ions, solvent, and polymer macromolecules are instead needed to accurately describe the swelling
6

f polyelectrolyte gels (Hong et al., 2010; Zhang et al., 2020).
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with ⊗ denoting the tensor product, such that (𝐃⊗ 𝐃)𝐼𝐽 = 𝐷𝐼𝐷𝐽 . The corresponding total Cauchy stress is

𝝈 = 1
𝐽
𝐏𝐅T = 1

𝐽
[𝐺(𝐛 − 𝐈) + 𝜆 ln 𝐽 𝐈]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝝈mec

−𝑝s𝐈
⏟⏟⏟
𝝈s

+ 1
2𝜀

[2𝐝⊗ 𝐝 − (𝐝 ⋅ 𝐝)𝐈]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝝈pol

, (22)

here 𝐛 = 𝐅𝐅T is the left Cauchy–Green deformation tensor and 𝐝 = 𝐽−1𝐅𝐃 is the current electric displacement, that is, the electric
displacement in the current configuration (Dorfmann and Ogden, 2005). The total pressure reads

𝑝 ≡ −1
3
tr 𝝈 = − 1

𝐽

[

𝐺
( 1
3
tr 𝐛 − 1

)

+ 𝜆 ln 𝐽
]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑝mec

+𝑝s +
1
6𝜀

|𝐝|2

⏟⏟⏟
𝑝pol

,

dopting the convention that each contribution to the pressure is positive if compressive.
In the jargon of poromechanics, 𝝈mec and 𝑝s are, respectively, the effective stress and the pore water pressure (Coussy, 2004;

acMinn et al., 2016). They should not be interpreted as the partial stresses of mixture theory associated with the solid and fluid
hases (Bowen, 1980; Huyghe and Janssen, 1997; Ateshian, 2007). In electromechanics, 𝝈pol is usually denoted as the Maxwell
tress (Dorfmann and Ogden, 2005).

.5.2. Electric displacement
By using Eqs. (10), (13)(b), and (21), we obtain the constitutive law for the nominal electric field, whose inversion provides the

ominal electric displacement

𝐃 = −𝜀𝐽𝐂−1∇𝜓 .

s is well-known, in the current configuration, this relation reads 𝐝 = −𝜀 grad𝜓 .4

.5.3. Solvent and counterion (electro)chemical potentials
We obtain the solvent chemical potential by combining Eqs. (13)(c) and (20):

𝜇s = −𝑅𝑇 𝐶
𝐶s

+ 𝑣s𝑝s . (23)

ere, 𝑅𝑇𝐶 should be interpreted as an osmotic contribution. In the Cha and Porfiri (2014) theory without steric effects (see,
.g., Boldini et al., 2020), this term is referred to as the osmotic pressure, contributing to the total stress.

Analogously, we obtain the counterion chemical potential 𝜇 by combining Eqs. (13)(d) and (20), thus leading to the counterion
lectrochemical potential of Eq. (11):

𝜇̃ = 𝑅𝑇 ln 𝐶
𝐶s

⏟⏞⏞⏟⏞⏞⏟
𝜇

+𝐹𝜓 . (24)

We note that 𝜇 is unaffected by 𝑝s because of the assumed negligibility of the volume occupied by counterions with respect to that
of the solvent in the constraint (3).

2.6. Constitutive laws for the solvent and counterion fluxes

In order to obtain the expressions for 𝐉s and 𝐉, we need to specify the mobility matrix  introduced with Eq. (16). We adopt
the form

 = 1
𝑅𝑇

𝐂−1

⎡

⎢

⎢

⎢

⎣

𝐷s𝐶s 𝐷s𝐶

𝐷s𝐶
(

𝐷s
𝐶
𝐶s

+𝐷
)

𝐶

⎤

⎥

⎥

⎥

⎦

, (25)

in which 𝐷s is the solvent diffusivity in the polymer network and 𝐷 is the counterion diffusivity in the solvent. The matrix 
s positive definite for non-vanishing diffusivities and concentrations, thus fulfilling the dissipation inequality (14). Notably, our
ormulation of cross-diffusion is free from additional parameters with respect to the two diffusivities required for the self-diffusion.
his differs from the cross-diffusion model proposed by Zhu et al. (2013), which requires a further drag coefficient.

In light of Eq. (25), Eqs. (15) become

𝐉s = −
𝐷s
𝑅𝑇

𝐂−1 (𝐶s∇𝜇s + 𝐶∇𝜇̃
)

, (26a)

𝐉 = 𝐶
𝐶s

𝐉s −
𝐷
𝑅𝑇

𝐂−1𝐶∇𝜇̃ . (26b)

4 The symbol grad denotes the spatial gradient, such that (grad𝜓) = 𝜕𝜓∕𝜕𝑥 , where 𝐱 indicates the current position vector.
7
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We observe that Ateshian (2007) obtains flux equations analogous to Eqs. (26) within the mixture theory. Indeed, equations (128)
and (129) of Ateshian (2007) are the counterpart in the current configuration of Eqs. (26a) and (26b), respectively, if one both
assumes absence of friction between polymer chains and dilute species, as for instance in Huyghe and Janssen (1997), and considers
that external body forces acting on solvent and dilute species vanish. We further note that, in order to describe the kinetics of
polyelectrolyte gels, Zhang et al. (2020) follow the Maxwell–Stefan approach to mass transport in multicomponent systems (Krishna
and Wesselingh, 1997), thus obtaining transport equations again corresponding to Eqs. (26).

Finally, combining Eqs. (23), (24), and (26) results in

𝐉s = −
𝐷s
𝑅𝑇

𝐂−1 (𝑣s𝐶s∇𝑝s + 𝐹𝐶∇𝜓
)

, (27a)

𝐉 = 𝐶
𝐶s

𝐉s −𝐷𝐂−1
(

∇𝐶 − 𝐶
𝐶s

∇𝐶s +
𝐹𝐶
𝑅𝑇

∇𝜓
)

. (27b)

2.6.1. Discussion
Let us first focus on the solvent flux given by Eq. (27a). About the resolution strategy, we note that the use of constraints (3)

and (4) allows us to express the solvent mass balance (6) in terms of the solvent pressure 𝑝s. About the physics, we remark that,
although the solvent is assumed to be electrically neutral, its flux depends on the electric potential gradient. In particular, the last
term in Eq. (27a) represents the solvent electro-osmotic flux, which is recognized by many investigators as a fundamental mechanism
of solvent transport in IPMC actuation (Asaka and Oguro, 2000; Shahinpoor and Kim, 2004; Zhu et al., 2013). Indeed, as a voltage
drop is applied across the electrodes, counterions migrate in the direction of the electric field, carrying along solvent molecules
proportionally to the counterion concentration.

In the limit case of absence of counterions, the volumetric nominal flux of solvent 𝐉vs , through Eq. (27a), reads

𝐉vs = 𝑣s𝐉s = −𝐽𝐂−1𝐷s𝜑2
s

𝑅𝑇 𝑐s
∇𝑝s,

here we have introduced the current solvent concentration 𝑐s = 𝐶s∕𝐽 and the current porosity 𝜑s = 𝑣s𝑐s. Then, by defining the
permeability of the polymer network to the solvent in terms of the solvent diffusivity as 𝑘s = 𝐷s𝜑2

s∕(𝑅𝑇 𝑐s), one obtains the nominal
version of Darcy law (MacMinn et al., 2016):

𝐉vs = −𝐽𝐂−1𝑘s∇𝑝s,

whose more common counterpart in the current configuration reads 𝐣vs = −𝑘s grad 𝑝s.
By focusing now on the counterion flux in Eq. (27b), we note that, in our framework, 𝐉s∕𝐶s is related to the velocity of solvent

molecules with respect to the polymer network (see also Ateshian, 2007, equation (129)). Therefore, the first addend represents
the convective flux of counterions with the solvent (see, e.g., equation (1.4.2) of Bard and Faulkner, 2001). Within our theory, it
constitutes an important contribution of counterion flux in sensing, as also in Zhu et al. (2016). Indeed, upon application of a
mechanical stimulus, the solvent moves down its pressure gradient, carrying along some counterions. Moreover, within this motion,
the solvent establishes a volumetric deformation gradient (see Eq. (3)), which triggers counterion diffusion; this is considered through
the third term in Eq. (27b), proportional to ∇𝐶s = ∇𝐽∕𝑣s. Counterion convection along 𝐉s and diffusion along ∇𝐶s originate an ion
mbalance and, consequently, an electric signal. Our theory explains the weak response characterizing IPMC sensors (Shahinpoor
nd Kim, 2004) with the smallness of the two foregoing contributions to the counterion flux, both proportional to 𝐶 ≪ 𝐶s.

Finally, in the limit case of immobile solvent (that is, 𝐷s = 0, also implying 𝐉s = 𝟎 through Eq. (27a)), we have 𝐶s = 𝐶0
s (Eq. (6)),

= 1 (Eq. (3)), 𝑐 = 𝐶, and 𝑐s = 𝐶s, such that Eq. (27b) reduces to

𝐉 = −𝐷𝐂−1
(

∇𝐶 + 𝐹𝐶
𝑅𝑇

∇𝜓
)

,

whose counterpart in the current configuration reads 𝐣 = −𝐷
[

grad 𝑐 + 𝐹𝑐∕(𝑅𝑇 ) grad𝜓
]

, which is the classical Nernst–Planck
aw (Porfiri, 2008), stating that both the gradient of the counterion concentration (Fick effect) and the electric field (electrophoretic
ffect) concur to the counterion transport.

. Analysis of actuation and sensing

Here, we investigate the mechanisms underlying actuation and sensing on the basis of finite element solutions of the proposed
odel applied to the benchmarks depicted in Fig. 1.

.1. Model parameters

We consider a typical IPMC of length 𝐿 = 20mm, membrane thickness 2𝐻 = 200 μm, and electrode thickness ℎ = 1μm. With
eference to a saturated Nafion membrane, we adopt 𝐺 = 50MPa and, unless otherwise specified, 𝜆 = 300MPa for the Lamé
arameters (Silberstein and Boyce, 2010), such that 𝐾 ≈ 333MPa, 𝜈 ≈ 0.4286, and 𝐸 ≈ 143MPa. The Lamé parameters of the
8

lectrodes are two orders of magnitude larger, that is, 𝐺e = 5GPa and 𝜆e = 30GPa. With respect to the usual moduli for metals,
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Fig. 2. Finite element mesh at the clamped end region of the membrane, with the non-dimensional solvent concentration 𝐶s(𝑋, 𝑌 )∕𝐶0
s for the actuation problem

(Section 3.3) at the analysis instant 𝑡 = 0.1 s. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

these are about one order of magnitude lower (Liu et al., 2019), as justified by their significantly larger defectiveness, due to the
plating processes adopted in IPMC fabrication (Kim and Shahinpoor, 2003).

We adopt room temperature 𝑇 = 300K and water as solvent, such that 𝑣s = 18 cm3∕mol. We select 𝐶0
s = 20 000mol∕m3

(corresponding to initial volume fraction of water 𝑣s𝐶0
s = 0.36), 𝐷s = 10−9 m2∕s, 𝐷 = 10−10 m2∕s, 𝐶0 = 1200mol∕m3, and 𝜀 = 10−4 F∕m.

These values are within the ranges proposed by Zhu et al. (2016).

3.2. Finite element model

The finite element solution is obtained with the commercial software COMSOL Multiphysics® under plane strain conditions. We
adopt the General Form PDE interface to solve the governing equations ensuing from the mass balances and the Gauss law, by
employing quadratic Lagrangian shape functions to approximate the fields 𝑝s, 𝐶, and 𝜓 . We use the Solid Mechanics interface
to solve the equilibrium equations, by choosing quadratic serendipity shape functions to approximate the field 𝐮.

The mesh consists of 19 565 quadrilateral elements, whose geometry is described by quadratic serendipity shape functions. We
discretize the IPMC length (𝑋 direction) with 200 uniform elements of size 0.1mm each, except for a region of width 2𝐻 = 0.2mm at
the clamped end, where we employ a finer mesh featuring 16 columns of elements instead of 2; this mesh region, required to obtain
a sufficiently accurate deformation field therein, is displayed in Fig. 2. We discretize the membrane thickness (𝑌 direction) with
50 elements, whose size decreases from the center to the electrodes in geometric sequence with the ratio between the largest and
the smallest elements equal to 10; in the electrodes the mesh is uniform, featuring 4 elements along the thickness. We additionally
introduce 16 boundary layer elements in each of the membrane regions next to the electrodes. These elements also have variable
size along the 𝑌 direction, with the smallest ones, adjacent to the electrodes, of size 10 nm, and the stretching factor between two
consecutive elements equal to 1.2. These very fine mesh regions are motivated by the large gradients of 𝐶 and 𝜓 therein, which
constitute the well-established essential feature of IPMC electrochemistry (Porfiri, 2008), in our poromechanical model accompanied
by the gradient of 𝐶s. The overall number of degrees of freedom is 329 133.

We employ Backward Differentiation Formula for the time integration. At each time step, we use a segregated approach to
solve the discretized equations. Specifically, in actuation we first solve the electrochemical problem, and then, in an iterative loop,
use this solution to inform and solve the poromechanical problem. Dually, in sensing the algorithm first solves the poromechanical
problem, and then uses the obtained solution as a guess for the electrochemical problem. These solution schemes are convenient as
they are suggested by the underlying physics.

While the response is almost independent of 𝑋 in actuation, the maximum electrochemical response in sensing is obtained in the
cross-section where the bending moment attains its maximum value out of the region influenced by the fully clamped constraint,
that is, at 𝑋 ≃ 𝐿∕100. Our finite element model allows us to obtain accurate results within this cross-section, where, in the following,
we discuss the through-the-thickness variation of the relevant fields.5
9
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Fig. 3. Actuation: non-dimensional counterion concentration 𝐶(𝑌 )∕𝐶0 at 𝑋 = 𝐿∕100 in the cathode (a) and anode (b) boundary layers.

Fig. 4. Actuation: electric potential 𝜓(𝑌 ) at 𝑋 = 𝐿∕100 in the membrane.

3.3. Actuation

In actuation, the numerical model allows us to instantaneously apply a voltage drop 𝜓̄ = 0.25V across the electrodes, which is
then maintained until the steady state. This elicits the counterion migration from the anode to the cathode, resulting in counterion
depletion and accumulation in the boundary layers, with the membrane bulk remaining electroneutral. In Fig. 3 we display the
counterion concentration 𝐶(𝑌 ) in the boundary layers, at different time instants. At the cathode, 𝐶 increases up to about 12𝐶0 at
𝑡 ≈ 1 s, and then remains constant. At the anode, 𝐶 decreases to zero at 𝑡 ≈ 0.1 s, and then the thickness of the boundary layer
increases until 𝐶(𝑌 ) attains its steady state profile at 𝑡 ≈ 1 s. As displayed in Fig. 4, the asymmetry of the boundary layers reflects on
the electric potential 𝜓(𝑌 ), which, through the Maxwell stress, is relevant for the back-relaxation (Porfiri et al., 2017). Importantly,
the reason for the highlighted asymmetry is inherently electrochemical, although it is strengthened by large deformations.

As counterions migrate toward the cathode, the solvent molecules follow by electro-osmosis. In Figs. 5 and 6 we represent 𝐶s(𝑌 )
in the boundary layers and in the membrane bulk, respectively. In the cathode boundary layer, the peak value of 𝐶s increases up

5 Analyzing the results so close to the fully clamped cross-section is convenient also because of its very small rotation, leading to negligible difference between
10

ts normal in the reference and current configurations.
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Fig. 5. Actuation: non-dimensional solvent concentration 𝐶s(𝑌 )∕𝐶0
s at 𝑋 = 𝐿∕100 in the cathode (a) and anode (b) boundary layers.

Fig. 6. Actuation: non-dimensional solvent concentration 𝐶s(𝑌 )∕𝐶0
s at 𝑋 = 𝐿∕100 in the membrane bulk (boundary layers excluded). The curve corresponding to

the time instant 𝑡 ≈ 0.1 s at which the solvent begins counter-diffusing is highlighted in red. (For interpretation of the references to color in this figure legend,
he reader is referred to the web version of this article.)

o about 1.36𝐶0
s at 𝑡 ≈ 1 s, and then remains constant. Outside the cathode boundary layer, 𝐶s increases until 𝑡 ≈ 0.1 s, and then

slowly decreases, by approaching its initial value at the steady state. The anode side behaves similarly, though experiencing solvent
depletion. The contour of 𝐶s in the clamped region of the membrane at 𝑡 = 0.1 s is further reported in previous Fig. 2, where the
color bar is set in such a way as to highlight the variation of 𝐶s in the membrane bulk, thus obscuring its variation in the boundary
layers, as in Fig. 6. Analogously to 𝐶, we note that the maximum solvent accumulation at the cathode, characterized by a thinner
boundary layer, is larger than the maximum depletion at the anode, indicating asymmetry in the solvent redistribution. Notably,
the relative change of 𝐶s along the membrane thickness is much lower than that of 𝐶 (compare, e.g., the profiles at the cathode in
Figs. 3(a) and 5(a)).

We draw the first conclusion that in the boundary layers (Fig. 5) the contribution of the solvent pressure gradient ∇𝑝s to the
solvent flux never exceeds that of the electric field 𝐄, such that 𝐶s undergoes a monotonic variation in time until the steady state.
In other words, in IPMC actuation, the electrochemistry also governs the boundary layer behavior of the solvent. Instead, in the
membrane bulk (Fig. 6), the contribution of ∇𝑝s overcomes that of 𝐄 at a certain instant, after which the solvent counter-diffuses
and back-relaxation occurs.

For the flexure magnitude, in Fig. 7 we display the time evolution of the transverse displacement 𝑢𝑌 (𝐿, 0). It initially rapidly
p p ss
11

increases, reaching the peak value 𝑢𝑌 at 𝑡 . Then back-relaxation occurs and 𝑢𝑌 slowly decreases until the steady state value 𝑢𝑌 at
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𝑡

c

Fig. 7. Actuation: non-dimensional transverse displacement 𝑢𝑌 (𝑡) evaluated at the free end (𝑋, 𝑌 ) = (𝐿, 0).

ss. With reference to the case 𝜆 = 300MPa: 𝑢p𝑌 ≈ 1.7%𝐿, 𝑡p ≈ 0.1 s and 𝑢ss𝑌 ≈ −0.7%𝐿, 𝑡ss ≈ 50 s. Therefore, while initially the IPMC
bends toward the anode, it finally undergoes opposite curvature, bending toward the cathode. This behavior and the associated
timescales were first documented in Asaka et al. (1995).

Remarkably, as shown in Fig. 7 and demonstrated in the following, disregarding the Maxwell stress both leads to a significant
overestimation of 𝑢p𝑌 (𝑢p𝑌 ≈ 2.7%𝐿, now reached at 𝑡p ≈ 0.25 s) and excludes the possibility of predicting the change in sign of the
urvature, although back-relaxation still takes place.

Fig. 7 also displays the dependence of the back-relaxation on the first Lamé parameter 𝜆, whereby increasing 𝜆 anticipates the
steady state and amplifies the magnitude of the back-relaxation. Moreover, it exists a sufficiently small 𝜆 such that the curvature
does not change sign, although back-relaxation still occurs. We can explain this dependence of the flexure on 𝜆 by leveraging on
the two fundamental results illustrated below.

First, as illustrated in Fig. 8, the longitudinal (Green–Lagrange) strain 𝑋𝑋 (𝑌 ) remains nearly linear all along the IPMC cross-
section. On this basis, let us note that Fig. 8 clearly reports the change of curvature sign at the steady state with respect to that at
the initial peak. In more detail, at 𝑡p the IPMC bends toward the anode and the neutral axis is shifted, with respect to the mid-axis,
toward the anode. At 𝑡ss the curvature has opposite sign, with the IPMC bending now toward the cathode; notably, the whole
cross-section presents positive 𝑋𝑋 , denoting a longitudinal elongation of the strip. The IPMC extension under actuation has also
been reported in Boldini et al. (2020) on the basis of the Cha and Porfiri (2014) theory. Generally, 𝑋𝑋 is small, although the
bending deformation is relevant, given the strip slenderness. In Fig. 9 we report the undeformed configuration and the deformed
configurations at 𝑡p and 𝑡ss, with the associated contour plots of 𝑋𝑋 .

Second, it is crucial to notice, as documented by Fig. 10, how the Maxwell stress 𝜎pol𝑦𝑦 (𝑌 ) ≡ −𝜎pol𝑥𝑥 (𝑌 ) grows asymmetrically in
the boundary layers. Since 𝜕𝜓∕𝜕𝑥 is negligible, 𝜎pol𝑦𝑦 ≈ (𝜀∕2)(𝜕𝜓∕𝜕𝑦)2 has the same sign on both sides of the membrane, where
it increases in magnitude with time. Importantly, near the anode 𝜎pol𝑦𝑦 assumes slightly greater values and, most of all, it attains
a relevant magnitude in a larger region, because of the thicker boundary layer therein. This asymmetry grows with time, and is
expected to increase with the applied voltage (Porfiri et al., 2017).

Hence, we can explain the mechanics behind the back-relaxation documented in Fig. 7 by temporarily resorting to small strains
and decoupling poromechanics and electrochemistry, solving the latter first. This provides, by suitably approximating the behavior
observed in Fig. 8, a longitudinal strain 𝜀𝑥𝑥(𝑦) ≈ 𝜅𝑦 + 𝜀0, with 𝜅 denoting the curvature and 𝜀0 the mid-axis strain, and a known
Maxwell stress 𝜎pol𝑦𝑦 (𝑦) ≈ (𝜀∕2)(𝜕𝜓∕𝜕𝑦)2. Then, by resorting to the equilibrium along 𝑦, we can estimate the transverse mechanical
stress 𝜎mec

𝑦𝑦 (𝑦) ≈ −𝜎pol𝑦𝑦 (𝑦) + 𝑝s(𝑦), as confirmed by the finite element analyses. Under plane strain, the longitudinal mechanical stress
reads 𝜎mec

𝑥𝑥 (𝑦) = [𝐸∕(1 − 𝜈2)]𝜀𝑥𝑥(𝑦) + [𝜈∕(1 − 𝜈)]𝜎mec
𝑦𝑦 (𝑦), such that the total longitudinal stress in the membrane turns out to be

𝜎𝑥𝑥(𝑦) ≈
𝐸

1 − 𝜈2
(𝜅𝑦 + 𝜀0) +

𝜈
1 − 𝜈

[

−𝜎pol𝑦𝑦 (𝑦) + 𝑝s(𝑦)
]

− 𝜎pol𝑦𝑦 (𝑦) − 𝑝s(𝑦) . (28)

In the electrodes, we simply have

𝜎𝑥𝑥(𝑦) ≡ 𝜎mec
𝑥𝑥 (𝑦) ≈

𝐸e
2
(𝑘𝑦 + 𝜀0) . (29)
12
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Fig. 8. Actuation: longitudinal strain 𝑋𝑋 (𝑌 ) at 𝑋 = 𝐿∕100 in the membrane and electrodes.

Fig. 9. Actuation: undeformed configuration and deformed configurations (10 times amplified) at 𝑡p and 𝑡ss, also displaying the longitudinal strain field 𝑋𝑋 .
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. Actuation: transverse Maxwell stress 𝜎pol𝑦𝑦 (𝑌 ) at 𝑋 = 𝐿∕100 in the cathode (a) and anode (b) boundary layers.
13
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Fig. 11. Actuation: solvent pressure 𝑝s(𝑌 ) at 𝑋 = 𝐿∕100 in the membrane.

Since no mechanical loads are applied to the IPMC in actuation, we can estimate 𝜅 and 𝜀0 by imposing vanishing total bending
moment and total axial force. In particular, by using Eqs. (28) and (29), the first condition provides

𝜅 ≈ 1
𝛽(1 − 𝜈) ∫

𝐻

−𝐻
[𝜎pol𝑦𝑦 (𝑦) + (1 − 2𝜈)𝑝s(𝑦)]𝑦 d𝑦 = − 1

𝛽(1 − 𝜈)
[

𝑀pol + (1 − 2𝜈)𝑀s
]

, (30)

where

𝛽 = 𝐸
1 − 𝜈2

2
3
𝐻3 +

𝐸e

1 − 𝜈2e
2𝐻2ℎ (31)

is the plane strain bending stiffness per unit depth relying on the Bernoulli–Navier kinematics and on the assumption of thin skins,
and 𝑀pol and 𝑀s are the bending moments per unit depth due to the Maxwell stress and to the solvent pressure. It is important to
notice that, in Eq. (30), the difference from unity of the coefficients (1 − 𝜈) and (1 − 2𝜈) ensues from the second contribution to the
mechanical stress in Eq. (28), which has been overlooked so far in IPMC literature, to the best of our knowledge.

Given that the solvent moves from the anode to the cathode, Eq. (30) establishes that the solvent pressure always gives a negative
contribution to 𝜅, corresponding to bending toward the anode. In fact, as shown in Fig. 11, at the anode side (where 𝑦 > 0) 𝑝s < 0
and at the cathode side (where 𝑦 < 0) 𝑝s > 0.

Instead, the Maxwell stress 𝜎pol𝑦𝑦 > 0 gives a positive contribution to 𝜅 at the anode side, while it provides a negative contribution
to 𝜅 at the cathode side. Therefore, the back-relaxation may lead to bending toward the cathode (𝜅 > 0) only due to the Maxwell
tress, whereby this occurs when the contribution of the Maxwell stress at the anode overcomes those of the solvent pressure and
f the Maxwell stress at the cathode. This turns out to be possible because of the boundary layers asymmetry described above (see,
n particular, Fig. 10).

Moreover, Eq. (30) allows us to explain the back-relaxation dependence on 𝜆, as illustrated in Fig. 7: increasing 𝜆 for a given 𝐺
mplies a larger 𝜈, the latter approaching 0.5 as 𝜆 → ∞; this diminishes the negative contribution to 𝜅 due to 𝑝s, thus anticipating
nd emphasizing the back-relaxation.

Let us now delve into further details on the back-relaxation contribution due to the solvent counter-diffusion, on the basis of
s(𝑌 ) in Fig. 11. In passing from 𝑡p to 𝑡ss, 𝑝s diminishes everywhere, except for the cathode boundary layer, resulting in a decrease
f 𝑀s with time, as confirmed by the case disregarding the Maxwell stress in Fig. 7. Notably, in this latter case, if 𝜆 → ∞ at fixed
𝐺, then 𝜈 → 0.5 and the steady state curvature approaches zero, as revealed by Eq. (30).

As recently established by Boldini and Porfiri (2020) and Boldini et al. (2020), the IPMC actuation is characterized by large
gradients of all the relevant stress and strain components in the boundary layers, except for the longitudinal strain (see Fig. 8). This
is detailed in the following within the context of the present theory. Fig. 12 displays the transverse Green–Lagrange strain 𝑌 𝑌 (𝑌 )
at the cathode and anode sides, respectively. The profile of 𝑌 𝑌 is asymmetric, with the peak magnitude of 𝑌 𝑌 at the cathode
eing nearly double than that at the anode. The poromechanical framework allows the model to further predict non-negligible 𝑌 𝑌
14

utside the boundary layers, which vanishes at the steady state, according to the solvent redistribution (see Fig. 6).
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Fig. 12. Actuation: transverse strain 𝑌 𝑌 (𝑌 ) at 𝑋 = 𝐿∕100 in the membrane.

Fig. 13. Actuation: longitudinal mechanical stress 𝜎mec
𝑥𝑥 (𝑌 ) at 𝑋 = 𝐿∕100 in the cathode (a) and in the anode (b), including the boundary layers in the membrane.

Finally, in Fig. 13 we represent the longitudinal mechanical stress 𝜎mec
𝑥𝑥 (𝑌 ) at the cathode and anode sides. It is worth noting that

he steady state bending toward the cathode, due to back-relaxation, is accompanied with a change in sign of the axial stress in the
node, which becomes larger than that at the cathode. Remarkably, 𝜎mec

𝑥𝑥 and 𝜎mec
𝑦𝑦 combine as to provide a longitudinal strain that

s well approximated by an affine function of 𝑌 .
In Porfiri et al. (2017) the importance of the Maxwell stress in IPMC back-relaxation was first advanced, on the basis of the Cha

nd Porfiri (2014) theory, which neglects the solvent flow, and assumes that actuation is triggered by an osmotic pressure term
roportional to the counterion concentration. Given that counterions are unlikely to counter-diffuse in actuation, in the Cha and
orfiri (2014) framework the back-relaxation can be explained exclusively through electrostatic arguments. Conversely, Zhu et al.
2013) account for the cross-diffusion of solvent and counterions, but neglect the Maxwell stress; indeed, Zhu et al. (2013) predict
ack-relaxation without reversal of the curvature.

The present theory is, to the best of our knowledge, the first one to effectively combine the classical model of the back-relaxation,
ased on the solvent counter-diffusion, with the more recent (so far, alternative) description relying on the relevance of the Maxwell
tress. Furthermore, our theory allows one to establish a precise link between the steady state bending response and the Lamé
onstants, thus suggesting a possible strategy for the identification of the model parameters.
15
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Fig. 14. Sensing: longitudinal mechanical stress 𝜎mec
𝑥𝑥 (𝑌 ) and solvent pressure 𝑝s(𝑌 ) at 𝑋 = 𝐿∕100 in the membrane.

Fig. 15. Sensing: longitudinal, 𝑋𝑋 (𝑌 ), and transverse, 𝑌 𝑌 (𝑌 ), strains at 𝑋 = 𝐿∕100 in the membrane.

3.4. Sensing

In short-circuit sensing, we impose a uniformly distributed nominal load of magnitude 𝑇 = 50N∕m2. The numerical model does
not allow us to instantaneously apply this load; hence, we linearly enforce it in a suitably short time interval 𝑡i = 0.1 s, and then
maintain it until the steady state. This leads to a sensing response triggered by poromechanics, as described in the following.

In Fig. 14 we represent the longitudinal mechanical stress 𝜎mec
𝑥𝑥 and the solvent pressure 𝑝s along the membrane thickness, at

𝑡i = 0.1 s and 𝑡ss ≈ 50 s. While |𝜎mec
| increases in time, |𝑝 | decreases and nearly vanishes everywhere at the steady state. At each time
16
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Fig. 16. Sensing: relative solvent concentration
[

𝐶s(𝑌 ) − 𝐶0
s
]

∕𝐶0
s at 𝑋 = 𝐿∕100 in the membrane.

Fig. 17. Sensing: non-dimensional transverse displacement 𝑢𝑌 (𝑡) at (𝑋, 𝑌 ) = (𝐿, 0) relative to the value 𝑢EB𝑌 predicted by the linear elastic Euler–Bernoulli beam
odel.

nstant, we observe that 𝜎mec
𝑥𝑥 (𝑡)−𝑝s(𝑡) ≈ 𝜎mec

𝑥𝑥 (𝑡ss), showing, incidentally, that the time evolution of the Maxwell stress is irrelevant. In
ig. 15 we display the longitudinal, 𝑋𝑋 , and transverse, 𝑌 𝑌 , Green–Lagrange strains. The cathode side extends longitudinally and
hortens transversely, while the anode side exhibits opposite behavior. Progressively, |𝑋𝑋 | slightly increases, while |𝑌 𝑌 | decreases.
n Fig. 16 we represent the solvent concentration 𝐶s, which is directly related to the volumetric deformation by Eq. (3). It increases
ith time at the cathode side while decreasing at the anode side. All the poromechanical fields are nearly symmetric with respect

o the mid-axis, except for some asymmetry arising in the boundary layers as the steady state is approached.
In Fig. 17 we represent the time evolution of the transverse displacement at the free end, 𝑢𝑌 (𝐿, 0), which is non-dimensionalized

EB 𝑇𝐿4∕(8𝛽) ≈ 2.14mm, where 𝛽 is given by
17

hrough its value estimated with the linear elastic Euler–Bernoulli beam theory 𝑢𝑌 =
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Fig. 18. Sensing: relative counterion concentration [𝐶(𝑌 ) − 𝐶0]∕𝐶0 at 𝑋 = 𝐿∕100 in the cathode (a) and anode (b) boundary layers. The curves corresponding
to the time instant (≈ 0.5 s) at which counterions begin counter-diffusing are highlighted in red. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Eq. (31). As the load is progressively applied, the IPMC bends toward the anode, with a tip displacement 𝑢i𝑌 ≈ 0.945 𝑢EB𝑌 at 𝑡i. As
long as the load is maintained, the tip displacement increases with time, reaching the steady state value 𝑢ss𝑌 ≈ 0.985 𝑢EB𝑌 . Therefore,
the time-delayed displacement is 𝑢ss𝑌 − 𝑢i𝑌 ≈ 4% 𝑢ss𝑌 .

The observed poromechanics can be explained by temporarily resorting to small strains within the Euler–Bernoulli kinematics
for the whole IPMC cross-section and disregarding the effect of the electric field. Under plane strain, the volume ratio reads
𝐽 (𝑥, 𝑦) = 1 + 𝜈[𝜎mec

𝑥𝑥 (𝑥, 𝑦) + 𝜎mec
𝑦𝑦 (𝑥, 𝑦)]∕𝜆. The applied load 𝑇 is associated with a bending moment 𝑀(𝑥) = 𝑇 (𝑥2 − 2𝐿𝑥+𝐿2)∕2, which

is partly equilibrated by the total longitudinal stress in the membrane, such that 𝜎mec
𝑥𝑥 (𝑥, 𝑦) = 𝑝s(𝑥, 𝑦) − [𝐸∕(1 − 𝜈2)]𝑀(𝑥)𝑦∕𝛽. Given

he smallness of the applied load and the thinness of the IPMC, the equilibrium in the 𝑦 direction requires that 𝜎mec
𝑦𝑦 (𝑥, 𝑦) ≈ 𝑝s(𝑥, 𝑦),

s also confirmed by the finite element results. Consequently, the volume ratio can be rewritten as

𝐽 (𝑥, 𝑦) ≈ 1 + 𝜈
𝜆

[

2𝑝s(𝑥, 𝑦) −
𝐸

1 − 𝜈2
𝑀(𝑥)
𝛽

𝑦
]

= 1 + 1
2(𝜆 + 𝐺)

[

2𝑝s(𝑥, 𝑦) −
4𝐺(𝜆 + 𝐺)
𝜆 + 2𝐺

𝑀(𝑥)
𝛽

𝑦
]

, (32)

n which the last form is convenient to discuss the influence of 𝜆. By neglecting 𝜕𝑝s∕𝜕𝑥, which is small compared to 𝜕𝑝s∕𝜕𝑦, the
solvent mass balance (6) reduces to

𝑝̇s(𝑥, 𝑦) − (𝜆 + 𝐺)𝑘s
𝜕2𝑝s(𝑥, 𝑦)
𝜕𝑦2

≈
4𝐺(𝜆 + 𝐺)
𝜆 + 2𝐺

𝑀̇(𝑥)
2𝛽

𝑦 , (33)

in which 𝑘s = 𝐷s𝑣2s𝐶
0
s ∕(𝑅𝑇 ). Eq. (33) is a diffusion-type equation to be solved, at each 𝑥, for the solvent pressure field 𝑝s(𝑦, 𝑡), given

the initial condition 𝑝s(𝑦) = 0 at 𝑡 = 0 and the boundary conditions 𝜕𝑝s∕𝜕𝑦
|

|

|𝑦=±𝐻
= 0, corresponding to imposing zero-flux at the

electrodes. All the other relevant poromechanical fields can be readily reconstructed once Eq. (33) is solved.
While the load is linearly increased during the ramp of time length 𝑡i, the constant 𝑀̇ = 𝑇 (𝑥2 − 2𝐿𝑥 + 𝐿2)∕(2𝑡i) generates a

rogressively increasing solvent pressure gradient along the membrane thickness. The solvent pressure 𝑝s enters the equilibrium,
uch that |𝜎mec

𝑥𝑥 | is less than it would be for a non-porous material. Then, while the load is kept constant after the loading ramp,
̇ = 0 and the solvent progressively moves down its pressure gradient, |𝑝s| reduces, and a larger fraction of the applied load is
quilibrated by |𝜎mec

𝑥𝑥 |, which increases in time, while |𝜎mec
𝑦𝑦 | ≈ |𝑝s| decreases. Therefore, |𝑋𝑋 | progressively increases, along with

he IPMC deflection. At the steady state, the excess solvent pressure is dissipated, such that the solvent becomes irrelevant for the
quilibrium. Correspondingly, in the membrane the total longitudinal stress 𝜎𝑥𝑥 tends to coincide with its mechanical contribution
mec
𝑥𝑥 , and the deflection to the Euler–Bernoulli beam value 𝑢EB𝑌 .6

Within our framework, the smallness of the time-dependent deflection 𝑢ss𝑌 − 𝑢i𝑌 (see Fig. 17) is explained by the fact that a
onsiderable part of the applied load is instantaneously equilibrated by the longitudinal stress in the electrodes, 𝜎𝑥𝑥 ≡ 𝜎mec

𝑥𝑥 =
[𝐸e∕(1 − 𝜈2e )]𝑀𝑦∕𝛽.

So far, we have neglected the electric field contribution to the solvent flux. Actually, at the steady state, the solvent pressure is not
xactly zero (see Fig. 14), as the component of the solvent flux proportional to ∇𝑝s must balance the electro-osmotic contribution,
roportional to 𝐄. The mechanical stress state is in turn partly altered by the electro-osmotic flux of the solvent, but not by the
axwell stress, which turns out to be negligible. Consequently, the final deflection is slightly less than that predicted by the
uler–Bernoulli beam theory (see Fig. 17).

6 This picture is reminiscent of the consolidation problem of soil mechanics. However, in the classical problem of consolidation (Biot, 1941), the process
s allowed by the drainage of water from the soil surface, whereby the total ‘‘vertical’’ stress is uniform along the soil depth. Here, differently, the solvent is
18

revented from draining, but the process is allowed by the presence of a total longitudinal stress gradient along the membrane thickness.
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Fig. 19. Sensing: electric potential 𝜓(𝑌 ) at 𝑋 = 𝐿∕100 in the membrane.

Fig. 20. Sensing: stored charge 𝑄(𝑡) (a) and electric current 𝐼(𝑡) (b) per unit depth.

We can now comment on the electrochemical response elicited by the solvent flux, with reference to Fig. 18, in which we
epresent the counterion concentration 𝐶(𝑌 ) in the boundary layers, and Fig. 19, where we display the electric potential 𝜓(𝑌 ) in the

membrane. At the cathode, 𝐶 increases with time until 𝑡 ≈ 0.5 s, which is five times longer than the loading ramp duration 𝑡i, and
then decreases. The analogous opposite behavior is observed at the anode. We conclude that counterions are initially transported
toward the cathode by convection with the solvent and by diffusion toward regions of larger volume ratio, until they counter-
diffuse as their concentration gradient becomes sufficiently large. At the steady state, the convective and electrodiffusive fluxes are
individually null. The electric potential field of Fig. 19 results from the counterion redistribution, on the basis of Gauss law (7).

In Fig. 20(a) we represent the time evolution of the stored charge per unit depth, defined as

𝑄 = ∫

𝐿

0

|

|

|

𝐷𝑌 (𝑌 = ±𝐻)||
|

d𝑋 .

It increases until 𝑡 ≈ 0.5 s, when, with reference to the case 𝜆 = 300MPa, it reaches the peak value 𝑄p ≈ 0.91 μC∕mm. Then it
starts decreasing slowly to the steady state value 𝑄ss ≈ 0.16 μC∕mm ≈ 18%𝑄p. This decrease of 𝑄, which can be deleterious for
IPMCs employed in energy harvesting, is clearly due to the counterion counter-diffusion. The reversal of the counterion flux is
also confirmed by the change in sign of the electric current per unit depth, defined as 𝐼 = 𝑄̇, whose time evolution is shown in
19

Fig. 20(b). The current increases with the load; then, it decreases rapidly and becomes negative at 𝑡 ≈ 0.5 s, when counterions begin
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counter-diffusing; finally, it slowly goes to zero at the steady state. Qualitatively, the same results in terms of stored charge and
electric current have been experimentally observed by Farinholt and Leo (2004) in response to an imposed tip displacement.

Fig. 20 also displays the time evolution of the stored charge and electric current obtained by varying the Lamé parameter 𝜆, with
𝐺 held equal to 50MPa.7 By decreasing 𝜆, the peak stored charge 𝑄p increases and, most of all, the counterion counter-diffusion is

ilder, such that, for 𝜆 = 30MPa, 𝑄ss ≈ 0.5𝑄p. This behavior is explained by the fact that, by diminishing 𝜆, the solvent flux toward
the cathode increases, along with the convective counterion flux. Indeed, Eq. (32) reveals that |𝐽 (𝑦)|, and correspondingly |𝐶s(𝑦)|
through the constraint (3), increases by decreasing 𝜆. Moreover, Fig. 20 shows that the discharge process requires a significantly
larger time for smaller 𝜆. This is explained by the diffusion equation (33), which shows that the ‘‘solvent pressure flux’’, defined as
−(𝜆 + 𝐺)𝑘s𝜕𝑝s∕𝜕𝑦, decreases with 𝜆, thus requiring more time for the solvent pressure to be dissipated. This analysis might offer a
riterion for selecting the most efficient ionomer for the IPMC membrane on the basis of the resulting elastic moduli.

Finally, we remark that, in sensing, the time-increasing asymmetry in 𝐶(𝑌 ) and, especially, 𝜓(𝑌 ) (see Figs. 18 and 19) can be
aptured only by considering a finite deformation framework. Indeed, although the deformations are relatively small (see Fig. 15),
he time-varying deformation field non-negligibly modulates the electrochemistry, characterized in sensing by small deviations from
he initial electroneutral state. This, of course, will be amplified by the application of larger loads than that considered here.

. Concluding remarks

We have herein proposed a model for ionic polymer metal composites (IPMCs) by suitably modifying the electrochemomechanical
heory of Cha and Porfiri (2014). As a main novelty, we have accounted for the transport of the solvent, which establishes the
olumetric deformation of the membrane and cross-diffuses with the counterions.

Specifically, by referring to the mixture theory (Ateshian, 2007), we have regarded the IPMC membrane as the superposition of
solid phase, identifying with a negatively charged polymer, and a fluid phase, consisting of counterions immersed in a solvent.
oward the simplest possible model thoroughly describing the complex IPMC multiphysics, we have assumed that each constituent

s incompressible and that the fluid phase is dilute, such that the volumetric deformation of the membrane only depends on the
olvent redistribution. The model is governed by four coupled equations consisting of an overall momentum balance, the mass
alances for solvent and counterions, and the Gauss law, to be solved for the displacement field, the solvent pressure, the counterion
oncentration, and the electric potential. We have proposed a free energy density encompassing the contributions due to the overall
tretching of the membrane, the mixing of solvent and counterions, and the dielectric polarization of the membrane. As for the
issipation, we have accounted for cross-diffusion (Vanag and Epstein, 2009), that is, we have assumed that the (electro)chemical
otential gradient of each species influences the flux of every species. Finally, we have modeled the electrodes as perfect electric
onductors impermeable to the fluid phase, contributing to the overall bending stiffness of the IPMC.

Our model results in two mutually coupled building blocks, addressing the electrochemistry and the poromechanics of IPMCs. The
lectrochemistry is described by a Poisson–Nernst–Planck system of equations (Porfiri, 2008), augmented to consider the convective
ransport of counterions with the solvent, and modified, with respect to its conventional form, by being modulated through finite
eformations. The poromechanics relies on Biot theory for saturated media (Biot, 1941), extended to include both the electro-osmotic
ransport of the solvent and the Maxwell stress. The electrochemistry drives the poromechanical response in actuation; dually, the
oromechanics triggers the electrochemical response in sensing. This clearly emerges from the results of finite element analyses of
he proposed theory implemented in the commercial code COMSOL Multiphysics®.

More specifically, in actuation the applied voltage drop across the electrodes elicits the migration of counterions toward the
athode; simultaneously, the electro-osmosis of the solvent in the same direction occurs, such that the cathode side swells, while
he anode side shrinks. As soon as the solvent pressure gradient increases sufficiently, the solvent starts counter-diffusing, with a
onsequent relaxation of the bending deformation. Moreover, as the imbalance of ions near the electrodes grows asymmetrically in
ime (Porfiri et al., 2017), the Maxwell stress is responsible of a time-increasing bending deformation toward the cathode, which
an overcome the effect of the solvent pressure, thus determining a reversal of the curvature (Asaka et al., 1995).

In sensing, the applied mechanical load establishes a solvent pressure gradient along the membrane thickness, which is then
rogressively dissipated as the solvent diffuses toward the cathode. Correspondingly, counterions move in the same direction by
onvection with the solvent and diffusion toward regions of larger volume ratio, and electrical charge is stored at the electrodes.
hen the counterion concentration gradient becomes large enough, counterions start counter-diffusing, with a consequent reduction

f the harvested electrical energy, as experimentally observed in Farinholt and Leo (2004).
As a further novelty with respect to IPMC literature, we have described the membrane deformation through a compressible

oupled hyperelastic model dependent on both Lamé parameters (Simo and Pister, 1984). We have demonstrated that, for a given
hear modulus, the calibration of the first Lamé parameter 𝜆 allows one to modulate the entity of the back-relaxation in actuation
nd of the electric discharge in sensing, whereby larger values of 𝜆 emphasize both phenomena. On the one hand, this sheds light
n the electrochemo-poromechanics of IPMCs. On the other hand, given the recent advancements in IPMC manufacturing (Carrico
t al., 2015), it might provide a criterion for designing and selecting the optimal material for the membrane.

Future work should, first of all, focus on efficiently solving meaningful benchmarks governed by the here developed theory in
rder to quantitatively compare its predictions against ad hoc experimental results. In fact, our present finite element implementation

7 Differently from the actuation problem, our numerical model exhibits convergence issues if we set 𝜆 = 3000MPa in this sensing problem, such that we limit
20

𝜆 to 1000MPa.
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in COMSOL Multiphysics® is computationally cumbersome and suffers convergence issues if we apply too large loads or set quite
extreme values of some parameters, such as the first Lamé constant. Two strategies could be followed to address this issue:
developing either an ad hoc finite element code or manageable and reliable semi-analytical solutions. Similar tasks have been
recently accomplished for the Cha and Porfiri (2014) theory, encompassing a two-dimensional user defined finite element for
continuum analysis (Boldini and Porfiri, 2020; Boldini et al., 2020) and enriched structural theories accounting for the through-
the-thickness deformation of the membrane and for the IPMC laminate structure, combined with asymptotic methods for the
electrochemistry (Leronni and Bardella, 2019; Boldini and Porfiri, 2020; Boldini et al., 2020).

Moreover, in order to accurately predict the experimental data, the model should be extended to account for the large variation
of material properties due to both the electrode roughness (Porfiri, 2009) and the presence of metal particles in thin membrane
regions adjacent to the electrodes, in the literature variously referred to as ‘‘intermediate layers’’ (Tiwari and Kim, 2010), ‘‘composite
layers’’ (Cha et al., 2012), and ‘‘polymer-metal composite electrodes’’ (Liu et al., 2019). Accounting for these composite layers,
possibly along with the volume occupied by counterions, would mitigate the large gradients of counterion concentration in the
boundary layers and the associated high stress concentrations, at the price of additional computational difficulties (Porfiri et al.,
2018; Volpini and Bardella, 2021). One would achieve an even more pronounced mitigation if such regions of variable properties
were more appropriately modeled as functionally graded materials. Finally, this goal could be reached also by adopting a constitutive
law limiting the maximum mechanical stress, for instance involving viscoplastic deformation (Silberstein and Boyce, 2010); in fact,
such limitation, by equilibrium, would hamper a too large increase of Maxwell stress and solvent pressure, which are proportional
to the fluid phase concentration gradient.

Establishing the range of applicability of the present theory would pave the way to elaborate on the main hypotheses the
theory relies on. For instance, as a major point, removing the assumption of dilute fluid phase of solvent and counterions might
quantitatively impact the predicted response, as IPMC electrochemistry is characterized by a large accumulation of counterions at
the cathode. Let us recall that in Cha and Porfiri (2014) theory this effect is prevented by introducing a so-called steric coefficient
in the Borukhov-like mixing free energy density of counterions and polymer chains (Borukhov et al., 2000). Within our framework,
removing the dilute solution approximation would require adopting a proper mixing free energy density for a non-ideal solution,
modifying the solvent and counterion fluxes to account for the friction between counterions and polymer network, and relating the
volume ratio to both solvent and counterion concentrations. Finally, let us observe that, to the best of our knowledge, the mixing of
solvent molecules and polymer chains has so far been overlooked in IPMC theories. Again, ad hoc experiments should demonstrate
the need for such an addition to the modeling, which is instead a common feature in the literature of polyelectrolyte gels (Hong
et al., 2010; Zhang et al., 2020).
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