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Abstract

Flooding information is an important function in many networking applications. In some networks, as wireless sensor
networks or some ad-hoc networks it is so essential as to dominate the performance of the entire system. Exploiting
some recent results based on the distributed computation of the eigenvector centrality of nodes in the network graph
and classical dynamic diffusion models on graphs, this paper derives a novel theoretical framework for efficient resource
allocation to flood information in mesh networks with low duty-cycling without the need to build a distribution tree or any
other distribution overlay. Furthermore, the method requires only local computations based on each node neighborhood.
The model provides lower and upper stochastic bounds on the flooding delay averages on all possible sources with high
probability. We show that the lower bound is very close to the theoretical optimum. A simulation-based implementation
allows the study of specific topologies and graph models as well as scheduling heuristics and packet losses. Simulation
experiments show that simple protocols based on our resource allocation strategy can easily achieve results that are very

close to the theoretical minimum obtained building optimized overlays on the network.
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1. Introduction

Flooding, the function of sending a piece of informa-
tion to all nodes in a network, is a fundamental and per-
vasive function in many protocols, applications, and net-
work architectures as well. Flooding of Link-State (LS)
advertisements in LS routing protocols or streaming in a
multicast group with Peer-to-Peer (P2P) technologies are
examples of flooding in application overlays,[2, 3, 4, 5].
In wireless ad-hoc networks such as Wireless Sensor Net-
works (WSNs) it is normally executed on the physical
topology (as opposed to a logical overlay) and it is so im-
portant that its performance impacts the overall network
efficiency [6, 7, 8]. In these networks, which are at the
base of Internet of Things (IoT)[9, 10], flooding pertains
to sensor data, queries, or messages about diagnosis, lo-
calization, routing, and configuration: In practice in every
domain of operation [11].

Flooding can be often solved satisfactorily in tradi-
tional networks and overlays with techniques that build
a distribution tree[12, 13] or similar structures, or with
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brute-force approaches such as limited flooding (as in Open
Shortest-Path First (OSPF) LS advertisements), in WSN
there are three additional challenges: i) Dynamism; ii)
Energy consumption; and iii) Duty cycling, i.e., the ra-
tio between the wake-up time of the node and the overall
time of the cycle [14] that can be as low as 0.01 or even
less [7] when high energy efficiency is required. A WSN
is dynamic, meaning that even if the nodes are station-
ary, the surrounding conditions vary and every now and
then we expect a few links to appear or disappear. Energy
efficiency is hampered by continuous signaling, reduction
in duty cycling, need for overhearing messages. Low duty
cycle means that any reconfiguration takes a long time as
nodes seldom wake up, but also that broadcast at the phys-
ical layer cannot be exploited, because the duty-cycling is
such that only one pair of node at a time can commu-
nicate. This may look weird, but considering that over-
hearing messages costs a lot of energy, ensuring that only
the intended destination hears packets is often the best
solution [15].

For these reason we consider a flooding strategy that
does not rely on trees, that are intrinsically fragile even
in presence of minimal modifications of the topology, and
that is intrinsically based on “cycles” by design, which
maps perfectly with low duty-cycling networks.

In the rest of the paper we concentrate, as reference
scenario, on WSNs; albeit our results are general and ap-
ply to any network, physical or logical, provided there are
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reasons to avoid wasting resources and a notion of commu-
nication cycle is present. In this context we use the term
flooding to identify the distribution of information to all
nodes in a network, while the term broadcast is used only
to refer to physical layer broadcast, even if we never use
physical broadcast properties in this paper.

The contribution of this paper stems from the encounter
of a recent result published in the context of P2P stream-
ing [16], with classical results from epidemic diffusion based
on differential equations [17, 18]. We look at the flooding
process as the “infective” propagation of data on a graph:
Each node that has already received a message can infect
his own neighbors by sending that message. This obser-
vation can indeed be applied to any flooding technique or
protocol. Exploiting the results in [16] we propose to mod-
ify the infective capability, i.e., the amount of information
sent per cycle, of each node in such a way to optimize the
information distribution. We call this modification Re-
ception Equal (RE), since it is based on the imposition
that each node in the network, regardless of its position in
the topology, has the same average probability of receiving
the information. The result is a sound theoretical frame-
work providing upper and lower stochastic bounds for the
maximum flooding delay. Flooding is performed without
building a distribution tree or any other structure that re-
quires signaling or global coordination, thus resulting in
a very robust system that requires minimal signaling and
adapts naturally to topology changes. Furthermore, we
constrain the total consumption of transmission resources
by all nodes to remain constant, so that the gains provided
are due only to better use of resources and not to the use
of more resources.

The theoretical results we derive are confirmed and val-
idated by event driven simulations on different topologies,
applying scheduling heuristics to improve performance, and
in presence of packet losses. This paper extends and com-
pletes the work presented at WONS 2019 [1] providing val-
idation and performance results on RE-based flooding in
different topology types, for networks up to 2000 nodes,
and checking that packet scheduling heuristics as well as
packet losses do not hamper the theoretical properties of
RE-based flooding and do not invalidate the stochastic
bounds, which are obtained abstracting from any specific
topology or technology. The insights gained with this work
and the implementation simplicity of RE allocation strate-
gies, which do not require any centralized computation, or
heavy signaling, open up the possibility of designing ex-
tremely efficient flooding protocols.

The rest of the paper is organized as follows: we present
our infection flooding model in Section 2; the main theo-
retical result, the stochastic delay bounds are derived in
Section 3, in Section 4 we present simulation results val-
idating our framework, Section 5 describes related works
and, finally, future works and conclusions are detailed in
Section 6.

2. System Model

We consider a connected, multi-hop network described
by an undirected graph G(V,E), where V is the set of
nodes and E C (V x V) is the set of edges. The net-
work is stationary or with slow mobility as assumed also
in[15, 7, 19], so that in general the network topology does
not change too much from one wake-up cycle to the next.
One node, called source, is the originator of the message to
be flooded, but we do not make any further assumption on
its location in Gj it is likely that the source changes from
one flooding event to another. This scenario is typical of
a WSN used for monitoring, in which at a certain instant
a sensor detects a certain event and alerts the other nodes
of the network. Similarly, flooding is needed for time syn-
chronization of nodes, which can be triggered by any of
the sensors acquiring time from an external source [20]. In
general, any networking application that needs to obtain a
distributed consensus requires, at least from time to time,
to perform flooding of information.

As we observed in the introduction, tree-based over-
lays are commonly built on the mesh network to perform
flooding operations; however, in tree-based flooding, if
the source changes the flooding tree must be recomputed,
e.g., using Djikstra algorithm, unless a global Minimum
Spanning Tree is used, which however does not minimize
the distribution delay, and is very sensitive to topology
changes. Moreover, the time interval between two flooding
events can be orders of magnitude larger than the wake-
up cycle, so changes in the topology are likely between
two flooding events. Tree structures are fragile and must
be maintained over time, requiring a very large signaling
overhead for low duty-cycle networks.

Let T be the wake-up cycle. It is divided in fixed
lengths time slots of 7 seconds; the time slot must be long
enough to allow the sender and the receiver to synchronize
transmit a packet even in presence of clock drifts. The ra-
tio between T and 7 also relates to the number of nodes
that can be in the network without generating pathological
conflicts in the access. For the sake of analytic tractability
we assume that transmissions are successful, as our focus is
on the assignment of transmission resources to nodes based
on their topological position to minimize the flooding de-
lay, so re-transmissions are not essential to the problem.
This assumption is relaxed in Section 4.4, where, via sim-
ulations, we show that losses do not change the ranking
of flooding strategies, and the one we propose remains the
best performing one. Indeed, the presence of losses do not
affect the flooding strategy and resource allocation pro-
posed in this paper, neither the infective flooding model;
however, they make the bounds derived in Section 3 ana-
lytically untractable.

Each node wakes up for a single 7 slot during a cy-
cle T to listen for incoming packets and sleeps during the
others to reduce energy consumption, interference, avoid
overhearing, or for any other reason. This assumption is
the same adopted, for instance, in[19]. We assume there
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The network model consists of a mesh network whose

Figure 1:
nodes have periodic listening periods 7; and wake up when necessary
in period 7; to transmit to node j; transmissions are unicast as 7;
are separated; in the picture node 0 sends a packet (in gray) to nodes
1, 3, and 4.

is an initialization phase (how it is done is outside the
scope of this paper, see for instance the solution proposed
in[21]) during which nodes select their listening periods
and exchange them with their neighbors. After the initial-
ization, nodes wake up if they have to send packets during
other nodes listening periods or if they have a scheduled
listening period.

Figure 1 depicts the situation with 5 nodes and a sim-
ple topology. 7; identifies the listening slot of duration 7
selected by node 7. As the duty-cycle is very low, one can
assume that waking periods are different in the entire net-
work, minimizing interference, but it is enough that they
are different in 2-hop neighborhoods. In Fig. 1, node 0
has some information to flood. Node 0 has three neigh-
bors, namely 1, 3 and 4, so that, during a time cycle T,
it can send the information to any possible subset of its
neighbors; if it sends it to all of them it reduces the recep-
tion delay, however, it consumes more resources that can
possibly be wasted in the case its neighbors already re-
ceived the information from other nodes (this can happen
in larger networks with multi-paths). We consider each
time cycle T as a unit of time during which each node
owning information can take the decision to send it to one
or more of its neighbor (a function called scheduling).

In the following subsections we combine results on the
optimality of receiver-equal resource allocation [16] together
with an infective model dissemination on graphs to de-
rive bounds on the performance of information flooding
on mesh networks with minimal signaling.

Unlike the widely used flooding strategy for which each
node uses the same amount resources per unit of time [22],
which we call Sender Equal (SE), a RE strategy guarantees
that in a streaming application, in which a source injects

into the network a sequence of packets, every node receives
the same amount of information at steady state given that
the total use of resources are minimal. Minimal resources
means that, if B; bit/s is the stream bandwidth, then the
overall capacity allocated in the network is |[V| x B,. This
node resource allocation is proportional to the eigenvector
centrality of the nodes in G(V, E).

The eigenvector centrality of a network node measures
its ¢mportance with respect to its neighbour importance.
Such interpretation has been used for evaluating node inter-
influence and overall impact [23] for example in the Google
PageRank application [24].

The RE strategy in streaming guarantees the sustain-
ability of streaming for every node, because every node re-
ceive the same amount of information, equal to the stream
rate, per time unit. Other strategies either use more re-
sources or imply that some node receives less than the
stream rate, thus lagging behind the others, steadily in-
creasing the playout delay. This same property implies
that a RE strategy in flooding minimizes the overall flood-
ing delay, i.e., the time when all the nodes have received
the information.

An infective model is, in some sense, the mathematical
formulation of opportunistic (or stochastic) flooding. Each
node that possesses the information pass it to one of its
neighbors following some protocol, until all his neighbors
have received the information. When this is true for all
nodes, then the information has been flooded to the entire
network.

The goal of this paper is to show that the steady-state
reception-equal property can be applied to flooding of one
packet and derive time bounds for the average case that
are independent of the mesh network topology, so that
they can be used as general indications to dimension ap-
plications and/or network resources.

2.1. Reception-Equal P2P Streaming

In a P2P streaming application there is a source of the
stream that injects packets in the network. Every node
(including the source) at every instant has a buffer of pack-
ets that can share with its neighbors, and decides which
packet to share with which neighbor. As stated above,
at steady state, the optimal resource allocation is the one
that guarantees that every node receives the same amount
of information (the same number of packets) per time-
interval. The result presented in [16] can be summarized
as follows.

Let A’ be a stochastic transition matrix for a network
G(V,E) as described in Section 2, so that the element
Aj; € [0,1], Aj; > 0 <= (i,j) € E represents the
probability for node j to send a packet to node ¢ during
a cycle T and 1TA” = I7. A’ can be regarded as the
adjacency matrix of G whose values represent transmission
probabilities.

Let ©; be the throughput (in terms of packets sent per
time cycle T') that node j sustains on average and © the



resulting column vector. Then, from Theorem 1 in [16] and
assuming minimal resource usage we have:
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where x; € R is the eigenvector centrality of node i. The-
orem1 in [16] states that the new stochastic transition
matrix A describes the same links as A’ but with different
values (Egs. (4) and (5)), which describe the probability to
send a packet to the neighbors. ©; represents the number
of packets node j sends during 7" and averaging over all
nodes exactly one packet per time cycle is sent (Eq. (3)),
which guarantees that overall the transmission resources
remain the same. Equation (2) ensures that every node
has the same probability of receiving the information if we
average over all possible sources s € V.

In distributed systems A’ represents local strategies for
forwarding. A general and wide-spread heuristics is to give
the same transmission probability to every neighbour [22];
this in turns makes A’ to be column-uniform (i.e., each
column contains either 0 or a column-specific constant).
If A’ is column-uniform, which means that packets are
sent with uniform probability to the neighbors, which is a
very resonable assumption, these parameters can be com-
puted locally by each node simply gossiping their neigh-
bourhood set size [16], a property that guarantees a very
simple and low overhead implementation even in very large
networks. In general, the computation of the eigenvector
centrality may be complex, however, as proven in [25], it
can be computed with a distributed algorithm. Section 3
derives stochastic upper and lower delay bounds indepen-
dent of the network topology starting from this elegant
result.

In presenting results, for the sake of comparison, we
consider also the SE strategy where each node sends the
same amount of information at every time cycle. To the
best of our knowledge, however, it is not possible to obtain
bounds as those derived in Section 2.2 for the SE strategy;
although only a conjecture, this may indicate that for SE
strategies the actual delay bounds for flooding without any
topological constraint and minimal resource use do not
exist.

2.2. The Infective Model

The flooding of a packet in a network can be seen as
a virus propagation starting at the source node, and all
nodes being susceptible to the infection while they do not
have the packet and infective when they have it. We are

interested in studying and characterizing the speed of such
infection.

Our infection process corresponds to the elementary SI
model: a node can be in either one of the two states, sus-
ceptible (S) or infected (I), there is no recovery from the
infection and nodes remain infectious indefinitely (they do
not die or recover from the infection) [17]. In network-
ing terminology this means that nodes that have the in-
formation continue to distribute it until all its neighbors
have it, ensuring flooding. We are aware that there is a
large body of literature on disease spreading, obviously in
the medical literature, but also in networking (see for in-
stance [26, 18, 27, 28, 29] and references in these works),
but indeed this simple SI model represents exactly what
happens flooding a packet into a network, taking into ac-
count the topological properties of the network graph G.

The initial spread of a virus in a network subject to
the SI model is exponentially fast [17] and it depends on
the largest eigenvalue of A’ (1 in our case as it is col-
umn stochastic) and the rate of infection. During this
initial phase, the nodes with large eigenvector centralities
are more likely to be infected [17].

We call y; (k) the probability that node i is infected at
time k (we use discrete time to better map the time cycle
T). S(k), I(k) are the group of susceptible and infected
nodes at time k, and NN; is the set of neighbour nodes of i.
Hence, the following dynamic equation holds:

yi(k+1) = yi(k)+P{i € S(k),j € I(k),j infects i,Vj € N;}

(6)
Equation (6) states that the probability that node i is
infected at time k 4 1 is given by the same probability
at the previous time step plus the probability of transition
from the susceptible state to the infected one, which occurs
if at least one neighbor j is infected (at time k) and pass
the infection.

Unfortunately, Eq. (6) cannot be integrated in closed
form conditioned on the graph topology, and it is hence
difficult to handle mathematically. To ease the analysis
we take advantage of its first order approximation (see
Section 3.3 for a discussion on this approximation):

yi(k +1) = yi(k)+

(1 —y;(k)(1—P{j e I(k),¥j € N;, j does not infect i})

(7)

In the case of packets flooding using the reception-equal

strategy we have that j infects ¢ (j sends a packet to 7)

with probability 4;;0; (the throughput of j multiplied by

the probability of sending a packet to neighbor 7). Equa-
tion (7) can be expressed in closed form as:

il + 1) = i) +
V]
L= w0l 1= 10 - y;k) 4,8, ®)

Jj=1

the next section exploits this approximation to derive closed
form upper and lower stochastic delay bounds.



3. Flooding Delay Bounds

To derive the upper and lower stochastic bounds for the
distribution delay, we assume that each node in a network
can be the source with uniform probability, i.e., y;(0) =
“l,l Vi.

We first state the bounds formulation, and then we
prove, in Theorem 1, that they limit, in the stochastic
sense, the evolution of the SI diffusion model y;(k). The

upper bound is:

{ wk+1) 2w(k) — w?(k)

W) = & (9)

and the lower bound is:

Qk+1) = 20(k) -
Q(0) = v

Both Eqgs. (9) and (10) have two fixed points {0,1}
the latter of which is attractive; w(k), (k) are monoton-
ically increasmg functions and, given their initial value
w(0) = Q(0) = IV\ their values are in the interval [\Vl 1).

Moreover, w(k) > Q(k), Vk.

302 Q° (k)
(k) + = (10)

Theorem 1. Given a uniform initial probability y;(0) =
\VI’ Vi, then

Proof.
Given the reception-equal property (Eq. (2)) the following
identities hold for any k:

wk+1) = 2w(k) — W (k) =
VI
W)+ (1 (k) Y w(k)4,,6; =
Vi
and
Qk +1) = 20(k) - 202 + )
VI
k) + (1= Q(k)) | > QUk)A50,+
Vi v
_7229 AZJG Q )Aiz@z =
j=1z2=1

V|
Qk) +[1—Qk)] |1— [ 1= Qk)A;0,+

Vi Vi

7229 )A;;0,;9(k) A0, (12)

j=12z2=1

The last element of Eq. (12) is represented compactly as

vl V|
7221) b,
j=1z2=1
where
bj = Q(k‘)AU@] e R .
Since
vl v vl v LV
7Zbe =3 bb. + = Zb2
j=12z=1 j=12>j5
then
L Vv vl v
= ZZb b > D> bjb.
_] 12z=1 j=12z>j
and finally
Qk+1) < Qk)+
v
1-Qk)] [1- (1= Qk)A;0;+
vl v
D> D (k) A;0,;9(k) A 0. (13)
j=12z>j

The derivation of the bounds is now by induction over k.

Upper bound.

We first prove y; (k) < w(k) by induction over k.

k=0) w(0) > y;(0) Vi by definition.

Assuming for the induction w(k) > y;(k) Vi,k=1,...,%
k=z+1) From Eq. (2) we have that A4;;0; <1 Vi, j, and
the following three inequalities hold:

yl(k)AILJGJ < 1, Q(k)AU@] < 1, w(kz)Aw@] <1 (14)

and, thus, we can apply the Weierstrass product inequality,

n n
H(l —ai) Z 1—26@
i=1 i=1

(with a; = w(2)A;;0;) to Eq. (11), obtaining the follow-

ing:
V]
w(z+1)>w(z)+ (1 -w() [1- H(1 —w(2)Ai;9;)
V]
For simplicity we call ) =1 — H(l —w(z)Ai;0;) then,
V]
yilz +1) = yi(2) + (1= wi(2) |1 - [T = 95(2)4;;0;)
j=1

<wi(z)+ (1 —yi(2))v



as, because of the inductive step, w(z) > y;(z) Vi, 2.
Subtracting y;(z + 1) from w(z + 1) we get

w(z+1) —gi(z+1) 2 w(z) —yi(2) + (4i(2) — w(2))¥
= (w(2) —yi(2)(1 - ¥)
as w(z) > y;(z) and ¢ < 1, then (w(z) —y;(2))(1—v) >0

and finally
w(z+1) > yi(z+1).

Lower bound.
The proof of y;(k) > Q(k) is again by induction over k,

k=0) Q(0) < y;(0) Vi by definition.

Assuming for the induction Q(k) < y;(k) Vi,k =1,...,z
k=z41) Given Eq. (14), we can apply the inequality by
Klamkin and Newman [30],

H(l—ai) S 172(]@‘{“22@1‘(13‘

i=1 L i=1 j>i

(with a; = Q(2)A;;0,) to Eq. (13), resulting in:

V]
Q(z +1) < :) + (1 - Q=) [1- [[(1 - 2)4,,0))
j=1
For simplicity we call
14
U=1-]]0-0(x)4,6))
j=1

and we obtain
yi(z +1) 2 yi(2) + (1 —yi(2))¥

as, because of the inductive step, Q(z) < y;(2) Vi, 2.
Subtracting Q(z + 1) from y;(z + 1) we get

yi(z+1) = Q(z +1) = (4i(2) - Q2))(1 - ¥)

as Q(z) <y;(z) and ¥ < 1 then (y;(2) — Q(2))(1—-T) >0
and finally
QUz+1) <yi(z+1).

O

Theorem 1 exploits the first order approximation of
the SI model on a graph G given by Eq. (8), and ap-
plies the reception-equal property granted by Eq. (2) to
derive theoretical stochastic upper and lower bounds for
the probability that node 4 is infected, i.e., it has received
the information, at time k.

A node-independent bound express the probability that
a generic node has received the packet regardless of its po-
sition in the network averaged on all the possible sources
of the information. These bounds can also be interpreted
as bounds on the information delay expectation for each

node when there is no knowledge on the information source
position, or in the SI terminology, when the initial proba-
bility of infection is y;(0) = |—‘1/‘Vi.

The importance of these bounds is that they are topol-
ogy independent, thus they give a very powerful design tool
to set the communication cycle duration and other network
tuning parameters when some constraints on information
dissemination should be met with high probability.

3.1. Solving the bounds

Equation (9) is a second order difference equation sim-
ilar to the logistic map, but its parameters keep it in the
stability region (it is not chaotic), furthermore we are only
interested in studying its value for w(k) € [0,1]. Equa-
tion (9) has two fixed points, w(k) = {0,1}. The first one
is irrelevant as w(0) > 0 and the latter is an attractor as
Eq. (9) is non-decreasing.

Let w(k) = 1 — €, be the probability that node ¢ is
infected at time k, with ¢g =1 — ﬁ7 then we have

wk4+1)=1—€e1 =21 —€) — (1 —e)* =
22— 142 —2=1—¢€

and consequently €11 = €7 that finally implies

wk)=1-e" =1- (1—|‘1/|>2k (15)

and solving for k

k= {log2 (log(l_‘i‘l/l)(l fp))—‘ , Vpe€ (“i,',l) (16)

where k is the average number of time cycles needed for a
node to have received a packet with probability p.

Equation (15) indicates that the reception-equal con-
dition grants, regardless of the network topology of G, a
double exponential speed of convergence (much faster than
the exponential speed in the ST model) in the early distri-
bution phase (when y; (k) < 1, Vi).

Eq. (10) is strictly non-decreasing for Q(k) € [0,1) and
with a slower growth than Eq. (9). Unfortunately, Eq. (10)
cannot be stated in closed form, but we can numerically
integrate the difference equation.

3.2. Energy consumption with RE strategy

Energy consumption is one of the key performance met-
rics in battery-powered networks. The RE property we are
exploiting in this work (see [16]) grants that each node j
sends at most £©; during k cycles; furthermore it is also
granted that ©; < |N;| where N; is the neighbor set of
node j. These bounds allow a node to tune its own energy
consumption: if a node is low on battery, it can simply
reduce its neighbor set (dropping some links, or simply
avoiding communicating their presence) and let the sys-
tem recompute the optimal parameters. In the column-
uniform scenario, parameter computation can be done lo-
cally gossiping the neighbour set size with neighbors [16],



hence their update is energetically cheap. The actual en-
ergy consumption is also function of the packet scheduling
efficiency (avoidance of duplicates) and it is outside the
scope of this work.

3.3. Model Limitations

The model we described is very powerful but it is not
truly universal, as it relies on a set of assumptions.

The first limitation lies in the approximation intro-
duced by Eq. (7), and can be easily explained with an
example. Consider a linear network, in which every node
has exactly two neighbors (excluding the nodes at the ex-
tremes) and the diameter of the network is |V| — 1. Then
at most two nodes get infected per time cycle. In this cor-
ner case the delay needed to achieve p = 0.9999% grows
linearly with |V| and breaks the theoretical bounds we
formulated. Equation (7) in fact assumes that P{i € S}
is independent of P{j € I} and multiplies the two prob-
abilities. This assumption is strictly true only in a full
mesh, as all nodes are neighbors so the probability of j to
be infected at time k depends only on the total number
of infected nodes at time k — 1 and not on their posi-
tion. In general this is not true, as P{i € S} depends on
P{j € S} if j and i are neighbors, while the inference be-
tween P{j € S} and P{i € S} decreases with the distance
from j to 7. In terms of density and path diversity the
linear network is at the opposite extreme of a full mesh,
thus it is not surprising that our model fails to capture its
behavior.

The second limitation lies in the fact that our bound
gives an average delay computed over all the possible sources
and destinations, but it doesn’t describe the distribution
of the delay. In graphs that show some regularity (like
an Erdds-Rényi graph) we expect the deviation from the
mean to be narrow, but in general this may not be true.

Finally, the analysis models a zero-signaling dissemina-
tion, without any heuristic to limit duplicates or a protocol
to coordinate nodes. In real applications simple heuristics
can be used to improve the information diffusion (e.g., do
not send the packet twice to the same neighbor, and do
not send it back to the neighbor that sent it to you). Also,
what is the impact of packet losses on RE strategy, do they
hamper it more than traditional SE ones or vice-versa the
gain achieved is even larger?

Three interesting questions arises from these model ap-
proximations and considerations:

Q1) Do the bounds still hold when we apply the RE strat-
egy to networks that have a density much lower than
a full mesh, and hence the simple SI independence
assumptions do not hold?

Q2) How sensitive is delay to the position of the source?

Q3) Is the RE still optimal if we introduce scheduling
heuristics or consider lossy links?

Section 4 analyzes and gives insight in these three impor-
tant questions.

4. Numerical Results

To investigate the three questions posed above, we im-
plemented an ad-hoc, event-driven simulator in Python.
The simulator actually generates and spread packets in
networks with arbitrary topology. The packet transmis-
sion time is considered much smaller than the duty-cycle
as reasonable in low duty-cycle networks, and the propa-
gation delay is negligible. In every simulation experiment
one node, called source, generates one information message
and sends it to a neighbor at random. From that moment
on, the source behaves as any other node in the flooding
process; the experiment ends at time k£ when all the nodes
have received the message. Each experiment is repeated
20 times to account for the randomness and variability of
the flooding process computing k average and variability
(standard deviation).

We compare this quantity with w=!(p) and Q7 1(p)
for p = 0.9999 (assumed as certainty of reception as the
bounds are stochastic and go to oo for p = 1). Bounds are
normally identifies with marks, while solid lines identify
RE, the reception-equal optimized strategy of Section 2.1,
and SE the sending-equal standard strategy.

Furthermore, where it is meaningful to gain insight in
the problem, we also report two additional “limits” or
bounds. The first one is the well known log,(|V]) + 1
cycles, which define the minimum possible delay diffusion
when nodes transmit one message per cycle, and stems
from the simple observation that in this case the number
of message copies in the network can at most double at ev-
ery cycle. The second one is the maximum distance from
the source, which defines the absolute minimum diffusion
time given a source and the minimum spanning tree that
reaches all nodes from the source. Notice that in this case
nodes are not constrained to transmit one message per cy-
cle, but each node sends as many copies as its outgoing
links in the tree.

Performance comparison with other optimization or
heuristic-based techniques such as the tree-based solution
proposed in [7] are outside the scope of this work, as they
would require a full implementation and also to consider
details and constraints that are not coherent with the gen-
erality of the theoretical approach adopted here. Never-
theless, a full implementation of a flooding protocol based
on the RE strategy and its comparison with other tech-
niques that use the same amount of transmission resources
is feasible, and it is of the utmost interest as future work.

The first set of results, reported in Section 4.1, answers
question Q1. To achieve this goal we use Barabasi-Albert
and Erddés-Rényi networks for their well-known properties;
the first one is a class of preferential-attachment graphs,
for which there are few nodes well connected within each
other and the rest of the network, while the remaining
nodes have few peripheral connections (this is the class of
a large part of real-world networks, like the internet and
social networks). Barabési-Albert graph generators take in
input a parameter m indicating for each node how many



outgoing link are setup. The second type of network is the
model of random networks whose links are independently
randomly picked with a probability p, this class has been
widely studied as it allows an easy derivation of statis-
tics (this is typically the class of P2P overlay networks).
We vary the network parameters, and we show that our
theoretical bounds hold even in networks with density far
from a full mesh. The second set of results, shown in Sec-
tion 4.2, answers question Q2. We show that our bounds
are still valid even when we consider the results for each
single source. Finally, the third set of results, in Sec-
tion 4.3, answers question Q3. We show that packet losses
do not hamper the bounds, while simple heuristics applied
to message scheduling improve RE-based results bringing
them, as expected, below the scheduling agnostic stochas-
tic threshold. As a further comparison and validation we
introduce, in Section 4.4, a third family of graphs (Wax-
man) with completely different characteristics. Waxman
networks are created placing nodes randomly in a rect-
angular area and then placing links between them with a
probability Pw exponentially dependent on their distance

d: py = - €8, where «, 8 are free parameters.

4.1. Results on low density graphs

We simulate Erdos-Rényi and Barabasi-Albert networks
with a low and approximately constant edge density % ~
4. For each network type, we execute 100 different experi-
ments (each consisting of 20 repetitions) picking a different
node as the source, thus each experiment (one point in a

graph) consists of 2000 different simulations.
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Figure 2: Flooding delay mean and standard deviation on Barabasi-
Albert networks of 100 nodes.

We first show, in Figs. 2 and 3, the flooding perfor-
mance across multiple graph realizations using the same
graph parameters. The = axis consists of 40 different net-
work realizations (graph id). The figures show that the
point estimate of the average time k to complete the flood-
ing with RE strategy falls between the bounds, which con-
firms that the theoretical bounds hold beyond the approx-
imations needed to obtain them. On the other hand SE-
based dissemination performs poorly, constantly around
the upper bound (i.e., larger distribution time Q~!) of

(0.9999) =

graph id

Figure 3: Flooding delay mean and standard deviation on Erdés-
Rényi networks of 100 nodes.

RE. Moreover, SE strategy, failing to adapt to topologi-
cal properties of the network, sometimes (e.g., graphs 17
and 28 in Fig. 2) display an extremely poor performance
while RE adapts to the graph characteristics maintaining
roughly constant performance.
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Figure 4: Mean and standard deviation (as barbs) for the dissem-
ination delay and theoretical bounds for Barabasi-Albert networks
varying |V|.
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Figure 5: Mean and standard deviation (as barbs) for the dissemina-
tion delay and theoretical bounds for Erdés-Rényi networks varying
V1.

Figs. 4 and 5 explore the influence of the network size
on the RE and SE strategies and on the bounds on RE. We



explore Barabdsi-Albert and Erdds-Rényi networks with
up to 2000 nodes; the bounds hold independently of the
network size for the point estimate and for the standard
deviation. On the other hand SE-based dissemination per-
formance degrades with the network size and significantly
deviates even from the lower performance bound (§2) of
RE.

Figs. 4 and 5 report also another bound (see [31] for
a distributed scheduling achieving it for streaming appli-
cations) that defines the lowest possible delay in a full-
mesh network with complete knowledge of nodes state
(each node knows what are the nodes that have not yet
received the message) for SE strategies. Such bound is
important to our study as we can compare state-agnostic
RE strategies and bounds with a bound that requires full-
knowledge of the network state to be achieved. It is in-
teresting how w™! is close to this bound, which suggests
that an optimal scheduling associated with an RE strategy
can actually improve the flooding delay beyond the min-
imum achievable with SE strategies without using (glob-
ally) more resources. This would actually move the low-
est achievable delay bound beyond the state-of-art for un-
structured flooding distribution, at the only cost of allo-
cating transmission resources non uniformly among nodes.
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Figure 6: Flooding delay mean and standard deviation on Barabési-
Albert networks of 100 nodes varying the “m” parameter of the dis-

tribution.

RE —— 1(0.9999) O
SE —— o (0.9999) @
26 r T T r r
24
2
'gT,ZO - [ ] [ J [ [ J [ J [ J [ J
S8t T
o
5ol 1
ICRVE S J_
12F I ] 4
10F @m dl
8 A . A )
0.06 0.08 0.1 0.12 0.14 0.16

P

Figure 7: Flooding delay mean and standard deviation on Erd&s-

Rényi networks of 100 nodes varying the distribution “p” parameter.

Results presented so far are obtained maintaining the
graph density constant to ease the comparisons. Figs. 6
and 7 present flooding delay results varying the graph dis-
tribution parameters, which produce networks of growing
density. The “m” parameter in Barabési-Albert networks
refers to the number of bi-directional links that every new
node added to the network establishes with already exist-
ing nodes. The “p” parameter in Erdés-Rényi networks
is the probability of adding a link with any of the other
nodes. RE steadily performs better than SE and the point
estimate always falls between the two bounds, while in
some cases (specific network realization with some given
source node) the distribution delay is even smaller than
the w™! bound of the average, which is however fully ad-
missible from a theoretic point of view. The impressive
reduction in source dependent variability compared to SE
is remarkable.

4.2. Dependency on the Source Position

Here we answer Q2 and present insights on the corre-
lation between flooding time and the position of the source
node. Once verified that our bound holds on average, we
want to show that it also gives a good indication on the
flooding performance of each possible source.
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Figure 8: Ordered eigenvector centrality of nodes in a Barabasi-
Albert network of 100 nodes.
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Figure 9: Flooding delay mean and standard deviation on a

Barabasi-Albert network of 100 nodes varying the source node cen-
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We first focus on a specific graph to clarify RE proper-
ties. Figure 8 reports the ordered values of the eigenvec-
tor centrality for the nodes of a 100-nodes Barabasi-Albert
graph, and Fig. 9 shows the flooding delay simulated plac-
ing the source in each node (point estimate of the average
and standard deviation barbs) with the nodes in the same
order of Fig. 8. In contrast to the SE strategy, the RE
strategy flooding delay is sensitive to source node central-
ity (compare the blue curve and marks with the crosses
that indicate the average value), but the per-node average
performance always falls between the bounds, excluding a
very few central nodes for which the performance is better
than the average lower bound. It is also worth noticing
how, regardless of node centrality, RE flooding delay per-
formances are clearly separated from SE values, excluding
the possibility of casual results and highlighting the fact
that the gain in average is not achieved penalizing less
central nodes.
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Figure 10: Flooding delay mean and standard deviation on Barabasi-
Albert networks using the most and least central nodes as sources
for RE and SE strategies.

Most central, RE ———
Least central, RE = = =
Most central SE ———

Least c?ntral,SE - ==
©71(0.9999)
01(0.9999)

o
®

1000
network size (|V])

Figure 11: Flooding delay mean and standard deviation on Erdds-
Rényi networks using the most and least central nodes as sources for
RE and SE strategies.

To further extend the validation, Figs. 10 and 11 report
the flooding delay on Barabasi-Albert and Erdés-Rényi
1Bl o
vl —
4). For each graph we show the performance of the most
central and the least central nodes, and we compare RE

networks of growing size with constant density (
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with SE and report the RE bounds as well. These re-
sults confirm the previous findings: RE performance falls
between the bounds in almost all the cases; the few excep-
tions in Barabdsi-Albert graphs perform better than the
lower bound, while in Erdés-Rényi graphs the least central
sources slightly exceed the upper average bound. For any
size RE performs significantly better than SE, which ap-
pears to be less dependent on the centrality of the source,
but it is always worse than the upper bound on the RE
strategy.

4.3. Results with Scheduling Heuristics

Results in the previous sections show how the RE strat-
egy lies within the stochastic bounds in generic topologies
and always outperforms SE. As our model cannot capture
some real world effects, we still have to answer question
Q3. In this section we introduce some simple scheduling
heuristics and show that the RE strategy is further im-
proved, in other words, that any intelligent flooding pro-
tocol will likely benefit from the adoption of RE.
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Figure 12: Flooding delay mean and standard deviation on Barabasi-
Albert networks when the source is the most central nodes and
scheduling heuristics are applied.
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Figure 13: Flooding delay mean and standard deviation on Erdés-
Rényi networks when the source is the most central nodes and
scheduling heuristics are applied.

Figs. 12 and 13 report performance result compari-
son between SE and RE strategies using simple scheduling



heuristic: do not send the packet twice to the same neigh-
bor, and do not send it back to the neighbor that sent it to
you. The figures refer to Barabasi-Albert and Erdés-Rényi
graphs of growing size, and are similar to Figs. 4 and 5,
but they show only the behavior of the most central node
in the network. This makes it possible to compare RE per-
formance with another meaningful bound: the maximum
distance from the source. In practice, we are comparing
RE with the delay achievable flooding the information on
a minimum depth tree rooted in the source. Note that
to achieve this bound, in practice, the network should be
able to build a tree rooted on the source and maintain it at
every topology change, which is a very costly operation in
a network with frequent topology changes. Yet RE, which
is fully distributed and needs only local interactions for
maintenance, performs surprisingly close to this optimum
in both kinds of graphs.

4.4. Results on Wazman Graphs with Losses

As a further validation step we simulate a different
family of graphs: Waxman graphs. Barabasi-Albert and
Erdés-Rényi graphs do not support any notion of space
(and hence are easy to generate and manipulate). Nodes
do not have spatial coordinates, and thus, they are all
treated equally. Real world networks are instead spatial
networks, and their characteristics differ from synthetic
graphs, for instance, they introduce border effects [32].
Among the many models available for spatial networks,
Waxman graphs are the simplest model used to represent
communication networks [33]. For our tests we use Wax-
man graphs generated with parameters a = 0.4, 5 = 0.2,

granting the density % ~ 4.
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Figure 14: Flooding delay mean and standard deviation on Waxman
network of 100 nodes as a function of the source node centrality.

Figure 14 reports the same results presented in Fig. 9
obtained on a Waxman graph of 100 nodes. The results
follow the same trend of Fig. 9 with a slightly more noisy
behavior, which confirms the bounds hold also on graph
whose characteristics are far from the infection model. We
also report the performance of RE with scheduling heuris-
tics, which confirms a clear improvement.
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Figure 15: Flooding delay confidence interval (at 99%) on a Waxman
network of 100 nodes with a Bernoulli link loss model.

As a final step, we also explore the performance with
packet losses. Given a Waxman graph, we simulate flood-
ing with a loss probability on the links that follows a
Bernoullian distribution with average link loss p; and we
measure the propagation delay. Fig. 15 reports the flood-
ing delay confidence intervals with 99% confidence level
considering a link loss probability p; € [0,0.3]. As ex-
pected at this point, even with extremely high values of
p1, RE performs constantly better than SE and applying
scheduling heuristics further improve it, also reducing the
standard deviation.

5. Related Works

Low-duty-cycle WSNs are said synchronous if the node
active state happens at a fixed time or asynchronous if
they are scheduled independently. Literature focuses mostly
on asynchronous low-duty-cycle WSNs, where often tree-
based dissemination or collection overlays are built. This
overview of literature focuses both on recent papers that
address the problem of information flooding (not collection
to a sink) in WSNs; and on papers that analyze or pro-
pose epidemic dissemination techniques, in this case not
limited to WSNs, but ranging also from P2P networks to
classical infection models used in, or derived from, medical
literature.

5.1. Flooding in WSNs

Wang and Liu [14] propose a reinterpretation of flood-
ing for the context of WSNs and they provide a central-
ized optimization model from which they derive an ap-
proximated distributed solution. Flooding has been also
investigated by Cao et al. using Fountain coding [34]. Our
approach is completely distributed.

While RE works with unstructured mesh networks,
several works have been proposed for flooding on tree net-
works; Guo et al. [7] address both the delay and the energy
constraints deriving a tree-based distribution solution con-
sidering lossy links. Cheng et al. [19] propose a flooding
tree construction algorithm optimized with respect to the



energy consumption, but also considering delay bounds.
This algorithm is an approximated distributed version of
a centralized optimal one. The work by Niu et al. [35]
follows the same scheme as they propose a heuristic algo-
rithm derived from a minimum spanning tree centralized
model. Yan et al. [36] investigate the potential of network
coding in the context flooding using trees.

There are also works optimizing existing flooding so-
lutions; Cheng et al. [6] propose the Dynamic Switching-
based Reliable Flooding (DSRF) to enhance the reliability
of flooding. The flooding optimization by Guo et al. [37]
synchronize the active state of nodes sharing the same par-
ent node in a tree. Physical channel overhearing has been
investigated by Xu et al. [38] as a mean to save delay dur-
ing message flooding. These works can be used on top of
other strategies.

Asynchronous Duty-cycle Broadcasting (ADB) is a pro-
tocol implemented directly in the MAC layer of WSN nodes
which allows flooding by exploiting MAC-layer informa-
tion. This however implies the tied coupling of the cross-
layer approaches.

In contrast to recent publications on flooding on WSN,
our approach is fully decentralized and works with un-
structured mesh networks without the aid of trees. That
grants a higher degree of robustness against node failure,
a lower signaling overhead, and promising applications in
time-varying networks. One limitation to be explored in
future work is the impact and exploitation of broadcast
communications on wireless channels.

5.2. Epidemics and Networks

Epidemics, the field about modeling and analysing the
dynamics of virus spreading, has been prolific in the past
decades, though only recently proper insights on how to
control it has been provided [26]. A large part of com-
puter science literature on epidemics focus on malware
spreading [39, 28, 27]. Chen et al. [28] use the Susceptible-
Infected-Recovered (SIR) model to control dissemination
of information in heterogeneous, time-varying networks.
The work by Dadlani et al. [27] uses a SIS model instead
and provide infection stability results. This work, together
with the one by Ganesh et al. [40] highlight the impor-
tance of being dependent on a specific network topology for
studying epidemics. That is a crucial observation that our
approach overcomes exploiting the reception-equal prop-
erty obtained with the re-assignment of resources based
on the eigenvector centrality.

Works by Liu and Buss [41] and by Ogura and Preci-
ado [42] use the SIS model for data dissemination; the for-
mer optimizing the node transmission rate while the latter
defining exponential growth conditions for time-varying
networks. Chen et al. [43] uses epidemics to model and
analyse information spreading in sensor networks.

Other papers deal with different aspects of data dis-
semination through epidemics approaches. The paper by
Chen et al. [29] focuses on delivery dynamics on WSN
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with cognitive radios, the work by Ramanathan et al. [44]
optimize the loss rate for Delay Tolerant Network (DTN)
and Byun and So [45] address the context of duty-cycled
Wireless Sensor-Actuator Network (WSAN) and propose
a scheme to adjust the node transmission rates for user-
given delay constraint.

None of the aforementioned papers, in part also be-
cause of their application fields, give delays bounds on in-
formation flooding that are independent of the network
topology. Up to now it was considered that the optimal
strategy to flood information to all nodes of a network
could not be independent of its topology. The results we
are presenting, instead, show that it is possible to exploit
the topological properties of the network to decorrelate the
optimal flooding strategy from the topology itself. This
observation is what enables the general analysis that in
this paper leads to the bounds presented in Section 3.

6. Conclusions and Further Work

Flooding information to all the nodes of a network re-
mains an important function in many networks and appli-
cations. Many solutions have been proposed and are work-
ing satisfactorily in networks from P2Ps overlays to WSNs,
but in many cases they require a non-marginal overhead
to build a distribution tree, or they are fragile to topology
changes. This paper presented fundamental delay bounds
for epidemic flooding in low duty-cycle networks that ex-
ploit the eigenvector centrality of nodes in the network
to allocate resources, i.e., how many copies of the infor-
mation per time-cycle a node must send, and to whom
of its neighbours. The bounds apply to a resource alloca-
tion strategy that we have called reception equal (RE), and
they are independent of the network topology. They show
that with RE flooding the lower bound on delay converges
with double exponential speed, while the upper bound is
exponentially fast, thus ensuring that a proper protocol
designed on these properties will converge at least expo-
nentially fast. Furthermore, the results are constructive,
i.e., they indicate a path to realize a protocol that obtains
a performance within the bounds.

Theoretical bounds on complex graph structures are
in general very difficult to derive, and in fact our bounds
are valid on average for all sources and destinations in the
graph. To move a step forward towards a real application
we have implemented the RE flooding in a simulator and
showed the bounds hold with a very good approximation
also to estimate the performance of flooding from a sin-
gle source. We discussed simple heuristics that improve
on the bound, exploiting additional knowledge that was
not included in the theoretical model for mathematical
tractability, and we have tested the strategy with a simple
loss model. In all these settings, our results are extremely
encouraging.

Future work on this study include the use of RE flood-
ing for specific applications like time synchronization in



sensor networks, a comparison with state-of-the art proto-
cols based on trees or other dissemination structures, and
further theoretical analysis of the optimized protocol.
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