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Abstract—Signal processing applications dealing with secure
transmission are enjoying increasing attention lately. This paper
provides some theoretical insights as well as a practical solution
for transmitting a hash of an image to a central server to be
compared with a reference image. The proposed solution employs
a rigid image registration technique viewed in a distributed
source coding perspective. In essence, it embodies a phase en-
coding framework to let the decoder estimate the transformation
parameters using a very modest amount of information about the
original image. The problem is first cast in an ideal setting and
then it is solved in a realistic scenario, giving more prominence
to low computational complexity in both the transmitter and
receiver, minimal hash size, and hash security. Satisfactory
experimental results are reported on a standard images set.

Index Terms—Phase spectrum, secure communication,
Fourier-Mellin transform, rigid image registration, distributed
source coding, image hashing.

I. INTRODUCTION

HE need for techniques enabling the transmission of in-

formation between increasingly miniaturized and energy-
consumption conscious devices is tremendously accelerating,
particularly due to the emergence of Industry 4.0 and IoT [1].
Their deployment is posing a series of challenges in several
information technology fields, regarding, e.g., how to build and
maintain device networks and associated protocols, including
cloud infrastructure [2], [3], information coding paradigms [4],
transmission security [5], energy harvesting and low power
technologies [6], and so on.

In this context, this paper focuses on the particular sce-
nario that is illustrated in Fig. 1. It sits at the top-most
application layer of the network infrastructure, relying on
the suitable lower level device network protocols to provide
raw communication facilities. An entity A has some visual
information, say an image taken from a security camera at
a certain time instant or an aerial/satellite image of a given
location, that should be compared at a central entity B with
a predetermined, locally stored copy of another version of the
same visual information. The comparison could serve any one
of many possible purposes, including environmental logging,

Manuscript received September 13, 2019; revised February 9, 2020 and
April 11, 2020; accepted April 12, 2020. Date of publication April 27, 2020;
date of current version June 16, 2020. This work was supported in part by the
Italian Ministry of Education under Grant PRIN 2015 D72F16000790001. The
associate editor coordinating the review of this manuscript and approv- ing
it for publication was Dr. Pedro Comesana. (Corresponding author: Fabrizio
Guerrini.)

The authors are with the Department of Information Engineering, University
of Brescia (CNIT), 25123 Brescia, Italy (e-mail: fabrizio.guerrini @unibs.it).

Digital Object Identifier 10.1109/TTFS.2020.2990793

anomaly detection, surveillance, etc. Only B is able to perform
such comparison because it has greater computational and
energy resources than A, which is assumed to be little more
than a sensing device, and because it is desired to limit the
distribution of the data present at B.

Without imposing any additional specifications, A could
transmit its image, say I, to B that compares it with its own
image, say J. However, as depicted in Fig. 1, we assume that
it is also desired to minimize the information knowable by a
malicious eavesdropper or tamperer C', for privacy and/or other
security concerns. This of course implies that both I and J
must be kept secret, so A should not transmit [ as plaintext,
otherwise C' could simply obtain it. Bandwidth is also possibly
wasted as transmitting [ entirely would be cumbersome.

So, this communication model needs to be further refined.
Of course, a straightforward solution is easily available to
address this scenario: A could encrypt its image using a
private key shared with B before sending it (Fig. 2). This
way, the encrypted version I of I is of no use to C, if the
encryption is good enough, while B can decrypt it to obtain
I and so perform the comparison with J in exactly the same
way as in Fig. 1. This solution has two drawbacks however,
both related to the assumed limits of the remote entity A.
First, encryption needs computational resources that may be
lacking at A (both processing power and energy consumption).
Second, bandwidth is still an issue if [x has significant size,
which is at least the same as [. It is clear that some solution to
save bandwidth is needed even if C' were absent as in Fig. 1.

Therefore, a different solution than straight cryptography
alone is needed to handle this problem. In Fig. 3, instead of
encryption, A performs on I some kind of message digest-
ing, i.e., image hashing h(-), and transmits it. The intended
objective is to give enough information about I to B to let
him perform an indirect comparison between J and the hash
h(I) of I. Of course, strict requirements need to be imposed
on h(-). First, it must be computationally simple enough to
be performed by A. Second, its possession as well as the
knowledge by C' of its internal operations should give as little
information as possible on both I and J. In other words, only
B through its knowledge of J can purposefully use h(I).

The purpose of this paper is to address the scenario proposed
in Fig. 3, solving it while also minimizing the amount of
transmitted information, that is the size of A([). In doing so,
it is necessary to identify in which ways I and J could differ.
This can be modelled by a set of possible transformations
S undergone by I to obtain .J, since an universal solution
is likely unattainable. Considering the applications outlined
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Fig. 1. Basic scenario: an entity A wants to communicate an image I to a
central entity B, to compare it with a locally stored version J. I is a slightly
modified version of J. However, the potential presence of an eavesdropper C
prevents to send I as plaintext, plus the size of I may waste bandwidth.
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Fig. 2. Revised basic scenario, taking into account the presence of C. The
most obvious solution involves cryptography. In the context given by the
limitations imposed upon A, however, there are obvious drawbacks because
of the computational requirements on A and the size of .
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Fig. 3. Image hashing is an acceptable compromise between the low
complexity of A, sufficient security against C' and bandwidth usage, while
still allowing to compare h(I) with J if I is derived from J through not too
strong transformations. The comparison usually requires to compute h(.J) too.

above, the set & should obviously include some geometric
transformations, namely a mild amount of translation, rota-
tion and zooming given by the unavoidably slightly different
position of the camera when I and J have been captured.
In addition, noise addition should be considered as well,
introduced by either interpolation (assuming that 7 has a lower
resolution than .J) or the different sensors and acquisition
conditions associated to I and J. Other noise sources can
derive from the characteristics of the capturing camera lens,
e.g., its curvature. Lastly, some local detail may be changed
or missing, and detecting such occurrence could actually
constitute the main purpose of the comparison.

The rest of the paper is organized as follows. Some hints
on how to solve this problem can be obtained by critically
analyzing some known image processing methods that for
different reasons are related to the proposed application,
specifically including image registration, content hashing and
distributed source coding. In Sec. II they are broadly reviewed,
of course limiting the scope to what is actually useful in the
context of this paper, while providing the necessary motiva-
tions underlying the methodology that we selected to solve the
proposed application scenario. Then, Sec. III provides some
notations while exploring the ideal case of noiseless, circular
shifts. Sec. IV discusses the modifications that are needed

in a realistic scenario while also extending the framework
to scaling and rotations. Sec. V provides some experimental
results and discussion and finally Sec. VI concludes the paper.

II. RELATED WORK AND CONTRIBUTIONS

This section provides a wide though brief overview of the
techniques most pertinent to the application problem at hand,
covering several different image processing methods, to moti-
vate the structure of the solution presented later in the paper.

Comparing two similar images and estimating the parame-
ters of the transformation allowing to obtain the second image
starting from the first embodies a reference problem for this
paper. Matching of visual data, e.g., 2-D images, that represent
the same scene taken at different viewing conditions, with
different sensors and/or at different times, is referred to as
image registration [7]. In many cases, the problem is modelled
by assuming that some kind of transformation is applied to
the source image to obtain the target one, as we did in Sec. I
with the set S. The objective is usually the estimation of the
registration parameters of the transformation, allowing to find
the relation between the coordinates of both images’ pixels.

The study of image registration techniques has a long tradi-
tion. Rigid image registration is the most traditional instance in
which the second image is obtained from the first by means of
an affine transformation, or specifically enforcing a similarity
geometric relation, i.e., translation, rotation and/or scaling and
not shearing, and it is the most relevant for this paper. In this
case the (planar) relation between the pixels of the first image
(r1,c1) and those of the second image (13, c) is represented
by the following equation:
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where A is the scaling factor, 6y represents the rotation,
and [m,,m.| is the translation (or shift) vector. Shearing is
excluded by the zeroes in the last row. Rigid image registration
as in Eq. (1) has a long history, of which [8], [9] represent
early examples. Despite steady progress [7], [10], robust image
registration is still a very active area of research in the most
challenging scenarios outlined in what follows.

Depending on the particular application, the requirements
imposed on image registration may widely change, due to the
different conditions on the estimated registration parameters.
For example, in remote sensing [11] it is usually required to
match pairs of satellite images, taken from different viewing
angles and at different times, compensating for a variety of
distortions and noise sources, e.g., landscape changes. Instead,
medical image registration [12] is useful to fuse images from
different acquisition devices, to study anatomic or organs
evolution in time and to estimate variations across subjects.

In both these application fields, image registration could also
be called co-registration because, differently from the scenario
proposed in this paper, the source images (I and J) are in
fact both fully available. The difficulty in these registration
contexts lies in the fact that they usually have to deal with
non-rigid image registration [13], that is enabling the handling
of elastic deformations of the source images in addition to
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geometric transformations. It is notable that even in these
cases global or local rigid image registration is still sometimes
needed, possibly after the images have been resampled and
projected on a common planar frame of reference, as the most
recent literature shows (see [14]-[17], to name a few).

Limiting the scope to the classic literature on rigid image
(co-)registration, the most useful paradigm for our purpose is
certainly phase-based registration, that is based on the shifting
property of the DFT. Extensions to the standard Fourier trans-
form, e.g., the Fourier-Mellin transform, allow to formulate all
kinds of affine transformations while still adopting a phase-
based registration framework [18], [19]. There exist other
popular approaches, e.g., [14], [20], that however usually rely
on some sort of sophisticated feature extraction and matching.

To summarize so far, DFT phase correlating techniques are
among the most reliable whilst being computationally light
in rigid image registration, when the latter is performed on a
pair of available images. In the scenario depicted in Fig. 3,
instead, it is assumed that only a hash of one of the source
image is available, which is in essence a compact description
of its content, whose extraction we discuss next.

Concise content representation, sought to be invariant under
a certain class of transformations, is another relevant problem
in image processing (and in audio and video processing
as well), garnering decades-long attention in the research
community. Depending on the intended application and the
features they are based on, content representation techniques
have been variably called. For example, the techniques under
the ‘content hashing’ umbrella term have been first introduced
as methods akin to cryptographic hashes as a way to facilitate
content indexing and retrieval [21]. The name hashing has
been subsequently carried over to copyright enforcing authen-
tication and other security based applications [22]-[24]. In
these contexts the term robustness is always introduced to
signify the invariance of the content descriptor with respect
to a number of manipulations interpreted as non-malicious,
to which (affine) geometric transformations usually belong
[25], [26] (when they are not purposefully and maliciously
magnified to exploit a system weakness). The term content
digest is also sometimes used [27], in particular when it is
instead intended to emphasize the fragility of the content
descriptor, a characteristic shared with message digests used
for cryptography. Sometimes, robust hashing techniques have
been called fingerprinting with the same meaning, both for
images [28], video [29], and especially audio [30], notably
for copyright-related content identification, e.g., the current
ContentID technology employed by the popular YouTube
video sharing service. On the other hand, recently the term
fingerprint is also used in forensics to authenticate content
creating devices [31], instead of the content itself.

In all of these content representation techniques, there is,
among many others, a key discriminant parameter that allows
one to clearly separate them in different classes, that is the
presence, during the analysis stage, of the reference image.
When it is missing, they are usually called blind techniques;
when it is present, the term non-blind techniques applies; and
sometimes, the name semi-blind techniques is used for the
availability of partial information on the reference image. For
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Fig. 4. In this scheme Fig. 3 is revised consistently with DSC nomenclature,
so that the image J actually embodies the side information at the decoder.

example, consider image forensics [32], where the objective
is usually to assess whether a supposedly forged image, or
a part of it, has been obtained from an unknown original
image, e.g., through affine transformations or compression.
In this case the source image is actually unknown, that is
why this application can in fact be referred to as blind image
forensics [33]. Classic co-registration discussed earlier, on the
other hand, may be classified as non-blind since both images
are available during the comparison. In contrast, hash-based
techniques such as ContentID deal with partial information.
In this paper the proposed technique belongs to the latter
category, since the transmitted reference image information
is carried by the partial information represented by the image
hash.

From the analysis carried on so far, we can conclude that no
image registration or forensics technique is directly applicable
to our case because we follow a semi-blind paradigm. On
the other hand, the robust image hashing or fingerprinting
techniques for content authentication cited above, while pro-
viding partial information as desired, strive for hash robustness
with respect to the set S and are therefore unsuitable for
our purposes (the transformation estimation) since they are
designed with a completely different objective in mind. To
the authors’ knowledge, no image hashing technique has ever
targeted the transformation undergone by the image instead of
its content.

The approach followed here is that the particular problem
depicted in Fig. 3 can be solved casting it in a Distributed
Source Coding (DSC) scenario [34], even if the intended
application does not belong to the kind of those traditionally
invoked when strictly employing distributed source coding,
such as for example multi-camera image coding and compres-
sion [35]. As a matter of fact, DSC notions have already been
proposed for image hashing, in particular the joint application
of DSC and compressive sensing [36] has been employed
to extract a robust hash for semi-blind image authentication
and tamper detection [37]. The proposed solution is an image
hash extraction technique, inspired from the aforementioned
DFT phase-based co-registration paradigm, as a framework
to estimate the registration parameter at the decoder, and
exploiting DSC to handle the partial information transmitted
by the capturing device treating it as the decoder input.

Therefore, Fig. 3 is revised to Fig. 4 to make it adhere to the
DSC scenario as proposed. Here, the encoder (the capturing
device A) has to communicate the image [ to the decoder
(B) using the target image J as side information. In other
words, the decoder knows the transformed image J = S(I),
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where S(-) belongs to S, and the encoder needs to send
some information connected to the registration parameters,
that we still refer to as A(I) and is in effect the image hash,
though targeted to the undergone transformation. The hash
should be the most compact possible and allow the decoder
correctly reconstruct I by inverting the estimated S(-). Thus,
as discussed in the next section, the problem considered in
this paper is how to build such image hash. We refer to this
question as the minimal information registration problem, and
in essence it will be shown in the following to correspond to a
shift encoding problem, that is how to encode the phase shifts
to let the phase-based registration technique to take place at the
decoder, with the minimal amount of transmitted information.

The contribution of this paper is thus twofold. Given that the
proposed hash strives for minimal hash length, the technique
description follows a bottom-up approach, starting from an
ideal case requiring very few bits and building upon them
to reach more realistic scenarios. Its first objective is thus to
revise the theoretical background in the ideal case of noiseless,
circular shifts, providing bounds for the scenario of Fig. 4, in
the process answering to the crucial theoretical question on
how much information about the original image in the ideal
case is necessary to correctly recover the rigid transformation
parameters, given the distorted image.

In a realistic environment, the global rigid geometric trans-
formations that are targeted by the proposed hash are not
the only modifications potentially occurring to I. In fact,
phase encoding is best suited to achieve robustness against
said transformations, while being fragile to excessive applica-
tion of any other modification. In particular, local estimation
of non-rigid transformations as usually performed in co-
registration, such as an object elastic deformation, cannot be
achieved, given the fact that the proposed hash is akin to a
global descriptor (though we will extend it to perform local
comparisons in Sec. V-C). Instead, object (local) non-rigid
transformations represent a noise source for the estimation
of global geometric transformations. Also, non-rigid global
transformations cannot be estimated using the DFT shifting
phase is not feasible. As a consequence, some experimental
results on a representative image set are reported that deal with
a variety of disturbances for the geometric transformations
estimation process that are significant in the context depicted
by Fig. 4. They include Gaussian noise addition to address
noisy image capturing, patch modifications to simulate small
objects entering or leaving the scene as well as radically
changing their appearance (e.g., by turning, thus including
local non-rigid deformations), and global photometric and non-
rigid transformations induced by different conditions and/or
shortcomings in the camera lenses used at A (for example,
radial distortion). The results are critically compared with
traditional feature-based registration to highlight how compact
and computationally simple the hash h(I) actually is.

The second objective of this paper is to show the develop-
ment of the proposed shift encoding framework for real images
using a reasonable set of registration parameters pertaining to
geometric transformations in the presence of the just discussed
noise sources, while also discussing its security features. The
proposed hash, even if it is very few bits long, is proved to

be clearly useful as a building block in more complex appli-
cations involving more challenging transformations, either to
be estimated or to be robust against (if A can afford it).

III. IDEAL CASE: CIRCULAR SHIFTS

Here, the shift encoding problem is introduced starting from
the ideal case of circular shifts, extending the preliminary
study in [38]. This is of course an unrealistic assumption
when dealing with the proposed scenario or even rigid image
registration. In Sec. III-A the problem is introduced in the 1-D
case and it is then extended to the 2-D case in Sec. III-B.

A. Horizontal shifts: the I-D case

First, let us restrict the set of transformations S(-) to just
horizontal circular shifting, i.e., the image [ is circularly
shifted in the horizontal direction to obtain J. The problem is
reduced to the analysis of a single pair of matching rows of
and J. In fact, it will be apparent that the analysis of just one
row of the images is sufficient to correctly solve this instance
of the minimal information registration problem (as long as
it conveys meaningful phase information). To be consistent
with the typical DSC nomenclature, let us refer to the row
of the source image I as xz[n| and to the corresponding one
in the reference image J as y[n|. Thus, let us assume there
are a pair of (row) sequences z[n], n = 0,...,N — 1 and
y[n], n=10,...,N — 1, and that y[n] is a circularly shifted
version of x[n] by m samples, that is z[n] = y[(n — m)n],
where (-) is the modulo IV operation. Let us also assume that
0<m< M < N, both N and M are powers of 2, and m is
uniformly distributed in [0, M—1]. No further prior information
on the shape or features of x[n] is assumed as known.

The minimal information registration problem in an ideal
setting for 1-D sequences is stated as follows: what is the
minimum amount of information about x[n] that is needed to
correctly estimate the shift m, given y[n|? Of course, if x[n]
is also given (as would happen in a co-registration scenario)
the problem is trivial, since to obtain m the straightforward
solution is to directly inspect the samples’ position (or alter-
natively to compute the circular cross-correlation between the
sequences). On the other hand, knowing only y[n] the problem
is unsolvable unless some prior model on z[n] is assumed,
such as the distribution of its frequency-domain coefficients
and/or the knowledge of some boundary conditions.

Casting the problem in the DSC scenario depicted in Fig. 4,
the encoder has to communicate z[n| (coding it in some
way) to the decoder using the target sequence y[n] as side
information. In the limit case, if y[n] were known not just to
the decoder but also to the encoder, the latter would just have
to send the value of m, so log(M) bits would be sufficient to
encode z[n]'. It can be proven that log(M) bits are all that
is needed even in the case of Fig. 4, that is when the encoder
does not know y[n|, whose proof is briefly summarized next.

Using the DFT phase-based registration paradigm men-
tioned in Sec. II, let X[k], Y'[k] respectively be the DFT of
z[n], y[n] and ®x[k], Py [k] be the phase of the DFTs X [],

'Note that log(-) is always intended as logy(-) for the rest of the paper.
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Y'[k]. Since y[n| is a circularly shifted version of x[n], their
DFTs have the same magnitude. The shifting property of the
DFT dictates for the phase:

2mmk
N

2
Px[k] = Oy [k] - 2)
where 2 means 27 congruence. Ideally, it is possible to
estimate m by observing just a pair of non-zero DFT samples’
phase {®x[j], Py [j]}, as long as j # 0. For example, for
7 =1 Eq. (2) becomes:

ox[1) Z oy[1] - 2n 3)

Therefore the phase difference between X|[1] and YT1] is
the m-th multiple of —27/N. Knowing ®y[1], to identify
® x[1] with the least amount of information the latter can be
quantized into N values, each identifying a separate 27/N
phase interval, obtaining 1) x[1]. However, given that m < M,
the decoder actually needs to know only ®y-[1] and (®x[1]) s
to reconstruct ® x [1], so the amount of information sent by the
encoder is still just log(M) bits and not log(NV).

Quite interestingly, the solution to this problem is not
unique. Instead of finely quantize a single phase value, the
same result can be obtained using a coarser, 1-bit quantization
of the phase of log(M) DFT coefficients. Although there is no
difference from a theoretical point of view, since the amount
of information needed at the decoder is still log(M) bits, in
the practical scenario that we tackle next, this new strategy has
clear benefits for robustness purposes. So, instead of taking a
single phase value, let us consider log(M/) phase values taken
at exponentially spaced positions:

NG RNG N
that is, ®x[27°N/2] with i = 0,...,log(M) — 1. The
shift m can be represented by a binary representation
{mqg,mg-1,...,m1,mo}, with Q = log(M) — 1. Each
bit can be determined by looking iteratively at each of the
®x[27"N/2] in turn, as it is now proven by induction.

Starting with the base case, i.e., the LSB my, substituting
k = N/2 (the position corresponding to =0) in Eq. (2) gives:

dx [];7} I oy {ZZ] —m Z oy [];q —mmgy  (5)
since the other bits of m contribute integer multiples of
2m. Therefore the 1-bit information associated to the sign
of ®x[N/2] is enough to recover mg. Now, the inductive
hypothesis is that mp_1, mp—_o,..., mo have been identified
using the signs of ®x[N/2],®x[N/22],...,®x[N/2"]. For
the coefficient in k = N/2"1, Eq. (2) now gives:

N | or N m og
Px |:2h+1:| = dy {2“1} _7727 =@
(6)

Since the most significant bits {mq,mg_1,...,Mmp41} all
contribute integer multiples of 27 and the decoder can compute
the term ¢, = m/2"{mu_1,mn_2,...,mo}, the sign of
®x[N/2"*1] uniquely determines my,. Therefore, the signs
of ®x[27“N/2] build the hash h(I), as they allow to extract
the log(M) bits needed to represent the shift m.

N
Y| 9ht1 —Tmp — P

Notably, the coefficients selected by Eq. (4) do not include
®x[1]. Since just log(M) bits are necessary, the derivation
that has been proposed above begins at N/2 for the LSB and
ends at N/M # 1 for the MSB.

B. Generic shifts: the 2-D case

We now consider the case where the N x N image J is a
circularly shifted version of I using a two-dimensional shift
vector m = (m,, m.), still assuming that 0 < m, < R and
0 <me < C, with R< N and C < N powers of 2. To
extend the results presented in Sec. III-A, let us refer to the
images I, J as the matrices x[r, |, y[r, |, respectively. Thus:

z[r,c] = y[(r—m,)n, (c=me)n], re=0,1,...,N—1 (7)

The relation between the phase of the 2-D DFT coefficients
X|[k,l] and Y[k,I] is:
2mmyk  2mmel
N N ®)
By imposing respectively [ = 0 and k£ = 0, the problem of
determining m, and m. becomes separable. Therefore, m,
and m, can be encoded separately using the method presented
for the 1-D case twice, i.e., by extracting the signs of the
following phase coefficients:

Ox[k,1) Z By [k, 1] -

N N N N
@X |:2,0:| ,@X |:4,0:| ,(I)X |:8,0:| ,...,@X |:R70:|
)
N N N N
(I)X |:072:| >©X |:Oa 4:| 7q)X |:Oa 8:| a"'a(I)X |:07C:|

Hence, the ideal case pertaining to 2-D circular shifts is
solved in the same exact way as in the 1-D case and the
total information needed to encode the shift vector is thus
log(R) + log(C) bits. For example, if R = C = 27, 14 bits
are necessary for h(I).

IV. THE MINIMAL INFORMATION REGISTRATION PROBLEM
IN A REALISTIC SCENARIO

In a more realistic scenario, the images I and J are cropped
views of a common scene. Thus, the shift between the images
can no more be modelled as circular, and border effects are
introduced. In addition, to complete the framework there are
additional noise sources to contend with, for example due to
grid resampling and differences in capturing devices, or some
local details changing. Under these assumptions, using just
log(R) + log(C) bits to encode the shift in the hash of I
is not reasonable. Instead, more bits will be needed as the
noise strength increases. Of course, now the maximum shifts
in the horizontal and vertical direction must be limited to let
the overlap between the matrices z[r, ] and y[r, c] representing
the images to be sufficient to recover the shift vector m. In this
section we propose a robust strategy to recover m encoding
the phase shifts using a small enough number of bits.

In the end, the data encoded in h(I) needs some form
of redundancy to be robust against noise, akin to a channel
code. Referring to the ideal case covered in Sec. III, we
proved that such problem is separable and we can solve for
m, and m,. by substituting respectively [ =0 and £ =0 in
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Fig. 5. The 2-D “sub-frequency” domain is illustrated in matrix form, for R =
C = 256 and N = 1024. The k and [ indices span logarithmically spaced
positions from 0 to N/2. The Z bit (DC coefficient) does not bear phase
information and therefore it is never considered. The X bits, corresponding
to the k = 0 row and ! = O column, are the log(R) + log(C) = 16 bits
indicated by Eq. (9), used for the ideal case. The lowest index in Eq. (9) is thus
N/R = N/C = 4. To increase robustness, k = 2 and | = 2 are added to
the ranges and “diagonal” frequencies are also considered, as depicted by the
Y bits. Therefore, if the positions given by the whole sub-frequency matrix
are encoded, the hash is (log(R) + 2) - (log(C) 4+ 2) — 1 = 99 bits long.

Eq. (8). If instead we consider the coefficients with [, k # 0,
the resulting phase difference of the matching DFT coeffi-
cients depends on both m, and m.. Therefore, considering
“diagonal” frequency phases ® x [27*N /2,277 N /2] is a sort of
“parity check” for the phase differences, that can be exploited
to increase the robustness against the noise. In addition, the
logarithmically spaced positions that span k=2,..., N/(2R)
and [=2,...,N/(2C) when N >2R and N >2C, which are
not necessary in the ideal case of Eq. (9) as they are redundant,
can be used as well. In Fig. 5 there is a depiction of the strategy
for increasing robustness, for the case of R = C' = 256 and
N = 1024. The k and [ values considered in this case are
those exponentially spaced as in Eq. (9), with the addition
of k= N/(2R) =2 and | = N/(2C) = 2. Of course, the
hash length depends on the choice of R and C, that in turn
are limited by N and M. Hash robustness is proportional
to its length, maximized by choosing R = 28 (M]=1 and
C = 2l (M)J=1 and using all diagonal frequencies.

The decoding technique in this case is more complex, and
it is similar to minimum distance decoding for channel codes.
In particular, let us consider the bits extracted from the DFT
phases of X[k, ] as the image hash h(I), which is sent to the
decoder. All possible shift vectors (in a given range dictated
by S) are applied by the decoder to the side information, the
image J (that is, its DFT Y[k, []) and the corresponding hash
h(J) is extracted. The most likely shift that was applied to
x[r, c] to obtain y[r, ¢| (the opposite of that applied to Y[k, ]
in the decoding procedure) is declared as the one where the
hashes h(I) and h(J) are most similar.

In detail, the processing stages are illustrated in Fig. 6.
Let us suppose that J = S(I), where S € S, and in
this case J is obtained through a shift of I. Some noise is
possibly added to I before the hash h(I) is computed. The
hash extraction is then performed on the matrices z[r, ¢| and
y[r, c], corresponding to I and J, at the encoder and decoder
side respectively. The decoder computes a hash hp(J) for
every possible transformation 7'(+) in S, or a suitable superset

Noise <?
Noise
2l d

‘ Hashing
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distance

Hashing ‘
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Fig. 6. The flowchart depiction of the proposed algorithm for the hashes
extraction and comparison. The B side (at the decoder) is repeated for every
possible transformation 7°(-), in this case shifting in the image domain, to
search for the one giving the minimum distance.

thereof: in this case, for every possible shift in a suitable range
in the image domain. Comparing every hr(J) with the hash
h(I) transmitted by the encoder outputs a distance dr. The
transformation 7' giving the minimum distance d; provides
an estimation of S(-) by declaring S(-) = T7'(-).

The hash extraction at both sides proceeds as follows. To
keep the decoding process simple, the transformation T'(-)
is not actually applied to J prior to the computation of
h(J). Instead, its effect is simulated in the frequency domain,
therefore integrating it directly in the hash extraction process.
First, since x[r, ¢|] and y[r, c], even after the shift compensation
that follows, can only coincide in the central part due to border
effects, applying smoothing windows on them is advisable.
Then, the FFT is computed on both windowed matrices.

Next, since each T'(-) is actually a shift in the image
domain, at the decoder for the corresponding shift vector a
compensation term is subtracted to the phase of the DFT
coefficients as in Eq. (8), by multiplying the DFT matrix with
a suitable phase matrix. Therefore, windowing is employed
on y[r,c] just once before applying the shift to the DFT
matrix. Also, just a submatrix of the DFT coefficients is
considered at both sides, i.e., the subset of those exponentially
spaced as in Eq. (9). The shift compensation operation actually
applies a circular shift in the “sub-frequency” domain of
Y[k,l]. The hashes h(I) and hp(J) are finally obtained as
the sign of the DFT phases at the selected sub-frequencies.
The Hamming distance is employed to compute dr, and the
pair (h(I), hs(J)) with the minimum d is searched for.

To increase robustness, or equivalently to reduce the number
of bits for a same noise strength, it is possible to increase
the computational complexity of the decoder. In particular,
windowing the image after (instead of before) each shift vector
is applied to Y[k,I] greatly reduces the border effects. The
computational price to pay is high since the 2-D DFT of
the transformed Y'[k,l] must be calculated anew for each
considered shift vector. In the experiments, to be conservative
we used the lighter, less robust version of the decoder, since
it is assumed that many encoders (i.e., capturing devices com-
municating with B) can be present, and so it is more important
to free up as many computational resources as possible at the
decoder side too than to further increase decoding precision.

A. Extension to rotations and scaling

As we mentioned in Sec. II, the minimal information registra-
tion problem when also dealing with scaling and rotation may
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Fig. 7. In case T'(-) consists of scaling and rotation, the following flowchart
applies instead of the one in Fig. 6. In case translation in the image domain is
also considered, that procedure is applied after this one first estimates scaling
and rotation and the so determined transformation is inverted.

still be solved as shift encoding in a suitable domain, namely
the Fourier-Mellin transform. First, let us briefly recap how
this transform is exploited in the registration context.

For simplicity sake, let us assume first that x(u,v) and
y(u,v) are noiseless, continuous-domain 2-D signals, and
y(u,v) is derived from z(u, v) through a translation by a shift
vector m = (m,, m.), rotation by an angle 6, and scaling by
a factor A. Therefore:

x(u,v) = y(AMucos by + vsinby) — m,, (10)
A(—usinfy + vecosby) —m.)

which is equivalent to Eq. (1) for continuous signals. The
continuous-domain Fourier transform of Eq. (10) is:

e_j¢m(kal) ~
TY()\_l(k cos By + I sin fy),

A" (—ksinfy 4 Lcos b))

X(k,1) = an

where (k, 1) are now real-valued as well and ¢, (K, ) indicates
the phase term given by the translation m. Casting the Fourier
transformed signals in log-polar coordinates, we can compute:

X(p,0) =|X (e’ cos b, e’ sin 0)|

_ . 12)
Y (p,0) =|Y (e” cos B, e’ sinb)|
and using Eq. (11) we have:
_ 1 -
X(p,0) = FY(p—ln()\),ﬁ—Go) (13)

So, the already discussed shift encoding technique can be used
in this context as well to let the decoder retrieve the scale and
rotation parameters. Note that Eq. (13) does not depend on m,
i.e., the shift vector in the image domain.

However, this procedure holds rigorously just in the ideal
case of infinite support, continuous domain images. The pre-
viously stated considerations about the application on real
images still apply, in particular windowing is doubly important
in the log-polar domain since most of the spectrum lies close to
the p = 0 axis. In addition, since only integer coordinates are
valid for digital images, In()) in Eq. (13) can be recovered
only to the nearest integer value. Thus, it is better to use a
small base p for the logarithmic resampling instead of e, so
that the powers of i are dense enough around 1, where reside
typical values of A for the most reasonable choices for S.

Fig. 7 describes in detail the proposed solution for the
minimal information registration problem for the scaling and

Fig. 8. The dataset is a mixture of classic images such as Cameraman on the
left, satellite images such as Pentagon in the left middle, and environmental
outdoor images such as Walkbridge and one image from [39] on the right.

rotation case. The framework is similar to that illustrated by
Fig. 6, but this time the frequency domain is cast in the log-
polar space before taking the sign of the samples at the selected
sub-frequencies to build the hashes. Note that the FFT must
be centered around the origin so that the log-polar transform
covers the appropriate region of the parameter space (p, 6).
The above procedure allows to estimate the rotation and
scaling parameters only. In case a shift in the image domain
is simultaneously applied, it is also necessary to estimate the
spatial shift m = (m,,m.). To do that, first the scaling
and rotation transformations are undone by applying to J
the inverse transformation (that is, using the estimated At
and —6y in Eq. (1)). Note that such operation is in principle
independent from the applied shift m, as long as border
effects do not count too much. Then, the shift vector can
be recovered by applying the procedure explained for the
registration problem in presence of just image translation
explained by Fig. 6. Of course, some caution is needed during
the inverse transformation to ensure that it is applied in the
same coordinate system as the applied direct transformation,
which is thus variable with each shift tested at the decoder.

V. EXPERIMENTAL RESULTS

Several experiments have been conducted to ascertain different
properties of the proposed methodology. First, the estimation
accuracy relative to the transformation parameters is evaluated.
The processing chain of Fig. 6 corresponding to the shifting in
the image domain and that of Fig. 7 for rotations and scaling
are separately simulated and tested, with and without added
Gaussian noise. Then, those chains are employed in series and
the overall performance is evaluated for the case where both
transformation classes are simultaneously applied as well. The
accuracy performance is also assessed even when some image
content modification has taken place, in this case by modifying
an image patch of variable size and shape. An extension to the
basic hash is also proposed to aid in localizing the modified
patch once the geometric transformation has been estimated
and inverted at the decoder. Next, robustness against global
non-rigid and photometric transformations is assessed, for the
radial distortion, view angle change, and contrast adjustment
and Gaussian blurring cases. To put the proposed method in
perspective from an application standpoint, its performance is
also compared with that of state-of-the-art, local features based
matching techniques. Last, some more results pertaining to the
security (at the application level) are presented.

The experimental dataset is a collection of 75 grayscale,
512x512 images (a subset is depicted in Fig. 8), 15 of which
are taken from well-known image repositories such as [40] and
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TABLE I
SHIFT ENCODING PERFORMANCE FOR TRANSLATIONS.

Applied shift ||m|| norm

0-5 5-10 10-15 15-20 20-25

c=0 Avg. error | 0.0078 0.0087 0.0203 0.0532 0.2092
- Max. error | 0.0314 0.0536 0.1778 0.7778 1.4759
—925 Avg. error | 0.0595 0.0981 0.1436 0.2718 0.4501
=% Max. error | 0.1478 09169 1.6332 1.7443 1.6428
5 Avg. error | 0.1116 0.2221 0.3256 0.5446 0.7603
7= Max. error | 0.1962 1.5351 1.2991 2.7423 3.0163

the others are a selection of outdoor images from the dataset
employed for [39]. They have been chosen to represent a well
balanced representation of the potential applications of the
proposed techniques. In all experiments, the transformation
parameters are searched for in a range 50% wider than the
ground-truth ones. The experiments are run encoding the same
number of bits: R and C are set to 2L°8(312)] _ 1 — 256
for maximum robustness and the phase is thus to be probed
in log(256) = 8 exponentially spaced positions (see Fig. 5).
In the proposed application, more accuracy and robustness is
surely desired at the expense of the hash length, given that it is
already very small even in its more conservative configuration.
Therefore, to increase robustness the sub-frequency matrix is
encoded using all diagonal frequencies down to k& = 2, thus
requiring 80 (8 + 8 + 8 - 8) bits of transmitted information
for each hash. Zero-mean, white Gaussian noise with variance
o2 is added to the received images for experiments involving
noise addition. Each experimental result involving noise addi-
tion is averaged over 100 noise realizations. The noise can be
indifferently added to either X or Y: we selected the former
because it leads to a faster implementation of the experiments
since this way the hash of X is computed only once per
run (see Figs. 6-7). As for the windowing process, which is
in common to both processing chains, the Tukey window is
applied on the whole image with the parameter » =0.9. Just
the cropped, central Rx C = 256 x 256 portion of the image
is considered to build the hashes, as previously mentioned.

As a note on computational complexity at the receiver,
for a 512 x 512 image, the decoding algorithm implemented
in Matlab® on a sub-standard desktop computer takes on
average just 0.126s to estimate the shift parameters in the
image domain, and 0.132s in the log-polar domain. The hash
extraction times are given in Sec. V-E.

A. Accuracy with respect to combined rigid transformations

First, we considered integer shifts directly in the image domain
in a [—20,20] range for both the horizontal and vertical
directions, giving a total of 412 —1 = 1680 tested shifts.
The shifting transformation has been applied without cropping,
letting the successive windowing process to take care of the
zero-padded boundaries. The results are shown in Table I.
Each value in the table gives the average of the norm of
the error between the estimated and the ground-truth shifts
in a given interval of the applied shift vector norm, given
in pixel units. For example, the first column of the table

TABLE II
SHIFT ENCODING PERFORMANCE FOR SCALING.

Recovered scaling error perr (%)
0-1 1-2 23 34 45 56 >6

0.847 0.145 0.002 0.002 0.002 0 0.001
0.831 0.149 0.005 0.003 0.001 0.002 0.005

0.884 0.070 0.011 0.017 0.006 0.002 0.006
0.816 0.084 0.018 0.008 0.014 0.003 0.007

0.746 0.178 0.018 0.019 0.009 0.013 0.002
0.677 0.215 0.029 0.022 0.014 0.016 0.019

0.657 0.180 0.038 0.029 0.006 0.011 0.078
0.638 0.199 0.040 0.033 0.013 0.015 0.068
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TABLE III
SHIFT ENCODING PERFORMANCE FOR ROTATION.

Recovered rotation error ferr(°)
0-1 12 2-3 34 45 56 >6

0.919 0.049 0.010 0.014 0.008 0 0
0.919 0.046 0.020 0.008 0.002 0.002 O

0.929 0.026 0.018 0.010 0.006 0.002 0.002
0.937 0.022 0.012 0.006 0.008 0.002 0.002

0911 0.057 0.018 0 0.002 0.008 0.002
0.899 0.063 0.014 0.002 0.006 0.006 0.006

0.907 0.061 0.014 0.008 0.008 0.002 O
0.921 0.047 0.018 0.008 0.002 0.002 0.002

0=4°,0=0
0=4°,0=5
6=8°,0=0
0=8°,0=5
6=12°,0=0
0=12°0=5
0=16°,0=0
6=16°,0=5

concerns those ground-truth shifts with ||m|| < 5: therefore,
the columns are not uniformly populated, though still enough
to be significant. For reference, the maximum norm of the error
for each interval is also reported, as in this case it is surely
more informative than the standard deviation of the error given
how rare significant errors actually are. There are three pairs
of rows, respectively for the noiseless case and for o = 2.5
and o =5 noise standard deviation values. The shift is fairly
accurately recovered, even in the presence of noise. Significant
though still small registration errors seldom occur, as can be
inferred by the maximum errors values shown in Table 1.
Next, Tables II and III depict the performance for scaling
transformations and rotations. The ground-truth values con-
sidered in these figures are p = {1.02,1.08,1.14,1.2} and
6 = {4°,8°,12°,16°} respectively. For the log-polar space
domain, the rotation coordinate is linearly spaced, whereas the
scaling coordinate is logarithmically spaced, using ©=1.0086
as base value, selected to reasonably cover the parameter
range. The same Tukey window as before is employed in the
log-polar space domain too. The tables report the images ratio,
i.e., the number of images belonging to a given column divided
by the total number of images considered in the experiment
run (i.e., the row). Table II shows the ratio of images exhibiting
a scale value within the range (expressed as a fraction of the
ground-truth scale) shown on the columns averaged over all
the images and all the rotations. The rows are doubled for
the noiseless and 0 = 5 Gaussian noise cases respectively.
For example, in Table II it is shown that in both the noisy
and noiseless cases the scale parameter is estimated within a
1% error, when the original image is scaled by p=1.08, for
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TABLE IV
SHIFT ENCODING PERFORMANCE FOR SCALING, AVERAGING THE
RESULTS FOR ALL APPLIED SHIFTS IN THE IMAGE DOMAIN.

Recovered scaling error perr (%)
0-1 12 2-3 34 45 56 >6

0.871 0.136 0.003 0.003 0.001 0 0.011
0.858 0.143 0.001 0.007 0.006 0.003 0.002

0

5
=0 | 0.819 0.124 0.010 0.008 0.008 0.009 0.043
=5

0

5

0.828 0.078 0.029 0.011 0.014 0.019 0.040

0.796 0.140 0.010 0.008 0.026 0.001 0.005
0.769 0.132 0.046 0.008 0.031 0.001 0.007

TABLE V
SHIFT ENCODING PERFORMANCE FOR ROTATION, AVERAGING THE
RESULTS FOR ALL APPLIED SHIFTS IN THE IMAGE DOMAIN.

Recovered rotation error Gerr(°)

0-1 12 23 34 45 56 >6
6=2°0=0 0.907 0.057 0.028 0.005 0.001 0.002 0
60=2°,0=5 0.891 0.075 0.019 0.011 0.001 0.001 0.002
60=6°,0=0 0.876 0.095 0.014 0.001 0.001 0 0
6=6°,0=5 0.874 0.100 0.012 0 0.012 0.001 0
6=10°,0=0 | 0.836 0.155 0.001 0 0.001 0.004 O
6=10°,0=5 | 0.834 0.155 0.008 0 0.001 0.002 0

almost 80% of the testing set, that is all the images rotated
by all tested angles. Instead, Table III shows the ratio of
images exhibiting a rotation value within the range (in degrees)
shown on the columns averaged over all the images and all
the scales. For instance, Table III shows that rotations by
12° are detected within a 1° error for more than half of the
experiments. Cumulatively, for more than 80% of the tested
cases the decoded rotation parameter error is less than 2°.
Overall, despite the expected slight decrease in performance
as the severity of the transformation and the standard deviation
of the added noise increase, the registration parameters are
retrieved quite accurately in the scaling and rotation scenario
as well. The accuracy is not as high as that in Table I due to
the factors described in Sec. IV-A, mainly the fact that scaling
can be estimated only as a power of the base p=1.0086.
Then, Tables IV-VI illustrate the experimental results when
the test images have been simultaneously shifted, scaled and
rotated. As the parameters space increases in size, the pre-
sented results are only partial but still meaningfully selected
to provide an accurate reflection of the overall system perfor-
mance. Since, as explained in Sec. IV-A, rotation and scaling
transformations are estimated first (using the process in Fig. 7),
relying on the space-domain shift invariance property of the
Fourier-Mellin transform, it is useful to assess the performance
of the system in the same setup as that of Tables II and III in
the case a shift in the image domain has been applied too.
Table 1V, similarly to Table II, depicts the performance
in recovering the scaling factor averaged for all considered
rotations, with and without Gaussian noise. However, this time
the images have been first also shifted in the image domain
for all integer values in [—20,20] (as in Table I). Comparing
to Table II, it is evident that the shifting has little effects on

TABLE VI
SHIFT ENCODING PERFORMANCE FOR TRANSLATIONS (AVERAGE ERROR
ONLY), IN CASE SCALING AND ROTATIONS HAVE BEEN ALSO APPLIED,
CORRECTLY ESTIMATED AND INVERTED BEFORE THE COMPUTATION.

Applied shift |jm|| norm

0-5 5-10 10-15 15-20 20-25
p=1.02,0=2°,0=0 0.756 0.921 1.098 1.352 1.453
p=1.02,0=2°,0=5 1.149 2.152 2906 3.334 3.552
p=1.04,0=4°,0=0 0.762 0.932 1.101 1.348 1.553
p=1.04,0=4°,0=5 1.359 2.392 3.186 3.373 4.162
p=1.06,0=6°,0=0 1.311 2.161 3.434 3.898 4.201
p=1.06,0=6°,0=5 2.347 2504 5.875 6.341 6457
p=110,0=10°0=0 | 1.551 2.371 3.744 4.178 4.641
p=1.10,0=10°,0=5 | 2.653 2.956 6.164 6.837 6.970

the scaling factor estimation, and that the accuracy gracefully
degrades as the ground-truth scaling factor increases.

Table V, instead, illustrates the case for the rotation estima-
tion when the image has been shifted in [—20, 20], again in the
noiseless and noisy scenarios, averaged for all the used scaling
factors. The same conclusions can be drawn for Table V as
the ones for Table IV, that is shifting has no appreciable effect
on the rotation estimation processing chain.

Given that the shift value estimation (done as in Fig. 6)
is applied after the scaling and rotation estimation, we can
expect skewed results for those cases where the scaling and/or
rotation parameters have been previously incorrectly recov-
ered. Table VI shows the performance of the shift estimation
when the algorithm is applied to the images in the previous
experiment whose scaling and rotation have been accurately
estimated, that is the estimated scaling value is the closest in
terms of powers of the base value to the ground truth one and
the estimated rotation is within 1° of the applied one. While
the experimental tests reported in Tables IV and V represent a
slice of the results fixing the scaling and rotation parameters
respectively, in this test the accuracy condition above is instead
searched for fixing both these transformation parameters and
then estimating the shift only when it is verified. Cumulatively,
this condition applies for the 46% of the tested images in the
noisy o = 5 case. The performances are slightly inferior to
those of Table I due to the limited precision for the scaling
factor estimation, though the accuracy is still satisfying.

B. Accuracy with respect to patch modifications

Table VII shows the results when a patch has been modified
in the I image prior to the computation of A(I). Such a patch
modification is not applied on .J, so this experiment simulates
a local detail changing in the original image. In particular, the
pixels in the patch are set to the image average luminance,
which of course has a strong effect on the DFT phase. This
is expected to be as severe a modification as any (non-rigid)
modification to an object present in the scene, as well as any
object entering or leaving the image frame, could possibly be.

For brevity, the test has been carried out just for translations
in the image domain, thus the experiment performance should
be compared to that in Table I. The modified patch is put in
slightly different random positions for each database image, as
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TABLE VII
SHIFT ENCODING PERFORMANCE FOR TRANSLATIONS (AVERAGE ERROR
ONLY), WHEN AN IMAGE PATCH IS MODIFIED PRIOR TO COMPUTING h([).

Applied shift ||m|| norm
0-5 5-10 10-15 15-20

0.008 0.009 0.020 0.053
0.031 0.054 0.178 0.778

0.476 0.728 0.945 1.594
1.437 2.185 3.126 3.615

0.801 1.087 1.505 2.512
2409 2274 3917 6.406

1.349 1.574 2.044 2.771
3.093 3.423 4.648 7.496

2936 3.160 3.707 4.470
4.621 4476 6.285 7.738

3.150 3.269 3.816 4.511
5.240 6.351 6.550 7.313

20-25

0.209
1.476

2.184
4.856

3.313
7.492

3.379
10.167

4.950
8.464

5.266
8.168
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well as shaped either as a square, as a rectangle or an object
(in our tests, either a dog or a car), but it is always placed in
the central portion of the image to avoid interference by the
windowing process. The percentage of the total image area
covered by the patch is varied from 1% to 5% (the latter is
equivalent to a square 57 x 57 patch for the given images size).

For readibility, in Table VII only average shift errors are
reported, in the 0 =0 and o =5 cases. For the lower patch
percentages the performance are only slightly degraded with
respect to those shown in Table I, showing that, even if a small
portion of the phase information is destroyed by changing the
original image data, the algorithm is able to withstand the
effects achieving a good degree of robustness. When the per-
centage of the modified image increases, the recovered phase
information is of course increasingly unreliable. This fragility
can be indeed useful in some applications. For example, a
surveillance application can easily exploit hash breaking in
those contexts where slight camera movements are anticipated.

C. Hash extension: modified patch localization

Following the experiments on the robustness to patch mod-
ifications, in this section we propose an extension of the
extracted hash to enable the localization of the modified patch.
As we mentioned, the DFT phase based hash that we employed
so far is a global descriptor, which is therefore unable to
pinpoint any local detail missing or changed in the image
I. As shown in Sec. V-B, in case where a patch has been
modified there is a high probability that the rigid geometric
transformation is correctly estimated nonetheless (or at least
within a tolerable error margin), as long as the patch is not too
large. Once the geometric transformation is found, the decoder
can invert it to obtain I, a good approximation of I, from the
side information J. In this section we assume that is also
desired to find if and where a patch in I has been modified.

Of course, many possible solutions can be found in the
image matching and authentication literature to handle this
problem, including robust hashing and forensics techniques
that we mentioned in Sec. II. However, here we propose a

(a) Patch centered, o =0. (b) Patch centered, o =5.

(c) Patch not centered, o =0. (d) Patch not centered, o =5.

(e) Object (car), o =0.

(f) Object (car), 0 =5.

Fig. 9. Visual depiction of the average sub-hashes Hamming distance (blue
is 0, green is maximum). The dotted line shows the changed patch position.
For Figs. 9e-9f the silhouette of the inserted object is drawn.

solution using the same methodology employed in the rest of
the paper, that is thus compatible with the computational and
bandwidth constraints that we imposed on A. With respect to
state-of-the-art robust hashing techniques, such as [24], [26],
the proposed extension is computationally much simpler and
the hash is marginally shorter, although of course those spe-
cialized algorithms are explicitly targeted at image tampering
and thus surely provide more flexible performance.

In the proposed solution A sends more information in
addition to h(I), as follows. The central part of the image
is broken into blocks. Then, each block is treated like a sub-
image input to the hash extraction process and generate its
own hash. The resulting matrix of sub-hashes is then sent to
the decoder to be compared with that obtained from I.

Here are the implementation details of this technique for
the experiments at hand. The central 256 x 256 portion of the
image I is divided into 32 x 32 blocks (a total of 64 blocks).
Then, the sub-hashes are extracted from each block in the
usual way. Let us call the matrix of sub-hashes H(n,m;T)
for n,m=1,...,8, where each sub-hash H(n,m;I) is thus
4+4+4-4=24 bits long. The same procedure is applied at the
decoder on I, obtaining H (n,m; I ). The Hamming distance is
computed for each (n,m) pair. The image block (or blocks)
within which a patch has been modified should obtain the
highest distances, thus allowing to localize the modified patch.

In these experiments, a 32x32 square patch or an object of
the same height (a dog or a car, as in Sec. V-B), is modified
in the same position for every image in the dataset. In some
tests the (square) patch is centered so that it is equally spread
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Fig. 10. Visual examples of the non-rigid transformations applied, with no
spatial shifts. The original Pentagon figure is on the left. In the middle, the
image is radially distorted to simulate the distortion caused by lens curvature
effects, possibly due to the small lens size. On the right, projective geometry
is employed to change the view perspective, thus simulating camera tilting.

across 4 adjacent blocks, while in the others it is not. Then,
the shift estimation test is performed exactly as we did for
Table I. In case the shift has been recovered within a prefixed
tolerance on the magnitude of the error vector (set to 2 in this
case), the Hamming distance is computed for all sub-hashes.
Fig. 9 shows the distances for each block averaged over all
images and all tested shifts, with and without adding Gaussian
noise. It clearly shows that the modified patch (or the inserted
object) is accurately pinpointed. Of course, the price to pay
is increased bandwidth. For these experiments, an additional
24 - 64=1536 bits are sent to localize the modified patch.

Note that the just discussed matrix of sub-hashes H(n,m; I)
is not a more robust version of h(I) for the global geometric
transformation estimation task. Given that each sub-hash is
separately obtained on relatively small blocks, they are far
more susceptible to border effects when spatial shifts are
performed, not to mention how hard it is to reliably track data
from adjacent sub-blocks in the rotation and scaling cases. In
fact, H(n, m;I) represents a good content signature only after
the transformation has been more or less successfully inverted
through the proposed framework involving h(I).

D. Accuracy with respect to non-rigid and photometric trans-
formations

Next, let us address the proposed method performance in
presence of global non-rigid and photometric transformations.
Again, the experiments are limited to the spatial shift case.
Non-rigid global modifications are a challenging test for the
proposed method, because differently from image registration
there is no local feature matching process to help in estimating
them. As we mentioned, the algorithm objective is not to
estimate which non-rigid transformation occurred but rather
to estimate the spatial shift despite the application of those
transformations. In the scenario of Fig. 4, we have tested
distortions compatible with the capturing camera at A being in
slightly different conditions than those at B. Fig. 10 shows an
example of the transformations that we applied in this section.
The first experiments involves radial distortion on the I
image (see the middle picture of Fig. 10). This is an effect
typically introduced by the capturing camera lens reduced size.
The results on the estimation of spatial shifting in presence
of radial distortion are shown in the top part of Table VIII.
The amount of introduced distortion is given in terms of the
coefficients given to the first and second order terms in the

TABLE VIII
SHIFT ENCODING PERFORMANCE FOR TRANSLATIONS WHEN RADIAL
DISTORTION (TOP), PERSPECTIVE CHANGE (MIDDLE), AND PHOTOMETRIC
TRANSFORMATIONS (BOTTOM) ARE APPLIED BEFORE COMPUTING h([).

Applied shift |m|| norm

0-5 5-10 10-15 15-20 20-25
v=[1.2,0] Avg. error | 0.094 0.113  0.311 0.493 0.596
o=0 Max. error | 0.778  0.778  1.033 1.597 2.468
v=[1.2,0] Avg. error | 0.270  0.454  0.564 0.898 1.342
o=5 Max. error | 0.930 1.293  2.001 2.977 3.462
v=[1.4,0.1] Avg.error | 0.107 0.102 0211 0.532 0.802
o=0 Max. error | 0.224 0267  1.010 1.904 2.081
v=[1.4,0.1] Avg.error | 0.273 0433 0.616  0.858 1.257
o=5 Max. error | 0392  1.352  2.076 2.869 3.069
v=[1.6,0.2] Avg.error | 0.105 0.168 0.314 0.639 0.900
o=0 Max. error | 0.237  0.823  0.933 2.033 2.436
v=[1.6,0.2] Avg.error | 0.347 0421 0.501 0.933 1.831
o=5 Max. error | 0.519 1.837 1359 3.898 5.328
1=0.025 Avg. error | 1.533  1.713  2.070 2.622 3.186
o=0 Max. error | 2.360 3.090 4358 6.246 6.323
1=0.025 Avg. error | 1.524 1.788  2.140 2.755 3.392
o=5 Max. error | 2.800 3.611  4.604 6.275 6.245
1=0.050 Avg. error | 4387 4.158  4.827 5.961 8.646
o=0 Max. error | 6.593  7.634  8.731 20.99 28.89
1=0.050 Avg. error | 4.061 4241 4725 6.034 9.035
o=5 Max. error | 6.023  7.781  8.862 19.61 27.45
1=0.075 Avg. error | 7.409 7903  10.48 15.12 18.69
o=0 Max. error | 10.52 1250 3254 42.15 46.17
1=0.075 Avg. error | 8356  8.609  11.06 14.84 18.98
o=5 Max. error | 10.66 12.10 3374  40.82 43.59
Contrast Avg. error | 0.002 0.003  0.017 0.024 0.066
adj., 0=0 Max. error | 0.022  0.022  0.356 0.242 0.761
Contrast Avg. error | 0.054 0.080 0.106 0.156 0.238
adj., 0 =5 Max. error | 0.228  0.250 0.768 0.973 1.201
Gaussian Avg. error | 0.007 0.005 0.014 0.055  0.2418
blurring, c=0 Max. error | 0.022  0.031 0.712 1.422 1.898
Gaussian Avg. error | 0.078 0.112  0.222 0.436 0.614
blurring, o =5 Max. error | 0.126  0.819  1.489 1.602 1.896

standard radial mapping formula, given in the vectors v. The
distorted images have the same size of the original ones. The
reported results show a remarkable amount of robustness of
the spatial shift estimation with respect to radial distortions.
Moreover, we have employed projective geometry to sim-
ulate a view perspective change. In particular, a significant
amount of camera tilt is simulated by mapping the top cor-
ners towards the inside of the image (see the right picture
of Fig. 10). The results are shown in the middle part of
Table VIII. The particular projective mapping, namely the
amount of horizontal moving of the top left corner compared
to the image side, is given by [. Thus, e.g., with {=0.075 the
top side of the image is 15% narrower than the bottom side.
Since the modified image is projected on a different plane,
the DFT phase has no way to distinguish between such occur-
rence and a coplanar spatial shift for those pixels sufficiently
far from the perspective line. We have compensated some of
this effect (in our case in the vertical direction) by aligning
the original and modified images center with respect to the
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viewer. In fact, Table VIII shows how systematic errors are
being introduced, but they are limited for a moderate amount
of distortion. Otherwise the performance are pretty much com-
parable with those in Table I, including the limited sensitivity
to added noise. There is no difference in considering (separate)
panning instead of tilting, expect that the side corners are
moved instead of the top ones, and the compensation is done
in the horizontal direction. Therefore, as long as camera tilting
and/or panning are not expected to be too drastic, the proposed
method is still able to be satisfyingly robust against perspective
changes, although a little less when compared with radial
distortions when considering the introduced systematic errors.

Last, we have also considered photometric transformations
applied on J. The results for the application of two common
global photometric transformations are given in the bottom
part of Table VIII, namely contrast adjustment and Gaussian
blurring, both using standard parameters (stretching the his-
togram in [0.1,0.9] and applying 0 = 5 respectively). In
general, they are better tolerated by the system because the
non-linear effect on the DFT phase is more moderate than in
the previous cases of non-rigid transformations.

E. Comparison to local features extraction and matching

In this set of experiments, we used some well-known local
features in the same context as the one considered in this
paper. To summarize the process, the features are extracted on
I and then sent to B as the hash h(I). Then, B extracts the
features on J and finally it tries to match them to the features
in h(I). If rigid transformation are assumed to be applied on
I to obtain J, the aim of the feature matching process is to
estimate the transformation parameters.

Again, just shifting in the spatial dimension is considered
here for the sake of conciseness. The local features that we
have tested are two among the best known local features:
SURF [41] and BRISK [42]. SURF descriptors are usually
given as a set of real-valued feature vectors, while BRISK
descriptors are more compact since the feature vectors are
constituted by unsigned integer values. The feature matching
process that we employed is the one in [43].

In the left part of Table IX we reported the results obtained
for the BRISK descriptors. In some cases, the feature vector
is such that the feature matching process fails to produce a
reliable estimation entirely, typically because it is too short.
In the first row the percentage of such cases is reported. The
next three rows report the error norm, which is the difference
vector |le|| between the output shift and the ground truth
shift. Such measures, with respect to the previous experiments,
are given in aggregate form without separating the results
depending on the ground truth shift norm since errors are rarer.
Cumulatively, the BRISK descriptors fail to give an accurate
estimation of the shift (|le]] < 1) in just above the 5% of
the tests in both the noiseless and noisy case. The next rows
report the the minimum, maximum and average occupancy of
the feature vectors in bits for the given dataset (we have not
considered any other necessary information on the extracted
feature points). The average feature vector is roughly 2500
times longer than the 80 bits employed in this work. The last

TABLE IX
RESULTS USING THE BRISK AND SURF LOCAL DESCRIPTORS.

BRISK SURF
o=0 o=5 c=0 o=5
Failed 0.0249  0.0293 0 0
lel >5 | 0.0101 0.0109 0 0
Error norm 1 < |lef]| <5 | 0.0169  0.0264 0 0
lell <1 | 09481 09334 | 1 1
Min 8704 333824
Occupancy Avg. 195723 1640926
Max. 620544 3891200
Time X | 15.59 | 14.37

row gives the average time increase for the extraction process,
thus excluding the complex feature matching procedure. For
the BRISK descriptors, the extraction is approximately 15
times slower than the FFT phase sign extraction, which on the
average takes 3.46ms on a sub-standard desktop computer.

The right part of Table IX concerns the SURF descriptors. In
the experiments that we have run, the output shift has always
been accurate without fail. On the other hand, the transmitted
hash data rate is at least another order of magnitude greater
than that of the BRISK descriptors, on the average being
approximately 20000 times higher. In addition, the run time
is still 14 times greater than the proposed method.

In conclusion, these results show nicely the tradeoff between
geometric transformation estimation accuracy, computational
complexity and hash data rate in the discussed problem. It
is clear that the more voluminous the sent data is, the more
accurate the estimation becomes, and the proposed algorithm
sits at the far end on the data rate scale. The comparison shown
here proves the point that, since it targets only rigid geometric
transformation, the proposed method trades an acceptable de-
cline in accuracy with respect to local feature based matching
algorithms in return for using very few bits for the hash and
negligible computational power for its extraction. There can
also be some drawbacks in terms of security when employing
local descriptors: this is discussed in the next subsection.

E Security

The following brief discussion is focused on the security of
the hashing technique at the application layer, that is assuming
that the lower levels of the communication infrastructure are
effectively shielding the system from the kind of attacks en-
compassing them. For example, jamming the communication
between the sensor devices (A) and the central entity (B) may
be a possible security concern in an application scenario where
the timely relaying of h(I) is critical, and in that case it needs
to be addressed at the link layer using anti-jamming codes and
protocols. Instead, security as intended in Fig. 4 refers to the
amount and quality of information on the image I knowable
by an eavesdropper C' from its condensed version h([).

Of course, the critical assumption still is the physical
inaccessibility of either A or B. The only security threat to
consider for C' is eavesdropping because any other tampering
process needs first to know a legitimate h([I). In other words,
there is no other reason for the attacker to inject a fraudulent
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hash to B other than to do it using a feasible hash, i.e., an
hash reasonably “close” to h(I), maybe to make B believe
that nothing significant is happening at A. Note that hash
collisions, i.e., finding a pair of images such that the hash
I, is the same as that of another image I3, do not have any
impact on the proposed method, and in any case they would
be a reasonably rare occurrence given the statistical properties
of the hash bits that we show in the following.

One first observation involves the security of global descrip-
tors as the ones employed in this paper with respect to local
descriptors as the one that we compared to in Sec. V-E. Since
local descriptors usually involve feature point coordinates
(or they are given in some predefined scanning order), they
provide a lot of information on the visual aspect and content
of the image they are extracted from (as is should be since
they are designed with this purpose in mind). With the same
assumptions on the eavesdropper that we used here, including
that all other security layers fail altogether, it is clear how
global descriptors, as the one proposed in this paper, have the
clear advantage of not giving away any landmark position.

In fact, it is easy to conclude that leaking just the sign of
the DFT of the (windowed) original image in a small number
of positions does not allow to guess much about the original
image. In case of a one-off transmission, in principle there
are no particular security issues deriving from intercepting
the hash. In detail, to visualize this concept Fig. 11 shows
a statistical evaluation of the hash bits. To achieve statistical
significance, we have enlarged the dataset using all of the
200 images used in [39], that include a variety of indoor and
outdoor natural pictures. Fig. 11a shows that every bit of the
hash is essentially uniformly distributed, as it should be, as
all values are around 0.5, with the minimum at 0.46 and the
maximum at 0.53, except of course for the unused DC bit.
Also, Fig. 11b confirms a mild amount of inter-correlation
between the hash bits (darker values are more correlated since
it is the result of an XOR operation), which is partly due
to the windowing smoothing effect. However, as the fact that
the original image is indeed windowed is assumed as known,
and there already is some slight correlation in the phase
information, such injected inter-correlation does not constitute
a security threat by itself. On the axes of Fig. 11b there is the
displacement between the hash bit positions, so for example
in (3,3) there is the average correlation between hash bits
displaced by 3 rows and 3 columns in the hash bit matrix.
The DC bit position has been artificially put to the minimum
value to increase the resolution.

However, in case of multiple transmissions, there is another
potential security threat. Suppose that two consecutive hashes
are sent, say h(I) and h(I’), and thus they obviously corre-
spond to the same scene. For simplicity let us also assume
that no change has happened to the captured scene and the
capturing device has just slightly panned, so that the only
transformation between the two consecutive original images is
a moderate shift. This is in essence the same scenario as the
shifting experiments in Table I, however this time we are not
comparing h(I) with h(J), which is of course not available
to the eavesdropper C. Instead two h(I) and h(I’) relative to
two separate transmissions are obtained and can be compared

8 8

9 9

1 2 3

(a) Average number of 1 bits in each (b) Mean hash bits inter-correlation.
position of the hash.
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Fig. 11. Visual representation of the hash statistics.

by C exactly as B does using J.

Therefore, in case of successive plaintext transmissions,
an eavesdropper may be able to estimate the original image
transformations in the same way as the decoder entity. Note
that the obtainable information is solely related to the image
geometric transformation across multiple instances, not the
actual image, and that may or may not be an issue depending
on the application. For example, letting someone know when
and how a surveillance camera moves can represent a potential
hazard. The problem is exacerbated when the transmissions
are closely spaced together in time, both because the trans-
formation severity is lower, there are more estimations to be
performed, and the transformation parameters are themselves
highly correlated. This could be a useful feature for B too, to
increase the estimation robustness, however we confined the
experiments to the case of a single transmitted image hash.

In conclusion, it is advisable to avoid hash plaintext trans-
mission. Given how the transmitted hash is so short (80 bits
in the proposed scenario), a number of possible solutions are
easily employable without hurting the computational complex-
ity at the sensor device location. For example, a secret seed
shared by A and B can be installed to perform synchronized
bit scrambling or one-time padding on the transmitted hashes.
With respect to encrypting the whole image (Fig. 2), this
solution is much simpler and affordable, and it prevents any
kind of camera movement estimation by the eavesdropper C.

VI. CONCLUSIONS

In this paper we have proposed a practical solution to the
problem of transmitting information about a captured image
using an image hash, and then enabling a receiving entity to
perform a comparison with a locally stored copy of the same
image. The images to be compared can be different from each
other in terms of affine similarity geometric transformations
(shift, rotation and scaling), and noise could be added in the
process as well. In addition, a certain degree of robustness is
achievable even when a local detail (patch) is also modified
as well as in the case of mild global non-rigid or photometric
transformations. The transmitted hash is designed in such a
way to give the least possible information about the images
obtainable by an eavesdropper. The amount of information sent
is minimal, even if some redundancy with respect to the theo-
retical limits inferred by the ideal case is introduced to achieve
some degree of additional accuracy and robustness. Also,
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very little computational power is required, as the comparison
with local features based extraction and matching proves.
This scenario has many potential applications dealing with
unsophisticated sensing devices connected to data processing
servers.

The proposed solution uses a technique at the nexus between
rigid image registration and distributed source coding. The
hash of the transmitted image is obtained from the 2-D DFT
phase information and the comparison is akin to minimum
distance decoding for channel codes. The experiments carried
out on a sizeable dataset of standard images employing re-
alistic ranges of shifts, rotations and scaling transformations
have proved how the proposed technique is able to guarantee
a good degree of robustness by yielding very good estimates
of the parameters of the transformation undergone by the
transmitted image with respect to the reference image. Security
in its confidentiality sense is guaranteed in case of multiple
transmissions only employing some randomization on the hash
bit positions or values. More work is currently being done to
generalize the channel coding part, to be able to properly set
the size of the image digest as a function of the expected
and/or maximum severity of the employed transformations.
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