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In the last several decades, the model-based diagnosis of discrete-event systems (DESs) has increasingly become an active research
topic in both control engineering and artificial intelligence. However, in contrast with the widely applied minimal diagnosis of
static systems, in most approaches to the diagnosis of DESs, all possible candidate diagnoses are computed, including nonminimal
candidates, which may cause intractable complexity when the number of nonminimal diagnoses is very large. According to the
principle of parsimony and the principle of joint-probability distribution, generally, the minimal diagnosis of DESs is preferable to
a nonminimal diagnosis. To generate more likely diagnoses, the notion of the minimal diagnosis of DESs is presented, which is
supported by a minimal diagnoser for the generation of minimal diagnoses. Moreover, to either strongly or weakly decide whether
a minimal set of faulty events has definitely occurred or not, two notions of minimal diagnosability are proposed. Necessary and
sufficient conditions for determining the minimal diagnosability of DESs are proven. .e relationships between the two types of
minimal diagnosability and the classical diagnosability are analysed in depth.

1. Introduction

In recent years, several disasters, including the nuclear leakage
that occurred in Fukushima (Japan) in 2011 and the blackout
that occurred in nearly the entire country of India in 2012,
have greatly threatened the safety of society and even the lives
of many people. To prevent such disasters, determining faulty
events/components is a very important topic. To this end,
model-based fault diagnosis techniques may be very effective.

Nonlinear science is a new interdisciplinary subject
which studies the common problems proposed by nonlinear
interaction widely existing in various disciplines, especially
in complex networks [1–4], system control [5–7], secure
communication [8–10], chaotic systems [11], random
number generators [12, 13], discrete-event systems (DESs)
[14], and other fields. .e creative work on the diagnosis/
diagnosability of DESs, presented in [15, 16], with the
originally proposed concept of a diagnoser, model-based
diagnosis, and diagnosability have attracted more and more

attention, as indicated by the large number of methods and
techniques proposed in the literature, including [17–26].
Because of the intractable complexity of reasoning of the
global DES model and the corresponding centralized
diagnoser, decentralized approaches were proposed in
[27–29]. More recently, fuzzy diagnoser/diagnosability
[30, 31] or the stochastic diagnoser/diagnosability/prog-
nosability [32–35] has been studied, with fuzzy or stochastic
information being injected into an automaton that models a
DES. In addition to diagnoser-based approaches for the
diagnosis of DESs, a history-based approach [36, 37] and a
consistency-based approach [38] to the diagnosis of DESs
have also been presented.

However, as far as we know, one of the current main
problems is that, in most approaches to diagnosing DESs, all
possible candidate diagnoses are derived, even if many
candidates are proper supersets of some other candidates. In
other words, nonminimal (redundant) diagnoses are
generated.
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In this paper, we extend the idea of a minimal diagnosis,
first presented in [39], via additional theoretical analyses,
formal proofs, examples, and comparisons with related
work.

Example 1. Among candidate diagnoses (sets of possible
faulty events) f1􏼈 􏼉, f2, f3􏼈 􏼉, f1, f2, f3􏼈 􏼉, f1, f3, f4􏼈 􏼉, and
f2, f3, f4􏼈 􏼉, only {f1} and f2, f3􏼈 􏼉 are minimal according to
the set-inclusion relationship, as all other candidates contain
f1􏼈 􏼉 or f2, f3􏼈 􏼉 and include additional faults (f2 and/or f3
and/or f4). Minimal diagnosis differs from minimal-car-
dinality diagnosis. In our example, the only minimal-car-
dinality diagnosis is f1􏼈 􏼉. In this paper, we focus on minimal
diagnosis rather than minimal-cardinality diagnosis. In
addition, in our example, even if we cannot definitely know
whether f4 has occurred or not, we know that minimal
diagnoses {f1} and {f2, f3} are generally more probable
than others.

In theory, all possible fault sets need to be diagnosed.
However, considering a scenario like Example 1, although
there are a large number of possible candidate diagnoses that
can explain the current observation sequence, there may
exist set-inclusion relationships among some of them.

.e two principles of parsimony and joint-probability
distribution, which are briefly described as follows:

(i) .e principle of parsimony: also called “Occam’s
razor” [40], parsimony is a principle of succinctness
often adopted in logic and problem solving which
states that, among competing hypotheses, the hy-
pothesis with the fewest assumptions should be
selected. .e principle of parsimony has also been
introduced for the minimal diagnosis of static sys-
tems [41].

(ii) .e principle of joint-probability distribution: a
widely used assumption in the literature, in this
paper, a joint-probability distribution means that
each fault is independent of one another and that the
prior probability of each fault is equal.

Minimal diagnoses (based on the set-inclusion rela-
tionship (for instance, we assume that there are three
candidate diagnoses f1􏼈 􏼉, f1, f2􏼈 􏼉, and f2, f3, f4, f5􏼈 􏼉.
.en, f1􏼈 􏼉 and f2, f3, f4, f5􏼈 􏼉 are minimal diagnoses, even
if f2, f3, f4, f5􏼈 􏼉 has a bigger cardinality than f1, f2􏼈 􏼉 but
without a set-inclusion relationship between them.)) are
more likely than the corresponding nonminimal ones. As a
result, just like the minimal diagnosis of static systems
[41, 42], determining only the minimal diagnoses of DESs is
bound to reduce the complexity, as additional nonminimal
diagnoses are not considered.

.e benefit of a minimal diagnosis is related to both
cognition and computation. Cognition is relevant to the
human who is responsible for the monitoring of the DES.
Consider, for instance, the operator in the control room of a
power network, who is responsible for the correct behaviour
of the network. When a misbehaviour occurs, such as a short
circuit on a transmission line, several actions can be trig-
gered by the protection system to isolate the shorted line,

e.g., opening breakers and reconfiguring the power load to
avoid a blackout. If the reaction of the protection system is
abnormal, a possibly large number of alarms and messages
will be generated. Since the operator is expected to activate
specific recovery actions, it is essential that the (possibly
overwhelming) stream of information generated by the
system, namely, the observation, be interpreted correctly
under stringent time constraints. .is is why automated
diagnosis becomes a key factor in supporting the operator in
performing his/her critical job. To this end, the diagnosis
engine may generate diagnosis information in a relatively
short amount of time. Specifically, a set of candidate diag-
noses are presented to the operator, who is expected to make
critical decisions regarding the safety of the involved pop-
ulation. However, if the number of candidates is large, the
operator may be confused about which diagnoses should
deserve more attention. Choosing minimal diagnoses is a
good heuristic, as they are more probable and, as such, more
worthy of attention.

Computation involves the efficient generation of can-
didate diagnoses. Since a key factor in real applications of
automated diagnosis is the time response, that is, the delay
between the occurrence of a faulty event and the generation
of candidate diagnoses, it is of paramount importance that
the diagnosis engine is not only effective but also efficient.
Being free of the burden of nonminimal candidates, minimal
diagnosis allows the diagnosis engine to be more efficient
compared with nonminimal diagnosis with respect to both
processing speed and memory space.

In summary, the main contribution of the paper is that
the theoretical concepts of minimal diagnosis and minimal
diagnosability of DESs are proposed, and meanwhile, the
minimal diagnosis of DESs is not a purely academic exercise;
it may drive attention to the actual cause of a misbehaviour
effectively (cognition) and efficiently (computation).

.e rest of the paper is organized as follows. .e ter-
minology and preliminary concepts related to the model-
based diagnosis of DESs are given in Section 2. Several novel
concepts, including minimal diagnosis, minimal diagnoser,
and minimal diagnosability of DESs, are presented in Sec-
tion 3. Related work is discussed in Section 4. Conclusions
and future work are presented in Section 5.

2. Background

In this section, the classical notions of the diagnosis,
diagnoser, and diagnosability of DESs [16] are recalled.

2.1. Classical Diagnosis of DESs. A DES is a deterministic
finite state machine (FSM), namely, G� (Q, Σ, T, q0), where

Q is the set of states.
Σ is the set of events, including two disjoint sets of
observable events (Σo) and unobservable events (Σuo);
􏽐f � f1, f2, . . . , fm􏼈 􏼉(for the sake of simplicity, the
classification (types) of faults in [16] is disregarded in
this paper), with 􏽐f ⊆􏽐uo, is the set of faulty events to
be inferred, while (Σuo − Σf) is the set of events that are
both unobservable and nonfaulty.
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T⊆Q × Σ × Q is the set of transitions, where a tran-
sition from state q to state q′, when event e is activated
on state q, is equivalently denoted by (q, e, q′) ∈ T,
q⟶e

q′, or T(q, e) � q′.
q0 ∈ Q denotes the initial state of the system.

.e behaviour of G consists of all possible traces gen-
erated from q0 to some state inG, which form a prefix-closed
language L(G), abbreviated as L, with L⊆Σ∗ (Σ∗ is the set of
all possible strings composed of events in Σ, including the
empty string ε). For simplicity, we assume that language L is
live, that is,

For each state q ∈ Q, there exists at least one event
σ ∈ Σ such that q⟶σ q′ holds, where q′ ∈ Q (with q′
being nonnecessarily different from q).

In addition, similar to [16], we assume that there does
not exist any cycle of unobservable events, that is,

For any cycle q1⟶
σ1

q2⟶
σ2

· · · qk− 1⟶
σk− 1

qk⟶
σk

q1
(k≥ 1), qi ∈ Q, and σi ∈ Σ (i ∈ [1 · · · k]), there exists at
least one event σj (j ∈ [1 · · · k]) such that σj ∈ Σo.

Example 2. Outlined in Figure 1(a) is the diagrammatic
representation of a DES model G, where Σo � {α, β, c, θ, ρ},
Σf � f1, f2􏼈 􏼉, and Σuo � σuo1, σuo2􏼈 􏼉∪Σf.

We denote the empty trace as ε and extend one transition
event to a string of transition events as follows:

q⟶ε q always holds
For s ∈ Σ∗ and σ ∈ Σ, q⟶s σ q′ holds whenever
q⟶s

q″ and q″ ⟶σ q′ hold for q″ ∈ Q

Denoting a transition in which the entered state
is missing, q⟶s

indicates that, for s ∈Σ∗, there exists at
least one state q′ ∈ Q such that q⟶s

q′ holds.
.e notation L/s represents the postlanguage of L after

string s ∈ L, that is, L/s � t | t ∈ Σ∗, st ∈ L{ }.
Two types of projection are given: PrjΣo (on observation)

and PΣf (on faults). Assuming that σ ∈ Σ and s ∈ Σ∗,
PrjΣo:Σ

∗ ⟶ Σ∗o represents how a trace is projected onto a
sequence of observable events:

PrjΣo(sσ) � PrjΣo(s)PrjΣo(σ). (1)

Conversely, Prj− 1Σo (so) � s | s ∈ L, PrjΣo(s) � so􏽮 􏽯 denotes
the set of traces whose projection equals so (note here that
Prj− 1Σo (PrjΣo(so)) may not equal so).

PΣf: Σ
∗ ⟶ 2Σf denotes how a (possibly empty) trace

s ∈ Σ∗ is mapped onto a set of faults:

PΣf(s) � fi fi

􏼌􏼌􏼌􏼌 ∈ Σf, fi ∈ s􏽮 􏽯. (2)

Example 3. Let s � af1bcf2, f1, f2􏼈 􏼉⊆Σf , and a, b, c{ }⊆Σo.
We have PrjΣo(s) � abc and PΣf(s) � {f1, f2}.

Let se denote the last event of a nonempty trace s ∈ Σ+,
where Σ+ � Σ∗ − ε{ }, and F⊆Σf. .en, SF � s | s ∈ L,{

PΣf(s) � F, se ∈ F} denotes the set of all traces ending with
one fault of F and containing all the faulty events of F.

We use L(G, q) to denote all traces in G starting from
state q. Let Lo(G, q) � s | s ∈ L(G, q), s � uσ, u ∈ Σ∗uo,􏼈

σ ∈ Σo} denote all traces starting from state q up to the first
observable event and Lσ(G, q) � {s | s ∈ Lo(G, q), se � σ}
denote all traces starting from q up to the first observable
event σ.

Based on G � (Q,Σ, T, q0), an FSM Go � (Qo, Σo, To, q0)
(in general, nondeterministic (a nondeterministic FSM is a
state in G which may reach more than one state via the same
transition event. Accordingly, in Figure 1(b), state 1 can
reach four different states (2, 7, 14, and 18) via the same
observation α)) is defined as follows:

Qo � q0􏼈 􏼉∪ q′ | q⟶σ q′ ∈ T, σ ∈ Σo}􏼚 denotes both q0
and all observable states.
To ⊆Qo × Σo × Qo denotes the set of transitions, defined
as follows:

q
o
, σ, q

o′
􏼒 􏼓 ∈ T

o
, iff T q

o
, s( 􏼁 � q

o′
, s ∈ Lσ G, q

o
( 􏼁. (3)

As such, L(Go) � t | t � PrjΣo(s), s ∈ L􏽮 􏽯.

Example 4. With reference to Example 2, Figure 1(b)
presents a diagrammatic representation of Go, with G be-
ing displayed in Figure 1(a).

Based on the abovementioned notions, the notion of the
diagnosis of a DES is given in Definition 1.

Definition 1. Let G � (Q,Σ, T, q0) be a DES, L be the
corresponding language of G, and obs ∈Σ∗o be the current
observation sequence for G. A subset F⊆Σf is called a
candidate diagnosis (or just a diagnosis) of a DES for ob-
servation sequence obs (written as F⇝ obs) iff there is a
string of events s ∈ L with se ∈ Σo such that PΣf(s) �

F∧PrjΣo(s) � obs.
In other words, a diagnosis of a DES is a set of faulty

events (unlike the diagnosis of static systems (e.g., [41, 42]),
where a diagnosis is defined as a set of faulty components.) in
a trace whose mapping onto observable events equals only
the current observation sequence obs. Note that the con-
dition se ∈Σo must be satisfied in the definition, as we
generally use the currently received observation sequences
immediately after the DES fails to work properly to infer a set
of faults to explain observation obs (this is also a funda-
mental principle of finding the diagnosis of DESs).

Example 5. With reference to Example 2, for the DES G
displayed in Figure 1(a), if we get the current observation
sequence obs � αβθ, then all candidate diagnoses are ∅,
f1􏼈 􏼉, and f1, f2􏼈 􏼉, with αβθ, f1αβθ, and f1αβf2θ being the
corresponding traces of events, respectively.

2.2. Classical Diagnoser for DESs. To generate candidate
diagnoses, the diagnoser-based approach introduced in [16]
is used.

Let Δ� 2Σf ∪ A{ } be all possible fault labels, with each label
being a set of faulty events.N is used as an alias for the empty
fault set (to indicate a normal state). A is interpreted as
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“ambiguous” (that is, we cannot be sure that some faults
have definitely occurred).

Starting from Go � (Qo,Σo, To, q0), the classical diag-
noser Gd for G is a deterministic FSM:

Gd � qd,Σo, Td, q
0
d􏼐 􏼑, (4)

where

qd ⊆ 2(Qo×Δ) is the set of states.
q0d � (q0, N)􏼈 􏼉 (since the fault label associated with q0 is
N, G is assumed to be normal at the initial state.) Any
state qd ∈ qd is reachable from q0d via transitions in Td,
written as qd � {(qo

1, l1), . . ., (qo
n, ln)}, where qo

i ∈ Qo and
li ∈ Δ (that is, li is in the form of eitherN or a nonempty
subset of Σf ∪ A{ } ). In subsequent set-theoretic oper-
ations in the minimal diagnoser, we replace N with the
empty set ∅.

.e range function R: qd × Σo⟶ qd is defined as
follows:

R qd, σ( 􏼁 � ∪
qo,l( )∈qd

∪
s∈Lσ G,qo( )

T q
o
, s( 􏼁, LP q

o
, l, s( 􏼁( 􏼁􏼈 􏼉⎛⎝ ⎞⎠,

(5)

where LP: Qo × Δ × Σ∗ ⟶ Δ denotes the fault label
propagation function. Given qo ∈ Qo, l ∈ Δ, and s ∈ Lo(G,

qo), fault label l is propagated by LP over string s from qo in
the following way:

LP q
o
, l, s( 􏼁 � fi fi

􏼌􏼌􏼌􏼌 ∈ l∨fi ∈ s􏽮 􏽯. (6)

.en, the label correction function LC: qd⟶ qd is
defined as follows:

LC qd( 􏼁 � q
o
, l( 􏼁 q

o
, l( 􏼁

􏼌􏼌􏼌􏼌 ∈ qd, and∄ q
o
, l′( 􏼁 ∈ qd with l′ ≠ l􏽮 􏽯∪ q

o
, A{ }∪ li1 ∩ · · · ∩ lik􏼐 􏼑􏼐 􏼑􏽮 | q

o
, li1􏼐 􏼑, . . . , q

o
, lik􏼐 􏼑

∈ qd, lv ≠ lw, v, w ∈ i1, . . . , ik􏼈 􏼉, v≠w, k≥ 2􏼛.
(7)

.e label correction function LC and the label A can be
explained as follows. When the system moves along trace s

and transitions from some state into a state qo with at least
two different fault labels, we cannot be sure that some faults
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Figure 1: A DES and its related variant diagnosers: (a) DES model G. (b) Nondeterministic FSM Go for G. (c) Classical diagnoser Gd for G.
(d) Revised diagnoser Gd for G. (e) Minimal diagnoser Gm for G.
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have definitely occurred; therefore, we use label A to refer to
this scenario.

.e transition function Td: qd × Σo⟶ qd is defined as
follows:

q
2
d � Td q

1
d, σ􏼐 􏼑⟺ q

2
d � LC R q

1
d, σ􏼐 􏼑􏼐 􏼑. (8)

In other words, assuming that the current state in
diagnoser Gd is q1d, while the next observable event is σ, we
generate the new state q2d of Gd in the following way:

(1) For each (qo, l) ∈ q1d, compute the set S(qo, σ) of
reachable states of G from qo using observation σ:

S(qo, σ) � T(qo, uσ) | u ∈ Σ∗uo, and σ ∈ Σo􏼈 􏼉(note
here that S(qo, σ) is a finite set of observable
states, as we have made an assumption (in
Section 2.1) that there does not exist any cycle of
unobservable events [16]).

(2) Given qo′ ∈ S(qo, σ) with T(qo, uσ) � qo′ , propagate
label l associated with qo to label l′ associated with qo′

according to the following rules:

(a) If l�N and s contains no faulty events, then label
l′ is kept as N.

(b) If l� {A} and s contains no faulty events, then
label l′ is kept as {A}.

(c) If l� {A} ∪ Fwith F⊆Σf and s contains no faulty
events, then label l′ is updated to F.

(d) If l�N or {A} and s contains a set F of faulty
events, then label l′ is updated to F.

(e) If either l� F or A{ }∪F with F⊆Σf and s
contains a set F′ of faulty events, then label l′ is
updated to F∪F′(in cases (c), (d), and (e) above,
we do not propagate label A from one state to the
next. As noted in [16], while this leads to a re-
duction in the state space of the diagnoser, no
information necessary for either determining the
diagnosability properties of a language or for
implementing diagnostics is lost).

(3) Let q2d be the set of all pairs (qo′ l′) generated by (1)

and (2) above for each (qo, l) ∈ q1d. Replace all (q
o′ , l′),

(qo′ , l″)∈ q2d (l′ ≠ l″) with (qo′ , {A} ∪ l′ ∪ l″)..at is, if
the same state qo′ appears more than once in q2d with
different labels, then associate all the common faults
with qo′ as well as the ambiguous label A with qo′ .

Example 6. With reference to Example 2 and Example 4,
Figure 1(c) presents the classical diagnoser Gd relevant to
DESG displayed in Figure 1(a) (where pairs (q, l) are written
as ql, while “{}” is omitted for each nonempty fault label l for
simplicity). According to Gd in Figure 1(c), we can easily
obtain the definite diagnosis {f1}, for a given observation
sequence αβθcc, online by synchronizing diagnoser Gd with
the sequence.

2.3. Classical Diagnosability of DESs. To decide whether or
not a faulty event in a DES has definitely occurred, the
classical notion of diagnosability presented by [16] is

rephrased in Definition 2 (Definition 2 is slightly different
from the original definition of diagnosability in [16]. Spe-
cifically, “∃ni(ni ∈ N)” is placed after “∀s(s ∈ L, se � fi)“,
while ni in [16] becomes the greatest ni for all s in Definition 2.
.is adjustment, while not affecting the virtual meaning of
diagnosability, allows us to provide a formalization that is
more consistent with the notions of minimal diagnosability
introduced below).

Definition 2. A prefix-closed and live language L is said to
be diagnosable iff, for any fault fi ∈ Σf, we have

∀s s ∈ L, se � fi( 􏼁∃ni ni ∈ N( 􏼁,

∀t t ∈ L/s, te ∈ Σo( 􏼁,

‖t‖≥ ni⟹D( 􏼁,

(9)

where the diagnosability condition D is defined as follows:

ω ∈ Prj− 1Σo PrjΣo(st)􏼐 􏼑⟹fi ∈ ω. (10)

In other words, if a DES G is diagnosable, then any faulty
event fi of G will definitely be detected after its occurrence,
provided that the observation sequence after fi is long
enough.

Example 7. From Definition 2, we know that DES G in
Figure 1(a) is not diagnosable, since for observation se-
quences αρk, k ∈ N, we cannot decide whether fault f2 has
definitely occurred or not.

3. Minimal Diagnosis of DESs

In this section, in a way similar to the minimal diagnosis of
static systems [41, 42], a notion of the “minimal diagnosis” of
DESs is proposed. .en, the related “minimal diagnoser” for
DESs is presented to generate all minimal diagnoses. Finally,
the relevant “minimal diagnosability” is put forward and
compared with classical diagnosability.

3.1. Minimal Diagnosis of DESs. Based on Definition 1 and
Example 5, for a given observation sequence, there are three
possible candidate diagnoses. Generally, given a DES G with
language L, there is usually more than one string in L, with
each string having a projection on the set of observable
events equal to the current observation sequence obs. Hence,
there may be more than one candidate diagnosis set
according to the different strings. However, as noted above,
minimal diagnoses are very valuable. For example, for a
batch of new products from a factory, the qualification rate is
usually very high (generally required to be more than 95%).
.e probability of a product with a fault is very low (less than
5%). According to the principles of joint probability dis-
tribution (usually, in the literature, it is assumed that faults
are independent of one another and have equal probability
of occurrence), the probability of a product with two ormore
faults is significantly lower.

To obtain more likely candidates and to reduce the space
complexity (with less space to store diagnoses with fewer
faults), we provide a definition below to formalize the
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concept of the minimal diagnosis of DESs based on set-
inclusion relationship.

Let F1 and F2 be two candidate diagnoses for an ob-
servation sequence obs, namely, (F1⇝ obs)∧ (F2⇝ obs).
.e following notation is defined:

F1 ≼F2 if F1 ⊆F2

F1 ≺F2ss if F1 ⊂ F2

F1 ≺≻F2 if (F1 ⊈F2)∧ (F2 ⊈F1)

Definition 3. Let G � (Q,Σ, T, q0) be a DES, obs be a rel-
evant observation sequence, and F be a candidate diagnosis
for obs. Candidate F is called a minimal diagnosis of G for
obs, also written as F⇝minobs, if there is no other candidate
diagnosis F′ for obs such that F′ ≺F. .e family of all
minimal candidate diagnoses for obs is F | F⇝minobs􏼈 􏼉.

In other words, if a fault set F is a minimal diagnosis ofG,
then none of its proper subsets is a diagnosis. Furthermore,
according to the principle of joint-probability distribution, a
minimal diagnosis (with fewer number of faults) is more
probable than the corresponding nonminimal diagnosis
(with additional faults). As a result, some faulty events may
not appear in the minimal diagnosis, although they can also
be used to explain the current observation sequence. .e
following example explicitly verifies this conclusion.

Example 8. With reference to Example 5, for the DES G
displayed in Figure 1(a), when the current observation se-
quence is obs � αβθ, we find that all the possible candidate
diagnoses are ∅ (or N), f1􏼈 􏼉, and f1, f2􏼈 􏼉. .en, we get the
minimal diagnosis N, i.e., the system is probably working
normally. Although two fault sets f1􏼈 􏼉 and f1, f2􏼈 􏼉 can also
be used to explain the current observation sequence, they are
not minimal diagnoses.

3.2.MinimalDiagnoser forDESs. In this section, we propose
a type of minimal diagnoser based on a revised diagnoser.

3.2.1. Revised Diagnoser. In order to properly and briefly
define the concept of a minimal diagnoser, we first introduce
a revised diagnoser Gd based on the classical notion of
diagnoser Gd presented in [16].

Starting from Go � (Qo,Σo, To, q0), a revised diagnoser
Gd for G is a deterministic FSM:

G
d

� Q
d
,Σo, T

d
, q

d
0􏼐 􏼑, (11)

where

Qd ⊆ 2(Qo×Δ) is the set of states.
qd
0 � (q0, N)􏼈 􏼉. Any state Qd ∈ Qd is reachable from qd

0
via transitions in Td, written as Qd � {(qo

1, l1), . . ., (qo
n,

ln)}, where qoi ∈Qo and li ∈Δ (that is, li is in the form of
either N or a nonempty subset of Σf ).
.e transition function Td: Qd × Σo⟶ Qd is defined
as follows:

T
d

Q
d
, σ􏼐 􏼑 � ∪

qo,l( )∈Qd

∪
s∈Lσ G,qo( )

T q
o
, s( 􏼁, LP q

o
, l, s( 􏼁( 􏼁􏼈 􏼉⎛⎝ ⎞⎠.

(12)

In other words, assume that qd
1 is the current state in the

revised diagnoser Gd and that σ is the next observable event.
.e new state qd

2 of Gd is generated in the following way (the
revised diagnoser can also be computed by performing a
parallel composition between G and the label automaton Al,
as suggested in the book by Cassandras and Lafortune [14],
where Al is an automaton whose initial state is N, whose
remaining (2p− 1) states are nonempty subsets of
{f1, f2, . . . , fp}, with p being the number of faulty events,
and whose transition events are f1, f2, . . . , fp when
appropriate):

(1) For each (qo, l) ∈ qd
1 , compute the set S(qo, σ) of

reachable states ofG from qo over observable event σ:

S q
o
, σ( 􏼁 � T q

o
, uσ( 􏼁

􏼌􏼌􏼌􏼌 u ∈ Σ∗uo, and σ ∈ Σo􏽮 􏽯. (13)

(2) Given qo′ ∈ S(qo, σ) with T(qo, uσ) � qo′ , propagate
fault label l related to qo to fault label l′ related to qo′

as follows: l′ � l∪ fi | fi ∈ u􏼈 􏼉.
(3) Let qd

2 be the set of all pairs (q
o′ , l′), generated by the

above steps (1) and (2), for each (qo, l) ∈ qd
1 .

According to the definitions of Gd and Gd, we can find
that for each state in Gd, there is a corresponding state in
Gd; the contrary, however, is not always the case. In ad-
dition, an important difference between Gd and Gd is that
the symbol A is not introduced in Gd. Hence, we can retain
more relevant fault information (for obtaining the minimal
diagnosis). For example, if one state Qd ∈ Gd is {(qi, fi),
(qj, fj)}, then the two minimal diagnoses {fi} and {fj} are
both kept, that is, clearer fault information is provided
compared with Gd. In fact, the fault information in Gd is
denoted only as A in this situation, and the necessary fault
information is missing (e.g., states {(18, A{ })} and {(15,
A{ })} in Figure 1(c)). Additionally, some relevant fault
information is again missing for all possible diagnoses,
according to rules (c), (d), and (e) when propagating fault
label l, including A, into l′ because the ambiguous symbol A
is omitted (see Section 2.2 and the transition from state {(5,
f1􏼈 􏼉), (10, {A, f1})} to state {(10, {f1})} in Figure 1(c)). In
contrast, all possible fault information is preserved in the
revised diagnoser Gd.

Example 9. With reference to Example 2 and Example 4,
Figure 1(d) presents the revised diagnoser Gd relevant to the
DES G displayed in Figure 1(a) (similar to Example 6, each
pair (q, l) is written as ql, while, for the sake of simplicity,
“{}” is omitted for each nonempty fault label l).

Notice how all possible fault information is maintained
in Gd, which can be conveniently exploited by a minimal
diagnoser for the minimization of fault sets.
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3.2.2. Minimal Diagnoser. To efficiently generate all mini-
mal diagnoses of a DES online, we propose a novel notion of
minimal diagnoser, which can be generated offline.

Definition 4. Given a DES G� (Q, Σ, T, q0), the related
Go � (Qo,Σo, To, q0), and the revised diagnoser Gd � (Qd, Σo,
Td, qd

0), a minimal diagnoser for G is an FSM:

G
m

� Q
m

,Σo, T
m

, q
m
0( 􏼁, (14)

where

Qm ⊆ 2(Qo×Δ) is the set of states.
qm
0 � (q0, N)􏼈 􏼉. Any state qm ∈ Qm is reachable from qm

0
via transitions in Tm, written as qm � {(qo

1, l1), . . ., (qon,
ln)}, where qo

i ∈Qo and li ∈Δ (that is, li is in the form of
either N or a nonempty subset of Σf ).
Tm: Qm × Σo⟶ Qm is the transition function.

More specifically, Tm and Qm are generated as follows:

(1) For each qd
i ∈ Qd, there exists a corresponding

minimized state qm
i ∈ Qm, obtained as follows: ini-

tially, qm
i � qd

i ; then, for each (qo, l) ∈ qd
i , any other

(qo′ , l′) ∈ qd
i with l≺ l′ will be removed from qm

i (in
particular, state qo′ may equal qo). In other words, all
the pairs labelled with nonminimal fault labels will be
dropped.

(2) For each transition (qd
i ⟶

σ
q

d
j ) ∈ T

d (where σ ∈ Σo
and qd

i , qd
j ∈ Qd), there is a corresponding transition

(qm
i ⟶

σ
q

m
j ) ∈ T

m (where qm
i , qm

j ∈ Qm).
(3) All states and transitions in Gm are generated by the

abovementioned steps (1) and (2).
(4) Trim operation: if any two minimal states share not

only the same contents but also the same transitions
from them (to the same states), they will be seen as
the same state and be merged into one state. Oth-
erwise, they will not be merged even if they have the
same contents.

From the definition of minimal diagnoser, any state in
the revised Gd is transformed into a state in the minimal
diagnoserGm, though generally with the same or fewer labels
(there may be several different states in Gd that have been
transformed into one state in Gm).

In other words, theminimal diagnoserGm, with the same
number of states and the same isomorphic transition
structure as those of the classical diagnoser Gd, is a deter-
ministic (and trim) FSM, where each state is generally
smaller than the corresponding state in Gd (although the
space complexity of Gm is still exponential regarding the
number of states of the systemmodel, since only theminimal
fault labels are retained, less space is required. Although, for
simplicity, the theoretical definition of minimal diagnoser is
based on that of the revised diagnoser Gd, we would actually
like to consider some algorithms that generate a minimal
diagnoser based only on the DES G in some special situa-
tions, without the need to generate Gd again. .is is an
interesting topic that should be analysed in future research).

Remark 1. Based on the definition of a “minimal diag-
noser,” it seems that some nonminimal diagnoses will be lost
as well as the diagnosis completeness of the requirement in
model-based diagnosis. As a matter of fact, the property of
minimal-diagnosis completeness is indeed preserved by the
minimal diagnoser, that is, most probable diagnoses are
retained in the diagnosis results.

Remark 2. Like the classical diagnoser, the minimal
diagnoser can generally be built offline and used for online
efficient diagnosis.

Example 10. Figures 2(a) and 2(b) show two different DESs
and their different diagnosers Gd, Gd, and Gm. We can see
that Gm is isomorphic to the corresponding Gd. Also, note
that in Figure 2(a), two states of Gd, namely, (3N 3f1) and
(3N 3f2), are merged into one state (3N) in Gm after
minimization. By contrast, in Figure 2(b), two states of Gd,
namely, (4N 5f1) and (4N 6f2), are not merged into one
state (4N) in Gm, as they have different transitions from
themselves (to different states).

According to Definition 4, a number of relevant prop-
erties of minimal diagnoser Gm are given below (which will
be used to prove the subsequent related lemmas/
propositions):

(P1) Let qm
i ∈ Qm. For each (qo

i , li) ∈ qm
i , there is at least

a state qd
i ∈ Qd in Gd such that (qo

i , li) ∈ qd
i .

(P2) Let qm ∈ Qm. If (qo, l), (qo′ , l′) ∈ qm, then there
exist s, s′ ∈ L with se, se

′ ∈ Σo such that T(q0, s) � qo,
T(q0, s′) � qo′ , PrjΣo(s) � PrjΣo(s′), PΣf(s) � l,
PΣf(s′) � l′, and either l � l′ or l≺≻ l′.
(P3) Let qm ∈ Qm. .ere may exist (qo, l), (qo, l′) ∈ qm,
that is, the system might reach the same observable
state qo with different minimal fault labels (l≠ l′).
(P4) For each qm ∈ Qm and for each (qo, l), (qo′ , l′) ∈
qm, we have

l � l′⟺ l⊆ l′
l≠ l′⟺ l≺≻ l′

(P5) Let (qm
i ⟶

σ
q

m
j ) ∈ T

m. For each (qo
j, lj) ∈ qm

j ,
there exists (qo

i , li) ∈ qm
i such that li ⊆ lj.

After (offline) building the minimal diagnoser Gm for
DES G and assuming that the current observation is obs, we
can (online) synchronize obs with Gm to reach the corre-
sponding state in Gm to directly obtain the minimal diag-
noses within the state.

Example 11. Consider the DES G outlined in Figure 1(a)
and assume obs � αβθ. According to the minimal diagnoser
Gm outlined in Figure 1(e), we obtain the current minimal
diagnosis N, that is, no fault is produced by (4, N). In
addition, when we receive the additional observation c, we
obtain the new minimal diagnosis f1􏼈 􏼉 (while the non-
minimal diagnosis f1, f2􏼈 􏼉 in label (10, f1, f2􏼈 􏼉) of Gd is
avoided).
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3.3. Minimal Diagnosability of DESs. Just as the classical
diagnosability was defined to determine whether a classical
diagnosis has definitely occurred or not, it is natural to
define minimal diagnosability to determine whether a set of
faults has definitely occurred or not.

In this section, to either strongly or weakly determine
whether a set of faults has definitely occurred or not, two
notions (strong and weak) of the minimal diagnosability of
DESs are proposed.

To introduce the formalizations for the minimal diag-
nosability of a DES G, we define the domain FL to denote
the collection of all possible fault sets ofG (with behaviour L)
as follows:

FL � ∪
s∈L∧ se∈Σo

fi

􏼌􏼌􏼌􏼌 fi ∈ s􏽮 􏽯􏽮 􏽯. (15)

Obviously, FL � ∪ s∈L∧ se∈Σo PΣf(s)􏼚 􏼛.

3.3.1. Strong Minimal Diagnosability of DESs

Definition 5. A prefix-closed and live language L is said to
be strongly minimally diagnosable if, for any fault set
F ∈ FL and for any string s ∈ SF, the following properties
hold:

(i) ∀t(t ∈ L/s, te ∈ Σo, PΣf(t)⊆F)∃t′(t′ ∈ L/(st), (tt′)e

∈ Σo, PΣf(t′)⊆F)((F⇝ minPrjΣo(st))⟹D1
m)

(ii) ∃n(n ∈ N)∀t(t ∈ L/s, te ∈
Σo)(‖t‖≥ n⟹ ((F⇝minPrjΣo(st))⟹D2

m))

where the strong minimal diagnosability conditions D1
m and

D2
m are defined as follows:

D
1
m: ω ∈ Prj− 1Σo PrjΣo stt′( 􏼁􏼐 􏼑􏼐 􏼑⟹ F≼PΣf(ω)􏼒 􏼓,

D
2
m: ω ∈ Prj− 1Σo PrjΣo(st)􏼐 􏼑􏼐 􏼑⟹ F≼PΣf(ω)􏼒 􏼓.

(16)

In other words, assume that s is a trace in G ending with
one fault of F and containing exactly the faulty events of F:

(i) For any continuation t of string s without any new
fault, the DES will always reach an observable state
after a continuation t′ of t (i.e., (tt′)e ∈ Σo), also
without any new fault, such that if F is a minimal
fault set for st, then F will be the unique minimal
diagnosis for any trace with the same observation
sequence in stt′ (here, we make an implicit as-
sumption that a faulty event may be triggered by a
string many times. In other words, if all faulty events
in F have been triggered by string s, then some faults
in F may still be triggered again in a suffix string t
after s).

(ii) In addition, it is required that there is always a
natural number n such that when any continuation t
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Figure 2: Two DESs and their minimal diagnosers: (a) the first DES and (b) the second DES.
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of s is long enough (i.e., the length of t is not less than
n), if F is a minimal fault set for st, then F will be the
unique minimal diagnosis for any trace with the
same observation sequence in st.

Note: in contrast with the notion of classical diagnos-
ability (Definition 2), here, we add two additional condi-
tions, namely, PΣf(t) ⊆ F and PΣf(t′) ⊆ F, to restrict later
subsequences, after the complete occurrence of F, such that
they do not contain any new fault, except those in F, to
ensure that F is still retained as a candidate diagnosis.

In [16], the notion of classical diagnosability is proposed
for checking any single fault fi of G (Definition 2), whereas
our notion of minimal diagnosability is proposed for a set F
of faulty events of G, which must be minimal (compared to
other related candidates). Both require that any fault fi or
any minimal fault set Fmust be definitely detected after their
occurrences (within a finite delay).

However, there is no logic entailment between the
classical diagnosability and our strong minimal diagnos-
ability, as shown in the following example.

Example 12. According to Definition 2 and Definition 5,
DES G in Figure 1(a) is strongly minimally diagnosable yet
not diagnosable (we can verify the strong minimal diag-
nosability of the DES in Figure 1(a) based on Proposition 1
below. .at is, we can check the minimal diagnoser in
Figure 1(e). It is much easier to find that the minimal
diagnoser satisfies the following two conditions in Propo-
sition 1: (1) there is no F-indeterminate cycle and (2) there is
no F-incomparable state. .us, the DES in Figure 1(a) is
strongly minimally diagnosable). By contrast, DES G3 in
Figure 3(e) is diagnosable yet not strongly minimally
diagnosable.

Before introducing the necessary and sufficient condi-
tions for the strong minimal diagnosability of DESs, a
number of related definitions and relevant lemmas are
provided below.

Definition 6. A state qm ∈ Qm is said to be F-certain if, for
any two pairs (qo, l), (qo′ , l′) ∈ qm (where qo′ can possibly
equal qo), we always have l′ � l.

A state qm ∈ Qm is said to be F-incomparable if there
exist two pairs (qo, l), (qo′ , l′) ∈ qm (where qo′ can possibly
equal qo) such that l≺≻ l′.

For instance, the state exactly labelled with 4f1, 5f2􏼈 􏼉 in
Figure 3 is F-incomparable, whereas other states of minimal
diagnosers in Figure 3 are all F-certain..e basic properties of
the two types of states are described by the following lemma.

Lemma 1. For the minimal diagnoser Gm of DES G, the
following properties hold.

Let Tm(qm
0 , s) � qm, s ∈ Σ∗o . If state qm with fault label l

is F-certain, then for each ω ∈ Prj− 1Σo (s), we have
l≼PΣf(ω).
If a state qm ∈ Qm is F-incomparable, then for any two
pairs (qo, l), (qo′ , l′) ∈ qm with l≠ l′, there exist two
strings t, t′ ∈ L with te, te

′ ∈ Σo such that T(q0, t) � qo,

T(q0, t′) � qo′ , PrjΣo(t) � PrjΣo(t′), Tm(qm
0 , PrjΣo(t)) �

qm, l � PΣf(t), l′ � PΣf(t′), and l≺≻ l′.

In other words, if a state qm is F-certain, then any trace ω
with the same observation projection as observation se-
quence s will necessarily contain fault set l. Otherwise, if a
state qm is F-incomparable, then there exist at least two
different traces t and t′ having the same observation pro-
jection but with two incomparable fault sets l and l′.

Definition 7. A set of F-incomparable states qm
1 , qm

2 , . . . ,

qm
n ∈ Qm is said to form an F-indeterminate cycle if

Tm(qm
i , σi) � qm

(i+1)mod n (here, “(i + 1) mod n” represents the
modulus of (i + 1) divided by n.), where σi ∈ Σo, i ∈ [1 · · · n].

Based on Definition 7, an interesting lemma is given
below.

Lemma 2. Assume that qm
1 , qm

2 , . . ., qm
n ∈Qm are a set of

F-incomparable states forming an F-indeterminate cycle, where

q
m
i � q

o
i1

, li1􏼐 􏼑, q
o
i2

, li2􏼐 􏼑, . . . , q
o
ilen i

, lilen i
􏼐 􏼑􏽮 􏽯,

q
m
j � q

o
j1

, lj1􏼐 􏼑, q
o
j2

, lj2􏼐 􏼑, . . . , q
o
jlen j

, ljlen j
􏼒 􏼓􏼚 􏼛,

(17)

with i, j ∈ [1 · · · n] and len i, len j denoting the number of
pairs in qm

i and qm
j , respectively. @en, we have

li1, li2, . . . , lilen i
􏽮 􏽯 � lj1, lj2, . . . , ljlen j

􏼚 􏼛. (18)

In other words, in an F-indeterminate cycle, any state has the
same set of different fault labels. Intuitively, on the one hand, a
fault in the current statewill stay in the next state (we assume that
the faults are persistent); on the other hand, since all states form a
cycle, the previous state of the current one can also be seen as the
next state. .erefore, all states share the same faults (in fact,
Lemma 2 is true for all kinds of cycles. .at is, the conclusion is
much clearer when all states in the cycle are F-certain).

Lemma 3. Given a prefix-closed language L, if
F⇝minPrjΣo

(s) holds for a fault set F ∈FL and a string s ∈ L

with se ∈ Σo and PΣf
(s) � F, then for any string t ∈ L/s with

te ∈ Σo and PΣf
(t)⊆F, we have F⇝minPrjΣo

(st).

In other words, if a fault set F of a trace s is a minimal
diagnosis for the observation projection of s, then F is still a
minimal diagnosis for any subsequent longer trace from s,
provided there is no new fault in the subsequent trace.

Lemma 4. Given a prefix-closed language L, F⇝minPrjΣo
(s)

holds for a fault set F ∈ FL and a string s ∈ L with se ∈ Σo

and PΣf
(s) � F. If F is the unique minimal diagnosis for

observation PrjΣo
(s), i.e.,

ω ∈ Prj− 1Σo PrjΣo(s)􏼐 􏼑⟹F≼PΣf(ω), (19)

then for each string t ∈ L/s with te ∈ Σo, the following holds:

ω′ ∈ Prj− 1Σo PrjΣo(st)􏼐 􏼑⟹F≼PΣf(ω). (20)
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In other words, if F is the unique minimal diagnosis for a
string s (and its projection on the observation is PrjΣo(s)),
then any trace with the same observation PrjΣo(st) will still
contain all the faults in F.

Given the definitions and lemmas introduced above, we
now present the necessary and sufficient conditions for the
strong minimal diagnosability of a DES G in Proposition 1,
based on its minimal diagnoser Gm.

Proposition 1. A language L generated by an FSM G is
strongly minimally diagnosable iff its minimal diagnoser Gm

satisfies the following two conditions:

(C1) @ere is no F-indeterminate cycle in Gm

(C2) For each F-incomparable state qm ∈ Qm and for
each pair (qo, l) ∈ qm, there exist a state qm′ ∈ Qm and a
nonempty observation sequence so ∈ Σ+

o such that
Tm(qm, so) � qm′ , and for each pair (qo′ , l′), we have
l′ � l, that is, qm′ (after qm) is an F-certain state with the
unique minimal fault label l

Remark 3. Condition (C1) is almost identical to the first
condition for checking the classical diagnosability in [16],
with the exception that “Fi-indeterminate cycle” is replaced
by “F-indeterminate cycle”. However, Condition (C2) is
more complex than the corresponding one for checking the
classical diagnosability (where only one statement is needed,
namely, “No state q ∈ qd is ambiguous”), as the strong
minimal diagnosability is conceptually more complex.

Example 13. Consider the three DES models G1, G2, and G3
in Figure 3, where f1, f2, and f3 are faults, while the other
events are observable. .eir minimal diagnosers Gm

1 , Gm
2 ,

and Gm
3 are also depicted in Figure 3. According to the three

minimal diagnosers, we can find that only G1 is strongly
minimally diagnosable. G2 is not strongly minimally diag-
nosable because it does not fulfil Condition (C1): there does

exist an F-indeterminate cycle including state (4, f1􏼈 􏼉),􏼈

(5, f2􏼈 􏼉)} and the cyclic transition event o4 in Gm
2 . G3 is also

not strongly minimally diagnosable because it does not fulfil
Condition (C2): there does exist an F-incomparable state
qm � (4, f1􏼈 􏼉), (5, f2􏼈 􏼉)􏼈 􏼉 in Gm

3 , but there are no states such
as (4′, f1􏼈 􏼉)􏼈 􏼉 or (5′, f2􏼈 􏼉)􏼈 􏼉 after qm in Gm

3 .

3.3.2. Weak Minimal Diagnosability of DESs. As mentioned
above, according to Definition 5, it is required that any
minimal fault set F be the unique minimal diagnosis after a
finite delay but before a new faulty event (not in F) occurs. In
theory, the condition is very strong..erefore, we provide the
following notion of the weakminimal diagnosability of a DES.

Definition 8. A prefix-closed and live language L is weakly
minimally diagnosable if the following condition holds:

∀F F ∈ FL( 􏼁,

∀s s ∈ SF( 􏼁,

∃n(n ∈ N),

∀t t ∈ L/s, te ∈ Σo( 􏼁,

t≥ n⟹Dm( 􏼁,

(21)

where the minimal diagnosability condition Dm is defined in
the following way:

F⇝minPrjΣo(st)􏼐 􏼑⟹ ω ∈ Prj− 1Σo PrjΣo(st)􏼐 􏼑⟹F≼PΣf(ω)􏼒 􏼓.

(22)

In other words, assume that s is a trace ofG ending with a
set F of faulty events. For each continuation trace t of s, there
always exists a natural number n such that when the length
of trace t is greater than or equal to n, and if F is still the
minimal fault set for st, then fault set F will be the unique
minimal diagnosis for any trace with the same observation
projection on st.
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Figure 3: DES models and minimal diagnosers. (a) DES model G1. (b) Minimal diagnoser G1
m for G1. (c) DES model G2. (d) Minimal

diagnoser G2
m for G2. (e) DES model G3. (f ) Minimal diagnoser G3

m for G3.
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If the language of a DES has the property of weakly
minimal diagnosability, when a trace is long enough (i.e., the
length of its continuation t is not less than a given integer n),
and if the set of faulty events in the trace is still minimal, then
it will definitely be the unique minimal diagnosis. According
to the above analysis, the condition of Definition 8 is weaker
than that provided in Definition 5 and Definition 2. .e
following proposition shows the relations between the
representation of classical diagnosability and our two rep-
resentations of minimal diagnosability.

Proposition 2. Let G be a DES with language L. If L is
strongly minimally diagnosable, then L is also weakly min-
imally diagnosable. If L is diagnosable, then L is also weakly
minimally diagnosable.

However, based on the following example, we can show
that the contrary of Proposition 2 does not hold.

Example 14. According to our definitions, we can see that
DES G3 in Figure 3(e) is weakly minimally diagnosable yet not
strongly diagnosable. In contrast, the DES G in Figure 1(a) is
weakly minimally diagnosable yet not diagnosable.

Remark 4. .e notion of minimal diagnosability allows
missed detection. .at is, it is possible that some of the
failures are not detected by a minimal diagnoser. For ex-
ample, the occurrence of f2 cannot be detected in the DES
model shown in Figure 1(a), although the DES is also weakly
minimally diagnosable. After all, only subset-minimal di-
agnoses are taken into account in our framework.

In the following, we give the necessary and sufficient
conditions for the weak minimal diagnosability of a DES.

Proposition 3. A language L generated by an FSM G is
weakly minimally diagnosable iff its minimal diagnoser Gm

does not include any F-indeterminate cycle.

Remark 5. Compared with the necessary and sufficient
conditions for the strong minimal diagnosability of DESs in
Proposition 1, the conditions for weak minimal diagnos-
ability for the DESs in Proposition 3 are much weaker.

Example 15. Consider the three DESs and the related
minimal diagnosers shown in Figure 3. Based on the three
minimal diagnosers, we conclude that both G1 and G3 are
weakly minimally diagnosable. Instead, G2 is not weakly
minimally diagnosable, as there is an F-indeterminate cycle
that includes the only state (4, f1􏼈 􏼉), (5, f2􏼈 􏼉)􏼈 􏼉 and the
corresponding cyclic transition event o4 in Gm

2 .

4. Related Work and Comparison

Several works aimed at finding only theminimal diagnosis of
DESs are based on either AI planning [43, 44] or SAT ap-
proaches [45]. Significantly, they require first to transform a
diagnosis problem description into the corresponding
knowledge representation, generally with the bottleneck of
quickly solving planning or SAT problems for online

diagnosis. However, we generate minimal diagnoses by
minimal diagnoser only, which is the main advantage of our
approach.

In addition, we compared our method with many other
related approaches for diagnosis in different views:

(1) Minimal diagnosis of static systems vs. minimal
diagnosis of DESs: Similarity: Like the minimal di-
agnosis of static systems [41, 42], the minimal di-
agnosis of DESs is also quite valuable.

(a) First, a diagnosis with fewer faults is more
probable than one with more faults

(b) Second, some space is saved by a minimal di-
agnosis than corresponding superset diagnoses
with very large sizes

Difference: a superset diagnosis of the static system is
still a diagnosis, but a superset may not be a diagnosis
for a given observation sequence of a DES.

(2) Minimal diagnosis vs. diagnosis with probability:

(a) Minimal diagnosis does not need probability
information, which sometimes cannot present
quite precise diagnoses.

(b) Diagnosis with explicit fault probability based on
Bayesian/probabilistic reasoning [32–35] can
offer precise diagnoses in a mathematically rig-
orous way. However, the shortcomings of these
approaches may be twofold.

(i) First, the prior probability of each faulty
event is required, which may be difficult to
obtain in practice

(ii) Second, adding the probability of each faulty
event will possibly make the diagnosis pro-
cess more complex

5. Conclusions

In this paper, to focus on the more likely diagnoses, a notion
of minimal diagnosis of DESs is proposed, where only
subset-minimal fault sets are considered as the most
probable explanations for the given observation sequences.
.en, the notion of a minimal diagnoser is proposed for the
online minimal diagnosis of DESs. Moreover, two sorts of
minimal diagnosability are presented for deciding whether a
DES is strongly/weakly minimally diagnosable or not, along
with necessary and sufficient conditions for testing the
minimal diagnosability, which are based on the notion of a
minimal diagnoser. Finally, the basic relationships among
the three types of diagnosability (classical diagnosability and
the two novel notions of minimal diagnosability) are
presented.

However, since the generation of the minimal diagnoser
requires the availability of the whole DES model, a problem
of complexity may arise if the DES is large (which is normal
for real, possibly distributed systems). To cope with this
problem, as in previous approaches to developing decen-
tralized diagnosers, a challenging goal for future research is
the decentralization/distribution of minimal diagnoses.
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.e paper is conceived to provide a theoretical/formal
foundation for the minimal diagnosis and minimal diag-
nosability of DESs. Unfortunately, as far as we know, al-
though there are several real case studies on the diagnosis of
DESs (e.g., the hydraulic circuit case [46]), there are still no
widely used artificially well-designed or widely used real-
application benchmarks for the diagnosis of DESs to be
applied for testing the diagnosis approaches. Accordingly,
practical applications are one interesting subject for future
research as well as an effective/efficient algorithm for con-
structing a minimal diagnoser of a DES with a sound space
complexity.

A polynomial “twin-plant” approach has been proposed in
[47, 48] for efficiently testing the diagnosability of DESs.
Designing similar polynomial approaches to check theminimal
diagnosability of DESs is also an interesting future topic.

Still, a number of important issues must be considered in
future research. An essential assumption of this paper is the
independence of faults. Although this may be reasonable in a
wide variety of contexts, the question remains: how will the
notion of the minimal diagnosis of DESs change when fault
dependence actually occurs? Another challenging task is the
injection of minimal diagnosis into other approaches for the
diagnosis of DESs, including those that do not require the
generation of a diagnoser (which may be impractical in real-
application domains), such as the diagnosis of active systems
[21]. Like our model-based distributed minimal diagnosis of
static systems [49] or the decentralized/distributed diagnosis
of DESs [27–29, 50], the decentralized/distributed minimal
diagnosis of DESs is also an interesting and challenging
topic. Eventually, only the application of minimal diagnosis
to real DESs will provide evidence of its practical utility.

Appendix

Proofs for Properties, Lemmas,
and Propositions

Properties of minimal diagnoser Gm:

(P1) Let qm
i ∈ Qm. For each (qo

i , li) ∈ qm
i , there is at least

a state qd
i ∈ Qd in Gd such that (qo

i , li) ∈ qd
i .

(P2) Let qm ∈ Qm. If (qo, l), (qo′ , l′) ∈ qm, then there
exist s, s′ ∈ L with se, se

′ ∈ Σo such that T(q0, s) � qo,
T(q0, s′) � qo′ , PrjΣo(s) � PrjΣo(s′), PΣf(s) � l,
PΣf(s′) � l′, and either l � l′ or l≺≻ l′.
(P3) Let qm ∈ Qm. .ere may exist (qo, l), (qo, l′) ∈ qm,
that is, the system might reach the same observable
state qo while having different minimal fault labels
(l≠ l′).
(P4) For each qm ∈ Qm and for each (qo, l),

(qo′ , l′) ∈ qm, we have

(i) l � l′⟺ l⊆ l′
(ii) l≠ l′⟺ l≺≻ l′

(P5) Let qm
i σ⟶ qm

j􏼠 􏼡 ∈ Tm. For each (qo
j, lj) ∈ qm

j ,

there exists (qo
i , li) ∈ qm

i such that li ⊆ lj.

Proof.

(P1) According to case (1) of the definition (Definition
4) of a minimal diagnoser, for each qd

i ∈ Qd, there exists
a state qm

i ∈ Qm with (qo, l) ∈ qd
i , with l being the

minimal fault label in qd
i . On the contrary, for each

qm
i ∈ Qm, we can apply a backforward process to Gd to
find at least a state qd

i with (qo, li) ∈ qd
i , as well as for any

other (qo′ , li′) ∈ qd
i (if they exist), such that li ≺ li′.

(P2) According to the definitions of the revised diag-
noser (especially the two functions S and Td) and the
minimal diagnoser, for (qo, l), (qo′ , l′) ∈ qm, we can
find two corresponding traces s, s′ ∈ L, with se, se

′ ∈ Σo,
such that T(q0, s) � qo (i.e., to reach the observable
state qo), T(q0, s′) � qo′ , PrjΣo(s) � PrjΣo(s′) (since s
and s′ reach the same state qm, they may have the same
observation sequence), and PΣf(s) � l and PΣf(s′) � l′.
Because qo may equal qo′ , then l � l′ may hold; oth-
erwise, l⊄ l′ and l′ ⊄ l (i.e., l≺≻ l′). If, for example,
l ⊂ l′, then l′ will not be a minimal diagnosis. Hence
we get the conclusion.
(P3) As in (P2), when qo � qo′ , i.e., s and s′ reach the
same observable state, but with l � PΣf(s)≠PΣf(s′) �

l′ and l≺≻ l′, then l≠ l′.
(P4) Because qm is a minimal state, any two fault labels l
and l′ in qm are minimal. .en,

(a) If l⊆ l′, then l � l′, since otherwise, if, for instance,
l⊆ l′ but l≠ l′, then l ⊂ l′, that is, l is the minimal
fault set. However, l′ is not, which contradicts the
idea that l′ is in qm. On the contrary, if l � l′, then
obviously l⊆ l′. .us, l � l′⟺ l⊆ l′ holds.

(b) If l≠ l′, then suppose that l ⊂ l′ or l′ ⊂ l. In the
former case, l′ is not minimal, which contradicts
the idea that l′ is in qm; in the latter case, l is not
minimal, which also contradicts the idea that l is in
qm. .us, l≺≻ l′ holds. On the contrary, if l≺≻ l′,
then according to the definition of ≺≻ , obviously
l≠ l′. .erefore, l≠ l′⟺ l≺≻ l′ holds.

(P5) According to the method for the propagation of
labels using Td (i.e., case (2) of the definition of Td,
where l′ � l∪ fi | fi ∈ u􏼈 􏼉), l′ in the next state is a
superset of the label l in the previous state. Accordingly,
lj in qm

j is a superset of the label li in the previous state
qm

i . .us, li ⊆ lj holds. □

Lemma A.1. For the minimal diagnoser Gm of DES G, the
following properties hold:

(i) Let Tm(qm
0 , s) � qm, s ∈ Σ∗o . If state qm with fault label

l is F-certain, then for each ω ∈ Prj− 1Σo
(s), we have

l≼PΣf
(ω).

(ii) If a state qm ∈ Qm is F-incomparable, then for any two
pairs (qo, l), (qo′ , l′) ∈ qm with l≠ l′, there exist two
strings t, t′ ∈ L with te, te

′ ∈ Σo such that T(q0, t) � qo,
T(q0, t′) � qo′ , PrjΣo

(t) � PrjΣo
(t′), Tm(qm

0 ,

PrjΣo
(t)) � qm, l � PΣf

(t), l′ � PΣf
(t′), and l≺≻ l′.
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Proof.

(i) For property (i)

In the revised diagnoser Gd for DES G, consider
any pair (qo, PΣf |ω) with Qd ∈ Qd and
Td(q0, s) � Qd.

(a) On the one hand, if (qo, PΣf(ω)), then either l �

PΣf(ω) or l≺≻PΣf(ω) holds. However, if
l≺≻PΣf(ω) holds, that is, there exist at least two
different fault labels in qm, then it contradicts the
idea that qm is F-certain. .erefore, only
l � PΣf(ω) holds, which is also consistent with
property (P1) of a “minimal diagnoser”.

(b) On the other hand, if (qo, PΣf(ω)), according to
the first condition in Definition 4, we obtain
l≺PΣf(ω). In other words, PΣf(ω) is not a
minimal diagnosis for observation PrjΣo(s).
Based on the above analysis, we have l ≺ PΣf(ω).

(b) For property (ii)

It is easy to draw a conclusion from property (P2) of
a “minimal diagnoser.” □

Lemma A.2. Assume that qm
1 , q

m
2 , . . ., qm

n ∈ Qm are a set of F-
incomparable states forming an F-indeterminate cycle, where

q
m
i � q

o
i1

, li1􏼐 􏼑, q
o
i2

, li2􏼐 􏼑, . . . , q
o
ilen i

, lilen i
􏼐 􏼑􏽮 􏽯,

q
m
j � q

o
j1

, lj1􏼐 􏼑, q
o
j2

, lj2􏼐 􏼑, . . . , q
o
jlen j

, ljlen j
􏼒 􏼓􏼚 􏼛,

(A.1)

with i, j ∈ [1 · · · n] and len i and len j denotes the number of
pairs in qm

i and qm
j , respectively. @en, we have

li1, li2, . . . , lilen i
􏽮 􏽯 � lj1, lj2, . . . , ljlen j

􏼚 􏼛. (A.2)

Proof. For any two adjacent states qm
i and qm

(i+1) in the F-
indeterminate cycle, according to property (P5) of a
“minimal diagnoser,” we have the following.

For any pair (qo
(i+1)j(i+1)

, l(i+1)j(i+1)

) ∈ qm
(i+1) (1≤ j(i+1) ≤

len (i + 1)), there exists (qiji

, liji

) ∈ qm
i such that

liji
⊆ l(i+1)j(i+1)

.
.en, we have

l1j1
⊆ l2j2

, l2j2
⊆ l3j3

, . . . , l(n− 1)j(n− 1)

⊆ lnjn
, (A.3)

and then we obtain

l1j1
⊆ l2j2
⊆ · · · ⊆ l(n− 1)j(n− 1)

⊆ lnjn
. (A.4)

Because qm
1 , qm

2 , . . . , qm
n form a cycle, then for a pair

(q1j1
, l1j1

) ∈ qm
1 , according to property (P5) of a “minimal

diagnoser,” there exists a pair (qnkn
, lnkn

) ∈ qm
n such that

lnkn
⊆ l1j1

. (A.5)

From formula (A.4), we obtain

l1j1
⊆ lnjn

. (A.6)

From formulas (A.5) and (A.6), we obtain

lnkn
⊆ lnjn

. (A.7)

From property (P4) of a “minimal diagnoser,” we have

lnkn
� lnjn

. (A.8)

From formulas (A.5), (A.6), and (A.8), we obtain

l1j1
� lnjn

. (A.9)

From formulas (A.4) and (A.8), we obtain

l1j1
� l2j2

� · · · � lnjn
. (A.10)

.at is, for any pair with label li in any state qm
i , there exists

the same label in each of the other states. .erefore, we have
the following conclusion:

li1, li2, . . . , lilen i
􏽮 􏽯 � lj1, lj2, . . . , ljlen j

􏼚 􏼛. (A.11)
□

Lemma A.3. Given a prefix-closed language L, if
F⇝minPrjΣo

(s) holds for a fault set F ∈FL and a string s ∈ L

with se ∈ Σo and PΣf
(s) � F, then for any string t ∈ L/s with

te ∈ Σo and PΣf
(t)⊆F, we have F⇝minPrjΣo

(st).

Proof. According to the definition of a “minimal diagnosis”
(Definition 1 and Definition 3), to prove that
F⇝minPrjΣo(st), we have to prove the following two
statements:

(i) F⇝PrjΣo(st)

(ii) ∄F″ ⊆ Σf such that F″ ⇝PrjΣo(st)∧F″ ≺F

For the first statement, because PΣf(s) � F and
PΣf(t)⊆F, then F � PrjΣf(st), that is, F⇝PrjΣo(st).

For the second statement, by contradiction, assume that
there exists F″ ⊆Σf such that F″ ⇝PrjΣo(st)∧F″ ≺F (i.e.,
F″ ⊂ F). .at is, there exists a string s″ ∈ L with PrjΣo(s″) �

PrjΣo(st) and F″ � PΣf(s″).
Let s″ � s′t′ such that s′ ∈ SF, that is, se

′ ∈
Σo ∧ PrjΣo(s′) � PrjΣo(s).

Since F⇝minPrjΣo(s), we have F⇝minPrjΣo(s′).
.en, we have two possible cases regarding the relations

between F and PΣf(s′):

(A) F≼PΣf(s′) (also F⊆PΣf(s′))
(B) F≺≻PΣf(s′)

For case (A), since F⊆PΣf(s′)⊆PΣf(s′t′) �

PΣf(s″) � F″, we get F⊆F″, which contradicts the assump-
tion that F″ ⊂ F.

For case (B), from F≺≻PΣf(s′), we get PΣf(s′)⊄F, and
then PΣf(s′t′)⊄F, that is, PΣf(s″)⊄F; thus, we get F″ ⊄F,
which also contradicts the assumption that F″ ⊂ F.

.erefore, the second statement also holds.
Hence, we get the conclusion. □

Lemma A.4. Given a prefix-closed language L,
F⇝minPrjΣo

(s) holds for a fault set F ∈FL and a string s ∈ L

with se ∈ Σo and PΣf
(s) � F. If F is the unique minimal

diagnosis for observation PrjΣo
(s), i.e.,
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ω ∈ Prj− 1Σo PrjΣo(s)􏼐 􏼑⟹F≼PΣf(ω), (A.12)

then for each string t ∈ L/s with te ∈ Σo, and the following
holds:

ω′ ∈ Prj− 1Σo PrjΣo(st)􏼐 􏼑⟹F≼PΣf ω′( 􏼁. (A.13)

Proof. For each ω′ ∈ Prj− 1Σo (PrjΣo(st)), we have
PrjΣo(ω′) � PrjΣo(st).

Let ω′ � s′t′ with PrjΣo(t′) � PrjΣo(t) and
PrjΣo(s′) � PrjΣo(s) with se

′ ∈ Σo; thus, s′ ∈ Prj− 1Σo (PrjΣo(s)),
and then F≼PΣf(s′) (i.e., F⊆PΣf(s′)).

.en, F⊆PΣf(s′)⊆PΣf(s′t′) � PΣf(ω′); thus, we get
F≼PΣf(ω′).

.erefore, we obtain the following conclusion:
ω′ ∈ Prj− 1Σo (PrjΣo(st))⟹F≼PΣf(ω′). □

Proposition A.1. A language L generated by an FSM G is
strongly minimally diagnosable iff its minimal diagnoser Gm

satisfies the following two conditions:

(C1)@ere is no F-indeterminate cycle in Gm

(C2) For each F-incomparable state qm ∈ Qm and for
each pair (qo, l) ∈ qm, there exist a state qm′ ∈ Qm and a
nonempty observation sequence so ∈ Σ+

o such that
Tm(qm, so) � qm′ , and for each pair (qo′ , l′), we have
l′ � l, that is, qm′ (after qm) is an F-certain state with the
unique minimal fault label l.

Proof. Necessity: firstly, we prove that if L is strongly
minimally diagnosable, then it satisfies condition (C1). By
contradiction, assume there exist qm

1 , qm
2 , . . . , qm

n ∈ Qm such
that they form an F-indeterminate cycle, and let
Tm(qm

i , σi) � qm
(i+1)mod n, σi ∈ Σo. According to Lemma A.2,

let qm
i � (q

o1
i1

,􏽮 l1i1), (q
o2
i1

, l2i1), . . . , (q
olen i1
i1

, l
len i1
i1

), . . . ,

(q
o1
ik

, l1ik ), (q
o2
ik

, l2ik ), . . . , (q
olen ik

ik
, l
len ik
ik

)}, (1≤ i≤ n), where k is
the number of different fault labels in qm

i , and

l
1
ij

� l
2
ij

� · · · � l
len ij
ij

(1≤ j≤ k),

l
1
ir
≺≻ l

1
is
(1≤ r, s≤ k, r≠ s),

l
1
xj

� l
1
yj

(1≤x, y≤ n, 1≤ j≤ k).

(A.14)

For any two pairs (q
o1
1j

, l11j
), (q

o1
1m

, l11m
) ∈ qm

1 (1≤ j, m≤ k)
with l11j

≺≻ l11m
, since qm

1 is F-incomparable, according to
Lemma A.1-(ii), there exist two strings s, s′ ∈ L with
se, se
′ ∈ Σo such that l11j

� PΣf(s), l11m
� PΣf(s′), T(q0, s) �

q
o1
1j
, T(q0, s′) � q

o1
1m
, and Tm(qm

0 , PrjΣo(s)) � qm
1 . .en,

l11j
⇝minPrjΣo(s) and l11m

⇝minPrjΣo(s′).
Consider the following two traces:

ω � s s1σ1s2σ2 · · · szσz( 􏼁
p
;

ω′ � s′ s1′σ1s2′σ2 · · · sz
′σz( 􏼁

p
;

(A.15)

with p ∈ N and p≥ 1 being arbitrarily large, sq, sq
′ ∈ Σ∗uo, and

σq ∈ Σo (q ∈ [1 · · · z]).
Let PΣf(sq)⊆ l11j

and PΣf(sq
′)⊆ l11m

for each q (q ∈ [1 · · ·

z]). .en, we have

PrjΣo(ω) � PrjΣo ω′( 􏼁,

PΣf(ω) � l
1
1j

,

PΣf ω′( 􏼁 � l
1
1m

.

(A.16)

Let F � l11j
and t ∈ L/s such that ω � st; then, t �

(s1σ1s2σ2 · · · szσz)p, te ∈ Σo, and PΣf(t)⊆F. By choosing p to
be arbitrarily large, we can obtain ‖t‖≥ n for any given n ∈ N,
and then we have: ω′ ∈ Prj− 1Σo (PrjΣo(st)) and l11j

⇝minPrjΣo
(st) (according to Lemma A. 3l11j

⇝minPrjΣo(s), l11j
� PΣf(s),

andPΣf(t)⊆ l11j
.) but l11j

⋠PΣf(ω′) � l11m
(because l11j

≺≻
l11m

), which contradicts condition D2
m of the definition of a

“strong minimal diagnosability” (Definition 5).
.us, for two such traces, according to Definition 5, L is

not strongly minimally diagnosable.
.erefore, condition (C1) must be satisfied.
.en, we prove that if L is strongly minimally diag-

nosable, then it satisfies condition (C2). By contradiction,
assume that there exists an F-incomparable state qm ∈ Qm

and that there also exists a pair (qo, l) ∈ qm but there does
not exist a state qm′ ∈ Qm such that Tm(qm, so) � qm′ (where
so ∈ Σ+o ), and for each (qo′ , l′) ∈ qm′ , l′ � l. .en, for each
qm′ , there exist only two possible distinct cases:

(1) For each (qo′ , l′) ∈ qm′ , l′ ≠ l

(2) .ere exist (qo′
1 , l1′), (qo′

2 , l2′) ∈ qm′ such that l1′ � l and
l2′ ≠ l

For case (1), because (qo, l) ∈ qm, according to property
(P2) of a “minimal diagnoser,” there exists s′ ∈ Σ∗ with
se
′ ∈ Σo such that T(q0, s′) � qo and PΣf(s′) � l.

Let s′ � st with se ∈ Σf, PΣf(s) � l (i.e., s ∈ sl),
te � se
′ ∈ Σo, and PΣf(t) � ∅ (⊆ l).

.en, for condition (i) of Definition 5, we cannot find a
trace t′ ∈ L/(st), (tt′)e ∈ Σo, and PΣf(t′)⊆ l such that
(l⇝ minPrjΣo(st))⟹D1

m.
By contradiction, assume that there exist t′ ∈ L/(st),

(tt′)e ∈ Σo, and PΣf(t′)⊆ l (then, according to Lemma A.3,
l⇝minPrjΣo(s′t′)). Let so � PrjΣo(t′) and Tm(qm, so) � qm′ ;
then, there must exist a pair (qo′ , l′) ∈ qm′ with l′ � l (be-
cause l⇝minPrjΣo(s′t′)), which contradicts case (1), in
which ∀(qo′ , l′) ∈ qm′ , l′ ≠ l. Even if so (i.e., PrjΣo(t′)) is ε, the
condition D1

m of Definition 5 will not be satisfied, or else qm

will be F-certain with the unique fault label l, which con-
tradicts the assumption that qm is F-incomparable.

For case (2), as in case (1), there also exists s′ ∈ Σ∗ with
se
′ ∈ Σo such that T(q0, s′) � qo and PΣf(s′) � l.

Let s′ � st with se ∈ Σf, PΣf(s) � l (i.e., s ∈ Sl),
te � se
′ ∈ Σo, and PΣf(t) � ∅ (⊆ l).

For each t′ ∈ L/(st) with PΣf(t′)⊆ l (and subsequently
PΣf(stt′)⊆ l) and PrjΣo(t′) � so, according to Case (2), we
have T(q0, stt′) � qo′

1 , l1′(� l)⇝minPrjΣo(stt′), and
l2′⇝minPrjΣo(stt′), but l1′ ⋠ l2′, which contradicts the defini-
tion of a “strong minimal diagnosability” (condition D1

m).
Even if so (i.e., PrjΣo(t′)) is ε, as in case (1), condition D1

m of
Definition 5 is not satisfied.

.erefore, condition (C2) must be satisfied.
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Sufficiency: assume that the minimal diagnoser Gm

satisfies conditions (C1) and (C2). For any fault set F ∈ FL,
pick any s ∈ L with s ∈ SF. Pick any t ∈ L/s with te ∈ Σo
(based on the assumption that there is no infinite sequence
of unobservable events in L, we let a natural number n0
denote the maximum length of any sequence of unob-
servable events; thus, t≤ (n0 + 1)).

Let T(q0, st) � qo
i , and then we get the corresponding

state qm
j � Tm(qm

0 ,PrjΣo(st)) in Gm. Since PΣf(st) � F,
according to the conditions of Definition 5, we suppose that
F⇝minPrjΣo(st), and then we get (qo

i , F) ∈ qm
j . .en, we

have two distinct cases to consider:

(a) qm
j is F-certain

(b) qm
j is F-incomparable

For case (a), in which qm
j is F-certain, according to

Lemma A.1-(i), we have

ω ∈ Prj− 1Σo PrjΣo(st)􏼐 􏼑⟹F≼PΣf(ω). (A.17)

.us, there exists t′ � ε such that t′ ∈ L/(st), (tt′)e ∈ Σo
(because tt′ � t and te ∈ Σo), and PΣf(t′)⊆F. If
F⇝minPrjΣo(st), then D1

m of Definition 5 holds:

ω ∈ Prj− 1Σo PrjΣo stt′( 􏼁􏼐 􏼑⟹F≼PΣf(ω). (A.18)

.us, the first condition (i) of Definition 5 holds
(F⇝minPrjΣo(st))⟹D1

m.
According to Lemma A.4, for each t″ ∈ L/(st) with

te
″ ∈ Σo,

ω ∈ Prj− 1Σo PrjΣo stt″( 􏼁􏼐 􏼑⟹F≼PΣf(ω). (A.19)

.en, for the second condition (ii) of Definition 5, let
n � t; for each string u with u ∈ L/s and ue ∈ Σo, when u≥ n,
we have the following:

If F⇝minPrjΣo(su), then

ω ∈ Prj− 1Σo PrjΣo(su)􏼐 􏼑⟹F≼PΣf(ω), i.e., D
2
m holds􏼐 􏼑.

(A.20)

.us, the second condition (ii) of Definition 5 holds.
For case (a), since the conclusion is true for any F ∈ FL,

L is strongly minimally diagnosable.
For case (b), if qm

j is F-incomparable, according to con-
dition (C1) (there is no F-indeterminate cycle), theremust exist
m ∈ N and r ∈ Σ+o . When r≥m, the diagnoser will reach the
first F-certain state qm′

j with the unique fault label F′ via
observation sequence r only in two possible distinct scenarios:

(b1) F ⊂ F′ for each (qo′
i , F′) ∈ qm′

j

(b2) F � F′ for each (qo′
i , F′) ∈ qm′

j

For scenario (b1), because F is no longer a minimal
diagnosis, we do not care about this scenario.

Scenario (b2) is just condition (C2). According to (C2),
there exists so ∈ Σ+o such that Tm(qm

j , so) � qm′
j ; then, there

exists t′ ∈ L/(st) with PrjΣo(t′) � so, PΣf(t′)⊆F, and te
′ ∈ Σo

(also (tt′)e ∈ Σo) such that T(q0, stt′) � qo′
i and

(qo′
i , F) ∈ qm′

j . By Lemma A.1-(i), we have

ω ∈ Prj− 1Σo PrjΣo stt′( 􏼁􏼐 􏼑⟹F≼PΣf(ω). (A.21)

.at is, D1
m of Definition 5 holds.

.us, the first condition (i) of Definition 5 holds.
For any t″ ∈ L/(stt′) with te

″ ∈ Σo, according to Lemma
A.4, we have

ω ∈ Prj− 1Σo PrjΣo stt′t″( 􏼁􏼐 􏼑⟹F≼PΣf(ω). (A.22)

In other words, ∃n � tt′, ∀u(u ∈ L/s, ue ∈ Σo). When
u≥ n, we have the following. If F⇝minPrjΣo(su), then

ω ∈ Prj− 1Σo PrjΣo(su)􏼐 􏼑⟹F≼PΣf(ω). (A.23)

.at is, the second condition (ii) of Definition 5 holds.
Hence, L is strongly minimally diagnosable. □

Proposition 3.18. Let G be a DES with language L. If L is
strongly minimally diagnosable, then L is also weakly min-
imally diagnosable. If L is diagnosable, then L is also weakly
minimally diagnosable.

Proof.

(1) From the second condition (ii) of Definition 5 (“strong
minimal diagnosability”) and the condition of Defi-
nition 8 (“weak minimal diagnosability”), we can
clearly see that the former condition is just the latter
one. .erefore, if G is strongly minimally diagnosable,
then G is necessarily weakly minimally diagnosable.

(2) Let a DESGwith language L be diagnosable. Pick any
fault set F ∈ FL, with F � f1, f2, . . . , fp􏽮 􏽯.
According to Definition 2, for each fi ∈ F and for
each s ∈ L, se � fi, there exists n ∈ N such that

∀t t ∈ L/s, te ∈ Σo( 􏼁, (‖t‖≥ n⟹D), (A.24)

where the diagnosability condition D is defined as follows:

ω ∈ Prj− 1Σo PrjΣo(st)􏼐 􏼑⟹fi ∈ ω. (A.25)

Hence,

ω ∈ Prj− 1Σo PrjΣo(st)􏼐 􏼑⟹fi ∈ ω⟹fi ∈ PΣf(ω). (A.26)

.us, we obtain

ω ∈ Prj− 1Σo PrjΣo(st)􏼐 􏼑⟹F⊆PΣf(ω)⟹F≼PΣf(ω).

(A.27)

.us,

F⇝minPrjΣo(st)􏼐 􏼑⟹ ω ∈ Prj− 1Σo PrjΣo(st)􏼐 􏼑⟹F≼PΣf(ω)􏼒 􏼓.

(A.28)

.erefore, if G is diagnosable, then G is also weakly
minimally diagnosable. □

Proposition 3.20. A language L generated by an FSM G is
weakly minimally diagnosable iff its minimal diagnoser Gm

does not include any F-indeterminate cycle.
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Proof. (sketch)Based on the proof of Proposition 3.15, we
can see that condition (C1) is only required by the second
case (ii) of “strong minimal diagnosability” (Definition 5),
which is the same as “weak minimal diagnosability” (Def-
inition 8)..erefore, only condition (C1) of Proposition 3.15
is required for the current proposition. .at is, a language L
generated by an FSM G is weakly minimally diagnosable iff
its minimal diagnoser Gm does not include any F-indeter-
minate cycle. □
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