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Assisted gait phase estimation through
an embedded depth camera using

modified Random Forest algorithm classification
Simone Pasinetti, Alberto Fornaser, Matteo Lancini, Mariolino De Cecco, and Giovanna Sansoni

Abstract—The paper presents a novel method for the classi-
fication of gait phases for power gait orthosis users based on
machine learning. The classification uses depth images collected
from a Time of Flight camera embedded in the crutches employed
for the assisted gait. The machine learning algorithm foresees
an initial phase of data collection and processing, identifying
the 3D points belonging to the foot and those belonging to
the floor. From these, a feature set is computed analyzing the
values of percentiles of distances of the foot from the floor, and
passed to a modified version of Random Forest classifier, called
Sigma-z Random Forest. The classifier considers the uncertainties
associated to each feature set and provides both the classification
of the gait phase (stance or swing) and an associated confidence
value. In this work, we propose the use of the confidence value
to improve the reliability of the gait phase classification, by
applying an optimized threshold to the confidence value obtained
for each new frame. The algorithm has been tested on different
subjects and environments. An average classification accuracy of
87.3% has been obtained (+6.3% with respect to the standard
random forest classifier), with a minor loss of unclassifiable
frames. Results highlight that unclassifiable samples are usually
associated to transitions between stance and swing.

Index Terms—Depth sensing; measurement, uncertainty, gait
analysis, classification.

I. INTRODUCTION

THE loss of locomotion is one of the major impairments
that could result from a spinal cord injury. Advancements

in medical treatments could lead to increase the quality of
life in patients affects by spinal cord injury. These patients,
however, are easily affected by secondary pathologies related
to the use of wheelchairs as primary means of locomotion,
and to the loss of the erect position. To overcome such
limitations, in recent years, novel active orthosis (often called
exoskeletons) have been developed [1]–[3]. Different studies
show their efficacy in terms of medical effects as well as social
interactions [2], [4], [5].

Unfortunately, most of these studies are performed in
medical environments, such as hospitals or specialized gait
labs, where motion capture systems, force platforms and
other sensors are used to define the full kinematic model
of the patients [6], [7]. These studies are limited to indoor
applications, with short paths walked per session and with the
continuous presence of the medical staff. A further drawback
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is that the behavior of a patient during an assisted walking
session is strongly influenced by the type of environment [8].

To overcome the highlighted issues, a set of wireless fore-
arm instrumented crutches were developed in past works [9]–
[11]. The crutches are instrumented with IMUs and strain
gauges to measure their orientation and the axial forces exerted
by the user on them. Data acquired with the developed
crutches, together with the definition of a kinematic model of
the user, allow the measurement of upper limbs involvement
during assisted gait in a more natural setting, and without
relying on the exoskeleton specific model, or capabilities.
These, however, still rely on the gait lab motion capture system
to relate the measured forces to the gait phases.

We solved this limitation by modifying the aforementioned
instrumented crutches by adding two compact Time-Of-Flight
(TOF) cameras (PMDTM Camboard Picoflexx) for the acqui-
sition of the controlateral foot. In the proposed strategy, the
first step is the extraction of the features from the depth
images, achieved by segmenting the 3D point cloud into the
user foot and the floor. In the second step, the classification
of the gait phases (stance and swing phases) is achieved
through machine learning techniques, that classify collected
frames. The Random Forest (RF) algorithm has been selected
as the most appropriate for our application, since it repre-
sents a good trade-off between simplicity and accuracy of
the classification [12]. The input entries are M=15 suitable
features assigned to each acquired frame, and the training
phase of the classifier is performed using the classical, well
known RF approach; instead, the classification of new point
clouds is accomplished using a modified version of the RF
algorithm, previously developed by some of the authors. This
algorithm, extensively presented in [13], aims at improving
the robustness of the classification by assessing a confidence
level of the classification, expressed as the probability that the
identified class (i.e., swing or stance) is not confused with
the other, even when the input data sets are characterized
by uncertainty levels and population variances which could
result in wrong classifications. This algorithm is called Sigma-
z Random Forest: it provides a statistical inferential approach
by considering both the uncertainty of a new input feature
and the variance of the distribution of the training set. These
elements are combined into the classical RF method, and allow
the evaluation of a parameter, there after called classification
confidence that indicates which class presents the highest
probability of being the correct one. The gait classification
output is then synchronized with the force sensors to refer the
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dynamic measurements (forces exerted by the user) to the user
kinematics (state of each foot).

In this paper, we present the results of the experimentation
carried out considering four expert users wearing a RewalkTM

exoskeleton (Argo Medical Technologies Ltd., Yokneam Ilit,
Israel) during different walking sessions. The classification
algorithm has been trained using the initial gait performed by
each user to take into account the variability of the subjects
gait style and clothes; additional gaits were then performed by
each user for testing the algorithm performances.

The paper is organized as follows: Section II presents
a review of the literature regarding gait analysis methods,
Section III describes the system set-up. Section IV presents the
approach to the extraction of the features and the gait phase
classification method using the Sigma-z RF classifier. Section
V reports the results of the experiments and demonstrates the
validity of the chosen approach.

II. STATE OF THE ART OF GAIT ANALYSIS METHODS

One of the main indeces of performances of exoskeleton
users is the quality of gait. An excellent technique to assess
this parameter is the detection of gait events, such as heel
contact and toe off, to divide the gait in swing and stance
phases.

Gait analysis is commonly performed using motion capture
systems based on inertial sensors [14]–[21] or cameras [22]–
[29]. Among the latter, many studies use Time-Of-Flight
(TOF) cameras to acquire 3D point clouds of the scene through
depth images.

TOF cameras represent an emerging technology for three-
dimensional measurements: these devices measure the distance
of each point of the scene by measuring the TOF of a signal
sent by an emitter (placed inside the camera) and reflected
back by the objects in the scene. In [30], a single fixed
TOF camera is used to extract the silhouette of the walking
subject using segmentation algorithms. The gait phases are
assessed from joint angles resulting from the analysis of the
silhouette. Works [31], [32] exploit a combination of intensity
images and depth images, both acquired with the same TOF
camera. In [31], a number of markers are placed on the
walking subject and the joint and body segments positions
are extracted selecting the markers from the intensity images,
and their respective 3D coordinates from the depth images.
In [32], a Markov Random Field is used to fit an articulated
model of the walker, while in [33], a comparison between a
wearable inertial system and a structured light video system
is performed for the estimation of the gait parameters. In
these studies, the camera is placed in a fixed position in the
environment. This solution suffers from some disadvantages: a
limited field of view, a limited depth range, and the need of a
custom environment (specifically organized for the analysis).

These limitations could be overcome using moving cameras
(RGB or TOF based) instead of fixed ones. In the literature,
two different approaches have been developed: in the former,
the camera is attached directly at the walking subject; in the
latter, the camera is placed on a walking device, moved by the
subject or autonomously.

As for the first approach, wearable solutions have been
implemented to measure the gait parameters. In [34], a single
RGB camera is mounted (pointing downward) on the leg of
the walking subject. In [35], the gait parameters are measured
using a smart-phone camera attached to the hip of the subject
using a waist bell. The camera recognizes the feet using
two colored markers directly attached to the dorsum of the
feet. In [36], a system consisting of an RGB camera, eight
LED markers and a single board computer is presented. The
system is mounted on each shoe of the subject, and the
gait parameters are measured analyzing the markers detected
in images acquired by two cameras. In [37], a camera is
embedded into a pair of glasses. The gait parameters are
measured extracting the motion vectors of the scene. In
these wearable solutions, the sensors are mounted directly
on the user and the approach requires a setup phase very
time consuming. Furthermore, the wearable solutions could
be stressful, especially for exoskeleton users. Both represent
not negligible limitations.

In the second approach, different kind of supports are used
to move the camera. In [38] and [39] for example, a RGB
camera is mounted on instrumented rollators moved by healthy
subjects. The camera captures the feet of the subject during
the locomotion, and estimates the step width from the video
data. In [40], two Kinect sensors are installed on a moving
device. A set of algorithms has been developed to extract
anatomical data. These are used in a physical model of a
virtual human to reproduce and analyze the observed motion.
In [41], a combination of a wearable sensor and a depth
vision sensor is used for gait analysis. The wearable sensor
captures the head motion while the vision sensor captures
color and depth information of the scene. To increase the
measurement range, the vision sensor is mounted onto a
mobile robot which follows the subject during his/her motion
through human tracking algorithms. The limitations of these
studies are principally related to the type of support, which is
completely dedicated to the camera placement.

Considerable work has been done to integrate the traditional
foot switch and pressure-based sensors with a segmentation
approach, to compensate for the low reliability of these de-
vices in long walks, as in [42] and in [43]. However, foot
switches and pressure-based sensors can be difficult to adapt
to exoskeleton pilots. In the case of exoskeleton users, some
approaches have been focused on force and angular sensors
already available onboard the robot, as in [44]–[46], but these
techniques depend on the availability of these sensors on
the robot. Publication [47] presents a comparison between
different alghorithms to extract gait phases from inertial units
worn by the subject and surface electromyography, while [48]
presents inertial units and an adaptive Bayesian approach
for recognition of walking activities. Reference [49] presents
instead a classification method based on a single 3D depth
camera and 12 key feature, to provide a reliable and low cost
way to assess the gait phases. All the sensors used in these
works, however, are either worn by the user, or monitor a
limited volume of space where the user can walk.

In our work, the acquisition sensors are not mounted on the
user neither constrained to a limited walking space; instead,
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they are mounted directly on the instrumented crutches, which
are part of the rehabilitation setup and mandatory during the
user gait.

Among classification methods, very few references are
available on the topic of the reliability of the classifications.
Chen et al. [50] propose a forecasting model based on RF,
including the evaluation of a confidence interval based on an
ensemble forecast provided to cover nearly all observations
reasonably well, except for a few extreme drought events.
In [51] the approach is very similar to the previous one,
and exploits a Monte Carlo simulation to generate multiple
datasets, training multiple RF structures and modeling the
uncertainties of the classification from the variability of the
results. Another work [52] provides a very detailed analysis on
the topic of uncertainty in RF classification, and demonstrates
that formal statistical inference procedures are possible within
the context of supervised learning, even when individual base
learners are difficult to analyze mathematically. With respect
to this last work, the Sigma-z RF approach introduces an
important element related to the assessment of classification
uncertainty: the influence of the uncertainty of the feature entry
as a physical measurement.

To the best of our knowledge, there are no other approaches
like the one proposed in this paper.

III. SETUP

In our system, the gait phase measurements are performed
using a pair of forearm instrumented crutches, previously
developed by our research group and described in [53].

The instrumented crutches are equipped with a set of four
350 Ω strain gauges to measure the axial force exerted by
the user. The measurement recording and transmission are
wireless, thanks to a low-energy Bluetooth device mounted
directly on each crutch.

The instrumented crutches have been modified mounting a
Camboard Picoflexx (PMD Technologies®) TOF camera on
each crutch. The camera has a resolution of 224 x 171 pixels
and a field of view of 62° x 45°. The depth measurement
range spans from 0.01 to 0.4 m, with a frame rate within 5
and 45 fps. In the performed experiments, the camera frame
rate was set to 14 fps.

The camera is very small (dimensions are
68 x 17 x 7.25 mm3) and lightweight (8 g) because it
contains only the depth sensor. The camera is powered
through a USB 2.0/3.0 interface and does not requires any
other power supply. The USB interface is also used for data
transmission. The metrological performances of the Picoflexx
camera have been evaluated in [54]: even if the camera shows
average performances in terms of measurement accuracy, it
performs better than other TOF cameras (such as the Kinect
V2) in terms of dependency on external infrared light noise
sources. This makes the selected camera a good choice in
wearable applications, especially for outdoor environments.

The cameras are mounted on the crutches in a position
that maximizes the visibility of the controlateral foot (i.e., the
camera mounted on the left crutch views the right foot and
viceversa). The data acquisition and recording are performed

Figure 1: New version of instrumented crutches. Both the force
and image acquisition systems are visible.

using Raspberry PI 3 boards mounted on each crutch. The
cameras are connected to the Raspberry boards using USB
links. Image acquisition is performed using ROS packages.
The acquired depth images are then sent to a client PC for
subsequent elaboration. Figure 1 shows the configuration of
the crutches, which are completely wireless to maximize the
comfort of the user.

Figure 2 shows a sample image of the field of view acquired
by the right camera during a swing phase: the left foot of
the user is completely visible together with the floor and the
environment. In the walking sessions the user performed an
alternate gait (left foot and right crutch forwards, right foot
and left crutch backwards, and viceversa), and the feet resulted
always inside camera field of views.

IV. METHOD

The proposed analysis exploits two steps: 1) data collection
and processing to extract the features’ values from each
acquired frame; 2) the assessment of features’ uncertainties
and classification.
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Figure 2: Example of the depth image of the left foot acquired
with the right side camera.

A. Feature extraction

The features have been obtained from each frame in five
steps: (i) a filter based on depth information is used to
remove the environment, (ii) the floor is assessed using a plane
detection algorithm, (iii) the distances between the floor and
points not belonging to it are computed, (iv) the statistical
features are extracted from these distances along with (v) their
uncertainties.

In the first step, each frame is filtered in depth: only pixels
with a depth value between Dmin and Dmax are maintained. The
filter is used to remove the environment from the depth image.
Figure 3a shows the result of the filter applied to the image of
Figure 2; since Dmin and Dmax depend on the walking pattern
of the subjects, they were set manually for each subject. These
values were obtained experimentally and tuned to retain just
the user’s foot and the floor.

In the second step, a plane detection algorithm is applied to
the resulting image, to discriminate between points belonging
to the floor and points belonging to the foot. The well
known iterative RANSAC algorithm is used [55] to fit a plane
containing the majority of the measured points. The points are
then divided into points laying on this plane (the inlier points,
on the floor), and the others (the outlier points). Figure 3b
shows an example of the algorithm results, displaying in red
the plane detected from the image of Figure 3a. The inlier
points are used to assess the parameters of the plane defining
the floor, while the outlier points are assumed to belong to the
foot.

In the third step, the distances between the floor plane
and the points belonging to the foot are computed, ad their
cumulative distribution is formed. As an example, Figure 3c
shows the cumulative distribution of the distances computed
from points of Figure 3b. The values of the cumulative
distribution of the distances depends on the foot state: during
stance the distances are small, during swing they assume
higher values.

In the last step, a number of percentiles are extracted
from the cumulative distances dataset, using the Matlab®

prctile function. These values are used as predictors of the
classification model. To take advantage of the chronological

sequence of the recorded frames, each ith set of features is
composed of the percentiles of either the ith, the (i-1)th frame,
and the (i-2)th frames.

To understand which percentiles select as features, a prelim-
inary gait test has been conducted, recorded and analyzed. An
iterative procedure was used to identify the minimum number
of percentiles needed to train the classification model. In the
first iteration the 1st, the 99th and all the multiple of the 5th

percentiles have been computed for each frame of the analyzed
gait. Then, the correlation matrix between the values of each
pair of considered percentiles during the whole gait test has
been computed. Subsequently, we progressively reduced the
number of considered percentiles by removing the element
of the couple with the highest correlation; then we computed
the new correlation matrix. This step was repeated until each
element of the correlation matrix was lower than 95%. At the
end of this iterative procedure, the minimum set of percentiles
was composed of the 5th, the 25th, the 50th, the 75th, and the
95th percentiles. These five values have been computed for
each frame of the acquired gaits. They are plotted in Figure
3c (dotted red lines).

The resulting set of features is as follows:
• The 5th, the 25th, the 50th, the 75th, and the 95th per-

centiles computed on the ith frame;
• The 5th, the 25th, the 50th, the 75th, and the 95th per-

centiles computed on the (i-1)th frame;
• The 5th, the 25th, the 50th, the 75th, and the 95th per-

centiles computed on the (i-2)th frame.
As a result, 15 features are used to train the classification

model.

B. Sigma-z Random Forest classification algorithm

The Random Forest (RF) model is the result of the combina-
tion of multiple detection trees (DTs), identified from a subset
of suitable features in the training set, through a bootstrapping
operation [12], [56], [57]. A DT is a logic structure consisting
of several nodes, each with one incoming branch and two
branches departing from it. At each n-th node, a specific
feature fm and a threshold value Tn,m of that feature are
considered in the decision process that connects the node to a
deeper level of the structure. Both the feature and the threshold
are identified in the training phase and vary from tree to tree.
The standard classification approach uses a binary threshold-
based criterion: fm ≤ Tn,m. Depending on the outcome of
the logic operation, the decision is then moved to one of the
two possible deeper nodes, omitting the remaining part of the
structure from the process. This logic continues until an end-
node of the DT structure is reached: a leaf associated with
a class C. The results of the complete RF model foresee the
combination of all trees as independent concurrent constituting
elements for the classification.

The Sigma-z RF algorithm leaves the original RF classifi-
cation structure untouched, but considers (i) the uncertainty
of the measured data, and (ii) the uncertainty deriving from
the intrinsic variability of data in a class, i.e., the variance
of data samples. The former is caused either by errors in
the measurement process or in the propagation of uncertainty
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(a)

(b)

(c)

Figure 3: Image processing for features extraction: (a) depth filter; (b) plane detection; (c) computation of cumulative distribution
of distances and percentiles extraction.

down to the evaluation of the feature; the latter depends on
the distribution of the classes, and become relevant when
the classes are similar, and the distribution of features from
different classes overlap [13]. The ”sigma” component of the
algorithm accounts for the uncertainty associated with new
input entries, the ”z” component relates to the statistics used
in the analysis of the input with respect to the training set.

1) The ”sigma” component of the Sigma-z RF algorithm:
This part of the algorithm is designed to include the uncer-
tainty of the input features as a modifying factor in the splitting
criterion. The uncertainty of the features is expressed by the
standard deviation σm of their distribution, supposing it a
Gaussian distribution.

At each node of the DT, the probability density function
PDF(x, σm) of the distribution of feature fm is computed and
the two quantities expressed in (1) are obtained:

P ∗L =

∫ Tn,m

−∞
PDF (x, σm)

P ∗H =

∫ +∞

−Tn,m

PDF (x, σm). (1)

Probabilities P ∗L and P ∗H , represent the level of reliability
that the feature value fm comes from distribution values lower
(P ∗L) or higher (P ∗H ) than the threshold node value Tn,m.

The values calculated in (1) are propagated through the next
level of the DT as in (2):

P b
L = P b−1 ∗ P ∗L

P b
H = P b−1 ∗ P ∗H . (2)

In (2), b is the level of the node, P b−1 is the probability
value associated to the branch coming from the node at level
(b-1), and P b

L and P b
H are the probability values flowing in the

L/H branches departing from the node at level b. The process
is recursive: at level b = 0, P 0 is set to 1, for normalization;
at each iteration, (1) and (2) are used, and P b−1 is set to either
P b
L or P b

H depending on the side of the splitting.
Remember that the DT is learned through training and is al-

ready optimized to achieve the best classification performance;
hence, values calculated in (1) are propagated in the DT as
node independent probabilities, which do not alter the splitting
criterion of each node. The effect of this is that the information
content can be interpreted as flowing and subdividing through
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successive nodes of the DT, giving more relevance to those
branches that achieve an overall higher node probability in the
decision process. The process is repeated through all the nodes
of the DT, until all leaves are reached. In the case of a leaf
node l, the probability P b−1 becomes the probability P l

Ci
of

class Ci at that leaf. All P l
Ci

are then summed for each class,
forming a vector of probabilities PCi

that indicates which class
presents the highest probability of being the correct one. It
holds that

∑
i PCi

= 1.
In this approach, the entire structure of the tree is used,

following the idea that all constitutive elements play an active
role in the classification, each one probabilistically weighted.
Features values fm very close to the node threshold Tn,m
result in probabilities P b

L and P b
H around 50% and assign the

same importance to both branches departing from the node.
This means that both the branches present a low reliability of
the choice, which is compliant with the fact that the feature
value is close to the splitting criterion, just as a result of
small fluctuations in the measurements. At each leaf node,
value PCi

give information about the confidence level of the
classification, i.e expresses the probability that class Ci does
not get confused with other classes.

In our application, the classifier provides two classes, cor-
responding to the swing and to the stance gait phases, and
two confidence levels, one for each class. These represent
independent estimators of the reliability in choosing that
class as final result, independently from the other (the prob-
abilities do not complement to one). The features extracted
in correspondence to the stance and to the swing present
values far from the splitting criterion at each node, and result
in different reliability values propagating in the two output
branches. Hence, the classification is made looking at the
class with the highest confidence PCi

. Instead, those features
coming from the stance-swing transition are affected by a high
uncertainty, and are close to the splitting criterion; in this case,
the confidence levels that propagate in the branches are around
50%: the reliability of their classification as swing or stance
is very low, and the frames are considered unclassifiable.

In examining the test gait sequence, the expected behavior
is then a synchronous fluctuation of the confidence values PCi

during the stance and swing phases, with the two values close
to 50% during the transition of the gait phase.

2) Assessment of the uncertainty of the features: For a
given feature fm, a Monte Carlo simulation was run to obtain
the value σm. Following the approach implemented in [58],
the measurement noise of the point clouds resulting from
the TOF cameras has been considered zero-mean, normally
distributed. For each frame, 30.000 new point clouds were
obtained, moving each single measured point in the 3D space
by a random quantity following a normal distribution centered
in zero, with standard deviation σTOF of 2 mm, as suggested
in [54]. Since no prior information on the relative position
of the cameras, the feet and the ground is assumed, the
value of σTOF was supposed equal for all directions. The
outcome for each frame is represented by 30.000 feature sets
F = [f1, f2, ..., fm, ..., f15]: the standard deviation among the
distribution of each feature fm is then computed, resulting in
the value σm, which is representative of the uncertainty of

that feature, for that frame. The features and the associated
uncertainties are then passed to the Sigma-z RF model, frame
by frame.

3) The ”z” component of the Sigma-z RF algorithm:
This part of the algorithm focuses on the evaluation of the
probability that a new datum belongs to a given population
of known expected value and variance. The algorithm is as
follows: (i) in the training data, the distributions of the 15
feature values are considered for each class and the mean
value µ and the variance S are calculated and used to model
each distribution as a normal distribution; (ii) the features
values of a new input frame are then z-tested with all the
distributions calculated in (iii) and the probability pm,i that
feature fm belongs to class Ci is kept, generating a matrix
of 15 x 2 values. Note that, since each value pm,i estimates
the probability that feature fm belongs to class Ci or not,
independently of the other class, the sum of values pm,i in a
row over the 2 columns is not required to be equal to 1. These
probability values can then be seen as independent forecasters
on the origin of the data, and can be combined as follows [59]:

Pi =

[∏M
m=1

(
pm,i

1−pm,i

)wm
]a

1 +
[∏M

m=1

(
pm,i

1−pm,i

)wm
]a (3)

In (3), a represents the confidence of the forecaster (set to 1
to address the maximum confidence), and Pi is the result of the
combination for the 15 features. Parameter wm is a weighting
factor. Values wm are assessed during the training phase and
represents the influence of each feature in the classification
process.

4) Combination of ”sigma” and ”z” contributions: The
last step of the algorithm foresees the combination of the two
contributions, i.e. PCi and Pi, first within each single tree
DT, and then for the entire forest. Since all the probabilities
computed so far represent independent estimates, they can be
combined using the same notation used in (3), this time with a
uniform weighting factor equal to 50% for the sample related
and the population related contributions, and equal to 1/Nt

for the forest, giving the same importance to all Nt DTs.
The result is a vector P of two values PStance and PSwing

representing the confidence associated to each class given the
input feature entry: the highest value corresponds to the most
reliable solution of the considered classification problem.

An ”admittance” threshold T is introduced to define un-
classifiable frames, which are characterized by values PStance

and PSwing lower than T.

V. EXPERIMENTAL RESULTS

A. Experimental protocol

The classification algorithm was validated classifying the
gaits performed by four users (called A, B, C, and D re-
spectively) wearing a RewalkTM exoskeleton (Argo Medical
Technologies Ltd., Yokneam Ilit, Israel). All participants gave
informed consent. Gaits were performed both indoor, at the
gym of the “Domus Salutis” Hospital in Brescia [60], and
in three different outdoor environments (paved road, concrete
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Figure 4: Results of the Monte Carlo simulations for a frame
of test number 1 recorded during swing (dotted line) and one
during stance (dashed line). Average values (lines) and sigma
(error bars) of percentiles are shown

.

yard, and marble floor) along straight paths. Each user was
preliminary trained to the use of the exoskeleton. Table I shows
the characteristics of each analyzed gait. Seven tests have been
conducted. For each test, the user performed two gaits: the
former to train the classification algorithm, the latter to classify
the gait phases using the trained model. Each frame of the
training set was manually analyzed and labeled to identify
the actual gait phase: stance and swing frames were labeled
with the numerical identifiers “1” and “2” respectively, invalid
frames were labeled with “0”.

As stated before, values Dmin and Dmax used in the depth
filtering step of the algorithm depend to the walking pattern of
the subjects and were tuned experimentally for each subject.
The chosen values are shown in Table II.

B. Classification results

We firstly analyzed the quality of the features extracted
from each frame. An example of the analysis is shown in
Figure 4 for two different frames of test number 1: one taken
during swing (dot line), the other during stance (dashed line).
The standard deviations σm computed using the Monte Carlo
analysis spanned the range from 3.3 mm to 5.6 mm (4.5%
and 7.7% of the median value) in the case of frames captured
during stance, and from 0.7 mm to 15 mm (0.5% and 10% of
the median value) in the case of frames captured during swing.
The results show that standard deviations present higher values
for frames taken during swing than during stance. The stance
line is well separated from the swing line, i.e. the features
obtained in the stance frame are significantly different from
those obtained during the swing frame. Similar results have
been obtained for every test. This result shows that the chosen
feature set is appropriate for the classification algorithm.

The performances of the proposed classification algorithm
have been assessed computing the classification accuracy,
defined as the ratio between the number of correct predictions
and the number of analyzed frames, using (i) the standard RF

algorithm [61], and (ii) the Sigma-z RF algorithm with an
admittance threshold T equal to 50%. Setting the admittance
threshold to this value results in considering unclassifiable
those frames presenting PStance and PSwing less than 50%.
Obviously, this increases the average classification accuracy.
Table III shows the accuracy obtained in the experimental tests
using the standard RF algorithm (Standard RF column), and
using the Sigma-z RF algorithm (Sigma-z RF column). In ad-
dition, the difference between them (∆ accuracy column) and
the number of unclassifiable samples obtained (last column)
are reported.

Table III shows that in every test, classification accuracies
obtained from Sigma-z RF algorithm increase. It is evident
that those frames misclassified by the standard RF algorithm
actually corresponds to unclassifiable frames in the Sigma-
z RF algorithm. The average accuracy increment is equal to
4.3%. The Sigma-z RF algorithm detects a lower number of
unclassifiable samples (average value equal to 4% of analyzed
frames). This result is acceptable for gait analysis applications.

As an example, Figure 5 reports the gait sequence and the
classified phases as a function of number of samples, obtained
in test number 1 using the standard RF algorithm; in this case,
no confidence values are returned. Black dots represent the i-th
frame, blue circles represent the classification outputs (stance
or swing), and red crosses represent the misclassified frames.
As can be noticed from the distribution of the misclassified
frames, as expected, these are mainly located in proximity of
a transition gait phase. On the other side, the frames coming
from the stable part of the gait are correctly classified. This
behavior underlines the limitation of the standard RF model,
which tends to provide erroneous classification outcomes in
correspondence to the most critical events, i.e. the transitions.

Figure 6a shows the confidence obtained for the same test
of Figure 5 using the Sigma-z RF classifier, as a function of
analyzed samples. Here, it is visible the oscillatory behavior of
values PStance and PSwing between stance and swing phases:
when a transition occurs, the two values intersect at about 50%
as expected.

Figure 6b reports the results obtained with the Sigma-z RF
classifier in test number 1. As before, black dots represent
the i-th frame, blue circles represent the classification outputs
(stance or swing), and red crosses represent misclassified
frames. Unclassified frames are represented as black circles.
Unclassified frames occur periodically in correspondence of a
transition between stance and swing. These frames have been
excluded from the classification and, thus, represent a loss of
data. In this test, the unclassified frames are 22, equal to the
6.6% of the acquired frames. Similar results were obtained in
every test.

C. Optimization

The admittance threshold T is a parameter that influences
the behavior of the classifier: a low value (close to the
theoretical minimum of 50%) provides a dense (several frame
in time) but less reliable classification; a high threshold causes
instead the rejection of the uncertain samples (and thus a lower
frequency in the classification output) but a higher accuracy



IEEE SENSORS JOURNAL, VOL. XXX, NO. XXX, JULY 2019 8

Test number Subject ID Environment Gait number Duration [s] Number of frames

1 A Indoor 1 (training) 287.4 2801
2 (classification) 34.5 333

2 B Indoor 1 (training) 159.7 1555
2 (classification) 29.4 285

3 B Outdoor (concrete yard) 1 (training) 149.5 1454
2 (classification) 63.8 613

4 C Indoor 1 (training) 511.8 4973
2 (classification) 100.3 963

5 C Outdoor (marble floor) 1 (training) 431.4 4201
2 (classification) 108.9 1045

6 D Indoor 1 (training) 333.6 3242
2 (classification) 75.5 723

7 D Outdoor (paved road) 1 (training) 319.8 3106
2 (classification) 54.4 522

Table I: Characteristics of the analyzed gaits.

Figure 5: Classification results obtained with the standard version of the Random Forest algorithm in test number 1. Classification
accuracy = 88%.

Subject ID Dmin [m] Dmax [m]
A 0.40 0.60
B 0.33 0.55
C 0.31 0.57
D 0.29 0.67

Table II: Values Dmin and Dmax chosen for each subject.

Unclaffiable
Test Standard Sigma-z ∆ samples

number RF RF accuracy (% of analyzed
frames)

1 88% 92% +4% 22 (6.6%)
2 81% 84% +3% 9 (3.2%)
3 79% 84% +6% 25 (4.1%)
4 79% 83% +4% 9 (0.9%)
5 76% 78% +2% 7 (0.7%)
6 86% 91% +5% 78 (10.8%)
7 78% 85% +7% 8 (1.5%)

Average 81% 85.3% +4.4% 4%value

Table III: Classification results obtained with standard RF and
Sigma-z RF algorithms.

is expected. The trade-off comes from the magnitude of the
sample loss resulting from the rejection, with a consequent
reduction in the update rate of the system, despite these outputs
result more reliable.

This effect has been analyzed running the Sigma-z RF al-
gorithm by varying the admittance threshold T and computing

Test number 1 2 3 4 5 6 7
T* 57% 63% 59% 72% 78% 53% 64%

Table IV: Values of optimal admittance threshold T* obtained.

the average classification accuracy and the percentage of the
total classifiable samples.

As an example, Figure 7 reports the results of such compari-
son for test number 1 (compatible behavior have been obtained
for every test).

As expected, the increase of the confidence threshold leads
to higher accuracy but also to a higher amount of unclassifiable
samples.

Such analysis can be used to optimize the admittance
threshold T. Different strategies could be applied to choose
the optimal admittance threshold T*, relying either on the
minimum admissible accuracy or on the maximum number
of unclassifiable samples. In our experiments, we chose T*
as the value that allows the system to maintain at least the
85% of the total number of samples. In Figure 7, for example,
this value correspond to T*=57%: in this condition in fact,
the system maintains the 85% of the total samples, and the
average classification accuracy is higher than 90%. Table IV
shows the values of the optimal threshold T* obtained for all
the considered test.

These values have been used in the optimized version of
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(a)

(b)

Figure 6: Classification results obtained using the Sigma-z Random Forest algorithm for test number 1, admittance threshold
T equal to 50%, accuracy equal to 92%. (a) confidence P of both classes: swing (1) and stance (2). (b) identified classes,
classification output, mis-classified and unclassifiables frames.

Figure 7: Comparison of classification accuracy and percent-
age of valid samples versus the admittance threshold T on the
confidence probability for test number 1. A higher threshold
lowers the number of valid samples but increases the overall
accuracy and reliability of the classification. T* represents the
optimal admittance threshold used in our experiments.

the Sigma-z RF algorithm. The classification results, together
with the difference between the accuracies obtained before are
reported in Table V.

The optimized Sigma-z RF algorithm reaches an average

Unclassiffiable ∆ ∆
Test Sigma-z samples accuracy accuracy

number RF (% of analyzed standard (Sigma-z RF,
(T=T*) frames) RF T=50%)

1 94% 44 (13.2%) +6% +2%
2 86% 40 (14%) +5% +2%
3 87% 89 (14.5%) +8% +3%
4 85% 143 (14.9%) +6% +2%
5 80% 153 (14.6%) +4% +2%
6 92% 106 (14.7%) +6% +1%
7 87% 73 (14%) +9% +2%

Average 87.3% 14.3% 6.3% 2%value

Table V: Classification accuracy obtained with the optimized
Sigma-z RF algorithm.

accuracy of 87.3%, and improves the performances of the
standard RF algorithm of 6.3%. The optimized threshold T*
leads to a further improvement of 2% with respect to the
results obtained setting the admittance threshold T equal to
50%.

As an example, Figure 8 reports the gait sequence and
the classified phases as a function of the number of samples
obtained in test number 1, using the optimized version of the
Sigma-z RF algorithm. The optimized solution outperformed
the previous results. Figure 8 highlights the samples mis-
classified by the system. These are associated to a transition
phase and usually are the last sample of a steady state. It
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is worth nothing that this effect could be potentially related
to minor discrepancies among the physical action and the
labeling of the frame. As for the steady state, the results
highlight good reliability in the identification of the gait phase,
which represents a core functionality for the applicability of
the method in the operative scenario. In the optimized version
of the Sigma-z RF algorithm, we obtained 44 unclassifiable
frames, equal to the 13.2% of the acquired frames. The sample
loss is acceptable for our application. Similar results were
obtained in every test.

Finally, as an example, Figure 9 shows the previously
described results (test number 1) in the form of confusion
matrices. The performances of the standard RF algorithm (Fig-
ure 9a), of the Sigma-z RF algorithm with T=50% (Figure 9b),
and T=57% (optimized value, Figure 9c) are shown. All
the matrices show that the classification errors are uniformly
distributed into swing errors (i.e. stance frames classificated
as swing) and stance errors (i.e. swing frames classificated
as stance). This result confirms that the misclassified frames
are associated to transitions between the gait phases. The
amount of correctly classified frames remains nearly the same
within the three cases. This confirms that the Sigma-z RF
algorithm removes frames which are erroneously classified by
the standard RF algorithm.

The ability of the Sigma-z RF algorithm to detect the gait
phases was analyzed comparing nominal and measured heel
strike and toe off contacts. Table VI shows the results in
terms of the absolute difference (number of samples) between
nominal and measured heel strike and toe off. As expected,
the differences increase in the Sigma-z RF case. This confirms
that the proposed algorithm marks as unclassifiable the frames
closer to transitions between stance and swing, while it cor-
rectly predicts frames during steady states. The performances
in contacts detection are linearly dependent on the quality of
the phases prediction: lower performances (higher differences)
were obtained in tests number 4 and 5, (relative both to subject
B), which are those with the lower accuracy. These results are
probably due to the quality of gaits performed by subject B,
rather than to the classification algorithms.

VI. CONCLUSION

This paper presents a classification method for gait analysis
in the context of assisted walking through power gait orthosis.
The method is based on the frame by frame analysis of a
sequence of depth images collected from a miniaturized depth
camera attached at the bottom part of a pair of instrumented
crutches used for the gait.

The depth images acquired by each camera deliver the
point cloud of the controlateral foot, of the floor and of
the background captured in the field of view. Suitable image
preprocessing is carried out (i) to segment the foot and the
ground from the background, (ii) to segment the foot from the
ground, and (iii) to extract 5 features as the percentiles of the
distances of the off-ground data from the ground. The feature
set of each single frame is formed using the features extracted
by the frame itself, plus the previous and the following frames,
for a total of 15 features.

Gait classification focuses at detecting the stance and the
swing phases. A novel approach, previously proposed by some
of the authors, is adopted here: the algorithm is based on
a Random Forest powered by the ability to account for the
feature uncertainties. The method yields to the identification
of each class with an associated confidence level, which
enables the identification of potentially erroneous classification
outcomes, usually associated to the transition among stance
and swing.

The frames collected during this transition achieve a con-
fidence usually lower, or close, to 50%. Such level can be
interpreted as a random binomial outcome and thus as an index
of low reliability of the classification for such samples.

The rejection of the samples marked by a confidence lower
than a fixed admittance threshold dramatically improves the
overall classification accuracy. A convergence analysis was
run on the optimal threshold level, focusing on the trade-off
between classification accuracy and the frame loss resulting
from the frame rejection. In our experiments, we chose as
the optimal threshold the value that allows the system to
maintain at least the 85% of the analyzed samples. Higher
accuracy can be achieved by further rising the threshold, at
the expense of a severe reduction of potentially valid frames.
The overall system reached the required specification for the
tackled application.

In this work, the assessment of the uncertainty of the
features has been performed using a Monte Carlo numerical
simulation. The choice was motivated by the need of assessing
the whole method. However, it is out of doubt that an analytic
approach remains preferable over the numeric one, to enable a
more suitable implementation of the algorithms for real-time
embedded computation, directly on the crutches.
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[43] S. Mohammed, A. Samé, L. Oukhellou, K. Kong, W. Huo, and Y. Ami-
rat, “Recognition of gait cycle phases using wearable sensors,” Robotics
and Autonomous Systems, vol. 75, pp. 50–59, Jan. 2016.

[44] J.-Y. Jung, W. Heo, H. Yang, H. Park, J.-Y. Jung, W. Heo, H. Yang, and
H. Park, “A Neural Network-Based Gait Phase Classification Method
Using Sensors Equipped on Lower Limb Exoskeleton Robots,” Sensors,
vol. 15, no. 11, pp. 27 738–27 759, Oct. 2015.

[45] A. J. Young, A. M. Simon, N. P. Fey, and L. J. Hargrove, “Intent
Recognition in a Powered Lower Limb Prosthesis Using Time History
Information,” Annals of Biomedical Engineering, vol. 42, no. 3, pp.
631–641, Mar. 2014.

[46] D.-X. Liu, X. Wu, W. Du, C. Wang, and T. Xu, “Gait Phase Recognition
for Lower-Limb Exoskeleton with Only Joint Angular Sensors,” Sensors
(Basel, Switzerland), vol. 16, no. 10, Sep. 2016.

[47] A. Thongsook, T. Nunthawarasilp, P. Kraypet, J. Lim, and N. Ruang-
payoongsak, “C4.5 Decision Tree against Neural Network on Gait Phase
Recognition for Lower Limp Exoskeleton,” in 2019 First International
Symposium on Instrumentation, Control, Artificial Intelligence, and
Robotics (ICA-SYMP). IEEE, jan 2019, pp. 69–72.

[48] U. Martinez-Hernandez and A. A. Dehghani-Sanij, “Adaptive Bayesian
inference system for recognition of walking activities and prediction
of gait events using wearable sensors,” Neural Networks, vol. 102, pp.
107–119, Jun. 2018.

[49] M. Ye, C. Yang, V. Stankovic, L. Stankovic, and S. Cheng, “Gait phase
classification for in-home gait assessment,” in 2017 IEEE International
Conference on Multimedia and Expo (ICME). IEEE, jul 2017, pp.
1524–1529.

[50] J. Chen, M. Li, and W. Wang, “Statistical uncertainty estimation using
random forests and its application to drought forecast,” Mathematical
Problems in Engineering, vol. 2012, 2012.

[51] J. W. Coulston, C. E. Blinn, V. A. Thomas, and R. H. Wynne, “Approx-
imating prediction uncertainty for random forest regression models,”
Photogrammetric Engineering & Remote Sensing, vol. 82, no. 3, pp.
189–197, 2016.

[52] L. Mentch and G. Hooker, “Quantifying uncertainty in random forests
via confidence intervals and hypothesis tests,” The Journal of Machine
Learning Research, vol. 17, no. 1, pp. 841–881, 2016.

[53] M. Lancini, S. Pasinetti, V. Montini, and G. Sansoni, “Monitoring
upper limbs during exoskeleton-assisted gait outdoors,” Biosystems and
Biorobotics, vol. 22, pp. 127–131, 2019.

[54] S. Pasinetti, M. M. Hassan, J. Eberhardt, M. Lancini, F. Docchio,
and G. Sansoni, “Performance analysis of the pmd camboard picoflexx
time-of-flight camera for markerless motion capture applications,” IEEE
Transactions on Instrumentation and Measurement, vol. 68, no. 11, pp.
4456–4471, Nov. 2019.

[55] P. H. S. Torr and A. Zisserman, “MLESAC: A New Robust Estimator
with Application to Estimating Image Geometry,” Computer Vision and
Image Understanding, vol. 78, no. 1, pp. 138–156, 2000.

[56] L. Breiman, Classification and Regression Trees. Routledge, Oct. 2017.
[57] T. K. Ho, “The random subspace method for constructing decision

forests,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 20, no. 8, pp. 832–844, Aug. 1998.

[58] M. Pauly, N. J. Mitra, and I. G. Leonidas, “Uncertainty and variability in
point cloud surface data,” in Proceeding of the Eurographics Conference
and Point-Based Graphics, 2004, pp. 77–84.
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