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We extend the Su-Schrieffer-Heeger model to include both an additional real intercell coupling and a complex
intracell coupling whose phase can be interpreted as the Peierls phase associated with a synthetic gauge field.
Using different Peierls phases, we can realize a heterostructure supporting a topologically protected interface
state, depending on the existence of one trivial and two nontrivial phases of distinct winding numbers. The spatial
adiabatic passage of this localized state from the inner interface to either open boundary can be attained simply by
modulating the corresponding Peierls phase, while its decay or growth rate is controlled by the on-site parity-time
symmetric loss and gain terms. Our results provide a scheme to achieve dynamical control of topologically
protected states while being of potential interest to topological lasers with an adjustable spatial profile.
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I. INTRODUCTION

As a new phase of matter, topological insulators (TI) are
characterized by an insulating bulk and a conducting surface
[1,2]. According to the conventional bulk-edge correspon-
dence, one can observe gapless edge modes near the interface
between a TI and a trivial medium. While in two-dimensional
TIs waves typically propagate along the edges as chiral states,
in one-dimensional TIs edge states are simply localized at
the boundaries, decaying rapidly into the bulk. One crucial
advantage of topologically protected edge states is that they
are robust against fabrication imperfections and disorders. For
Hermitian TTs, the bulk-edge correspondence is well explored
and understood, and various topological invariants have been
proposed to characterize distinct topological phases [3]. How-
ever, many realistic physical systems, such as open systems
[4-7] and photonic systems with loss and/or gain [8-12],
are described by non-Hermitian Hamiltonians, the topological
properties of which are intensively being investigated [13].
Topological photonics, in particular, has attracted a great deal
of interest accompanied with rapid progress [14,15]. The
experimental realization of topological edge states in a lossy
waveguide array [16] has revived the debate about the bulk-
edge correspondence for non-Hermitian TIs, a notion that is
reconsidered in systems exhibiting an anomalous localization
or non-Hermitian skin effect, whereas in other instances it
holds true as typically described by topological invariants
[17-29]. Compared with condensed-matter electronic sys-
tems, photonic systems exhibit three major advantages in
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studying topological effects: first, in photonics, loss and gain
are ubiquitous and can be controlled [30]; second, optical non-
linearities enable richer phenomena in topological photonics
[31]; and third, due to various internal degrees of freedom, it
is possible to realize synthetic dimensions in photonic systems
[32]. To date, a lot of breakthroughs have been achieved
based on such properties, such as optical delay lines with
enhanced transport properties [33], backscattering-free edge
states [34,35], and topological polaritons [36], to name a few.
In particular, the concept of topological lasing has been put
forth and demonstrated by exploiting the confinement of light
to a topological protected edge mode in an active TI to achieve
single-mode laser operation [37-42].

The tight-binding Su-Schrieffer-Heeger (SSH) model [43],
which in its most basic version only includes a real intracell
hopping term and a real nearest-neighbor intercell hopping
term, has been widely studied as a one-dimensional proto-
type allowing for a nontrivial topological phase [44,45]. This
model has been extended in a variety of Hermitian [46—49]
and non-Hermitian forms [16,20,21,27,39-41,50-58]. In par-
ticular, the non-Hermitian extensions, which are also called
complex SSH models, are a powerful platform for studying
interactions of topological properties with non-Hermiticity,
and many breakthroughs have been made based on them,
such as anomalous edge states [21], non-Bloch bulk-edge
correspondence [27], topological lasing [39-41], and sponta-
neous topological pumping [58]. Here, we consider a further
extension of the non-Hermitian SSH model to include (i) a
complex intracell hopping term, (ii) an additional intercell
hopping term beyond the nearest-neighbor one, and (iii) non-
Hermitian on-site loss and gain terms. The phase of the
complex intracell hopping term (Peierls phase) can be tuned
via a synthetic gauge field [32,59-66]. While loss and gain are
needed for lasing action, the Peierls phase degree of freedom
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FIG. 1. (a) The schematic illustration of a generalized SSH
model. (b) The equivalent ladder lattice of the SSH model in panel
(a). While the intercell hopping terms J; and J, are real-valued, the
intracell hopping term is complex with the modulus v (which will
be taken as units of energies) and the Peierls phase ¢. On-site loss
and gain terms can be introduced in a balanced fashion on sites A
and sites B, respectively, to realize a non-Hermitian P7 -symmetric
system.

would be immaterial in the absence of the additional intercell
coupling as discussed below. Thus, our extension represents
the minimal SSH model apt to implement a topologically
protected mode, the spatial profile of which can be controlled
via the Peierls phase: by dividing a finite sample into two parts
with different Peierls phases, we can observe a topologically
protected mode at the interface which can be adiabatically
transferred between the interface and one open boundary by
adjusting the synthetic gauge field. During the process, this
mode remains topologically protected because its eigenvalue
does not merge into the bulk bands; moreover, in the presence
of suitable loss and gain terms, we show that this adiabatic
process also holds when the mode is amplified so that it
is of potential interest in topological lasing with a tunable
spatial profile, a highly sought-after feature for signal spatial
encoding and broad-area emission [38,53].

The focus of the work is to elucidate the main features
of the extended SSH model through a specific single-particle
tight-binding Hamiltonian. Hence we are not committed in
this paper to any particular platform for exploring the new
topological physics associated with such an extension though
possible settings are briefly suggested in Sec. IV. We also
conclude with a summary in Sec. IV, after describing the
details of our extended model in Sec. II and discussing the
main results in Sec. II1.

J

II. THE GENERALIZED SSH MODEL

We consider the generalized SSH model shown in Fig. 1(a)
having two sites per unit cell, sites A (red) and B (blue), and
three distinct hopping terms, the intracell coupling (orange
solid line), the nearest-neighbor intercell coupling (J;, gray
solid line), and an additional next-nearest-neighbor intercell
coupling (J», gray dotted line). While we assume both intercell
hopping terms J; and J, to be real-valued, we consider a
complex-valued intracell coupling of modulus v and a tunable
Peierls phase ¢, i.e., the intracell hopping term is vap = v}, =
ve. In fact, this generalized SSH model is equivalent to a
ladder lattice with sites A and B arranged alternately around
each plaquette as shown in Fig. 1(b), and a tunable synthetic
gauge field enables the control of the phase ¢. Here, the
synthetic gauge field should be opposite in adjacent plaquettes
in order to introduce uniform Peierls phase in Fig. 1(a). Unlike
other SSH models [27,53,55], we note that all hopping terms
preserve Hermiticity. Since a nonvanishing average value of
gain (or loss) would not affect the spatial profile of the edge
mode we are interested in [40], we choose to introduce loss
on every A site and gain on every B site in a balanced fashion.
In this way, our model respects either chiral or parity-time
(PT) symmetry when the loss and gain rate is taken to be,
respectively, vanishing or nonvanishing.

Since the homogeneous model is translationally invariant,
using the Bloch theorem, the k-space Hamiltonian is obtained
as

H (k) = he(k)oy + hy(k)oy, + h.0;, (1)
with
hy(k) =vcos¢ + (J; + Jo)cosk,
hy(k) = —vsing + (J; — J») sink,
h, = —iy.

Here, o; (j =x, y, and z) are the Pauli matrices and k is
the dimensionless scaled Bloch wave number in the first
Brillouin zone (—7 < k < 7). While h, and h, are real and k-
dependent, £, is purely imaginary and constant, with a positive
value of y corresponding to loss on the A sites and gain on the
B sites. Then, the symmetries mentioned above lead to the
pseudo-anti-Hermiticity of H (k) with o, H(k)" o, = —H (k)
[18,52], as well as to the so-called chiral-time symmetry [40]
of H(k), which can be represented by the antiunitary operator
0,K, K being the complex conjugation, with [0, /C, H (k)] =
0. The eigenvalues of H (k) are given by

E (k)= :I:\/—yz + v2 + J} 4+ JZ +2vJ; cos (k + @) + 2vJ, cos (k — @) + 2J1J; cos (2k), (2)

which satisfy E (k) = —E_(k) and are either real or purely
imaginary. Equation (2) also shows that the energy bands have
anontrivial dependence on the Peierls phase ¢ only when both
Ji and J, are present: if J, vanishes, the only effect of ¢ is a
rigid displacement of the bands in the k space. As a matter of
fact, in the absence of J,, the phase ¢ could always be gauged
away via a redefinition of the basis states [45], as also evident

(

from the fact that in this case there are no closed plaquettes in
Fig. 1(b).

Differently from some non-Hermitian models
[21,23,27,53] while similarly to others [16,40,50,52,57],
the present generalized SSH model does not exhibit the
non-Hermitian skin effect. Thus, the characterization of its
nontrivial topological properties, in terms of the winding
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number corresponding to the non-Hermitian extension
[19,67] of the Zak phase [44,68], can provide guidance for
the realization of heterostructures with spatially tunable
and robust localized modes suitable for topological lasing
[40]. We indicate with (¢, (k)| and |, (k)) the left and right
eigenvectors of H (k) corresponding to the eigenvalue E, (k),
where o = =+ labels the energy bands as in Eq. (2), with the
biorthogonal normalization (@, (k)|g(k)) = 8«,p [69]. Then,
the complex single-band Zak phase (in units of ) is given by

1 s
Wy = —/ dk (@ali 0| Va). 3)
T

-7

For a model of the form of Eq. (1), the above formula can be
analytically rewritten as [55]

1 T
Wy = —f dk
27 J_»

and the global Zak phase wy = wy + w_, a proper topo-
logical invariant for our non-Hermitian system [16,19,52,57],
making use of Eq. (2) becomes simply

1 (" hohy, — h,ophy
ww = [ kPR
- hZ —{—hy

hydhy — hydihy
Eo(k)[Eq(k) = ;]

“4)

®)

It is noticeable that the value of wyy equals twice the single-
band Zak phase of the parent Hermitian model [i.e., the one
obtained by setting #, = 0 in Eq. (1)] which is the same for
both bands and takes integer values. Thus, the topologically
distinct phases of the present generalized SSH model are
inherited from its parent Hermitian one, similarly to other
instances of non-Hermitian systems [19,50,57]. In particular,
the value of y, which characterizes the amount of loss and
gain introduced in the Hamiltonian and determines its P7 -
symmetry transition [70], does not affect the topological phase
transitions. In the following, our strategy is (A) to harness the
degree of freedom provided by the Peierls phase ¢ in order
to realize a heterostructure between topologically distinct
phases; (B) to assess how the heterostructure is affected by
loss and gain allowing for topological lasing; (C) to imple-
ment the control of the spatial profile of the topologically
protected mode; and, finally, (D) to show that the energy of
this mode and its spatial adiabatic passage are robust against
disorder.

III. RESULTS AND DISCUSSION

A. Topological heterostructure

We start by assessing how the Peierls phase ¢ affects
the topological properties of the generalized SSH model
which, as discussed above, do not depend on the loss and
gain terms proportional to y. We plot in Fig. 2 the winding
number w = wyy/2 for different parameter values. As shown
in Fig. 2(a), one can observe in a wide range of parameters
three topological phases, characterized by w = £1 and w =
0, respectively. While w = 0 corresponds to a topologically
trivial phase with no edge states, w = %1 correspond to two
distinct topologically nontrivial phases with different types of
edge states. In fact, similar results have already been discussed
in Refs. [47,48]. Here, we show in Figs. 2(b) and 2(c) that
the topological phase diagram can be changed by adjusting ¢,
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FIG. 2. Topological phase diagrams of the generalized SSH
model with (a) ¢ =0, (b) ¢ = 7 /4, and (c) ¢ = /2. In each panel,
the yellow, blue, and green regions correspond to the winding num-
bers w = 1, w = —1, and w = 0, respectively. The red/gray (black)
dots in panels (a)—(c) correspond to J; = 1.4 and J, = 1.8 (J; = 1.5
and J, = 1.2), with v = 1 being taken as the unit of energies.

being the parameter range of the topological trivial phase with
w = 0 most sensitive to ¢. We conclude that in the present
extension of the SSH model (J, # 0) the topological phase
can be controlled by adjusting the value of ¢.

Next, we consider a heterostructure between two afore-
mentioned generalized SSH models having different values
of ¢, which can be obtained by dividing the whole sample
into two halves subject to distinct synthetic gauge fields. To be
definite, here we consider a finite generalized SSH model with
150 unit cells (300 sites), assuming that the left part contains
the first 75 unit cells with the Peierls phase ¢, while the right
part contains the last 75 unit cells with the Peierls phase ¢,. If
@1 = ¢, the model recovers a (finite) homogeneous structure.

According to the specific results in Fig. 2, if ¢ # ¢,, the
left and right parts of the model may be topologically distinct,
and thereby we expect a topologically protected state local-
ized at the interface. In particular, choosing the parameters
corresponding to the black dots in Figs. 2(a) and 2(b) and
letting ¢; = 0 and ¢, = 7 /2, the left part is topologically
nontrivial with w = 1 while the right part is topologically
trivial with w = 0.

Considering first the Hermitian case with y = 0, the pres-
ence of a zero mode localized at the interface is shown in
Fig. 3. In Fig. 3(a), we plot the energy spectrum of a finite
heterostructure with open boundary conditions at the outer
edges and find that there are two zero modes residing within
the band gap [see the two orange (gray) dots], as typical of
topological edge states. Indeed, as shown in Fig. 3(b), the two
degenerate modes correspond to a localized state at the left
edge and a localized state at the middle interface. In Figs. 3(c)
and 3(d), we further demonstrate the zoomed-in images of
the edge and interface states, respectively. They show that
the left edge state resides only on A sites (odd number of
sites), while the interface state resides only on B sites (even
number of sites). This is much similar to the case of a standard
SSH model, in which the two edge states reside on different
sublattices, respectively. In contrast, if we choose the coupling
parameters corresponding to the red (gray) dots in Fig. 2, the
winding number of the left part becomes w = —1, while that
of the right part remains w = 0. In this case, the left edge
(interface) state resides only on B (A) sites (not shown here).

B. Topological modes with gain and loss

We further extend the above results to the non-Hermitian
regime by introducing balanced loss and gain terms
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FIG. 3. (a) The energy spectrum of a finite heterostructure based
on the Hermitian (y = 0) generalized SSH model with v =1, J, =
1.5, J/, =12, ¢; =0, and ¢, = 7 /2; the inset shows in detail the
two orange (gray) dots correspond to the degenerate left edge and
interface states; m labels the eigenvalues in order of increasing
energy. (b) The spatial profiles of the edge and interface states in
this case. (c) and (d) The zoomed-in images of the edge and interface
states, respectively.

alternately on the A and B sites. According to Egs. (3)—
(5) and related discussions, such an introduction does not
alter the topological phase transitions, so it is still viable
to find an interface state with its spatial profile controlled
by the Peierls phase. We start showing the complex energy
spectrum of the heterostructure in Figs. 4(a) and 4(b). Clearly,
there are two midgap modes, the eigenvalues of which have
zero-valued real parts and opposite imaginary parts (+y). As
shown in Fig. 4(c), the two modes correspond, respectively,
to a damped left edge state with a negative imaginary eigen-
value and a growing interface state with a positive imaginary
eigenvalue. Recently, it has been proved that an edge mode
whose eigenvalue has a positive imaginary part can be used
for realizing single-mode topological lasing [37-42,57] that
is robust against local perturbations. Generally, an edge (in-
terface) state can be set to be either damped or growing by a
suitable choice of the loss and gain terms [20,24]. However,
we anticipate here that this can also be accomplished via a
dynamic modulation of the Peierls phases. For instance, if
we exchange the values of ¢; and ¢, in Fig. 4(c) to make
the left (right) half topologically trivial (nontrivial) instead,
the interface state becomes damped and a growing edge state
arises at the right open boundary, as shown in Fig. 4(d). In the
latter case, the interface state resides only on the A sites with
loss, while the right edge state resides only on the B sites with
gain.

To investigate the PT-symmetry transitions of the non-
Hermitian heterostructure, we plot in Fig. 5 its energy spec-
trum as a function of y. The vertical lines in Fig. 5 correspond
to the case shown in Fig. 4, the different shading along this
line in Fig. 5(a) representing the varying density of states
of the spectrum in Fig. 4(a). Since the introduction of y
does not affect the topological phases, no matter how large y
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FIG. 4. The real (a) and imaginary (b) parts of the energy spec-
trum of the P77 -symmetric heterostructure, respectively, with ¢; = 0
and ¢, = 7 /2. The spatial profiles of the edge and interface states
are depicted in panel (c) with ¢; =0 and ¢, = /2 and in panel
(d) with ¢; = /2 and ¢, = 0. Here, the profiles depicted by red
(gray) lines correspond to growing states, while those depicted by
blue (dark gray) lines correspond to damped states. In particular, the
edge (blue) and interface (red) states in panel (c) correspond to the
blue and red dots in panels (a) and (b), respectively. Other parameters
are the same as those in Fig. 3 except y = 0.2.

is, there are always only two topologically protected modes
(one edge and one interface) with imaginary eigenvalues
+iy. It is also clear that, as y increases, the real part of
the spectrum as well as the band gap will shrink, while the
imaginary part will widen gradually. We find in particular
two critical values, y,; = 0.30 and y., = 3.65, characterizing
the P7T -symmetry transitions in this figure. For y < y,;, the

FIG. 5. The real (a) and imaginary (b) parts of the energy spec-
trum of the P7 -symmetric heterostructure as functions of y with
¢ = 0 and ¢, = m /2. The red (gray) lines depict the eigenvalues of
the edge and interface states. Other parameters are the same as those
in Fig. 4.
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FIG. 6. The spatial profiles of the edge and interface states for
the finite heterostructure based on the Hermitian (y = 0) generalized
SSH model with (a) ¢, =7 /4, (b) ¢ = /8, (¢) ¢, =7 /12, and
(d) ¢ = 7 /20. Other parameters are the same as those in Fig. 3.

eigenvalues of all bulk states are real, while those of the edge
and interface states are imaginary and conjugate. For y, <
Yy < Ve, part of the bulk states become P77 -symmetry-broken
(i.e., their eigenvalues become imaginary) and the number
of these bulk states increases with y. This is consistent with
previous works [71,72], where relevant systems undergo P7 -
symmetry breaking immediately once a nonvanishing y is
introduced because the eigenvalues of the edge modes acquire
imaginary parts. Further increasing y, we can see a second
phase transition at y = y,,, above which all eigenvalues be-
come imaginary. It is worth noting that the P7 -symmetry
breaking will induce a change from single edge-mode lasing
to multimode lasing [40].

C. Spatial adiabatic passage

In this section we show that the spatial profile of the
interface state can be controlled via the Peierls phase. As
shown in Figs. 6(a)-6(c), if we reduce ¢, from 7 /2 gradually,
the interface state becomes more and more extended at first.
With small enough ¢,, its wave function extends into the
bulk of the right part, as shown in Fig. 6(c). If ¢, further
decreases, we find from Fig. 6(d) that the interface state
eventually becomes localized to the right open boundary. In
particular, when ¢, vanishes, the heterostructure reduces to a
homogeneous sample with the winding number w = 1, and
thereby one can observe two chiral edge states localized at
the left and right boundaries, respectively. Notice that as ¢,
changes, the interface state remains on the same sublattice
(i.e., it always resides on B sites here), even when it becomes
extended during the process. At the same time, the left edge
state is insensitive to ¢,.

We gain further insight by introducing the inverse partici-
pation ratio (IPR) [73,74] of an eigenstate ¢ = Zn {1/

¥, [l
(2, 1val?)

I= (6)

1000 0.2
(c)
| o
- ) )
0 0 mﬂm ul
0 100 200 300 0 100 200 300
site n site n

FIG. 7. (a) The IPRs of the edge and interface states, and the
averaged IPR of all bulk states of a finite heterostructure based on
the Hermitian (y = 0) generalized SSH. The dot, the square, the
triangle, and the asterisk correspond to ¢, = 7 /4, /8, 7 /12, and
7 /20, respectively. (b) A dynamic SAP of the interface state shown
in Fig. 3(b). (c) The intensity profiles of the initial (orange/gray) and
the final (black) states in panel (b). Other parameters are the same as
those in Fig. 3.

which is a measure of the state’s localization whereby larger
IPRs correspond to stronger localization. In one-dimensional
systems, the IPR of an extended state roughly equals the
inverse of the system length. In Fig. 7(a), we plot the IPRs
of the edge and interface states denoted by I, and I;, re-
spectively, as well as the average of the IPRs of all bulk
states, denoted by I,. The variation of I; indicates that the
interface state becomes at first more and more extended as ¢,
decreases from /2 until [; reaches its minimum at around
¢» = /10. With ¢, further decreasing, the interface state
rapidly becomes localized again. In particular, if ¢, = 0, the
heterostructure reduces to a homogeneous sample and thereby
the interface state becomes the standard right edge state,
possessing the identical IPR with the left edge state. The dot,
the square, the triangle, and the asterisk correspond to /; values
of the interface states in Figs. 6(a)-6(d), respectively. We also
find that the left edge state is completely insensitive to ¢, with
a large I, while the bulk states are almost insensitive to ¢,
with a roughly vanishing /.

According to the adiabatic theorem [75,76], a system will
remain in its instantaneous eigenstate for (i) slow enough
perturbations and for (ii) a large enough gap between the
corresponding eigenvalue and the rest of the spectrum. Thus
we foresee as viable the spatial adiabatic passage (SAP) of
a topologically protected mode [77,78] through slow changes
of the Peierls phase ¢. In this case excitations can be coher-
ently transferred between spatially separated localized states
with high efficiency and strong robustness. SAP was initially
proposed following the idea of stimulated Raman adiabatic
passage in three-level atomic systems and has been extended
to optical systems with more than three coupled waveguides
[79-81]. In our model, SAP is achieved by initially exciting
a zero-energy mode and then by adiabatically changing the
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FIG. 8. A dynamic SAP of the growing interface state in Fig. 4(c)
with spatial profiles of the initial (orange/gray) and final (black)
states shown in the top inset. The final state is amplified similarly
to the edge state in Fig. 4(d). Other parameters are the same as those
in Fig. 4.

Peierls phase of the half part of the sample through which it is
to be transferred. Here we demonstrate this dynamic process
in Fig. 7(b) by using the interface state shown in Fig. 3(b)
as the initial state and assuming ¢, (t) = 7 /2 — wtv/1600
for tv < 800 and ¢, (¢) = 0 for rv > 800. It is clear that the
interface state is adiabatically transferred to the right open
boundary and thereby evolves into the right edge state. In
Fig. 7(c), we plot the spatial profiles of the initial interface
and the final right edge states. These results are consistent with
those in Fig. 4 and confirm that the SAP is highly efficient.
Moreover, an effective SAP can also be realized for the
non-Hermitian case. We demonstrate in Fig. 8 how the grow-
ing interface state shown in Fig. 4(c) can be adiabatically
transferred to the right open boundary in the same way as in
Fig. 7(b). Note that the intensity profiles here have been nor-
malized by ), |¥,(t)|%. The spatial profiles of the initial and
final states in the top inset indicate that the SAP in this case
maintains high efficiency. In non-Hermitian systems, there are
in general limitations to the observation of adiabatic trans-
port as, e.g., when state switching and piecewise adiabatic
following occur [82-86]. Adiabatic passage of damped states
is in our case unfeasible owing to the fact that, while these
states vanish with time, nonadiabatic processes may populate
other states undergoing amplification, as seen for instance
in Ref. [58]. Conversely, the adiabatic transport shown in
Fig. 8 occurs as favored by the fact that, for positive y’s (y <
¥c1), the state undergoing SAP remains efficiently amplified
through the end of the process. Other states possibly seeded
by nonadiabatic processes are instead damped. As we are not
concerned here with the actual determination of the threshold
for a potential lasing action based on such a state, we do
not consider gain saturation or nonlinear effects which would
eventually affect the propagation of the amplified mode. The
relevant message conveyed by the above results is that the
spatial profile of the mode potentially suitable for topological
lasing can be dynamically controlled via the Peierls phase.

0.5 1
0.5 1

(;")g/ﬂ'

FIG. 9. The real (a) and imaginary (b) parts of the energy spec-
trum of the P77 -symmetric heterostructure as functions of ¢, without
disorder. The real (c) and imaginary (d) parts of the energy spectrum
of the P T -symmetric heterostructure as functions of ¢, with disorder
described by {8v,, 81 ,, 6J5 ,} € [—0.2, 0.2]. The red lines depict
the eigenvalues of the edge and interface states. Other parameters are
the same as in those Fig. 3, except for y = 0.2.

D. Robustness against disorder

Finally, we aim to show that both the edge and the interface
states remain topologically protected during a SAP so that
they are robust against certain types of disorder. In Figs. 9(a)
and 9(b), we plot the complex energy spectrum as a function
of ¢, with its real part only shown around the energy gap.
Figure 9(b) shows that the eigenvalues of some bulk states
become imaginary in the vicinities of ¢, = 0.17 and 0.97,
while all of them are real elsewhere. So changing ¢, may lead
to PT-symmetry transitions while the P7 -broken regions
may shrink or even disappear if we reduce y. Most impor-
tantly, though the interface state becomes extended in its wave
function during a SAP, its eigenvalue remains invariant (see
the red lines) so that the SAP in our model is topologically
protected. This is quite different from other instances of adia-
batic pumping [87], whereby during the process the edge state
acquires a bulklike character in terms of both its wave function
and eigenvalue, the latter shifting and tending to merge into
the bulk spectrum. One of the most intriguing characteristics
of the topologically protected states is that they are robust
against imperfections. To prove this, we introduce disorders in
the couplings, i.e., v — 1 4+ 6v, and Jg — Jg + 8Jg, (B =1
and 2), with —0.2 < v, §J1,, and 8J, < 0.2 being three
independent stochastic (real) variables. In Figs. 9(c) and 9(d),
we can find that the edge and interface states are immune
to disorder, i.e., their eigenvalues are essentially identical to
those in Figs. 9(a) and 9(b). Moreover, we have numerically
verified that the edge and interface states also resist real-
valued on-site disorders, i.e., y — y +iA,, with —0.2 <
A, < 0.2. If we introduce complex-valued on-site disorders
instead, the real parts of their eigenvalues do not change, while
the imaginary parts undergo limited random shifts (not shown
here).
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IV. CONCLUSIONS

The one-dimensional Su-Schrieffer-Heeger model, one
among the simplest to host topological properties, has long
served as an archetype of a topological structure [45]. Our
generalized SSH model, with two distinct real intercell cou-
plings yet a complex intracell coupling, is found to exhibit
a trivial and two nontrivial topological phases characterized
by the non-Hermitian winding numbers w = {0, 1}, respec-
tively. Although these are not affected by the degree of non-
Hermiticity, yet they are sensitive to the phase of the hopping
term (Peierls phase). A topologically protected mode, lying at
the interface between the two halves of a structure bearing dif-
ferent Peierls phases, is seen to be robust against disorder and
of potential interest to topological lasing. Dynamic control of
the spatial profile of this zero mode can be efficiently achieved
through spatial adiabatic passage.

The emergence of topological phenomena in a simple
one-dimensional setting has clearly inspired a number of
experimental investigations using various platforms such as
superconducting qubits [64], ultracold atoms [88,89], and
resistor-inductor-capacitor circuits [90]. One-dimensional pe-
riodic [51] and quasiperiodic [87] waveguide arrays have
recently provided a complementary window into the physics

of topological photonic structures. Within such a framework,
aspects of our model can be achieved with promising plat-
forms based on coupled ring resonators subject to synthetic
gauge fields. Such fields can be realized and even tuned
via thermal or electro-optic modulators [33,65,66] or more
versatile couplers [62,63], some of which would allow for
all-optical control as well as time-dependent in sifu tunability
[63]. It is also worthwhile stressing that all our results hinge
on the tight-binding Hamiltonian of Eq. (1) with a variable
phase ¢ as a control parameter. Hence our results could be
implemented in non-Hermitian tight-binding network systems
[91] without resorting to the notion of synthetic gauge fields.
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