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ABSTRACT

ARTICLE HISTORY

The mammalian target of rapamycin (mTOR) signalling pathway regulates fundamental metabolic
processes such as inflammation, autophagy and apoptosis, all of which influence cell fate. Recent
experimental data suggest that mTOR signalling is involved in many diseases, including lung dis-
eases, but with contrasting data. Overexpression of mTOR and its signalling proteins have been
linked to lung cell senescence and development of emphysema, pulmonary hypertension and
inflammation. On the other hand, mTOR inhibitors, as rapamycin and/or its derivatives, restore cor-
ticosteroid sensitivity in peripheral blood mononuclear cells from chronic obstructive pulmonary
disease (COPD) patients, and overexpression of mTOR suppresses cigarette smoke-induced inflam-
mation and emphysema, suggesting that induction of mTOR expression/activity might be useful
to treat COPD. This apparent discrepancy is due to complex and heterogenic enzymatic pathway
of mTOR. Translation of pre-clinical positive data on the use of mTOR inhibitors to COPD therapy
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needs a more in-depth knowledge of mTOR signalling.

Introduction

The mammalian target of rapamycin (mTOR) has been
identified as an intracellular downstream signal transducer.
It plays an important role in regulating fundamental meta-
bolic processes such as inflammation, autophagy, apoptosis,
proteins synthesis and/or cytoskeleton organization which
influence cell’s survival or death, by integrating internal and
external cell stimuli (1). mTOR is a highly conserved serine-
threonine kinase (1), which belongs to the phosphoinositide
3-kinase-related protein kinase family, PIKK (2-4). It is
found in two distinct protein kinase complexes: mTORCI1
and mTORC2. They can act either synergistically, independ-
ently or even antagonistically, according to the prevalence of
the various stimuli (2, 3).

Both mTORC1 and mTORC2 complexes have common sub-
units, i.e, mTOR catalytic subunit and mLST8 (also known as
GfL), whereas other components distinguish them. For example:

e mTORC1 contains Raptor (regulator-associated protein
of mTOR) and PRAS40 (5-7), while mTORC2 contains
Rictor (rapamycin insensitive companion of mTOR),
Protor (1 or 2 and acts as a Rictor-binding protein) and
mSinl (also called MAPKAPI1) (8, 9).

e Both complexes are negatively influenced by Deptor, but
both mTORC1 and mTORC2 negatively regulate Deptor
expression as a means for their activity modulation (10).

mTOR is regulated by various external (i.e. nutrients and/or
exercise) and internal (i.e. energy levels and/or stress signals)
cell stimuli, which control eukaryotes growth, proliferation and
metabolism. Indeed, nutrients availability trigger energy-con-
suming anabolic pathways or energy-producing catabolic path-
ways. In addition, the amount of cellular energy, sensed by
AMP-activated protein kinase (AMPK), when high, stimulates
mTOR, making possible protein synthesis and cell growth (11).
Free amino acids (AA) are also essential for mTORCI1
activation. Indeed, anabolic factors and other stimuli cannot
activate mTOR if the AA concentration is limited. Particularly,
the essential AAs, leucine and glutamine are crucial for mTOR
signalling (12).

Another important point is that mTOR regulates physio-
logical cell processes such as cell autophagy and this could be
relevant for both development and therapy of chronic
obstructive pulmonary disease (COPD) and other pathologies.
Specifically, mTORCI1 inhibits cell autophagy in the presence
of nutrients. However, mTOR can also stimulate autophagy
independently of mTORCI through the mTORC2 complex
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Figure 1. The mTOR machinery with all involved complexes and the relevant interaction lines. For further information see Ref. (1,2). The figure has been modified
from that shown in Ref. (2) with the Author's permission. [AMPK: AMP-activated protein kinase; AKT (PKB): Protein kinase B; GDP: guanosine diphosphate; GTP:
guanosine triphosphate; IRS1: insulin receptor substrate 1; mTORC1/2: mammalian target of rapamycin complex 1/2; PI3K: phosphoinositide 3-kinase; PRAS40: pro-
line-rich Akt substrate of 40 kDa; TSC1/2: Tuberous sclerosis proteins 1 and 2; Interrupted lines: not yet clarified mechanisms; Lines ending with an arrow: activa-

tion; Lines ending with a dot: inhibition].

when nutrients are limited (13-15). Interestingly, the begin-
ning of the autophagy process inhibits mTOR (12). However,
when starvation is prolonged, mTOR is reactivated. Under
these conditions, the role of mTORCI shifts from being a
repressor to being an activator of autophagy (15).

Data in the literature show that mTOR signalling is
deregulated in many human diseases (16) so that its inhib-
ition has been considered a novel therapy against many dis-
eases, including cancers (17). However, considering the
complex interplay between the two mTOR forms, it is intui-
tive that the sole inhibition of TORCI, such as by rapa-
logues, might not provide the desired therapeutic effect.

The complexity of the mTOR pathway is summarized in
Figure 1 (1,2).

mTOR targeting in lung diseases

Recently, the use of mTOR inhibitors, such as rapamycin and
its derivative, has been studied in lung diseases (18) such as
idiopathic pulmonary fibrosis (IPF) and COPD (Table 1).

In vitro pre-clinical studies with mTOR inhibitors show
contradictory results in pulmonary fibrosis. Indeed, in rats,
rapamycin-reduced fibrosis (19); on the contrary, in mice, the
same molecule caused disease worsening (20). Interestingly, a
clinical trial with rapamycin worsens outcomes in IPF’s
human patients (21).

COPD is significantly correlated with inflammation and
cell ageing that in turn is characterized by mTOR increased
activity (22). Thus, mTOR inhibitors have also been tested
in COPD. In fact, data on transgenic mice with mTOR



Table 1. mTOR in pulmonary disease.
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Reference Year Type of study Main message

Kennedy et al. (18) 2016 Experimental Current knowledge of mTOR in lung pathology and potential explanation for its involvement in
human diseases.

Jin et al. (19) 2014 Experimental Alleviation of alveolitis and pulmonary fibrosis by rapamycin, with decreased expression of
Matrix metalloproteinase 9 (MMP-9) and Tissue Inhibitor Metalloproteinase 1 (TIMP-1).

Madala et al. (20) 2011 Experimental Increased expression of pro-fibrotic Th2 cytokine withamycin treatment.

Malouf et al. (21) 2011 Clinical Association of everolimus with faster 3-year disease progression in surgically confirmed IPF.

Houssaini et al. (23) 2018 Experimental Causal relationship between mTOR activation, lung cell senescence and lung alterations
in COPD.

Mitani et al. (24) 2016 Experimental Restored corticosteroid sensitivity by rapamycin.

Wang et al. (25) 2018 Experimental Suppression of cigarette smoke-induced cell death, airway inflammation and emphysema by
mTOR, likely through modulation of autophagy, apoptosis and necroptosis.

Duran et al. (26) 2014 Clinical Current knowledge of drug-induced pneumonitis (mechanism, clinical impact and management)

in cancer patients treated with mTOR inhibitors.

over-activity in lung vascular cells show rapid cell senes-
cence with development of emphysema, pulmonary hyper-
tension and inflammation. These results suggest that mTOR
inhibition could be a potential therapeutic approach in
COPD (23). Moreover, a study in humans shows that rapa-
mycin restores corticosteroid sensitivity on isolated mono-
nuclear cells from COPD patients suggesting its possible use
in this disease (24).

Furthermore, a very elegant and recent study on isolated
airway epithelium of human COPD and in mouse lung
chronically exposed to cigarette smoke shows that activation
of mTOR and/or inhibition of autophagy may be a new
mechanism of cigarette smoke-induced COPD (25).

However, transplant recipients or cancer patients treated with
rapamycin derivatives have increased non-infectious drug-
induced pneumonitis (26) with increased inflammatory cytokines
production (27) and consequent worsening of lung functions.

The apparent discrepancy between pro-disease and anti-dis-
ease activity of mTOR in the lung may be explained by the mul-
tiple activities exerted by mTOR through multi-protein
complexes (TORC1 and TORC2) which may work synergistic-
ally, independently or antagonistically. Both complexes are influ-
enced by internal and external cell stimuli (2, 3). Thus, the
contradictory results obtained by using mTOR inhibitors and
nowadays presented in the scientific literature are probably con-
text-dependent and possibly influenced by many factors such as
the species tested, the experimental model, age and animals used,
the presence of concomitant diseases, the genotype/phenotype of
lung disease studied, etc. (18).

Notably, and also of particular interest for a COPD pos-
sible treatment, the dosages of rapalogues used in clinical
settings, partially inhibit only mTORC1 but not mTORC2
(28). So the signalling mediated by mTORC2 can still be
active and capable of mediating its effects, including the
activation of Akt. Furthermore, mTORC2 activation can
promote autophagy, a process known to mediate resistance
to therapeutic interventions such as cancer chemotherapy.
Thus, the efficacy of rapalogues treatment may be hindered
by their lack of efficacy versus mTORC2 (at least at the
doses used in the clinical setting). This suggests that inhib-
ition of mTOR, by allosteric inhibitors of the rapalogues
family, activates different metabolic pathways cross talks, as
a result of the very intricate manner in which the mTOR
pathway works.

Conclusion

We believe that, in order to successfully translate the use of
mTOR inhibitors in pulmonary diseases such as COPD, we need
more in-depth knowledge of the mTOR signalling. As in all com-
plex processes that involve opposite results, is important to be
informed in order to evaluate the final effect of a new therapy in
a new field such as COPD. This is necessary to avoid repeating
previous optimistic approaches, where in vivo positive pre-clin-
ical data, when translated to a clinical setting, did not show the
expected health improvements for patients.
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