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Abstract This paper deals with the equilibria of an

elastically-coupled cable-suspended beam system,

where the beam is assumed to be extensible and

subject to a compressive axial load. When no vertical

load is applied, necessary and sufficient conditions in

order to have nontrivial solutions are established, and

their explicit closed-form expressions are found. In

particular, the stationary solutions are shown to exhibit

at most two non-vanishing Fourier modes and the

critical values of the axial-load parameter which

produce their pitchfork bifurcation (buckling) are

established. Depending on two dimensionless param-

eters, the complete set of resonant modes is devised.

As expected, breakdown of the pitchfork bifurcations

under perturbation is observed when a distributed

transversal load is applied to the beam. In this case,

both unimodal and bimodal stationary solutions are

studied in detail. Finally, the more complex behavior

occurring when trimodal solutions are involved is

briefly sketched.

Keywords Cable-suspended beam � Suspension
bridge � Nonlinear oscillations � Stationary solutions �
Pitchfork bifurcation � Biparametric resonance

Mathematics Subject Classification 35B41 �
35Q74 � 74H40

1 Introduction

Different kinds of cable-beam models have been

proposed and investigated by many researchers not

only in the framework of nonlinear dynamics

[1–4, 17–20, 29, 30], but also from the mathematical

pointview [5, 8, 10, 13, 15, 23, 25–27]. Actually, there

are many engineering systems which can be reduced to

cable-beam coupled models, cable-stayed bridges and

suspension bridges. The beam and the string are two

essential structural elements. The analysis of the

nonlinear behavior and bifurcations of string-beam

coupled systems subjected to parametric excitation are

investigated in [4]. The dynamic behavior of models

of suspension bridges under different situations was

investigated in [1–3], where associated numerical

results and physical interpretations were presented.

The nonlinear interaction between a beam and a cable

in a cable-stayed bridge system was investigated in

[17–20], where an analysis of the sensitivity of modal

properties to parameter variations has evidenced the

occurrence of one-to-two and two-to-one internal
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resonances between global and local modes and the

results were verified by both experimental and finite

element models.

With the purpose of describing the complex

structure of actual bridges, a reliable analytical model

should be nonlinear and involve a sufficiently large

number of degrees of freedom. This is why the study of

such a model requires an extensive use of approxima-

tions and numerical simulations (see [1, 2]). In order to

obtain rigorous results within a precise mathematical

setting it is often unavoidable to deal with simpler

models. This approach needs some simplifications

with respect to the real structure of a single-span

suspension bridge. For instance, if the road-bed has

sectional dimensions which are negligible in compar-

ison with its length, then it can be simply modeled as a

vibrating one-dimensional beam and this entails that

the torsional motion can be ignored. In addition, by

neglecting the influence of the towers and side parts of

the bridge, the beam may be assumed to have simply

supported ends. In this connection, the main goal is to

construct a class of mathematical models that are quite

easy to handle but exhibit some interesting statical and

dynamical properties.

1.1 Motion formulation

We restrict our attention to a simplified nonlinear

cable-suspended beam system. No longitudinal ten-

sion is imposed on the cable since we model it as an

elastic string with fixed ends. Unlike cable-stayed

beam systems, the suspended beam acts on the cable

just through the suspenders (a distributed system of

linear springs), so yielding a transversal distributed

load on it. Of course, this is a simplifying assumption

which essentially relies on the straight geometry of the

cable at rest. Therefore the road-bed is modeled as an

extensible elastic beam which is simply supported at

its ends and subject to a constant axial force, whereas

the suspension (main) cable behaves as an elastic

string with fixed ends (see Fig. 1). A detailed deriva-

tion of the model is devised in Sect. 2.1.

Dissipation affecting the cable-suspended beam

vibrations may be accounted for as a consequence of

different damping mechanisms: internal frictions

(within the beam and/or within the cable), damping

capacity of the coupling stays, viscous resistance due

to the external medium, etc.

Following [3, 9], we model the dynamics of a quite

general cable-suspended beam by the following non-

linear system

q1ottu� .ottxxuþ d1oxxxxðuþ l1otuÞ þ m1otu

�aðpþ koxuk2L2ð0;‘ÞÞoxxuþ Fðu� v; otðu� vÞÞ ¼ f1;

q2ottv� d2oxxðvþ l2otvÞ þ m2otv� Fðu� v; otðu� vÞÞ ¼ f2;

8
><

>:

ð1Þ

where

– u ¼ uðx; tÞ : ½0; ‘� � Rþ ! R represents the

downward deflection of the beam mid-line in the

vertical plane with respect to its reference

configuration,

– v ¼ vðx; tÞ : ½0; ‘� � Rþ ! R measures the verti-

cal displacement of the string,

– koxuk2L2ð0;‘Þ accounts for the geometric nonlinear-

ity due to the beam elongation,

– p is a real parameter related to the axial force

acting at one end of the beam: it is positive when

the beam is axially stretched, negative when

compressed,

– Fðu� v; otðu� vÞÞ represents the mutual restrain-

ing force experienced by both the road bed and the

suspension cable as transmitted through the stays:

each stay has a rest reference length which

corresponds to uðxÞ ¼ vðxÞ ¼ 0,

– f1 and f2 are the external vertical loads.

All other constants are related to structural parameters

of the system, namely

– .� 0 is the coefficient of rotational inertia,

– a� 0 is proportional to the axial tension of the

beam,

– d1 [ 0 is the flexural rigidity of the beam,

v(x, t)

u(x, t)
−p

axial load

Vibrating cable (string)

Vibrating beam
Suspender springs (ties)

Fig. 1 A simple cable-suspended beam system
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– d2 [ 0 is the coefficient of tensile strength of the

cable,

– q1; q2 [ 0 are the mass densities of the beam and

the cable, respectively,

– l1; l2 � 0 represent some internal (Kelvin-Voigt)

friction constants,

– m1; m2 � 0 are the coefficients of the linear viscous

resistance due to the external medium and acting

on the beam and on the cable, respectively.

The unknown fields u and v are required to satisfy the

following boundary conditions: the beam is consid-

ered with both pinned ends, the string has fixed ends.

Accordingly,

uð0; tÞ ¼ uð‘; tÞ ¼ oxxuð0; tÞ ¼ oxxuð‘; tÞ ¼ 0;

vð0; tÞ ¼ vð‘; tÞ ¼ 0 :

�

ð2Þ

1.2 Early mathematical contributions

When a distributed system of one–sided visco-elastic

stays is used to connect the beam to the cable, then

Fðn; otnÞ ¼ ken
þ þ kv1

þ
n otn;

where ke [ 0, kv � 0 are the common elastic constant

and viscous damping coefficient of the stay system,

respectively, and

nþ ¼ maxf0; ng ; 1þn ¼ nþ=n:

This choice leads to a (doubly) nonlinear generaliza-

tion of the Lazer-McKenna’s model

q1ottu� .ottxxuþ d1oxxxxðuþ l1otuÞ þ m1otu

�aðpþ koxuk2L2ð0;‘ÞÞoxxuþ keðu� vÞþ þ kv1
þ
u�v otðu� vÞ ¼ f1;

q2ottv� d2oxxðvþ l2otvÞ þ m2otv� keðu� vÞþ � kv1
þ
u�v otðu� vÞ ¼ f2 :

8
><

>:

ð3Þ

Recently, we have dealt with the long-term dynamics

of non linear suspended bridges in various works. In

[7] we restrict our attention to a simplified non linear

uncoupled system where the suspender is replaced by

a rigid and unamovable frame (namely, v ¼ 0), the tie

lines are only elastic (kv ¼ 0), the rotational inertia .
and the internal frictional term l are ignored. The

asymptotic analysis of the coupled nonlinear system is

studied in [8] and [12], with different choices of the

parameters (. ¼ l1 ¼ l2 ¼ kv ¼ 0 and

. ¼ m1 ¼ m2 ¼ kv ¼ 0, respectively). Finally in [9]

the longterm behavior of system (1) is analyzed when

. ¼ l1 ¼ l2 ¼ 0, whereas F is expressed in a quite

general form and the nonlinear term due to extensi-

bility is replaced by a function Mðkoxuk2L2ð0;‘ÞÞ.
When the internal (Kelvin-Voigt) frictions are

replaced by linear memory terms of the convolution

type and any viscous resistance due to the external

medium is neglected, the resulting total dissipation is

much weaker. Nevertheless, by neglecting rotational

inertia, the existence of a global attractor was proved

in [11] for a doubly-nonlinear system where both the

extensibility of the beam and the one-sided elastic

coupling stays give rise to nonlinear terms. The

dynamics of a simpler uncoupled viscoelastic model is

analyzed in [10].

On the other hand, when the coupling force F is

assumed to be linear in its arguments, the resulting

nonlinear dynamics is modeled by the following

system

q1ottu� .ottxxuþ d1oxxxxðuþ l1otuÞ þ m1otu

�aðpþ koxuk2L2ð0;‘ÞÞoxxuþ keðu� vÞ þ kv otðu� vÞ ¼ f1;

q2ottv� d2oxxðvþ l2otvÞ þ m2otv� keðu� vÞ � kv otðu� vÞ ¼ f2 :

8
><

>:

ð4Þ

When the cable equation is ignored ðv ¼ 0Þ and

rotational inertia and internal friction vanish

ð. ¼ m1 ¼ 0Þ, the existence of a global attractor is

proved in [6]. In the linear elastic homogeneous case

ða ¼ l1 ¼ l2 ¼ f1 ¼ f2 ¼ 0Þ, neglecting rotational

inertia ð. ¼ 0Þ, the decay properties of solutions to

system (4) have been achieved in [16] by assuming

that the viscous force either acts only on the beam

ðm2 ¼ kv ¼ 0; m1 [ 0Þ or relies only on the damping

properties of the coupling stays ðm1 ¼ m2 ¼ 0; kv [ 0Þ.

2 A nonlinear cable-suspended beam stationary

model

The global analysis of the longtime dynamics of

dissipative systems like (3) and (4), strongly depends

on the complexity of the steady-states set. When the

dynamical system admits a single stationary solution,

then its asymptotical stability is a consequence of the

dissipative nature of the problem (either li [ 0 or

mi [ 0, i ¼ 1; 2). In general, when multiple equilibria

occur, dissipativity leads the existence of an absorbing

set, a closed set which contains all steady states and
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absorbs trajectories in a finite time [22, 24]. In most

cases, we are also able to prove the existence of a

global regular attractor of solutions. In particular,

when a finite set of stationary solutions occurs, the

global attractor (if exists) consists of the unstable man-

ifolds connecting them.

This argument motivates the interest to count and

possibly construct steady solutions to dissipative

systems like (3) and (4). In particular, the number of

such solutions strongly depends on the values of the

control parameter p, in that it is able to induce

buckling, a bifurcation in the solution to the equations

of static equilibrium [28].

2.1 Derivation of the dimensionless model

First, let us consider a thin Woinowsky-Krieger [31]

elastic beam of uniform cross sectionX, natural length
‘ and thickness h � ‘. Let assume the beam to be

homogeneous, with constant mass density q per unit of
volume, and symmetric (along with all external loads)

with respect to the vertical xy-plane, so that we can

identify the beam with its rectangular section lying in

the plane z ¼ 0. In the reference configuration, we

assume that its middle line occupies the interval ½0; ‘�
of the x-axis. The left end is nailed in its reference

configuration at x ¼ 0, and the right end is displaced in

a fixed position x ¼ ‘þ c, with c � ‘. From the

physical viewpoint, c\0 occurs when the beam is

axially compressed, c[ 0 when it is subject to

traction. Moreover, let E and m be the Young’s

modulus (force per unit of area) and the Poisson’s

ratio of the elastic material, respectively. Then, the

axial tension acting on X is given by T ¼ EjXj, where
jXj represents the area of the cross section.

Taking advantage of the analysis carried out in [14]

and [21], the (isothermal) motion equation of the beam

in the vertical direction turns out to be

qhott
�
u� -hoxxu

�
þ s-h oxxxxu

� s
‘

cþ 1

2

Z ‘

0

onuj j2dn
� �

oxxu ¼ qhb;

where

– qh ¼ m=h (m ¼ qjXj‘) is the mass density per unit

of thickness,

– b is the vertical body force density per unit of

mass,

– -h ¼ h2=12 is the rotational inertia factor,

– s ¼ T=ð1� m2Þ.

After eliminating qh the motion equation becomes

ottu� -hoxxttuþ
s-h

qh
oxxxxu

� s
2qh‘

2cþ
Z ‘

0

onuj j2dn
� �

oxxu ¼ b:

The square of the S-wave velocity in bulk elasticity is

given by

c20 ¼
E

2qð1þ mÞ :

Then, we are lead to assume that ‘ is the characteristic

length and ‘=c0 is the characteristic time t0 of the

problem. Using the dimensionless space and time

variables

xH ¼ x

‘
2 ½0; 1�; tH ¼ t

t0
2 Rþ;

we introduce the dimensionless unknown

uHðxH; tHÞ ¼ 1

‘
uð‘xH; t0tHÞ;

and the following (dimensionless) quantities

- ¼ h2

12‘2
; k ¼ h

‘ð1� mÞ ;

l ¼ 2k- ¼ h3

6ð1� mÞ‘3 ;

b ¼ 2c
‘
; bHðxH; tHÞ ¼ 2q‘ð1þ mÞ

E
bð‘xH; t0tHÞ:

The final form of the motion equation reads (deleting

the H)

ottu� - oxxttuþ loxxxxu

� k bþ
Z 1

0

jonuðn; tÞj2dn
� �

oxxu ¼ b:
ð5Þ

Since m 2 ð�1; 1=2Þ (in particular, �1\m\0 for

auxetics), all the dimensionless coefficient of (5) are

strictly positive, with the exception of the critical

parameter b. Indeed, b\0 when the beam is axially

compressed, whereas b[ 0 when it is stretched.

Now, we assume that b ¼ b0 þ b1, where b1 is the

body force per unit of mass due to the distributed and

mutual elastic action exerted between the beam and

the suspension cable. It is experienced by a portion of

the beam with small thickness, say h. Hence, its mass
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is qjXjh. Then, denoting by ks the common stiffness

(force per unit of length) of the suspenders, we obtain

qjXjh b1 ¼ �ksðu� vÞ:

Accordingly, we may represent the dimensionless

body force density as follows

bHðxH; tHÞ¼bH0 ðxH; tHÞ�v½uHðxH; tHÞ� vHðxH; tHÞ� ;

v¼2ks‘
2ð1þ mÞ
EjXjh ;

so that (5) becomes

ottu� - oxxttuþ loxxxxu

� k bþ
Z 1

0

jonuðn; tÞj2dn
� �

oxxu

þ vðu� vÞ ¼ b0:

ð6Þ

Steady states are stationary solutions to (6) and then

solve

loxxxxu� k bþ
Z 1

0

jonuðnÞj2dn
� �

oxxu

þ vðu� vÞ ¼ b0:

After dividing by k we get

doxxxxu� bþ
Z 1

0

jonuðnÞj2dn
� �

oxxu

þ kðu� vÞ ¼ f ;

ð7Þ

where

d ¼ l
k
¼ 2- ¼ h2

6‘2
;

k ¼v=k ¼ 2ks‘
3ð1� m2Þ
EjXjh2 ; f ¼ b0=k:

On the other hand, the cable equation is

q‘ottv� s‘oxxv ¼ q‘g;

where q‘ and s‘ are the mass density and the tension

per unit of length, respectively, whereas g is the

vertical force per unit of mass. In particular,

s‘ ¼ EcjXcj=‘; ð8Þ

where Ec is the Young’s modulus and Xc the cross

section of the cable. By neglecting other contributions,

the external vertical force acting on a small cable

element with length h, q‘hg, must equal the opposite to

the elastic action exerted on the beam, namely

q‘hg ¼ ksðu� vÞ;

and then

ottv�
s‘
q‘

oxxv ¼
ks

hq‘
ðu� vÞ:

In order to rewrite this equation in dimensionless

variables, we use the same characteristic length ‘ and

characteristic time t0 as before. Introducing the

dimensionless unknown

vHðxH; tHÞ ¼ 1

‘
vð‘xH; t0tHÞ;

it follows (deleting the H)

ottv� 2q ð1þ mÞ s‘
Eq‘

oxxv

¼ 2q‘ ð1þ mÞ ks

Ehq‘
ðu� vÞ

ð9Þ

that in the stationary case reduces to

goxxvþ kðu� vÞ ¼ 0; ð10Þ

where

g ¼ khs‘
ks‘

¼ 2s‘‘2ð1� m2Þ
EjXjh :

Summarizing, the elastically-coupled cable-beam

dimensionless stationary system reads

doxxxxu� bþ
R 1

0
jonuðnÞj2dn

h i
oxxuþ kðu� vÞ ¼ f ;

goxxvþ kðu� vÞ ¼ 0 :

(

ð11Þ

Coupled systems of this type have been introduced for

instance in [9, 12].

In order to compare the size of the involved

dimensionless parameters, by paralleling (8) we

assume

ks ¼ EsjXsj=d;

where d is the free length, Xs the cross section and Es

the Young’s modulus of the suspenders. Accordingly

we obtain
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g ¼ 2EcjXcj‘ð1� m2Þ
EjXjh ;

k ¼ 2EsjXsj‘3ð1� m2Þ
EjXjh2d :

2.2 The abstract system

In order to discuss buckling of solutions of system

(11), we recall that d, g and k are positive and

dimensionless structural parameters, whereas b 2 R is

a dimensionless control parameter. The source field f

is time-independent, as well as the unknown fields u

and v that are required to satisfy the following

boundary conditions

uð0Þ ¼ uð1Þ ¼ oxxuð0Þ ¼ oxxuð1Þ ¼ 0;

vð0Þ ¼ vð1Þ ¼ 0:

�

ð12Þ

Accordingly, the domain of the differential operator

oxxxx which appears in (11)1 is defined as follows,

DðoxxxxÞ ¼ fw 2 H4ð0; 1Þ : wð0Þ ¼ wð1Þ
¼ oxxwð0Þ ¼ oxxwð1Þ ¼ 0g:

Besides, letting

A ¼ �oxx ; DðAÞ ¼ H2ð0; 1Þ \ H1
0ð0; 1Þ;

the following peculiar relation holds true

oxxxx ¼ A2:

A is a strictly positive selfadjoint operator acting on

L2ð0; 1Þ, with compact inverse. Its discrete spectrum is

given by

kn ¼ n2p2; n 2 N

and the corresponding eigenvectors are

enðxÞ ¼ sinðnpxÞ; n 2 N:

Hence, when conditions (12) are considered, the

stationary boundary value problem can be described

by means of an abstract system involving a single

operator A which enters the equations at the powers 1

and 2, namely

dA2uþ ðbþ kA1=2uk2ÞAuþ kðu� vÞ ¼ f ;

gAv� kðu� vÞ ¼ 0 :

(

ð13Þ

3 Steady-state solutions

Let ðH; h�; �i; k � kÞ be a separable real Hilbert space,

and let A be a strictly positive selfadjoint linear

operator onH with domainDðAÞ and compact inverse.

For r 2 R, we define the Hilbert spaces

Hr ¼ DðAr=2Þ; hu;uir ¼ hAr=2u;Ar=2ui;
kukr ¼ kAr=2uk:

Definition 1 Given f 2 H�2 and b 2 R, a pair

ðu; vÞ 2 H2 �H1 is a (weak) solution to (13) if

dhu;ui2 þ
�
bþ kuk21

�
hu;ui1 þ khu� v;ui ¼ hA�1f ;Aui;

ghv;wi1 � khu� v;wi ¼ 0;

(

for every ðu;wÞ 2 H2 �H1.

Let S � H2 �H1 be the set of all (weak) solutions

to (13). Concerning the existence of solutions, the

following result holds.

Theorem 1 (see [9][Th. 2.3]) Given f 2 H�2 and

b 2 R, the set S is nonempty and bounded inH2 �H1.

Remark 1 Due to the structure of the system, if f 2
H and (u; v) is a solution to (13), then

ðu; vÞ 2 H4 �H2, and so it is a solution in the strong

sense.

The dimensionless, abstract system (13) is relevant

in the analysis of the nonlinear buckling problem. The

notion of buckling, introduced by Euler more than two

centuries ago, describes a static instability of struc-

tures due to in-plane loading. In this respect, the main

concern is to find the critical buckling loads, that is the

threshold value of b at which a bifurcation of solutions

occurs, and their associated mode shapes, called

postbuckling configurations.

3.1 Free equilibria

We first scrutinize the homogeneous case, when the

transversal load on the beam vanishes, i.e. f ¼ 0.

System (13) reduces to

dA2uþ CuAuþ kðu� vÞ ¼ 0 ;

gAv� kðu� vÞ ¼ 0 ;

(

ð14Þ
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where Cu ¼ bþ kuk21. According to Remark 1, all

solutions are strong. In addition it is easy to prove that

every solution can be written as a linear combination

of at most two distinct eigenvectors of A.

Lemma 1 Let (u; v) be a solution of system (14).

Then

u ¼
X

n

anen; v ¼
X

n

cnen;

for some an; cn 2 R, where an 6¼ 0 for at most two

distinct values of n 2 N. Moreover,

an ¼ 0 , cn ¼ 0:

Proof By projecting (14) on en, we obtain for every

n 2 N the system

dk2nan þ Cuknan þ kðan � cnÞ ¼ 0 ;

gkncn � kðan � cnÞ ¼ 0 ;

(

whereCu ¼ bþ
P

n kna
2
n. From the second equation it

is apparent that

cn ¼ 0 , an ¼ 0:

Substituting the second equation into the first one, we

get

knan½dknðgkn þ kÞ þ Cuðgkn þ kÞ þ gk� ¼ 0:

Hence, if an 6¼ 0 (and so cn 6¼ 0), we end up with

dgk2n þ ðgCu þ dkÞkn þ kðCu þ gÞ ¼ 0:

Since the equation above admits at most two distinct

non-vanishing solutions kni we are done. h

In the sequel we separately scrutinize unimodal

(only one eigenfunction is involved) and bimodal (two

eigenfunctions are involved) buckled solutions, and

we prove that their number depends on structural

parameters (d, g, k) and the applied axial load b.

3.1.1 Unimodal solutions

Let n 2 N be fixed and let

u ¼ anen; v ¼ cnen:

After replacing for u and v into system (14), we obtain

dk2nan þ ðbþ kna2nÞknan þ kðan � cnÞ ¼ 0 ;

gkncn � kðan � cnÞ ¼ 0 ;

(

ð15Þ

where the amplitudes an and cn are unknown. Substi-
tuting the second equation into the first one, we get

knan dkn þ bþ kna2n þ
gk

ðgkn þ kÞ

� �

¼ 0 ;

cn ¼
kan

ðgkn þ kÞ :

8
>><

>>:

ð16Þ

Looking for nontrivial solutions, we assume cn 6¼ 0

and then we have

a	n ¼ 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�d� b
kn

� gk
knðgkn þ kÞ

s

which are real quantities provided that b\b0n; where

b0nðd; g; kÞ ¼ � dkn �
gk

gkn þ k
\0 ; n 2 N: ð17Þ

Hence, buckled solutions of the n-th mode occur only

if the applied axial compression �b exceeds the

critical value �b0n, which depends on the three elastic

(dimensionless) parameters of the system: d (beam), g
(cable) and k (suspenders). For later convenience, we

introduce the following stiffness ratios,

x ¼ g=d ; j ¼ k=g: ð18Þ

As a consequence, it follows

b0nðd;x; jÞ ¼ drnðx; jÞ;

rnðj;xÞ ¼ �kn �
jx

kn þ j
; n 2 N:

ð19Þ

Unlike kn, however, the bifurcation values b0n are not
ordered by n because of their dependence on j and x.
It is apparent that the occurrence of the same spatial

operator, although with different power, in both

equations of the system simplifies the problem.

3.1.2 Resonant set

Resonant modes arise when two bifurcation values, b0n
and b0m given by (19), overlap for some n 6¼ m. This

occurrence depends on two different structural param-

eters, j and x.
For any given pair n;m 2 N, n\m, let Rnm be the

set
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Rnm ¼ fðj;xÞ 2 Rþ� Rþ : rnðj;xÞ ¼ rmðj;xÞg:

The resonant condition rn ¼ rm, is equivalent to

j2 � ½x� ðkn þ kmÞ�jþ knkm ¼ 0;

n;m 2 N ; n 6¼ m:
ð20Þ

Accordingly, we have Rnm ¼ Rmn and

Rnm ¼ fðj;xÞ 2 Rþ� Rþ :

j2 � ½x� ðkn þ kmÞ�jþ knkm ¼ 0g:

This set is not empty since the resonant equation has

two positive solutions

j	nmðxÞ ¼
1

2
x� ðkn þ kmÞf

	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½x� ð
ffiffiffiffiffi
kn

p
þ

ffiffiffiffiffiffi
km

p
Þ2�½x� ð

ffiffiffiffiffi
kn

p
�

ffiffiffiffiffiffi
km

p
Þ2�

q �

provided that

x�xnm ¼ ð
ffiffiffiffiffi
kn

p
þ

ffiffiffiffiffiffi
km

p
Þ2: ð21Þ

It is quite easy to check that three different critical

values cannot overlap, whatever j and x may be.

Then, we define the resonant set R as follows,

R ¼
[

n\m

Rnm:

In Fig. 2 the set R is depicted by collecting all

graphics of j	nm, n\m. In particular, the 1:2 resonance

is represented by the j12 curve, each point of which

determines the pair ðx; jÞ of structural parameters

undergoing a resonant behavior with (eigen)modes 1

and 2.

For any given choice of structural parametersx and

j, condition (20) may be rewritten as

km ¼ j
x

kn þ j
� 1

� �

ð22Þ

which gives a relation between eigenvalues of the

spatial operator yielding a n : m resonance of the

system.

3.1.3 Bimodal solutions

Let n;m 2 N, n 6¼ m, be fixed and let

u ¼ anen þ amem ; v ¼ cnen þ cmem

be a solution to (14). Projecting on en and em, we

obtain the following systems

knan dknþbþðkna2nþkma2mÞþ
gk

ðgknþ kÞ

� �

¼ 0 ;

cn ¼
kan

ðgknþ kÞ ;

8
>><

>>:

kmam dkmþbþðkna2nþkma2mÞþ
gk

ðgkmþ kÞ

� �

¼ 0 ;

cm ¼ kam
ðgkmþ kÞ :

8
>><

>>:

In order to obtain nontrivial amplitudes an;am and

cn;cm we have to solve the system

Fig. 2 A sketch of the

biparametric resonant set R
in the x–j plane when

kn ¼ n2p2. The solid curves

are the graphics of j	nm with

nþ m ¼ 3; 4; 5; 6; 7, n\m.

The limiting curve j ¼ x is

dashed
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kna2n þ kma2m þ b ¼ �dkn �
gk

ðgkn þ kÞ ;

kna2n þ kma2m þ b ¼ �dkm � gk
ðgkm þ kÞ ;

cn ¼
kan

ðgkn þ kÞ ;

cm ¼ kam
ðgkm þ kÞ :

8
>>>>>>>>>>><

>>>>>>>>>>>:

ð23Þ

From first two equations it is apparent that infinitely

many solutions an; am do exist provided that their right

hand sides are equal. Since km 6¼ kn, this in turn

implies

Dnm ¼ dðgkn þ kÞðgkm þ kÞ � g2k ¼ 0 :

Remark 2 The existence condition Dnm ¼ 0 is

equivalent to resonant equation (20) so that inequality

(21) may be read as a constraint on the eigenvalues

kn; km which leads to the existence of (infinitely many)

bimodal solutions. As a consequence, bimodal solu-

tions are merely resonant solutions, and they occur

only if structural parameters satisfy ðx; jÞ 2 R.

Next subsection is devoted to calculate how many

solutions do exist in dependence on the value assumed

by the parameter b.

3.1.4 Counting of solutions

Let nH be the integer valued function given by

nHðbÞ ¼ jSHj; SH ¼ fn 2 N : b[ b0ng;

where jSj stands for the cardinality of the set S.
Besides, let

bH ¼max
n2N

fb0ng;

by ¼max
n2N

fb0n : b0n is non-simpleg:

Of course, by 
 bH.
Previous arguments prove the following

Theorem 2 Assume that ðj;xÞ 62 R. Then problem

(14) has

– only one solution, the straight one ðu; vÞ ¼ ð0; 0Þ,
if b� bH,

– exactly 2 nHðbÞ þ 1 unimodal solutions, the

straight one and the buckled pairs,

u	n ðxÞ ¼ a	n en; v	n ðxÞ ¼
j

kn þ j
a	n en;

n ¼ 1; 2; . . .; nH ;

if b\bH.

Otherwise, when ðj;xÞ 2 R problem (14) has

– only one solution, the straight one ðu; vÞ ¼ ð0; 0Þ,
if b� bH,

– exactly 2 nHðbÞ þ 1 unimodal solutions, the

straight one and the buckled pairs, if by\b\bH,

– infinitely many bimodal solutions if b
 by.

3.2 Equilibria under non vanishing distributed

transversal load

The next result shows that every solution to the full

abstract system (13) can be written as linear combi-

nation of at most three distinct eigenvectors of A.

Lemma 2 Let (u; v) be a solution of system (13) with

f ¼
P

n /nen. Then

u ¼
X

n

anen; v ¼
X

n

cnen;

for some an; cn 2 R, for at most three distinct values of

n 2 N. Moreover, if /n ¼ 0 then

an ¼ 0 , cn ¼ 0:

Proof By projecting (13) on en, we obtain for every

n 2 N the system

dk2nan þ Cuknan þ kðan � cnÞ ¼ /n ;

gkncn � kðan � cnÞ ¼ 0 :

(

ð24Þ

From the second equation it is apparent that

cn ¼ 0 , an ¼ 0;

but this occurs only if /n ¼ 0. Substituting the second

equation into the first one, we get

knan½dknðgkn þ kÞ þ Cuðgkn þ kÞ þ gk� ¼ ðgkn þ kÞ/n:

Hence, we end up with

dgank
3
n þ ðgCu þ dkÞank2n
þ ½kðCu þ gÞan � g/n�kn � k/n ¼ 0;
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which admits at most three distinct solutions and then

we are done. h

In the sequel we separately scrutinize the existence

of unimodal, bimodal and trimodal buckled solutions

(when one, two or three eigenfunctions are involved,

respectively) and their dependence on the applied

axial load b when structural parameters d, g, k are

fixed.

3.2.1 Unimodal solutions

Let n 2 N be fixed and let

u ¼ anen; v ¼ cnen; f ¼ /nen;

where /n 6¼ 0. After replacing into the abstract system

(13) we have

dk2nan þ ðbþ kna2nÞknan þ kðan � cnÞ ¼ /n ;

gkncn � kðan � cnÞ ¼ 0 :

(

ð25Þ

Then, substituting the second equation into the first

one, we get

k2nðgkn þ kÞa3n þ kn½ðdkn þ bÞðgkn þ kÞ þ gk�an
�ðgkn þ kÞ/n ¼ 0 ;

cn ¼
kan

ðgkn þ kÞ :

8
>>><

>>>:

Shortly, the first equation may be rewritten as

a3n þ Aan ¼ B; ð26Þ

where, accounting for (17),

A ¼ b� b0n
kn

; B ¼ /n

k2n
:

In order to solve (26), it may be rewritten as

y ¼ a3n þ Aan;

y ¼ B:

�

For every values of B 2 R it admits a single solution

provided that either A� 0, or A\0 and

2jAj
ffiffiffiffiffiffiffi
�A

p
\3

ffiffiffi
3

p
jBj. Summarizing, there exists only

one real solution an (which has the same sign of /n)

when

A[ � 3
B

2

	 
2=3

:

On the other hand, if

A
 � 3
B

2

	 
2=3

;

then (26) admits three real solutions, only one of

which has the sign of /n. Coming back to the original

parameters and remembering (17), we conclude that

system (25) has

– only one real solution ðan; cnÞ if

b[ b/n ¼ b0n � 3
/n

2
ffiffiffiffi
kn

p
� �2=3

;

– three real solutions ðan; cnÞ if b
 b/n .

It is apparent that b/n 
 b0n\0.

When structural parameters j, x, d are fixed,

Eq. (26) provides an as a function of b. The resulting
perturbed bifurcation of solutions is plotted in Fig. 3,

for special values of b0n and /n.

3.2.2 Bimodal solutions

Let n;m 2 N, n 6¼ m, be fixed and let

u¼ anenþamem; v¼ cnenþ cmem; f ¼/nenþ/mem;

where /n and /m don’t vanish concurrently. We

assume that u; v; f satisfy system (13). Then, after

projecting each equation of (13) on en and em and

using (17), we obtain

knan
h
b� b0n þ kna2n þ kma2m

i
¼ /n ;

kmam
h
b� b0m þ kna2n þ kma2m

i
¼ /m ;

8
><

>:

cn ¼
kan

ðgkn þ kÞ ;

cm ¼ kam
ðgkm þ kÞ :

8
>><

>>:
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By virtue of the following change of variables

xj ¼
ffiffiffiffi
kj

p
aj; yj ¼

ffiffiffiffi
kj

p
cj; Uj ¼

/j
ffiffiffiffi
kj

p ; j ¼ m; n;

ð27Þ

the previous double system may be rewritten as

x3n þ xnx
2
m þ ðb� b0nÞxn ¼ Un ;

x3m þ xmx
2
n þ ðb� b0mÞxm ¼ Um ;

( yn ¼
kxn

ðgkn þ kÞ ;

ym ¼ kxm

ðgkm þ kÞ :

8
>><

>>:

ð28Þ

In the case ðj;xÞ 2 Rnm we have b0n ¼ b0m. Since we
are looking for nontrivial amplitudes an; am, from

(28)1 it follows

Unxm ¼ Umxn: ð29Þ

When either /n ¼ 0 or /m ¼ 0, then either xn or xm
vanishes, so that solutions are no more bimodal. Then,

letting /n;/m 6¼ 0, general solutions ðxn; xmÞ to sys-

tem (28)1 may be geometrically obtained as intersec-

tions of two cubical curves in the xn-xm plane. Because

of (29), such intersections, if exist, are aligned. After

remembering that

b/j ¼ b0j � 3 Uj=2
� �2=3

; j ¼ n;m;

we argue that there exists ~bnm\minfb/n ; b
/
mg such

that

– when ~bnm\b
 minfb/n ; b
/
mg only one real pair

ðxn; xmÞ does exist (Fig. 4a);

– when b\~bnm there exist three pairs of real

solutions ðxn; xmÞ (Fig. 4c).

The approximate value of ~bnm may be obtained

numerically or graphically, taking into account that

the corresponding cubical curves turn out to be tangent

each other, and then tangent to the straight line (29)

(Fig. 4b).

As a consequence, the dependence of both xn and xm
on the parameter b is very close to that depicted in

Fig. 3 provided that b/n is replaced by ~bnm.

Otherwise, when ðj;xÞ 62 Rnm we have b0n 6¼ b0m.
Then system (28)1 may be rewritten as follows

x3n þ xnx
2
m þ ðb� b0nÞxn ¼ Un ;

Um

xm
� Un

xn
¼ b0n � b0m:

8
<

:
ð30Þ

In the general case, when neither /n or /m vanish,

solutions ðxn; xmÞ to system (30) may be geometrically

obtained as intersections of a cubical curve and an

hyperbola in the xn-xm plane. Depending on the choice

of structural parameters, there exist at most two

critical values, b̂nm and ~bnm, such that

b̂nm\~bnm\minfb/n ; b
/
mg and

– when ~bnm\b
 minfb/n ; b
/
mg only one real pair

does exist (Fig. 5a);

– when b̂nm\b\~bnm there exist three pairs of real

solutions (Fig. 5b);

– when b\b̂nm there exist five pairs of real solutions

(Fig. 5c).

Fig. 3 Perturbed

bifurcation of solutions in

the non homogeneous case:

b0n ¼ �1=2, /n ¼ �
ffiffiffiffiffiffiffiffiffiffi
kn=2

p
.

The pitchfork curve

corresponding to /n ¼ 0 is

in gray
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For any given choice of the structural parameters

and the transversal load, the approximate values of ~bnm
and b̂nm may be obtained numerically or graphically,

taking into account that the corresponding cubical

curve turns out to be tangent to either one branch of the

hyperbola (Fig. 6).

These results suggest that the dependence of both xn
and xm on the parameter b has the qualitative behavior

depicted in Fig. 7.

In the special case when /n ¼ 0 (30) reduces to

x2n þ b� b0n þ
U2

m

ðb0n � b0mÞ
2

" #

xn ¼ 0 ;

xm ¼ Um

b0n � b0m
:

8
>>>><

>>>>:

ð31Þ

Thus, xm is independent of b whereas xn undergoes a

pitchfork bifurcation at

b ¼ b0n �
U2

m

ðb0n � b0mÞ
2
\b0n:

When/m ¼ 0 the same conclusion occurs, but indexes

n and m exchange.

3.2.3 Trimodal solutions

Let n;m; s 2 N, n 6¼ m 6¼ s, be fixed and let

f ¼ /nen þ /mem þ /ses

be the the distributed transversal load, where /n, /m

and /s don’t vanish concurrently. According to

Lemma 2 we are looking for general solutions to

(13) in the form

u ¼ anen þ amem þ ases; v ¼ cnen þ cmem þ cses:

After projecting each equation of (13) on en, em and es,

(a) (b)

(c)

Fig. 4 Solutions ðxn; xmÞ to system (28)1 are represented as

intersections (circles) of solid curves. According to (29), they

rely on a straight line (dashed). Parameters are such that

b0n ¼ b0m ¼ �1=2, and Um ¼ 2Un ¼ �
ffiffiffi
2

p
. a b ¼ �2:4,

b b ¼ ~bnm � �3:05 and c b ¼ �4

123

3376 Meccanica (2018) 53:3365–3381

Author's personal copy



(a) (b)

(c)

Fig. 5 Solutions ðxn; xmÞ to system (30) are represented as intersections (circles) of a cubical curve (solid) and a hyperbola (dashed).

Parameters are such that b0n ¼ �1=2, b0m ¼ �2:3 and Um ¼ 2Un ¼ �
ffiffiffi
2

p
. a b ¼ �2:4, b b ¼ �5:2 and c b ¼ �7

(a) (b)

Fig. 6 Geometrical characterization of critical values for bwhen b0n ¼ �1=2, b0m ¼ �2:3 andUm ¼ 2Un ¼ �
ffiffiffi
2

p
. a b ¼ ~bnm � �3:65

and b b ¼ b̂nm � �5:83
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by virtue of (17) and the change of variables (27) we

obtain

x3n þ xnx
2
m þ xnx

2
s þ ðb� b0nÞxn ¼ Un ;

x3m þ xmx
2
n þ xmx

2
s þ ðb� b0mÞxm ¼ Um ;

x3s þ xsx
2
n þ xsx

2
m þ ðb� b0s Þxs ¼ Us ;

8
><

>:

yn ¼
kxn

ðgkn þ kÞ ;

ym ¼ kxm

ðgkm þ kÞ ;

ys ¼
kxs

ðgks þ kÞ :

8
>>>>>>><

>>>>>>>:

ð32Þ

Since we are looking for nontrivial amplitudes

an; am; as, system (32)1 may be rewritten as follows

x3n þ xnx
2
m þ xnx

2
s þ ðb� b0nÞxn ¼ Un ;

Um

xm
� Un

xn
¼ b0n � b0m;

Us

xs
� Un

xn
¼ b0n � b0s :

8
>>>>><

>>>>>:

ð33Þ

In the special case when ðj;xÞ 2 Rns we have b0n ¼
b0s and Unxs ¼ Usxn. When /n ¼ /s ¼ 0 we recover

(31) and then we may state the same conclusions as at

the end of the previous subsection. Otherwise, either

/n or /s does not vanish. Assuming for instance

/n 6¼ 0, then xs ¼ Usxn=Un and system (33) reduces to

ð1þ U2
s=U

2
nÞx3n þ xnx

2
m þ ðb� b0nÞxn ¼ Un ;

Um

xm
� Un

xn
¼ b0n � b0m:

8
<

:

ð34Þ

This system looks like (30) and then it may be

scrutinized in the same way. Analogous results hold

when ðj;xÞ 2 Rms and ðj;xÞ 2 Rnm.

In the general case, when b0n; b
0
m; b

0
s are all distinct,

system (33) leads to a polynomial equation of degree

seven in one of the three amplitudes. Depending on the

choice of structural parameters and transversal load

amplitudes, it admits at most seven distinct triples

ðxn; xm; xsÞ of real solutions. In particular, when /n ¼
0 then

x2n þ b� b0n þ
U2

m

ðb0n � b0mÞ
2
þ U2

s

ðb0n � b0s Þ
2

" #

xn ¼ 0 ;

xm ¼ Um

b0n � b0m
;

xs ¼
Us

b0n � b0s
;

8
>>>>>>>><

>>>>>>>>:

so that xm and xs are independent of b whereas xn
undergoes a pitchfork bifurcation at

�bnm ¼ b0n �
U2

m

ðb0n � b0mÞ
2
� U2

s

ðb0n � b0s Þ
2
:

The same occurs when /m ¼ 0 or /s ¼ 0, to within

some index exchange.

4 Discussion

Depending on the axial-load parameter b, simple

(unimodal) free equilibria exhibit a sequence of

pitchfork bifurcations at b0n, where n 2 N denotes

the eigenfunction (mode) which is involved. From

(17), these bifurcation values depend on ðd; g; kÞ, the
stiffness of the three structural elements forming the

system (beam, cable, suspenders). A special choice of

Fig. 7 Bifurcations of

bimodal solutions in the non

homogeneous case.

Parameters are chosen as in

Figs. 5 and 6. The pitchfork

curve corresponding to

/n ¼ 0 is in gray
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these parameters lead to the overlapping of different

bifurcation values. For instance, the case when b0n ¼
b0m is referred to as n : m resonance.

Unlike cable-stayed beam systems, where one

parameter (the stiffness ratio) is involved in reso-

nances, here the cable-suspended beam we scrutinized

involves two distinct parameters, x and j, which are

related to ðd; g; kÞ [see Eq. (18)]. As a consequence,

our discussion about the resonance depends both on x
and j, so that it may be referred to as biparametric

resonance.

According to Remark 2, bimodal free equilibria are

merely resonant solutions, and they occur only if the

structural parametric pair ðx; jÞ belongs to R. More-

over, by virtue of (22) and km=j[ 0, we have

0\kn\x� j:

For a given pair ðx; jÞ such thatx[ j, this inequality
means that n : m resonances (n\m) may occur only if

the n-th eigenvalue does not exceed the difference

x� j.
It is apparent from Fig. 2 that no resonant mode

occurs when either x
 j (namely, g2 
 kd) or

x ¼ g=d\x12 ¼ ð
ffiffiffiffiffi
k1

p
þ

ffiffiffiffiffi
k2

p
Þ2. Then, for a given

set of structural parameters d; g; k, we have to discuss

these inequalities in light of the modeling analysis

devised in Sect. 2.1. By mimicking structural param-

eters and sizes of a single span suspension bridge, it is

reasonable to assume

E � Ec � Es;
c
‘
� h

‘
;

d

‘
�

ffiffiffi
h

‘

r

;

jXcj
jXj �

h

‘
;

jXsj
jXj �

h2

‘2
:

Due to the modeling assumptions, we may introduce a

reference smallness parameter � ¼ h=‘ � 1 (for

instance, � � 10�2). Then, we obtain the following

size estimates

d

‘
�

ffiffi
�

p
; d � �2; g � 1

�
; k � 1

ffiffi
�

p ;

b � �:

ð35Þ

Accordingly, we have j �
ffiffi
�

p
and x � ��3, so that

x � j; x � x12:

In the simple case kn ¼ n2p2, then x12 ¼ 9p2 � 102.

In addition, it is worth noting that 1:4 and 2:3

resonances arise at the same critical value for x,
namely x14 ¼ x23 ¼ 25p2, but at different values of
j. This behavior is common to all n1:n2 resonances

such that n1 þ n2 ¼ n for any fixed n 2 N, n� 5.

When a distributed (stationary) transversal load is

applied, the stationary problem is more complex. For

unimodal solutions we observe, as expected under

perturbation, the breakdown of the pitchfork bifurca-

tions obtained in free equilibria (see Fig. 3). The

corresponding bifurcation value, b/n , is smaller than b0n
and depends on the transversal load component /n.

Using geometrical arguments, we study the behavior

of bimodal steady solutions. When structural param-

eters are such that ðx; jÞ 2 R, we argue that each

component of the bimodal solution undergoes a

perturbed pitchfork bifurcation which is very close

to that of unimodal solutions, but occurs at
~bnm\minfb/n ; b/mg. On the other hand, if ðx; jÞ 62 R
each component of the bimodal solution exhibit a

more complex pitchfork bifurcation where two differ-

ent bifurcation values, b̂nm and ~bnm, are involved (see

Fig. 7).

5 Conclusions

In this paper the equilibria of an elastically-coupled

cable-suspended beam system, as simplified suspen-

sion bridge model, is investigated. The beam is

assumed to be extensible and subject to a compressive

axial load. Indeed, when the road-bed has sectional

dimensions which are negligible in comparison with

its length (span), then it can be simply modeled as a

vibrating one-dimensional beam and this entails that

the torsional motion can be ignored. In addition, by

neglecting the influence of the towers and side parts of

the bridge, the beam may be assumed to have simply

supported ends. No longitudinal tension is imposed on

the cable since we model it as an elastic string with

fixed ends. Unlike cable-stayed beam systems, the

suspended beam acts on the cable just through the

suspenders (a distributed system of linear springs), so

yielding a transversal distributed load on it.

The global analysis of the longtime dynamics of

dissipative systems like elastically-coupled cable-

suspended beam models, strongly depends on the
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complexity of the steady-states set. In general, when

multiple equilibria occur, dissipativity leads the exis-

tence of an absorbing set, a closed set which contains

all steady states and absorbs trajectories in a finite

time. In most cases, it is possible to prove the existence

of a global regular attractor of solutions. These

arguments motivate the interest to count and possibly

construct steady solutions. In particular, the number of

such solutions strongly depends on the values of the

control parameter b, in that it is able to induce

buckling.

When no vertical load is applied, necessary and

sufficient conditions in order to have nontrivial

solutions of the stationary problem are established.

Their explicit closed-form expressions are found. The

steady states are shown to exhibit at most two non-

vanishing Fourier modes and the critical values of the

axial-load parameter which produce their pitchfork

bifurcation (buckling) are established. Depending on

two dimensionless parameters, the complete set of

resonant modes is devised. In Fig. 2 a sketch of the

biparametric resonant set is depicted. When a dis-

tributed transversal load is applied to the beam

breakdown of the pitchfork bifurcations under pertur-

bation is observed and both unimodal and bimodal

stationary solutions are studied in detail. Finally, the

more complex behavior occurring when trimodal

solutions are involved is briefly sketched.
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