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Abstract

As shown in [1], the design of optimal props (in terms of weight) that conform to the European
standard EN 1065 is not a straightforward task. For some classes of props, when the collapse mechanism
is the failure of the prop base, large tubes thicknesses or large tubes diameters are required to keep the
failure mechanism under control, although the substantial strength of the tubes remains unexploited.
This observation motivates the seek for innovative shapes. The present work aims at showing a new
proposal of efficient design of props in agreement with the standard EN 1065. Theoretical and numerical
analysis are carried out in order to identify the effective gain of weight of this new design configuration.

1 Introduction

An adjustable telescopic prop is a structural member normally used as provisional vertical support in con-
struction works. It consists in two tubes which are telescopically displaceable within each other. Currently
the European props production is ruled by the standard EN 1065 for steel props, and by EN 16031 for
aluminum props.

Figure 1: The usual design for steel props.

In a recent publication [1] the prop design and failure mechanisms were investigated. A computer code,
named PrOptmizer, descended from [1] and was capable to optimize the design of props in the usual con-
figuration, i.e. built with two singles tubes as in figure 1, in terms of weight accordingly to the European
standard EN 1065. The optimal prop that results from design is the lightest among a large customized data
set of props that are safe with respect to all the collapse mechanisms defined in EN 1065.

An accurate analysis of the outcomes of optimized props revealed that there is no poor performance
when the most dangerous failure mechanism is the flexural collapse, since the base of a prop contributes
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secondarily to the prop poundage. On the contrary, when the most dangerous mechanism is the collapse of
the bases, either the diameter or the thickness of the tubes must be severely increased to provide the base
with sufficient strength, in detriment of weight and material performances. This event occurs regularly in
long props.

For the sake of confidentiality, a design of a product of interest for real industry cannot be reported
here. Nevertheless, the statement above (and with it also the purpose of the paper) can be illustrated by the
following benchmark. Consider a prop of class D55, assuming the inner tube upwards. Materials for the tubes
are S235 (Young modulus E = 210GPa, yield strength fy = 235MPa) for the outer tube and S355 for the
inner one (yield strength fy = 395MPa after cold forming). Geometry parameters read: lmax = 5500mm;
holes diameter dh = 15.5mm; distance between holes ah = 100mm; base thickness t = 8mm.

Select furthermore the following parameters for the tubes. Outer tube: outer diameter Do = 76mm;
thickness to = 3.1mm; length lo = 3100mm. Inner tube : outer diameter Di = 62mm; thickness ti = 7mm;
length li = 3200mm.

The weight of this prop is 49.47 kg. Although far from being optimal in weight, the prop is well designed;
figure 2 shows that the safety factor amounts to 1.01. Nevertheless, a more careful investigation of the

Figure 2: Safety factors plot for the benchmark prop.

bending moment - see also figure 3 - shows that material in the inner tube is not adequately utilized, since
the flexural strength remains much higher than the bending moment. The collapse mechanism is in fact the
failure of the prop base and tube thicknesses are very high, in spite the large flexural strength of the tubes
remains unexploited.

When the collapse mechanism is the failure of the prop base, therefore, the classical shape may not allow
an optimal design in terms of weight. Tubes thicknesses or diameters must be significantly increased to
comply with the design requirements of the standard, but design does not take advantage of their strength.
Innovative shapes, for instance by welding at the end of the two tubes an enlarged part - see figure 4, are
called to alleviate the waste of materials and performances.

This note is organized as follows. In Section 2, the requirements and guidelines for the design of prop
tubes are summarized: the criteria for the evaluation of the ultimate bearing capacity, the structural models
and the collapse mechanisms are elucidated. An algorithm for the evaluation of innovative props carrying
capacity is detailed in Section 3. Following the standard EN1065, the algorithm distinguishes “three phases”
of the structural evolution and allows the evaluation of the Eulerian critical loads and of the transition loads
between the three static schemes. The algorithm is applied to the design of a D55 prop with enlarged bases
in section 4, and the paper winds up comparing the performances between the already depicted usual design
and the innovative shape.
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Figure 3: Envelope of bending moment and flexural strength of the tubes at different extension lengths.
Straight lines above depict the flexural strength of tubes, the highest corresponds to the inner tube.

Figure 4: A 3D rendering of AB part, welded to the endplate and to the outer tube.

2 Essentials of the standard EN 1065

2.1 Classification

Five classes of props (A-E) are defined. For each class y the standard establishes the loading capacity Ry,k

at the current extension l:

RA,k = 51, 0
lmax

l2
≤ 44, 0 kN ; RB,k = 68, 0

lmax

l2
≤ 51, 0 kN (1)
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RC,k = 102, 0
lmax

l2
≤ 59, 5 kN ; RD,k = 34, 0 kN ; RE,k = 51, 0 kN (2)

The ultimate strength Ry,act of a prop must exceed the loading capacity Ry,k at any extension l.

2.2 Materials and components

Mechanical properties of the material must be in agreement with the existing European Standards and all
materials must be protected against corrosion. The tubes cross section must be selected according to the
international reference standards. The nominal thickness must not be smaller than 2.6mm for props in
classes B, C, D, E, while for A class props nominal thickness is required to be grater or equal to 2.3mm,
tolerances included. The overlap between the inner and the outer tube has to be at least equal to 300mm. A
distance between the end of the outer tube and the internal part of the prop plate at least equal to 100mm
is mandatory to protect against hand crushing. No-slipping devices are compulsory to avoid the inner and
the outer tubes to separate one another.

Figure 5: Structural model for prop design. Distance d is actually vanishing: it must be conceived as a
graphical artefact. Constitutive law k(ϕ) is described in figure 6.

2.3 Design requirements

2.3.1 Structural model

The structural model of a prop with an enlarged base is not included in the standard EN 1065. A proposal of
structural model that emanates from EN 1065 is shown in figure 5. The tubes overlapping zone is modeled by
the contemporary presence of the inner and outer tubes, relatively joined by a frictional constraint (located
at point C at the end of the inner tube) and a hinge (at point D, at the end of the outer tube). As done in [1],
a perfect constraint has been taken into account, as shown in figure 5. At the bases, two tubes with a larger
diameter are welded: they correspond to parts AB and EF . The configuration of inner tube downward has
been verified as well.

2.3.2 Defects

Imperfections must be considered. They are taken into account in the structural model by means of: i) a
load eccentricity et = 10mm - chosen independently on the geometry of the prop and of its base; ii) an
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inclination angle ∆ϕ0 due to the tubes spacing and to the length of the actual overlapping zone1; iii) an
initial sinusoidal deformation with a maximal inflection of l

500
, being l the actual prop length.

2.3.3 Collapse mechanisms

The standard EN 1065 considers three failure mechanisms: buckling of the tubes, flexural collapse, and failure

of the prop base.
Props must be designed preventing the buckling of the tubes, by evaluating the influence of the configu-

ration on the internal actions predicted by the second order elastic beam theory, assuming the material to
be linear without limitation of stresses and strains in magnitude.

Flexural collapse takes place when the bending moment overcomes the plastic flexural strength Mpl,N .
According to the standard EN1065 the plastic flexural strength is estimated as:

Mpl,N = Mpl cos

(

π

2

N

Npl

)

(3)

thus accounting for axial load (N) effects. In the previous equation, Mpl represents the plastic flexural
strength of the tube, while Npl is the axial compressive strength of the tube.

Figure 6: Prop base modeling by means of torsional constraint Mspring versus ϕb.

The standard EN 1065 describes the progressive failure of a real support at the base of a prop moving
from an initial, horizontal position to a final, slanted configuration. The state of the prop base shepherds
the sequence of three structural schemes in figure 5.

In the first scheme the prop base is free to rotate. The prop torsional constraint corresponds to a standard
hinge: an eccentricity eb,0 = 0, 40D1 is devised

2 . When rotation ϕb reaches 1
deg, the standard conventionally

switches to the second static scheme. The constraint at the base of the prop behaves like a rigid joint and
any further rotation is prevented until the ratio

Mspring

N
reaches the core eccentricity eb,0 + eb,core (where

eb,core = −0, 25D1).

The third static system is reached when external actions induce a ratio
Mspring

N
≥ (eb,0 + eb,core). The

constraint at the base of the prop is modeled like a spring, whose moment Mspring increases linearly with
the base rotation increment with stiffness ct = 3 × 107Nmmrad−1 up to a failure value which corresponds
to an eccentricity eb,limit = −0, 50D1.

In the presence of innovative, tailored shapes of the ends of the tubes and of their connections with the

bases, the standard should consider the eventuality of increasing the base stiffness ct.

1∆ϕ0 must be evaluated from the nominal device sizes; an example is shown in the following section.
2For planar bases, the plate thickness t can be considered as a part of the effective diameter D1 = D + 2t having denoted

with D the outer diameter of the downward tube
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3 An algorithm for ultimate strength assessment.

A “three steps” algorithm - one for each static scheme of figure 5 - appears to be efficient for props design.
At any given prop geometry, three transition loads are defined, one for each step of the algorithm; P1deg

enshrines the passage between the first and the second static scheme; incrementing the external load the
amount Plim is reached, which is defined as the transition load between the second and the third static
scheme. At last, when P is equal to Pfail, the load carrying capacity of the prop is assumed to be exhausted.
Figure 7 summarizes this path of reasoning.

Figure 7: External load intervals for the proposed algorithm. P1deg , Plim and Pfail depend on geometry and
on the material properties.

All calculations to evaluate P1deg , Plim and Pfail have been performed according to figure 7. The
structural scheme separates the outer from the inner tube and subdivides them both in parts. The AC

interval is the non-overlapping part of the downward tube, whereas CD is its overlapping counterpart.
Similarly, DF is the non-overlapping part of the upward tube, whereas DC is its overlapping part. Portions
AB and EF represent the enlarged tubes welded to the endplate - see figure 4.

Functions vn(s) with n = AB,BC,CD,DC,ED,EF describe the prop axis (small) deflection in each
part. EN 1065 standard defines the total deflection vn(s) as the sum of the elastic contribution veln (s), of
the initial sinusoidal deflection vsinn (s) and of the deflection vincn (s) due to the inclination angle ∆ϕ0. The
elastic contribution veln (s) can be evaluated from Bernoulli-Navier equations, that read:

d2 veln
d s2

= −
M(s, P )

E In
, n = AB,BC,CD,DC,ED,EF (4)

Continuity at each intersection of the six parts together with the constraints provide the required 12 boundary
conditions in the first static system and the mandatory 13 in the second and third ones. A linear system of
equations can be thus be written, which is uniquely solvable when loads P are below the Eulerian bifurcation
amount.

After solving the linear system of equations the elastic displacement veln (s) can be recovered as a function
of the external load P . If the nominal strength Ry,k - evaluated from equations (1-2) - is lower then P1deg ,
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the bending moment must be deduced from the first static system; if P1deg ≤ Ry,k ≤ Plim it turns out from
the second static scheme and if Plim ≤ Ry,k ≤ Pfail from the third one.

Once the bending moment M(s, P ) has been deduced from the proper structural scheme, safety against
flexural collapse requires that M(s, P ) ≤ Mpl,N for any 0 ≤ s ≤ l, with Mpl,N evaluated by (3). Moreover,
structural stability requires that Ry,k < PE where PE denotes the Eulerian load of the scheme pertaining to
Ry,k - see figure 7.

If Pfail ≤ Ry,k then the prop cannot prevent to fail due to the exhausted support strength. It is exactly
under this condition that the strength of the tubes may not be fully exploited and the design not be optimal
in terms of props weight.

4 An example

The ultimate strength of an enlarged steel prop of class D55 is evaluated according to the procedure described
in section 3, assuming l = lmax = 5500mm and the inner tube upwards. Materials for the tubes are S235
(Young modulus E = 210GPa, yield strength fy = 235MPa) for AD part and S355 for the CF part
(yield strength fy = 395MPa after cold forming). Geometry parameters read - see also figure 9: maximal
extension lmax = lo + lm + li = 5500mm; overlapping length lm = 800mm; holes diameter dh = 15.5mm;
distance between holes ah = 100mm; base thickness t = 8mm. Outer tube BD parameters: outer diameter
Do = 76mm; thickness to = 2.9mm; length lo + lm − lAB = 2800mm. Inner tube CE parameters: outer
diameter Di = 62mm; thickness ti = 6.6mm; length li+ lm− lEF = 2900mm. Enlarged tube AB parameters:
outer diameter Do = 91mm; effective diameter at the base Do1 = Do+2t = 107mm; thickness to = 2.6mm;
length lAB = 300mm. Enlarged tube EF parameters: outer diameter Di = 77mm; effective diameter at the
base Di1 = Di + 2t = 93mm; thickness ti = 2.6mm; length lEF = 300mm. It is interesting to check the
influence of the length of EF part in the weight of the prop: indeed, the small thickness of this enlarged
part allows to design a lighter prop.

lEF [mm] Weight of the prop [kg]
300 45.73
500 44.88
750 43.82
1000 42.76
1100 42.33
1200 41.91

Table 1: Influence of EF part on the weight of the prop

Parameters dp = 66.6mm e ds = 65.6mm (see figure 9) play a basic role in the evaluation of angle ∆ϕ0

between the tubes; making reference to figure 8, the deflection due to the inclination angle ∆ϕ0 - denoted
with vincn (s) - reads:

vincAB(s) = me · s

vincBC(s) = me · s

vincCD(s) = me · s

vincDC(s) = mi · (lmax − s)
vincED(s) = mi · (lmax − s)
vincEF (s) = mi · (lmax − s)

where me = tanϕA
∼= ϕA = 0.00229091rad and mi = tanϕF

∼= ϕF = 0.00220909rad (see figure 9). As
the standard does not provide instructions to evaluate ∆ϕ0, the approach followed in [1] is taken. It is
summarized in appendix A.

The initial sinusoidal deflection vsinn (s), with notation of figure 5, reads:

vsin =
lmax

500
sin

π

lmax

s (5)

The tubes geometry has an impact on the inertia moments of the tubes section. For the outer tube, the
section is a ring with inertia Iout = IBC = 445546mm4. For the inner one, the standard EN 1065 provides
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Figure 8: Notation and elastica configurations.

Figure 9: Modeling of the two tubes overlapping. Here: ∆ϕ0 is the angle between the tubes; lm the
overlapping length; ds inner diameter at the end of the outer tube; dp outer diameter at the end of the inner
tube

a special procedure for inertia evaluation, summarized in the Appendix in [1]. Iin = IED = 383427mm4

comes out. The inertia for the enlarged part AB amounts at IAB = 705936mm4, while for EF part
IEF = 421000mm4.

In the second and third static schemes, X stands for the over-constraint moment at the prop base. The
reaction force H has to be evaluated in the deformed configuration as a function of the external load P , of
deflection vED(LAD) at point D and eventually of X .

In the first static scheme - 0 ≤ P ≤ P1deg - the Bernoulli-Navier equations (4) read:

v′′AB(s) + α2
ABvAB(s) = −α2

AB

(

me s+ (et − eb,0)
s

lmax

+ eb,0

)

−
α2
AB lmax

500
sinπ

s

lmax

(6a)
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v′′BC(s) + α2
BCvBC(s) = −α2

BC

(

me s+ (et − eb,0)
s

lmax

+ eb,0

)

−
α2
BC lmax

500
sinπ

s

lmax

(6b)

v′′EF (s) + α2
EF vEF (s) = −α2

EF

(

mi (lmax − s)− (et − eb,0)
lmax − s

lmax

+ et

)

− (6c)

−
α2
EF lmax

500
sinπ

s

lmax

v′′ED(s) + α2
EDvED(s) = −α2

ED

(

mi (lmax − s)− (et − eb,0)
lmax − s

lmax

+ et

)

− (6d)

−
α2
ED lmax

500
sinπ

s

lmax

v′′CD(s) + α2
BCvCD(s) = −α2

BC

lmax

500
sin

s

lmax

π − α2
BC

(

me s+ (et − eb,0)
s

lmax

+ eb,0

)

(6e)

+α2
BC

s− LAC

LCD

[

lmax

500
sin

LAD

lmax

π +mi LDF + et −
LDF

lmax

(et − eb,0)

+vED(LAD)]

v′′DC(s) =
α2
ED

LCD

(LAC − s)

[

lmax

500
sin

LAD

lmax

π +mi LDF + et− (6f)

−
LDF

lmax

(et − eb,0) + vED(LAD)]

with α2
AB = P

EIAB
, α2

BC = P
EIBC

, α2
EF = P

EIEF
e α2

ED = P
EIED

. Twelve boundary conditions are required
to solve problem (6):

vAB(0) = 0 (7a)

vAB(LAB) = vBC(LAB) (7b)

vBC(LAB + LBC) = vCD(LAB + LBC) (7c)

vCD(LAB + LBC) = vDC(LAB + LBC) (7d)

vCD(LAB + LBC + LCD) = vDC(LAB + LBC + LCD) (7e)

vDC(LAB + LBC + LCD) = vED(LAB + LBC + LCD) (7f)

vED(LAB + LBC + LCD + LED) = vEF (LAB + LBC + LCD + LED) (7g)

vEF (0) = 0 (7h)

v′AB(LAB) = v′BC(LAB) (7i)

v′BC(LAB + LBC) = v′CD(LAB + LBC) (7j)

v′DC(LAB + LBC + LCD) = v′ED(LAB + LBC + LCD) (7k)

v′ED(LAB + LBC + LCD + LED) = v′EF (LAB + LBC + LCD + LED) (7l)

The limit load P1deg for the first static scheme comes out after imposing the condition v′AB(0) = π
180

: it
amounts to P1deg = 10.68 kN. By imposing a null matrix determinant in the system of twelve equations
(7a-7l) the critical load for analysis #1 turns out to be Pcr,1 = 31.06 kN > P1deg .

Using a similar path of reasoning, the second and the third static schemes have been solved: they require
a further boundary condition because of the over-constraint. In the second scheme the rotation at the base
must be one degree. In the third scheme, the moment at the base is related to the rotation in the spring by
means of elasticity constant ct - see figure 6:

v′AB(0) =
π

180
; v′AB(0) = −

X

ct
−

(eb,0 + eb,core) P

ct
+

π

180
(7m)

The transition between the second and the third scheme is stated by the condition

v′AB(0) =
π

180
→ X = −P (eb,0 + eb,core)
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that generates a Plim = 27.24 kN. The support strength of the prop is exhausted whenX = −P (eb,lim + eb,0),
that leads to Pfail = 34.10 kN. By imposing a null matrix determinant in the system of thirteen boundary
conditions (7), the critical loads for analyses #2 and #3 come out. They amount to Pcr,2 = 61.10 kN > Plim

and Pcr,3 = 39.15 kN > Pfail. Since the transition loads are lower than the corresponding Eulerian load
in every static scheme, the prop is adequately designed against the failure due to structural instability.
Moreover, the value of Pfail is slightly higher than RD,k = 34 kN:

RD,k = 34 kN < 34.10 kN = Pfail (8)

That means that the prop is well designed, since it would be impossible to decrease any parameter of the
prop without exhausting the support strength (which is the most common collapse mechanism for this class
of props).

Finally, because Plim < RD,k < Pfail, it is necessary to check that the bending moment due to P = RD,k in
analysis #3 is lower than Mpl,N at all points of the prop. The plastic flexural strength, according to equation
(3), amounts to Mpl,N,AB = 4333kNmm for the enlarged tube AB, amounts to Mpl,N,EF = 5266kNmm for
the enlarged tube EF, amounts to Mpl,N,BD = 3245kNmm for the outer tube and to Mpl,EC = 5740kNmm
for the inner one.

A plot of bending moment versus the plastic flexural strength is represented in figure 10: the curve
lines represent the bending moment of the whole prop, while the straight lines represent the plastic flexural
strength. It allows to conclude that, at the maximum extension, the analyzed prop is designed in agreement
with standard EN 1065. The carrying capacity according to EN 1065 has to be tested at the minimum length
and at the most unfavorable intermediate configuration as well. The same analyses have been repeated
positioning the prop with the internal tube downward, and the transition loads measure: P1deg = 10.46 kN;
Plim = 27.11 kN; Pfail = 34.63 kN > RD,k.

Figure 10: Comparison between the plastic flexural strengthMpl,N and the (absolute value of) actual bending
moment.

It seems interesting to plot (figure 11) the elastic contribution to the deflection: the effect of the con-
straints imposed in the three phases of the load process is evident. During analysis #1 the rotation at point
A (abscissa s = 0) is free, while it is prevented in analysis #2: in the latter, the slope of the deflection
curve at point A is constant and equal to 1deg. The deflection at the end of analysis #2 is about 30% of the
ultimate deflection. As expected therefore, most of the deflection takes place in analysis #3.

Table 2 allows to compare the performances of the props with and without the enlargement at the base.
It shows that an enlargement of the bases of length 300mm allows to save about 4 kg, the 7.56% of the prop
weight.
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a)

b)

Figure 11: Elastic deflection vel(s) [mm] as a function of the external load up to the carrying capacity Pfail

for a standard prop (plot a)) and for an enlarged prop (plot b)). The latter is more compliant since the
tubes are smaller.

5 Conclusions

The idea of lighter props of innovative shape arose from the evidence that the main failure mechanism for
certain class of props is the failure of the base. In order to comply with the safety requirements against this
collapse mechanism, it is usual in standard design to increment tube thicknesses. This methodology is only
indirectly related to the failure mechanisms and causes a large increase of the prop weight. In the approach
here pursued, the increment of thicknesses of the tubes is coupled with an enlargement of tube diameters
near the prop base - see figure 4. Enlargement can be obtained by welding or by alternative technologies.
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Prop type Standard prop Enlarged prop
P1deg 11.78 kN 10.68 kN
Plim 27.27 kN 27.24 kN
Pfail 34.43 kN 34.10 kN
Pcr,1 32.52 kN 31.06 kN
Pcr,2 61.73 kN 61.10 kN
Pcr,3 40.48 kN 39.15 kN

weight 49.47 kg 45.73 kg

Table 2: Comparison between a “standard” prop and an enlarged prop

The prop behavior can be modeled in either case as described in section 3.
The design of this new kind of prop required a deep revision of the strategy provided in [1], which is the

main contribution of the present note. A new software has been developed to design props with enlarged
bases, capable to optimize props in terms of weight.
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A Evaluation of angle ∆ϕo

The tolerances at the top and at the bottom between the two vertical tubes are defined as:

gbott = do − dp ; gtop = ds −Di

having set do the inner diameter of the outer tube and Di the outer diameter of the inner tube. Moving
from the vertical position, the tubes relatively rotate about the hinge in figure 6. Geometrical analysis lead
to the following first order approximated (i.e. tanϕ = ϕ) equations:

{

(lo + lm) · ϕA −
gtop
2

= li · ϕF

lo · ϕA = (li + lm) · ϕF −
gbott
2

(9)

whose solution yields ϕA and ϕF , whence ∆ϕo = ϕA + ϕF .
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