Abstract

The Panel on Plant Health performed a pest categorisation of the six-toothed bark beetle, *Ips sexdentatus* (Börner) (Coleoptera: Curculionidae, Scolytinae), for the EU. *I. sexdentatus* is a well-defined and distinguishable species, native to Eurasia and recognised mainly as a pest of pine (*Pinus* spp., in the pest’s whole range) and spruce (mainly *Picea orientalis* in Turkey and Georgia). It also might occasionally attack *Larix* spp. and *Abies* spp. It is distributed throughout the EU (24 Member States). It is a protected zone quarantine pest in Ireland, Cyprus and the United Kingdom (Northern Ireland, Isle of Man), listed in Annex IIB of Council Directive 2000/29/EC. Wood, wood products, bark and wood packaging material are considered as pathways for this pest, which is also able to disperse by flight over tens of kilometres. The adults normally establish on fallen or weakened trees (e.g. after a fire or a drought) and can also mass-attack healthy trees. The males produce aggregation pheromones that attract conspecifics of both sexes. The insects also inoculate pathogenic fungi to their hosts. There are one to five generations per year. The wide current geographical range of *I. sexdentatus* suggests that it is able to establish anywhere in the EU where its hosts are present. Sanitary thinning or clear-felling are the major control methods. Pheromone mass-trapping is also locally implemented. Quarantine measures are implemented to prevent entry into the protected zones. All criteria for consideration as potential protected zone quarantine pest are met. The criteria for considering *I. sexdentatus* as a potential regulated non-quarantine pest are not met since plants for planting are not viewed as a pathway.

© 2017 European Food Safety Authority. *EFSA Journal* published by John Wiley and Sons Ltd on behalf of European Food Safety Authority.

Keywords: Curculionidae, European Union, pest risk, plant health, plant pest, quarantine, six-toothed bark beetle

Requestor: European Commission

Question number: EFSA-Q-2017-00203

Correspondence: alpha@efs.europa.eu

Acknowledgements: The Panel wishes to acknowledge all European competent institutions, Member State bodies and other organisations that provided data for this scientific output.

ISSN: 1831-4732

© 2017 European Food Safety Authority. *EFSA Journal* published by John Wiley and Sons Ltd on behalf of European Food Safety Authority.

This is an open access article under the terms of the Creative Commons Attribution-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited and no modifications or adaptations are made.

Reproduction of the images listed below is prohibited and permission must be sought directly from the copyright holder:

Figure 1: © EPPO

Figure 2: © European Union, 2017. Reuse is authorised, provided the source is acknowledged

The EFSA Journal is a publication of the European Food Safety Authority, an agency of the European Union.
1. Introduction

1.1. Background and Terms of Reference as provided by the requestor

1.1.1. Background

Council Directive 2000/29/EC\(^1\) on protective measures against the introduction into the Community of organisms harmful to plants or plant products and against their spread within the Community establishes the present European Union plant health regime. The Directive lays down the phytosanitary provisions and the control checks to be carried out at the place of origin on plants and plant products destined for the Union or to be moved within the Union. In the Directive’s 2000/29/EC annexes, the list of harmful organisms (pests) whose introduction into or spread within the Union is prohibited, is detailed together with specific requirements for import or internal movement.

Following the evaluation of the plant health regime, the new basic plant health law, Regulation (EU) 2016/2031\(^2\) on protective measures against pests of plants, was adopted on 26 October 2016 and will apply from 14 December 2019 onwards, repealing Directive 2000/29/EC. In line with the principles of the above mentioned legislation and the follow-up work of the secondary legislation for the listing of EU regulated pests, EFSA is requested to provide pest categorizations of the harmful organisms included in the annexes of Directive 2000/29/EC, in the cases where recent pest risk assessment/pest categorisation is not available.

1.1.2. Terms of Reference

EFSA is requested, pursuant to Article 22(5.b) and Article 29(1) of Regulation (EC) No 178/2002\(^3\), to provide scientific opinion in the field of plant health.

EFSA is requested to prepare and deliver a pest categorisation (step 1 analysis) for each of the regulated pests included in the appendices of the annex to this mandate. The methodology and template of pest categorisation have already been developed in past mandates for the organisms listed in Annex II Part A Section II of Directive 2000/29/EC. The same methodology and outcome is expected for this work as well.

The list of the harmful organisms included in the annex to this mandate comprises 133 harmful organisms or groups. A pest categorisation is expected for these 133 pests or groups and the delivery of the work would be stepwise at regular intervals through the year as detailed below. First priority covers the harmful organisms included in Appendix 1, comprising pests from Annex II Part A Section I and Annex II Part B of Directive 2000/29/EC. The delivery of all pest categorisations for the pests included in Appendix 1 is June 2018. The second priority is the pests included in Appendix 2, comprising the group of Cicadellidae (non-EU) known to be vector of Pierce’s disease (caused by Xylella fastidiosa), the group of Tephritidae (non-EU), the group of potato viruses and virus-like organisms, the group of viruses and virus-like organisms of Cydonia Mill., Fragaria L., Malus Mill., Prunus L., Pyrus L., Ribes L., Rubus L. and Vitis L. and the group of Margarodes (non-EU species). The delivery of all pest categorisations for the pests included in Appendix 2 is end 2019. The pests included in Appendix 3 cover pests of Annex I part A section I and all pests categorisations should be delivered by end 2020.

For the above mentioned groups, each covering a large number of pests, the pest categorisation will be performed for the group and not the individual harmful organisms listed under “such as” notation in the Annexes of the Directive 2000/29/EC. The criteria to be taken particularly under consideration for these cases, is the analysis of host pest combination, investigation of pathways, the damages occurring and the relevant impact.

Finally, as indicated in the text above, all references to ‘non-European’ should be avoided and replaced by ‘non-EU’ and refer to all territories with exception of the Union territories as defined in Article 1 point 3 of Regulation (EU) 2016/2031.

\(^{1}\) Council Directive 2000/29/EC of 8 May 2000 on protective measures against the introduction into the Community of organisms harmful to plants or plant products and against their spread within the Community. OJ L 169/1, 10.7.2000, p. 1–112.

1.1.2.1. Terms of Reference: Appendix 1

List of harmful organisms for which pest categorisation is requested. The list below follows the annexes of Directive 2000/29/EC.

Annex IIAI

(a) Insects, mites and nematodes, at all stages of their development

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Scientific Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aleurocanthus spp.</td>
<td>Numonia pyrivorella (Matsumura)</td>
</tr>
<tr>
<td>Anthonomus bisignifer (Schenkling)</td>
<td>Oligonychus perditus Pritchard and Baker</td>
</tr>
<tr>
<td>Anthonomus signatus (Say)</td>
<td>Pissodes spp. (non-EU)</td>
</tr>
<tr>
<td>Aschistonyx eppoi Inouye</td>
<td>Scirtothrips aurantii Faure</td>
</tr>
<tr>
<td>Carposina niponensis Walsingham</td>
<td>Scirtothrips citri (Moultex)</td>
</tr>
<tr>
<td>Enarmonia packardi (Zeller)</td>
<td>Scolytidae spp. (non-EU)</td>
</tr>
<tr>
<td>Enarmonia prunivora Walsh</td>
<td>Scrobipalpopsis solanivora Povolny</td>
</tr>
<tr>
<td>Grapholita inopinata Heinrich</td>
<td>Tachypterellus quadrigibbus Say</td>
</tr>
<tr>
<td>Hishomonus phycitis</td>
<td>Toxoptera citricida Kirk.</td>
</tr>
<tr>
<td>Leucaspis japonica Ckll.</td>
<td>Unaspis citri Comstock</td>
</tr>
<tr>
<td>Listronotus bonariensis (Kuschel)</td>
<td></td>
</tr>
</tbody>
</table>

(b) Bacteria

- Citrus variegated chlorosis
- *Erwinia stewartii* (Smith) Dye

(c) Fungi

- *Alternaria alternata* (Fr.) Keissler
- *Anisogramma anomala* (Peck) E. Müller
- *Apiosporina morbosa* (Schwein.) v. Arx
- *Ceratocystis virescens* (Davidson) Moreau
- *Cercoseptoria pini-densiflorae* (Hori and Nambu) Deighton
- *Cercospora angolensis* Carv. and Mendes

(d) Virus and virus-like organisms

- Beet curly top virus (non-EU isolates)
- Black raspberry latent virus
- Blight and blight-like
- Cadang-Cadang viroid
- Citrus tristeza virus (non-EU isolates)
- Leprosis

Annex IIB

(a) Insect mites and nematodes, at all stages of their development

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Scientific Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthonomus grandis (Boh.)</td>
<td>Ips amitinus Eichhof</td>
</tr>
<tr>
<td>Cephalcia lariciphila (Klug)</td>
<td>Ips cembrae Heer</td>
</tr>
<tr>
<td>Dendroctonus micans Kugelan</td>
<td>Ips duplicatus Sahlberg</td>
</tr>
<tr>
<td>Gilphinia hercyniae (Hartig)</td>
<td>Ips sexdentatus Börner</td>
</tr>
<tr>
<td>Goniipterus scutellatus Gyll.</td>
<td>Ips typographus Heer</td>
</tr>
<tr>
<td>Sternochetus mangiferae Fabricius</td>
<td></td>
</tr>
</tbody>
</table>
(b) Bacteria
Curtobacterium flaccumfaciens pv. *flaccumfaciens* (Hedges) Collins and Jones

(c) Fungi
Glomerella gossypii Edgerton
Hypoxylon mammatum (Wahl.) J. Miller
Gremmeniella abietina (Lag.) Morelet

1.1.2.2. Terms of Reference: Appendix 2

List of harmful organisms for which pest categorisation is requested per group. The list below follows the categorisation included in the annexes of Directive 2000/29/EC.

Annex IAI

(a) Insects, mites and nematodes, at all stages of their development

Group of Cicadellidae (non-EU) known to be vector of Pierce’s disease (caused by *Xylella fastidiosa*), such as:

1) *Carneocephala fulgida* Nottingham
2) *Draeculacephala minerva* Ball

Group of Tephritidae (non-EU) such as:

1) *Anastrepha fraterculus* (Wiedemann) 12) *Pardalaspis cyanescens* Bezzi
2) *Anastrepha ludens* (Loew) 13) *Pardalaspis quinaria* Bezzi
3) *Anastrepha obliqua* Macquart 14) *Pterandrus rosa* (Karsch)
4) *Anastrepha suspensa* (Loew) 15) *Racaochaena japonica* Ito
5) *Dacus ciliatus* Loew 16) *Rhagoletis completa* Cresson
6) *Dacus curcurbitae* Coquillet 17) *Rhagoletis fausta* (Osten-Sacken)
7) *Dacus dorsalis* Hendel 18) *Rhagoletis indifferentes* Curran
8) *Dacus tryoni* (Froggatt) 19) *Rhagoletis mendax* Curran
9) *Dacus tsuneonis* Miyake 20) *Rhagoletis pomonella* Walsh
10) *Dacus zonatus* Saund. 21) *Rhagoletis suavis* (Loew)
11) *Epochra canadensis* (Loew)

(c) Viruses and virus-like organisms

Group of potato viruses and virus-like organisms such as:

1) Andean potato latent virus 4) Potato black ringspot virus
2) Andean potato mottle virus 5) Potato virus T
3) Arracacha virus B, oca strain 6) non-EU isolates of potato viruses A, M, S, V, X and Y (including Yo, Yn and Yc) and Potato leafroll virus

Group of viruses and virus-like organisms of *Cydonia Mill.*, *Fragaria L.*, *Malus Mill.*, *Prunus L.*, *Pyrus L.*, *Ribes L.*, *Rubus L.* and *Vitis L.*, such as:

1) Blueberry leaf mottle virus 8) Peach yellows mycoplasm
2) Cherry rasp leaf virus (American) 9) Plum line pattern virus (American)
3) Peach mosaic virus (American) 10) Raspberry leaf curl virus (American)
4) Peach phony rickettsia 11) Strawberry witches’ broom mycoplasm
6) Peach rosette mycoplasm
7) Peach X-disease mycoplasm
Annex IIAI

(a) Insects, mites and nematodes, at all stages of their development

Group of *Margarodes* (non-EU species) such as:

1) *Margarodes vitis* (Phillipi)
2) *Margarodes vredendalensis* de Klerk
3) *Margarodes prieskaensis* Jakubski

1.1.2.3. Terms of Reference: Appendix 3

List of harmful organisms for which pest categorisation is requested. The list below follows the annexes of Directive 2000/29/EC.

Annex IIAI

(a) Insects, mites and nematodes, at all stages of their development

- *Acleris* spp. (non-EU)
- *Amauromyza maculosa* (Malloch)
- *Anomala orientalis* Waterhouse
- *Arrhenodes minutus* Drury
- *Choristoneura* spp. (non-EU)
- *Conotrachelus nenuphar* (Herbst)
- *Diabrotica barberi* Smith and Lawrence
- *Diabrotica undecimpunctata howardi* Barber
- *Diabrotica undecimpunctata undecimpunctata* Mannerheim
- *Diabrotica virgifera* zeae Krysan & Smith
- *Diaphorina citri* Kuway
- *Helothis zeas* (Boddie)
- *Hirschmanniella* spp., other than *Hirschmanniella gracilis* (de Man)
- *Liriomyza sativae* Blanchard

(b) Fungi

- *Ceratocystis fagacearum* (Bretz) Hunt
- *Chrysomyxa arctostaphyli* Dietel
- *Cronartium* spp. (non-EU)
- *Endocronartium* spp. (non-EU)
- *Guignardia laricina* (Saw.) Yamamoto and Ito
- *Gymnosporangium* spp. (non-EU)
- *Inonotus weirii* (Murril) Kotiba and Pouzar
- *Melampsora farlowii* (Arthur) Davis

(c) Viruses and virus-like organisms

- Tobacco ringspot virus
- Tomato ringspot virus
- Bean golden mosaic virus
- Cowpea mild mottle virus
- Lettuce infectious yellows virus

(d) Parasitic plants

Arceuthobium spp. (non-EU)
Annex I AII

(a) Insects, mites and nematodes, at all stages of their development

- Meloidogyne fallax Karssen
- Rhizoeus hibisci Kawai and Takagi
- Popillia japonica Newman

(b) Bacteria

- Clavibacter michiganensis (Smith) Davis et al. ssp. sepedonicus (Spieckermann and Kotthoff) Davis et al.
- Ralstonia solanacearum (Smith) Yabuuchi et al.

(c) Fungi

- Melampsora medusae Thümen
- Synchytrium endobioticum (Schilbersky) Percival

Annex I B

(a) Insects, mites and nematodes, at all stages of their development

- Leptinotarsa decemlineata Say
- Liriomyza bryoniae (Kaltenbach)

(b) Viruses and virus-like organisms

Beet necrotic yellow vein virus

1.2. Interpretation of the Terms of Reference

Ips sexdentatus is one of a number of pests listed in the Appendices to the Terms of Reference (ToR) to be subject to pest categorisation to determine whether it fulfils the criteria of a quarantine pest or those of a regulated non-quarantine pest (RNQP) for the area of the European Union (EU) excluding Ceuta, Melilla and the outermost regions of Member States (MSs) referred to in Article 355(1) of the Treaty on the Functioning of the European Union (TFEU), other than Madeira and the Azores.

Since *I. sexdentatus* is regulated in the protected zones (PZs) only, the scope of the categorisation is the territory of the PZ (Ireland, Cyprus and the United Kingdom: Northern Ireland, Isle of Man); thus, the criteria refer to the PZ instead of the EU territory.

2. Data and methodologies

2.1. Data

2.1.1. Literature search

A literature search on *I. sexdentatus* was conducted at the beginning of the categorisation in the ISI Web of Science bibliographic database, using the scientific name of the pest as search term. Relevant papers were reviewed and further references and information were obtained from experts as well as from citations within the references and grey literature.

2.1.2. Database search

Pest information, on host(s) and distribution, was retrieved from the European and Mediterranean Plant Protection Organization (EPPO) Global Database (EPPO, 2017) and relevant publications.

Data about import of commodity types that could potentially provide a pathway for the pest to enter the EU were obtained from Eurostat (Statistical Office of the European Communities).

The Europhyt database was consulted for pest-specific notifications on interceptions and outbreaks. Europhyt is a web-based network launched by the Directorate General for Health and Consumers (DG SANCO) and is a subproject of PHYSAN (Phyto-Sanitary Controls) specifically concerned with plant health information. The Europhyt database manages notifications of interceptions of plants or plant products that do not comply with EU legislation as well as notifications of plant pests detected in the territory of the MS and the phytosanitary measures taken to eradicate or avoid their spread.

2.2. Methodologies

The Panel performed the pest categorisation for *I. sexdentatus*, following guiding principles and steps presented in the EFSA guidance on the harmonised framework for pest risk assessment (EFSA...
ips sexdentatus: pest categorisation

PLH Panel, 2010a) and as defined in the International Standard for Phytosanitary Measures No 11 (FAO, 2013) and No 21 (FAO, 2004).

In accordance with the guidance on a harmonised framework for pest risk assessment in the EU (EFSA PLH Panel, 2010a), this work was initiated following an evaluation of the EU’s plant health regime. Therefore, to facilitate the decision-making process, in the conclusions of the pest categorisation, the Panel addresses explicitly each criterion for a Union quarantine pest and for a Union RNQP in accordance with Regulation (EU) 2016/2031 on protective measures against pests of plants and includes additional information required in accordance with the specific ToR received by the European Commission. In addition, for each conclusion, the Panel provides a short description of its associated uncertainty.

Table 1 presents the Regulation (EU) 2016/2031 pest categorisation criteria on which the Panel bases its conclusions. All relevant criteria have to be met for the pest to potentially qualify either as a quarantine pest or as a RNQP. If one of the criteria is not met, the pest will not qualify. Note that a pest that does not qualify as a quarantine pest may still qualify as a RNQP that needs to be addressed in the opinion. For the pests regulated in the PZs only, the scope of the categorisation is the territory of the PZ; thus, the criteria refer to the PZ instead of the EU territory.

It should be noted that the Panel’s conclusions are formulated respecting its remit and particularly with regard to the principle of separation between risk assessment and risk management (EFSA founding regulation (EU) No 178/2002); therefore, instead of determining whether the pest is likely to have an unacceptable impact, the Panel will present a summary of the observed pest impacts. Economic impacts are expressed in terms of yield and quality losses and not in monetary terms, whereas addressing social impacts is outside the remit of the Panel, in agreement with EFSA guidance on a harmonised framework for pest risk assessment (EFSA PLH Panel, 2010a).

Table 1: Pest categorisation criteria under evaluation, as defined in Regulation (EU) 2016/2031 on protective measures against pests of plants (the number of the relevant sections of the pest categorisation is shown in brackets in the first column)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Identity of the pest (Section 3.1)</td>
<td>Is the identity of the pest established, or has it been shown to produce consistent symptoms and to be transmissible?</td>
<td>Is the identity of the pest established, or has it been shown to produce consistent symptoms and to be transmissible?</td>
<td>Is the identity of the pest established, or has it been shown to produce consistent symptoms and to be transmissible?</td>
</tr>
<tr>
<td>Absence/presence of the pest in the EU territory (Section 3.2)</td>
<td>Is the pest present in the EU territory? If present, is the pest widely distributed within the EU? Describe the pest distribution briefly!</td>
<td>Is the pest present in the EU territory? If not, it cannot be a protected zone quarantine organism.</td>
<td>Is the pest present in the EU territory? If not, it cannot be a regulated non-quarantine pest. (A regulated non-quarantine pest must be present in the risk assessment area).</td>
</tr>
<tr>
<td>Regulatory status (Section 3.3)</td>
<td>If the pest is present in the EU but not widely distributed in the risk assessment area, it should be under official control or expected to be under official control in the near future.</td>
<td>The protected zone system aligns with the pest-free area system under the International Plant Protection Convention (IPPC). The pest satisfies the IPPC definition of a quarantine pest that is not present in the risk assessment area (i.e. protected zone).</td>
<td>Is the pest regulated as a quarantine pest? If currently regulated as a quarantine pest, are there grounds to consider its status could be revoked?</td>
</tr>
<tr>
<td>Pest potential for entry, establishment and spread in the EU territory (Section 3.4)</td>
<td>Is the pest able to enter into, become established in and spread within the EU territory? If yes, briefly list the pathways!</td>
<td>Is the pest able to enter into, become established in and spread within the protected zone areas? Is entry by natural spread from EU areas where the pest is present possible?</td>
<td>Is spread mainly via specific plants for planting, rather than via natural spread or via movement of plant products or other objects? Clearly state if plants for planting is the main pathway!</td>
</tr>
</tbody>
</table>
The Panel will not indicate in its conclusions of the pest categorisation whether to continue the risk assessment process, but, following the agreed two-step approach, will continue only if requested by the risk managers. However, during the categorisation process, experts may identify key elements and knowledge gaps that could contribute significant uncertainty to a future assessment of risk. It would be useful to identify and highlight such gaps so that potential future requests can specifically target the major elements of uncertainty, perhaps suggesting specific scenarios to examine.

3. Pest categorisation

3.1. Identity and biology of the pest

3.1.1. Identity and taxonomy

Is the identity of the pest established, or has it been shown to produce consistent symptoms and to be transmissible?

Yes, the identity of the pest is established. It can be identified at species level using conventional entomological keys.

Ips sexdentatus is an insect of the family Curculionidae, subfamily Scolytinae.4

4 Although the leading taxonomists in the 2000s (Wood, 1982; Bright and Skidmore, 2002) still considered the Scolytidae to be a family distinct from the Curculionidae according to morphological criteria, modern phylogenetics supports the position of scolytine beetles (subfamily Scolytinae) within the family Curculionidae (Knížek and Beaver, 2004; Hulcr et al., 2015). This is reflected by the growing number of citations in Scopus (2017) referring to Scolytinae (18 in 1990 vs 177 in 2016), as opposed to citations referring to Scolytidae (50 in 1990 vs 15 in 2016). The Scolytinae includes two subcategories, the ‘bark beetles’ which live in the phloem and the ‘ambrosia beetles’ which live in the sapwood.
3.1.2. Biology of the pest

A general description of the biology and ecology of *I. sexdentatus* is provided by Chararas (1962), Bakke (1968) and Lévéix et al. (1985). The adults overwinter in the bark of their hosts or in the litter and disperse in the spring, flying in search for new hosts, sometimes over large distances. In flight mill experiments, Jactel and Gaillard (1991) observed that, out of a sample of 38 individuals, 98% flew more than 5 km, 50% more than 20 km and 10% more than 45 km. In Europe, *I. sexdentatus* preferentially colonise weakened pines, such as cut logs or wind-felled trees (Samalens et al., 2007; Rossi et al., 2009), trees affected by forest fires (Fernandez and Salgado Costas, 1999; Fernandez, 2006; Lombardero and Ayres, 2011; Santolamazza-Carbone et al., 2011) or drought-stressed trees (Lieutier et al., 1988). However, they can also attack living trees when population levels are high (Rossi et al., 2009; Pineau et al., 2017). In Turkey and Georgia, *I. sexdentatus* is a major primary pest of *Picea orientalis*, attacking living trees (Schimitschek, 1939; Lozovoj, 1966; Ozcan et al., 2011). The males arrive first, start a mating chamber and emit pheromones that attract females as well as other males (Vité et al., 1974; Francke et al., 1986; Kohnle et al., 1992; Etxebeste et al., 2012). After having excavated a nuptial chamber in the phloem, each male is joined by one to five females, which bore each a maternal gallery in the phloem, parallel to the fibres. Single eggs are laid at regular intervals along these galleries. After egg laying, the parent adults often re-emerge and establish sister broods on the same tree or on a new host. Each larva excavates an individual gallery perpendicular to the maternal gallery. Pupation occurs in a small niche in the phloem, at the end of the larval gallery. Productivity varies between 1 and 60 offspring per female and is inversely dependent upon attack density (Pineau et al., 2017). After metamorphosis, the young adults remain under the bark for maturation feeding before they disperse. Upon emergence, the sex ratio is balanced (Pineau et al., 2017). There are possibly one to five generations per year (Lévéix et al., 1985). Pathogenic ophiostomatoid fungi are carried by the beetles, some of them in pit mycangia on the body (Kirisits, 2004; Romón et al., 2008; Bueno et al., 2010; Jankowiak, 2012). They cause blue staining of the wood and some of them can contribute to tree death.

3.1.3. Detection and identification of the pest

Are detection and identification methods available for the pest?

Yes, the organism can be detected by visual searching, often after damage symptoms are seen, and by pheromone trapping. The species can be identified by examining morphological features, for which taxonomic keys exist, e.g. Balachowsky (1949); Grüne (1979); Schedl (1981); Wood (1982).

The standing trees attacked by *I. sexdentatus* die during the colonisation process, with an obvious discoloration of their crown, which becomes brown and then grey after the needles have shed. During the attacks, brown sawdust is expelled from the entry holes and, when the broods have metamorphosed and the young adults start feeding on the phloem around the galleries, the bark can flake off. This phenomenon can be amplified by the action of woodpeckers. Within and under the phloem, maternal galleries, parallel to the fibres and up to 50 cm long, and transversal larval galleries can be seen. Pheromone lures and traps are commercially available for *I. sexdentatus* but, because of the large dispersal capacity of the pest, trap catches do not necessarily reflect local establishment. The sapwood shows blue staining due to the fungi introduced by the beetles. The adults are dark brown or black in colour, cylindrical, 7–8 mm long. The larvae are apodous, with a dark amber cephalic capsule.

3.2. Pest distribution

3.2.1. Pest distribution outside the EU

I. sexdentatus is present in Europe and Asia. In non-EU European countries, the insect has been reported from Armenia, Azerbaijan, Belarus, Georgia, Macedonia, Moldova, Norway, Russia, Serbia, Switzerland, Turkey and Ukraine (Figure 1).
3.2.2. Pest distribution in the EU

Figure 1: Global distribution map for *Ips sexdentatus* (extracted from the EPPO global database accessed on 22 August 2017)

3.2.2. Pest distribution in the EU

Is the pest present in the EU territory? If present, is the pest widely distributed within the EU?

Yes, *I. sexdentatus* is present and widely distributed in the EU, it has been reported from 24 MSs (Table 2). The pest is absent in the protected zones (Ireland, Cyprus and the United Kingdom: Northern Ireland and the Isle of Man).

Table 2: Current distribution of *Ips sexdentatus* in the 28 EU MS based on information from the EPPO Global Database

<table>
<thead>
<tr>
<th>Country</th>
<th>EPPO Global Database</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Last updated: 12 July 2017</td>
</tr>
<tr>
<td></td>
<td>Date Accessed: 22 August 2017</td>
</tr>
<tr>
<td>Austria</td>
<td>Present, no details</td>
</tr>
<tr>
<td>Belgium</td>
<td>Present, no details</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>Present, widespread</td>
</tr>
<tr>
<td>Croatia</td>
<td>Present, restricted distribution</td>
</tr>
<tr>
<td>Cyprus</td>
<td>No information(3)</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>Present, restricted distribution</td>
</tr>
<tr>
<td>Denmark</td>
<td>Absent, intercepted only</td>
</tr>
<tr>
<td>Estonia</td>
<td>Present, no details</td>
</tr>
<tr>
<td>Finland</td>
<td>Present, restricted distribution</td>
</tr>
<tr>
<td>France</td>
<td>Present, restricted distribution</td>
</tr>
<tr>
<td>Germany</td>
<td>Present, widespread</td>
</tr>
<tr>
<td>Greece</td>
<td>Present, no details</td>
</tr>
<tr>
<td>Hungary</td>
<td>Present, restricted distribution</td>
</tr>
<tr>
<td>Ireland</td>
<td>Absent, confirmed by survey</td>
</tr>
<tr>
<td>Italy</td>
<td>Present, widespread</td>
</tr>
<tr>
<td></td>
<td>Sardinia: Present, no details</td>
</tr>
<tr>
<td></td>
<td>Sicily: Present, no details</td>
</tr>
<tr>
<td>Latvia</td>
<td>Present, no details</td>
</tr>
<tr>
<td>Lithuania</td>
<td>Present, restricted distribution</td>
</tr>
</tbody>
</table>
3.3. Regulatory status

<table>
<thead>
<tr>
<th>Annex II, Part B</th>
<th>Harmful organisms whose introduction into, and whose spread within, certain protected zones shall be banned if they are present on certain plants or plant products</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>Insects, mites and nematodes, at all stages of their development</td>
</tr>
<tr>
<td>Species</td>
<td>Subject of contamination</td>
</tr>
<tr>
<td>6 (d)</td>
<td>Ips sexdentatus</td>
</tr>
</tbody>
</table>

3.3.2. Legislation addressing plants and plant parts on which *Ips sexdentatus* is regulated

Table 4: Regulated hosts and commodities that may involve *Ips sexdentatus* in Annexes III, IV and V of Council Directive 2000/29/EC

<table>
<thead>
<tr>
<th>Annex III, Part A</th>
<th>Plants, plant products and other objects the introduction of which shall be prohibited in all Member States</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Country of origin</td>
</tr>
<tr>
<td>1.</td>
<td>Plants of Abies Mill., Larix Mill., Picea A. Dietr., Pinus L., other than fruit and seeds</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Annex IV, Part B</th>
<th>Special requirements which shall be laid down by all member states for the introduction and movement of plants, plant products and other objects into and within certain protected zones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plants, plant products and other objects</td>
<td>Special requirements</td>
</tr>
</tbody>
</table>
3.3.3. Legislation addressing the organisms vectored by *Ips sexdentatus* (Directive 2000/29/EC)

Although several phytopathogenic ophiostomatoid fungi are regularly associated with *I. sexdentatus*, (Kirisits, 2004; Romón et al., 2007, 2008; Bueno et al., 2010; Jankowiak, 2012), there is currently no legislation addressing this issue. However, the pest has been also found associated with the pitch canker fungus, *Fusarium circinatum* (*Gibberella circinata*) Nirenberg and O'Donnell (Romón et al., 2008).

6. Wood of conifers (*Coniferales*)

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Origin(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without prejudice to the requirements applicable to the wood listed in Annex IV(A)(I)(1.1), (1.2), (1.3), (1.4), (1.5), (1.6), (1.7), where appropriate, and Annex IV(B)(1), (2), (3), (4), (5); the wood shall be stripped of its bark; or official statement that the wood originates in areas known to be free from Ips sexdentatus or there shall be evidence by a mark "Kilndried," "KD." or another internationally recognised mark, put on the wood or on its packaging in accordance with current commercial usage, that it has undergone kiln-drying to below 20% moisture content, expressed as a percentage of dry matter, at time of manufacture, achieved through an appropriate time/temperature schedule.</td>
<td>IRL, CY, UK (Northern Ireland, Isle of Man)</td>
</tr>
</tbody>
</table>

12. Plants of *Abies* Mill., *Larix* Mill., *Picea* A. Dietr. and *Pinus* L. over 3 m in height, other than fruit and seeds

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Origin(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without prejudice to the provisions applicable to the plants listed in Annex III(A)(1), Annex IV(A)(I)(8.1), (8.2), (9), (10), Annex IV(A)(III)(4), (5), and Annex IV(B)(7), (8), (9), (10), (11), where appropriate, official statement that the place of production is free from Ips sexdentatus</td>
<td>IRL, CY, UK (Northern Ireland, Isle of Man)</td>
</tr>
</tbody>
</table>

14.5 Isolated bark of conifers (*Coniferales*)

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Origin(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without prejudice to the provisions applicable to the bark listed in Annex IV(B)(14.1), (14.2), (14.3), (14.4), official statement that the consignment: has been subjected to fumigation or other appropriate treatments against bark beetles; or originates in areas known to be free from Ips sexdentatus</td>
<td>IRL, CY, UK (Northern Ireland, Isle of Man)</td>
</tr>
</tbody>
</table>

Annex V

Plants, plant products and other objects which must be subject to a plant health inspection (at the place of production if originating in the Community, before being moved within the Community—in the country of origin or the consignor country, if originating outside the Community) before being permitted to enter the Community

Part A

Plants, plant products and other objects originating in the Community

Section II

Plants, plant products and other objects produced by producers whose production and sale is authorised to persons professionally engaged in plant production, other than those plants, plant products and other objects which are prepared and ready for sale to the final consumer, and for which it is ensured by the responsible official bodies of the Member States, that the production thereof is clearly separate from that of other products

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Origin(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plants intended for planting other than seeds of the genera Abies Mill., Larix Mill., Picea A. Dietr., Pinus L., ...</td>
<td>IRL, CY, UK (Northern Ireland, Isle of Man)</td>
</tr>
</tbody>
</table>

3.3.3. Legislation addressing the organisms vectored by *Ips sexdentatus* (Directive 2000/29/EC)

Although several phytopathogenic ophiostomatoid fungi are regularly associated with *I. sexdentatus*, (Kirisits, 2004; Romón et al., 2007, 2008; Bueno et al., 2010; Jankowiak, 2012), there is currently no legislation addressing this issue. However, the pest has been also found associated with the pitch canker fungus, *Fusarium circinatum* (*Gibberella circinata*) Nirenberg and O’Donnell (Romón et al., 2008).
et al., 2008). *F. circinatum* is a quarantine organism in the EU (Commission Decision 2007/433/EC; EFSA PLH Panel, 2010b).

3.4. Entry, establishment and spread in the EU

3.4.1. Host range

Ips sexdentatus attacks mainly pines. It has been reported on the following species: *Pinus brutia* (Agbaba and Celepirovic, 2008); *Pinus halepensis* (Agbaba and Celepirovic, 2008); *Pinus heldreichii* (Ivojinovi, 1960); *Pinus koraensis* (Arefin, 1983); *Pinus leucodermis* (Frisullo et al., 2003); *Pinus nigra* (Kondur et al., 2012); *Pinus nigra* subsp. *salzmannii* (Exebebeste and Pajares, 2011); *Pinus pallasiana* (Kondur et al., 2012); *Pinus peuce* (Ivojinovi, 1960); *Pinus pinaster* (Bueno et al., 2010); *Pinus pithyusa* (Lozovoi, 1961); *Pinus radiata* (Cobos Suarez and Ruiz Urrestarazu, 1990); *Pinus sibirica* (Kobzar, 1968); *Pinus strobus* (Beffa, 2006); *Pinus sylvestris* var. *mongolica* (Wang et al., 2011); *Pinus tabulaeformis* (Wang et al., 2011). Spruce (e.g. *P. orientalis* (Besceli and Ekici, 1969); *Picea abies* (Slankis, 1969) and *Picea schrenkiana* (Ismukhambetov, 1964)) are also attacked. Chararas (1962) mentions attacks on *Larix decidua* and *Abies* sp. The hosts for which *I. sexdentatus* is regulated are comprehensive of the host range: the pest is regulated on four genera: *Abies*, *Larix*, *Picea* and *Pinus*.

3.4.2. Entry

Is the pest able to enter into the protected zone areas of the EU territory? If yes, identify and list the pathways.

Yes, the pest is already established in 24 MSs and can enter the protected zones by human assisted spread or by natural spread from EU areas where the pest is present.

The main pathways of entry are:

- Wood of *Abies*, *Larix*, *Picea* and *Pinus* from countries where the pest occurs
- Wood chips of conifers from countries where the pest occurs
- Bark of conifers from countries where the pest occurs
- Wood packaging material and dunnage from countries where the pest occurs

Ips species are regularly intercepted on wood, wood packaging material and dunnage. During the period 1985–2000, among the 2.740 Scolytinae intercepted at the US ports of entry and identified to species, 157 *I. sexdentatus* were found (Haack, 2001). In the Europhyt database, there are in total 66 records of *Ips* species (1994–2017), all on coniferous wood or packaging material. For *I. sexdentatus*, there are two records of interception, one from Bulgaria on coniferous wood and one from Ukraine on *P. sylvestris* wood. Lopez and Goldarazena (2012) report the introduction of *I. sexdentatus* from France to Spain with transport of wind thrown *P. pinaster* after a major storm in 2009.

There are no records of interception that indicate that plants for planting can be a pathway for *I. sexdentatus*. Plants for planting are not considered a pathway for *I. sexdentatus* since young plants are not attacked by the pest.

According to the Eurostat database, there is trade of wood from third countries and EU countries where the pest is present, into the PZs (Table 5). It should be noted that for the PZs in the United Kingdom (Northern Ireland and Isle of Man), no specific data were available and the actual imports into these PZs are a fraction of the volume imported into the United Kingdom.
3.4.3. Establishment

<table>
<thead>
<tr>
<th>Protected zone</th>
<th>3rd Countries</th>
<th>EU Countries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyprus</td>
<td>28</td>
<td>–</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>3.001</td>
<td>1.326.402</td>
</tr>
<tr>
<td>Ireland</td>
<td>1.662</td>
<td>836.992</td>
</tr>
<tr>
<td>Total</td>
<td>4.690</td>
<td>2.163.394</td>
</tr>
</tbody>
</table>

Is the pest able to become established in the protected zone areas of the EU territory?

Yes, the pest is already established in 24 MS. The climate of the EU Protected Zones is similar to that of the MS where *I. sexdentatus* is established, and the pest’s main host plants are present (Figure 2).

3.4.3.1. EU distribution of main host plants

The wide distribution of host trees in the EU territory allowed *I. sexdentatus* to establish in most MSs (Table 2) (Figure 2A,B).

Table 5: Import of wood (in tonnes) originating from Third countries and EU countries where the pest is present into protected zones. Eurostat data, period 2011–2015, GN codes: 44032010, 44032011, 44032019, 44032030, 44032031, 4403239, 44032090, 44032091, 44032099.
A) Distribution map of the genus *Pinus* in the European Union territory (based on data from the species: *P. sylvestris*, *P. pinaster*, *P. halepensis*, *P. nigra*, *P. pinea*, *P. contorta*, *P. cembra*, *P. mugo*, *P. radiata*, *P. canariensis*, *P. strobus*, *P. brutia*, *P. banksiana*, *P. ponderosa*, *P. heldreichii*, *P. leucodermis*, *P. wallichiana*)

B) Distribution map of the genus *Picea* in the European Union territory (based on data from the species: *P. abies*, *P. sitchensis*, *P. glauca*, *P. engelmannii*, *P. pungens*, *P. omorika*, *P. orientalis*)

Figure 2: **Left panel:** Relative probability of presence (RPP) of the genera *Pinus* and *Picea* in Europe, mapped at 100 km² resolution. The underlying data are from European-wide forest monitoring data sets and from national forestry inventories based on standard observation plots measuring in the order of hundreds m². RPP represents the probability of finding at least one individual of the taxon in a standard plot placed randomly within the grid cell. For details, see Appendix A (courtesy of JRC, 2017). **Right panel:** Trustability of RPP. This metric expresses the strength of the underlying information in each grid cell and varies according to the spatial variability in forestry inventories. The colour scale of the trustability map is obtained by plotting the cumulative probabilities (0–1) of the underlying index (for details see Appendix A)
3.4.3.2. Climatic conditions affecting establishment

Given the current distribution of *I. sexdentatus*, the whole EU area (including PZs) is suitable for establishment.

3.4.4. Spread

<table>
<thead>
<tr>
<th>Is the pest able to spread within the protected zone areas of the EU territory following establishment? How?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes, adults can disperse naturally. They can fly over tens of kilometres or even more (Jactel, 1991; Jactel and Gaillard, 1991). The pest can also spread by human assistance, e.g. with the transportation of wood, wood chips, bark, wood packaging material and dunnage of conifers.</td>
</tr>
<tr>
<td>RNQPs: Is spread mainly via specific plants for planting, rather than via natural spread or via movement of plant products or other objects?</td>
</tr>
<tr>
<td>No, plants for planting are not a pathway (see Section 3.4.2).</td>
</tr>
</tbody>
</table>

3.5. Impacts

<table>
<thead>
<tr>
<th>Would the pests’ introduction have an economic or environmental impact on the protected zone areas of the EU territory?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes, the pest is known to have killed thousands of trees, after triggering events such as storms, forest fires or dry summers.</td>
</tr>
</tbody>
</table>

This species is mostly a secondary pest, which generally uses stumps, fallen trees and large branches as host material. It will attack trees alone or together with other bark beetles such as *Tomicus piniperda* (Bouhot et al., 1988). Specific economic loss is not known for *I. sexdentatus*. However, approximately one million *P. orientalis* trees were lost due to sporadic *I. sexdentatus* infestations in Turkey (Schimitschek, 1939; Besceli and Ekici, 1969; Schönherr et al., 1983).

Kirisits (2004), Romón et al. (2007, 2008), Bueno et al. (2010) and Jankowiak (2012) report finding the following ophiostomatoid species either on the body or in the galleries of *I. sexdentatus*:

- *Ambrosiella ips*;
- *Ambrosiella tingens*;
- *Ceratocystiopsis minuta*;
- *Graphium pseudormiticum*;
- *Graphium sp.*;
- *Leptographium cf. truncatum*;
- *Leptographium guttulatum*;
- *Leptographium procerum*;
- *Leptographium sp.*;
- *Ophiostoma ainoae (= Ophiostoma brunneo-ciliatum?)*;
- *Ophiostoma araucariae*;
- *Ophiostoma brunneo-ciliatum*;
- *Ophiostoma cf. abietinum*;
- *Ophiostoma cf. rectangulosporium*;
- *Ophiostoma clavatum*;
- *Ophiostoma flocosum*;
- *Ophiostoma ips*;
- *Ophiostoma japonicum (= Ophiostoma arborea?)*;
- *Ophiostoma minus*;
- *Ophiostoma obscura*;
- *Ophiostoma olivaceum*;
- *Ophiostoma piceae*;
- *Ophiostoma piceaperdum*;
- *Ophiostoma pluriannulatum*;
- *Ophiostoma quercus*;
- *Ophiostoma rectangulosporium-like*;
- *Ophiostoma stenoceras*;
- *Ophiostoma sp.*;
- *Pesotum fragrans*;
- *Sporothrix 12*.

Jankowiak (2012) found that *Leptographium cf. truncatum* and *O. minus* were very virulent and considered them as serious pine pathogens.

It is important to note that Romón et al. (2008) found *F. circinatum* (8.6%; n = 35 beetles) and *Fusarium verticilloides* (2.9%) associated with *I. sexdentatus* in Spain. *F. circinatum* is a quarantine pathogen in the EU.
3.6. Availability and limits of mitigation measures

Are there measures available to prevent the entry into, establishment within or spread of the pest within the protected zone areas such that the risk becomes mitigated?

Yes, in isolated areas (e.g. islands) that cannot be reached by natural spread, measures can be put in place to prevent the introduction with wood and bark. Debarking wood and heat treatment of wood, bark and chips are effective as specified in annex IVB of 2000/29/EC. When such geographical barriers do not exist, the pest will eventually be able to enter new territories by natural dispersal.

Is it possible to eradicate the pest in a restricted area within 24 months after the presence of the pest was confirmed in the PZ?

Yes. Eradication is possible as the pest is mainly attacking fallen or weakened trees in the EU territory. Provided incipient populations are localised very early (i.e. preferably before the new brood has emerged), the attacked material can be removed and destroyed. However, eradication is difficult because all suitable host material (fallen or weakened trees) in the surrounding area within a radius of several kilometres should be localised and removed.

3.6.1. Biological or technical factors limiting the feasibility and effectiveness of measures to prevent the entry, establishment and spread of the pest

- Quarantine measures are not fully effective. Despite quarantine regulations bearing on round wood, wood packaging material and wood products, the pest is regularly intercepted at ports.
- It is difficult to successfully eradicate the pest from forest areas after an introduction. All infested trees and tree parts (including pieces of fallen or broken material) have to be detected and removed within a suitable radius of several kilometres.
- Silvicultural control is not fully effective. In areas where it is established, the pest continues to develop outbreaks whenever climatic conditions are favourable.

3.6.2. Control methods

- Monitoring methods by roadside sampling techniques, focusing on log pile storage areas if any, have been developed and tested by Samalens et al. (2007).
- Silvicultural practices are the usual control methods. They include sanitation thinning and clear-felling with rapid removal of the infested material (Stadelmann et al., 2013; Fettig and Hilszczannski, 2015; Grégoire et al., 2015).
- Pheromone mass-trapping is attempted in several countries, such as in Turkey (Ozcan et al., 2011) and in Spain (Etxebeste et al., 2012), but it is not a generalised control method.
- Verbenone and non-host volatiles have been successfully used experimentally to protect pines or pine logs (Jactel et al., 2001; Etxebeste and Pajares, 2011; Etxebeste et al., 2013).

3.7. Uncertainty

Ips sexdentatus is a secondary pest in the EU, causing limited damage on pine. It appears more aggressive on *P. orientalis* in Turkey and Georgia, but does not aggressively attack *P. abies* in the EU. The reasons for these differences in aggressiveness are unknown and could constitute an increased risk if, for example, they correspond to intraspecific variations in aggressiveness or host range within the species.
4. Conclusions

Ips sexdentatus: pest categorisation

Table 6: The Panel’s conclusions on the pest categorisation criteria defined in Regulation (EU) 2016/2031 on protective measures against pests of plants (the number of the relevant sections of the pest categorisation is shown in brackets in the first column)

<table>
<thead>
<tr>
<th>Criterion of pest categorisation</th>
<th>Panel's conclusions against criterion in Regulation (EU) 2016/2031 regarding protected zone quarantine pest (articles 32-35)</th>
<th>Panel's conclusions against criterion in Regulation (EU) 2016/2031 regarding Union regulated non-quarantine pest</th>
<th>Key uncertainties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identity of the pest (Section 3.1)</td>
<td>The identity of the pest is established. It can be identified to the species level using conventional entomological keys.</td>
<td>The identity of the pest is established. It can be identified to the species level using conventional entomological keys.</td>
<td>None</td>
</tr>
<tr>
<td>Absence/presence of the pest in the EU territory (Section 3.2)</td>
<td>I. sexdentatus is present and widely distributed in the EU; it has been reported from 24 EU MS. The protected zones, Ireland, Cyprus and the United Kingdom (Northern Ireland and the Isle of Man), are free from the pest.</td>
<td>I. sexdentatus is present and widely distributed in the EU; it has been reported from 24 EU MS. The protected zones, Ireland, Cyprus and the United Kingdom (Northern Ireland and the Isle of Man), are free from the pest.</td>
<td>None</td>
</tr>
<tr>
<td>Regulatory status (Section 3.3)</td>
<td>The pest is currently officially regulated by 2000/29/EC on plants of Abies, Larix, Picea and Pinus over 3 m in height, other than fruit and seeds, wood of conifers (Coniferales) with bark, isolated bark of conifers. I. sexdentatus is regulated as a quarantine pest in protected zones (Annex IIB): Ireland, Cyprus and the United Kingdom (Northern Ireland, Isle of Man).</td>
<td>The pest is currently officially regulated by 2000/29/EC on plants of Abies, Larix, Picea, Pinus over 3 m in height, other than fruit and seeds, wood of conifers (Coniferales) with bark, isolated bark of conifers. I. sexdentatus is regulated as a quarantine pest in protected zones (Annex IIB): Ireland, Cyprus and the United Kingdom (Northern Ireland, Isle of Man).</td>
<td>Although the pest is regulated on Abies and Larix spp., there is no scientific evidence in the literature, apart from a brief mention by Chararas (1962), that Abies spp. and Larix spp. are hosts for I. sexdentatus.</td>
</tr>
<tr>
<td>Pest potential for entry, establishment and spread in the EU territory (Section 3.4)</td>
<td>Entry: the pest is established in 24 MS. Since entry by natural spread from EU areas where the pest is present is possible, only isolated areas (e.g. islands) can be long-term protected zones. Establishment: the climate of the EU protected zones is similar to that of MSs where I. sexdentatus is established, and the pest’s main host plants are present. Spread: adults can disperse naturally. They can fly over tens of kilometres. The pest can also spread by human assistance, e.g. with the transportation of wood, wood chips, bark, wood packaging material and dunnage of conifers.</td>
<td>Plants for planting are not a pathway for the spread of I. sexdentatus.</td>
<td>None</td>
</tr>
</tbody>
</table>
Ips sexdentatus: pest categorisation

<table>
<thead>
<tr>
<th>Criterion of pest categorisation</th>
<th>Panel’s conclusions against criterion in Regulation (EU) 2016/2031 regarding protected zone quarantine pest (articles 32–35)</th>
<th>Panel’s conclusions against criterion in Regulation (EU) 2016/2031 regarding Union regulated non-quarantine pest</th>
<th>Key uncertainties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potential for consequences in the EU territory (Section 3.5)</td>
<td>The pest is secondary, but is known to have killed thousands of trees after triggering events such as storms or dry summers.</td>
<td>Young trees are not attacked by I. sexdentatus; therefore, impacts in nurseries are not expected.</td>
<td>None This is illustrated by the pest’s past history in the EU.</td>
</tr>
<tr>
<td>Available measures (Section 3.6)</td>
<td>In isolated areas (e.g. islands) that cannot be reached by natural spread, measures can be put in place to prevent the introduction of the pest. For wood, wood products, wood chips and bark this can be achieved by debarking wood and heat treatment of wood, bark and chips. When such geographical barriers do not exist, there is no possibility to prevent the entry, establishment and spread of I. sexdentatus by natural dispersal.</td>
<td>Young plants are not attacked by I. sexdentatus.</td>
<td>Inspections of large shipments at entry are difficult to perform with complete accuracy.</td>
</tr>
<tr>
<td>Conclusion on pest categorisation (Section 4)</td>
<td>All criteria assessed by EFSA above for consideration as potential protected zone quarantine pest were met.</td>
<td>The criteria for considering I. sexdentatus as a potential regulated non-quarantine pest are not met since plants for planting are not a pathway.</td>
<td>See above</td>
</tr>
<tr>
<td>Aspects of assessment to focus on/ scenarios to address in future if appropriate</td>
<td>The difference of aggressiveness between the attacks in the EU (mostly secondary, on fallen or weak pines) and the more primary attacks (on standing, healthy Oriental spruce) in Turkey and Georgia raises the issue of possible intraspecific variations within the I. sexdentatus species, with potential quarantine implications.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a): Although there is no report on absence of the pest in Cyprus in the EPPO Global Database, it is assumed that Cyprus is free from the pest since it is a protected zone, and therefore, regular surveys are carried out to confirm their absence/presence.

References

Abbreviations

CLC Corine Land Cover

EPPO European and Mediterranean Plant Protection Organization

EUFGIS European Information System on Forest Genetic Resources

EU MS European Union Member State

FAO Food and Agriculture Organization

GD² Georeferenced Data on Genetic Diversity

IPPC International Plant Protection Convention
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>JRC</td>
<td>Joint Research Centre of the European Commission</td>
</tr>
<tr>
<td>PLH</td>
<td>EFSA Panel on Plant Health</td>
</tr>
<tr>
<td>PZ</td>
<td>protected zone</td>
</tr>
<tr>
<td>RNQP</td>
<td>regulated non-quarantine pest</td>
</tr>
<tr>
<td>RPP</td>
<td>relative probability of presence</td>
</tr>
<tr>
<td>RRO</td>
<td>risk reduction option</td>
</tr>
<tr>
<td>SMFA</td>
<td>spatial multiscale frequency analysis</td>
</tr>
<tr>
<td>TFEU</td>
<td>Treaty on the Functioning of the European Union</td>
</tr>
<tr>
<td>ToR</td>
<td>Terms of Reference</td>
</tr>
</tbody>
</table>
Appendix A – Methodological notes on Figure 2

The relative probability of presence (RPP) reported here for Pinus and Picea spp. in Figure 2 and in the European Atlas of Forest Tree Species (de Rigo et al., 2016; San-Miguel-Ayanz et al., 2016) is the probability of that genus to occur in a given spatial unit (de Rigo et al., 2017). In forestry, such a probability for a single taxon is called ‘relative’. The maps of RPP are produced by means of the constrained spatial multiscale frequency analysis (C-SMFA) (de Rigo et al., 2014, 2017) of species presence data reported in geolocated plots by different forest inventories.

A.1. Geolocated plot databases

The RPP models rely on five geodatabases that provide presence/absence data for tree species and genera: four European-wide forest monitoring data sets and a harmonised collection of records from national forest inventories (de Rigo et al., 2014, 2016, 2017). The databases report observations made inside geolocalised sample plots positioned in a forested area, but do not provide information about the plot size or consistent quantitative information about the recorded species beyond presence/absence.

The harmonisation of these data sets was performed within the research project at the origin of the European Atlas of Forest Tree Species (de Rigo et al., 2016; San-Miguel-Ayanz, 2016; San-Miguel-Ayanz et al., 2016). Given the heterogeneity of strategies of field sampling design and establishment of sampling plots in the various national forest inventories (Chirici et al. 2011a,b), and also given legal constraints, the information from the original data sources was harmonised to refer to an INSPIRE compliant geospatial grid, with a spatial resolution of 1 km² pixel size, using the ETRS89 Lambert Azimuthal Equal-Area as geospatial projection (EPSG: 3035, http://spatialreference.org/ref/epsg/etrs89-etsr-laea/).

A.1.1. European National Forestry Inventories database

This data set was derived from National Forest Inventory data and provides information on the presence/absence of forest tree species in approximately 375,000 sample points with a spatial resolution of 1 km²/pixel, covering 21 European countries (de Rigo et al., 2014, 2016).

A.1.2. Forest Focus/Monitoring data set

This project is a Community scheme for harmonised long-term monitoring of air pollution effects in European forest ecosystems, normed by EC Regulation No 2152/2003. Under this scheme, the monitoring is carried out by participating countries on the basis of a systematic network of observation points (Level I) and a network of observation plots for intensive and continuous monitoring (Level II). For managing the data, the JRC implemented a Forest Focus Monitoring Database System, from which the data used in this project were taken (Hiederer et al., 2007; Houston Durrant and Hiederer, 2009). The complete Forest Focus data set covers 30 European Countries with more than 8,600 sample points.

A.1.3. BioSoil data set

This data set was produced by one of a number of demonstration studies performed in response to the ‘Forest Focus’ Regulation (EC) No 2152/2003 mentioned above. The aim of the BioSoil project was to provide harmonised soil and forest biodiversity data. It comprised two modules: a Soil Module (Hiederer et al., 2011) and a Biodiversity Module (Houston Durrant et al., 2011). The data set used in the C-SMFA RPP model came from the Biodiversity module, in which plant species from both the tree layer and the ground vegetation layer were recorded for more than 3,300 sample points in 19 European Countries.

A.1.4. European Information System on Forest Genetic Resources (EUFGIS)

EUFGIS (http://portal.eufgis.org) is a smaller geodatabase providing information on tree species composition in over 3,200 forest plots in 34 European countries. The plots are part of a network of forest stands managed for the genetic conservation of one or more target tree species. Hence, the plots represent the natural environment to which the target tree species are adapted.

A.1.5. Georeferenced Data on Genetic Diversity (GD2)

GD2 (http://gd2.pierroton.inra.fr) provides information about 63 species of interest for genetic conservation. The database covers 6,254 forest plots located in stands of natural populations that are traditionally analysed in genetic surveys. While this database covers fewer species than the others, it covers 66 countries in Europe, North Africa and the Middle East, making it the data set with the largest geographic extent.

A.2. Modelling methodology

For modelling, the data were harmonised in order to have the same spatial resolution (1 km²) and filtered to a study area comprising 36 countries in the European continent. The density of field observations varies greatly throughout the study area and large areas are poorly covered by the plot databases. A low density of field plots is particularly problematic in heterogeneous landscapes, such as mountainous regions and areas with many different land use and cover types, where a plot in one location is not representative of many nearby locations (de Rigo et al., 2014). To account for the spatial variation in plot density, the model used here (C-SMFA) considers multiple spatial scales when estimating RPP. Furthermore, statistical resampling is systematically applied to mitigate the cumulated data-driven uncertainty.

The presence or absence of a given forest tree species then refers to an idealised standard field sample of negligible size compared with the 1 km² pixel size of the harmonised grid. The modelling methodology considered these presence/absence measures as if they were random samples of a binary quantity (the punctual presence/absence, not the pixel one). This binary quantity is a random variable having its own probability distribution which is a function of the unknown average probability of finding the given tree species within a plot of negligible area belonging to the considered 1 km² pixel (de Rigo et al., 2014). This unknown statistic is denoted hereinafter with the name of ‘probability of presence’.

C-SMFA preforms spatial frequency analysis of the geolocated plot data to create preliminary RPP maps (de Rigo et al., 2014). For each 1 km² grid cell, the model estimates kernel densities over a range of kernel sizes to estimate the probability that a given species is present in that cell. The entire array of multiscale spatial kernels is aggregated with adaptive weights based on the local pattern of data density. Thus, in areas where plot data are scarce or inconsistent, the method tends to put weight on larger kernels. Wherever denser local data are available, they are privileged ensuring a more detailed local RPP estimation. Therefore, a smooth multiscale aggregation of the entire arrays of kernels and data sets is applied instead of selecting a local ‘best performing’ one and discarding the remaining information. This array-based processing, and the entire data harmonisation procedure, are made possible thanks to the semantic modularisation which defines the Semantic Array Programming modelling paradigm (de Rigo, 2012).

The probability to find a single species (e.g. a particular coniferous tree species) in a 1 km² grid cell cannot be higher than the probability of presence of all the coniferous species combined. The same logical constraints applied to the case of single broadleaved species with respect to the probability of presence of all the broadleaved species combined. Thus, to improve the accuracy of the maps, the preliminary RPP values were constrained so as not to exceed the local forest-type cover fraction with an iterative refinement (de Rigo et al., 2014). The forest-type cover fraction was estimated from the classes of the Corine Land Cover (CLC) maps which contain a component of forest trees (Bossard et al., 2000; Büttner et al., 2012).

The resulting probability of presence is relative to the specific tree taxon, irrespective of the potential co-occurrence of other tree taxa with the measured plots, and should not be confused with the absolute abundance or proportion of each taxon in the plots. RPP represents the probability of finding at least one individual of the taxon in a plot placed randomly within the grid cell, assuming that the plot has
negligible area compared with the cell. As a consequence, the sum of the RPP associated with different taxa in the same area is not constrained to be 100%. For example, in a forest with two co-dominant tree species which are homogeneously mixed, the RPP of both may be 100% (see e.g. the Glossary in San-Miguel-Ayanz et al. (2016), http://forest.jrc.ec.europa.eu/media/atlas/Glossary.pdf).

The robustness of RPP maps depends strongly on sample plot density, as areas with few field observations are mapped with greater uncertainty. This uncertainty is shown qualitatively in maps of ‘RPP trustability’. RPP trustability is computed on the basis of the aggregated equivalent number of sample plots in each grid cell (equivalent local density of plot data). The trustability map scale is relative, ranging from 0 to 1, as it is based on the quantiles of the local plot density map obtained using all field observations for the species. Thus, trustability maps may vary among species based on the number of databases that report a particular species (de Rigo et al., 2014, 2016).

The RPP and relative trustability range from 0 to 1 and are mapped at a 1 km spatial resolution. To improve visualisation, these maps can be aggregated to coarser scales (i.e. 10 × 10 pixels or 25 × 25 pixels, respectively, summarising the information for aggregated spatial cells of 100 and 625 km²) by averaging the values in larger grid cells.