Cyclooxygenase-1 is involved in the inhibition of hippocampal neurogenesis after lipopolysaccharide-induced neuroinflammation

Isabella Russo,1,2 Panomwat Amornphimoltham,3 Roberto Weigert,1 Sergio Barlati2 and Francesca Bosetti1,†,*

1Molecular Neuroscience Unit; Brain Physiology and Metabolism Section; National Institute on Aging; National Institutes of Health; Bethesda, MD USA;
2Division of Biology and Genetics; Department of Biomedical Sciences and Biotechnologies and National Institute of Neuroscience; University of Brescia; Brescia, Italy;
3Intracellular Membrane Trafficking Unit; Oral and Pharyngeal Cancer Branch; National Institute of Dental and Craniofacial Research; National Institutes of Health; Bethesda, MD USA

†Current address: National Institute of Neurological Disorders and Stroke; National Institutes of Health; Bethesda, MD USA

Key words: neurogenesis, cyclooxygenase-1, lipopolysaccharide, inflammation, brain

Growing evidence indicates that neuroinflammation can alter adult neurogenesis by mechanisms as yet unclear. We have previously demonstrated that the neuroinflammatory response and neuronal damage after lipopolysaccharide (LPS) injection is reduced in cyclooxygenase-1 deficient (COX-1−/−) mice. In this study, we investigated the role of COX-1 on hippocampal neurogenesis during LPS-induced neuroinflammation, using COX-1−/− and wild-type (WT) mice. We found that LPS-induced neuroinflammation resulted in the decrease of proliferation, survival and differentiation of hippocampal progenitor cells in WT but not in COX-1−/− mice. Thus, we demonstrate for the first time that COX-1 is involved in the inhibition of BrdU progenitor cells in proliferation and hippocampal neurogenesis after LPS. These results suggest that COX-1 may represent a viable therapeutic target to reduce neuroinflammation and promote neurogenesis in neurodegenerative diseases with a strong inflammatory component.

Introduction

Adult neurogenesis occurs in the dentate gyrus (DG) of the hippocampus1,2 and in the subventricular zone (SVZ) of the lateral ventricle.3 Hippocampal neurogenesis plays a role in the maintenance of normal hippocampal function, including learning and memory.4,5 Hippocampal stem cells (HSCs) lie in the subgranular zone (SGZ), along the border between the hilus and the granule cell layer (GCL).6 Many of the HSCs die shortly after their birth,7 whereas the surviving cells migrate into the dentate GCL, differentiate into granule cells8 and project their axons to the CA3 region resulting in their morphological and functional integration into the existing hippocampal circuitry.9 The formation of new granule cells in the DG can be affected by a large number of physiological and pathological stimuli, such as aging and neurodegenerative diseases.10-13

Neuroinflammation is thought to be involved in the pathophysiology of several neurodegenerative diseases, including Alzheimer disease.14 Inflammation can affect the microenvironment of the neurogenic niche15 and influence proliferation of progenitor cells, survival and migration of new neuroblasts, differentiation of new neuroblasts to specific neuronal phenotypes and development of functional synaptic connectivity.16,17

Neuroinflammation is mediated by microglial activation and subsequent release of pro-inflammatory mediators such as prostaglandins, cytokines, chemokines and reactive oxygen or nitrogen species.18 Prostaglandin H synthases or cyclooxygenases (COX)-1 or -2 catalyze the conversion of arachidonic acid to prostaglandins.18 Because of its localization in microglia, and thus, being able to immediately synthesize prostaglandins in response to microbial activation, COX-1 recently emerged as a major player in the acute inflammatory response.19-21 A recent study also suggested a role for COX-1 expressed in brain perivascular cells in mediating the immune-to-brain signaling in response to a systemic lipopolysaccharide (LPS) challenge.22

In this study, we used mice with a null mutation of the COX-1 gene to investigate the role of COX-1 on hippocampal neurogenesis during acute neuroinflammation induced by intracerebroventricular injection of LPS.18 LPS binds to a CD14 receptor and together with the extracellular adaptor protein MD-2 binds to the toll-like receptor 4 (TLR4) expressed by microglia and astrocytes,23 causing a massive glial activation accompanied by a robust and transient transcriptional activation of genes encoding for pro-inflammatory mediators.18

We have previously shown that the genetic deletion or pharmacological inhibition of COX-1 significantly attenuated glial activation, release of pro-inflammatory markers, as well as
LPS injection reduces proliferation of hippocampal progenitor cells in WT but not in COX-1−/− mice. To evaluate progenitor cells proliferation in the DG, BrdU-labeled cells were counted 24 h after LPS injection. The distribution of the BrdU-labeled proliferative cells was found mainly in clusters at the border between the granule cell layer and the hilus, regardless of treatment or genotype (Fig. 1A). Within the area encompassing the granule cell layer and subgranular zone (Fig. 1A), LPS treatment decreased by 35% the mean density of BrdU-positive cells in WT mice (0.36 ± 0.16 vs. 0.55 ± 0.027 in vehicle-treated WT mice, p < 0.01, Fig. 1B). In contrast, the number of BrdU-labeled proliferative cells was not significantly different in LPS-injected COX-1−/− mice (0.47 ± 0.05 vs. 0.53 ± 0.04) (Fig. 1B).

LPS injection reduces hippocampal neurogenesis in WT but not in COX-1−/− mice. To determine the fate of new hippocampal cells, we examined the phenotype of newly BrdU-positive cells generated 4 weeks after LPS injection by concomitant immunolabeling of BrdU with neuronal (NeuN) and glial (S100β) markers (Fig. 2A). S100β, a marker for astrocytes and oligodendrocytes, labels cell bodies with a better definition than GFAP. The percentage of BrdU-positive cells that co-localized with NeuN immunolabeling was significantly reduced by 35% in LPS-injected compared with vehicle-injected WT mice (p < 0.001). In contrast, the number of neurons did not differ significantly in LPS-injected COX-1−/− mice as compared with vehicle-injected COX-1−/− mice (97.3% ± 0.6% vs. 100% ± 0%; Fig. 2B). Furthermore, LPS-injected WT mice showed a 35% increase (p < 0.001) in the number of BrdU-positive cells that differentiated into glial cells compared with vehicle-injected mice (p < 0.001; Fig. 2C). Only a small percentage of BrdU-positive cells differentiated into glia in LPS-injected COX-1−/− mice compared with their vehicle-injected controls (2.7% ± 0.7% vs. 0%, p < 0.01; Fig. 2C).

COX-1 is involved in the LPS-induced survival effect of new hippocampal cells. To test whether COX-1 is involved in the post-mitotic BrdU-cell survival, we analyzed the density of BrdU-cells in the granule cell layer and subgranular zone of DG 4 weeks after LPS injection in COX-1−/− and WT mice. LPS significantly increased the density of BrdU-survival cells compared with vehicle-injection in WT mice (0.29 ± 0.01 vs. 0.22 ± 0.006, 24%, p < 0.001), but did not affect survival of new cells in COX-1−/− mice compared with their respective vehicle-injected controls (0.24 ± 0.005 vs. 0.22 ± 0.003) (Fig. 3).

When we compared the survival BrdU-cells at 4 weeks with the BrdU-cells present at 24 h in the DG, after LPS or vehicle injection in WT and COX-1−/− mice, the density of surviving BrdU-cells in the granule cell layer and subgranular zone of the DG was drastically decreased. In particularly, the surviving BrdU-cells in vehicle-injected WT and COX-1−/− mice was drastically reduced by 60% after 4 weeks (p < 0.001). LPS-injected COX-1−/− mice showed a minor reduction of surviving BrdU-cells after 4 weeks (49%), whereas the number of BrdU-cells was not significantly affected in LPS-injected WT mice (Fig. 4).

Discussion

In this study we examined the role of COX-1 in the proliferation, survival and differentiation of new hippocampal progenitor cells...
Our results show that inhibition of the proliferation and differentiation of progenitor cells after LPS injection can be caused by the inflammatory environment, and particularly, through an indirect effect on hippocampal progenitor cells. Indeed, neuronal progenitor cells do not express COX-1 (data not shown) either under physiological conditions or after LPS. Thus, the positive modulation of neurogenesis by COX-1 deletion could be an indirect effect attributable to the attenuation of the neuroinflammatory response.18 In this regard, the transcription factors STAT3 and NFκB, which are upregulated after LPS-induced inflammation,18,31 induce the transcription of many pro-inflammatory cytokines and chemokines, which contribute to the propagation of the inflammatory response and in the modulation of the regenerative potency of hippocampal progenitor cells.

COX-1 is predominantly expressed by microglia and perivascular cells, and thus, can be activated, within seconds to minutes, following an acute challenge, and produce prostaglandins that contribute to the inflammatory response.28,29 Activation of COX-1-expressing microglia and subsequent release of pro-inflammatory mediators such as IL-1β, IL-6, TNFα, NO and prostanoids, which have antineurogenic effects, could be responsible for the adverse effects of inflammation on neurogenesis.12,30

TLR4 is abundantly expressed by neural stem/progenitor cells and the absence of TLR4 results in enhanced proliferation and neuronal differentiation,31 suggesting that TLR4 directly modulates self-renewal and the cell-fate decision of neuronal progenitor cells.31 Rolls et al. (2007) reported that LPS treatment decreases the proliferation and differentiation of cultured neural stem/progenitor cells via a nuclear factor kappaB (NFκB) signaling TLR-4 dependent.31
genes\(^{18}\) and play a critical role in controlling the proliferation of neuronal stem cells\(^{32}\) and neuronal differentiation.\(^{38}\) Supporting a role for these transcription factors, our group has previously demonstrated that, in response to LPS, COX-1\(^{-/-}\) mice or WT treated with SC-560 have decreased activation and translocation of NF\(\kappa\)B and STAT-3, and reduced levels of the pro-inflammatory cytokines IL-1\(\beta\), IL-6 and TNF\(\alpha\).\(^{18}\)

The differentiation of neuronal progenitor cells toward neuronal or glial lineage is determined by specific signaling cascades regulating the activation of different transcription factors. Multiple processes directing cell fate determination can be modulated by different cytokines and transcription factors. IL-6, TNF\(\alpha\) and IL-1\(^{-}\) promote astrocytic differentiation by activating the transcription factors STAT3 and NF\(\kappa\)B.\(^{34,35}\) Furthermore, activation of cytokine receptors on neuronal progenitor cells stimulates the Notch1 pathway signaling, which inhibits neuronal differentiation through a hairy-enhancer-of-split 1 (Hes-1)-mediated mechanism.\(^{34,36}\) Notch signaling increases the expression of Hes-1,\(^{36}\) which antagonizes pro-neural basic helix-loop-helix transcription factors and represses the commitment of neuronal progenitor cells to a neuronal fate.\(^{37}\) The cross-talk of all these transcription factors and their co-activators could modulate astrocytic fate specification in hippocampal progenitor cells after LPS-induced neuroinflammation. Furthermore, LPS injection downregulates the expression of NeuroD2, a marker of neuronal progenitor cells, which is thought to play a role in the determination and maintenance of the neuronal cells fate.\(^{38}\)

Functional stimuli, including learning, memory and environmental enrichment can increase the number of surviving BrdU-cells by a "survival promoting effect."\(^{39,40}\) In our study, we showed that neuroinflammation also has a survival promoting effect on new hippocampal progenitor cells. After 4 weeks of LPS injection, WT mice showed a 24% increase in surviving BrdU-cells compared with vehicle-injected WT mice. This LPS-induced survival promoting effect was not observed in COX-1\(^{-/-}\) mice. This could be due to the reduced neuroinflammatory response observed in COX-1\(^{-/-}\) mice, as neuroinflammation could trigger a survival effect in the new hippocampal progenitor cells to replace damaged neurons in the inflamed brain, although many new progenitor cells will differentiate into glial cells.

When we compare the survival of BrdU positive cells 24 h and 4 weeks after LPS injection, COX-1\(^{-/-}\) mice showed a strong decrease in surviving cells that was not observed in WT mice (49% vs. 17%, respectively). This difference could be linked to the reduction of inflammatory response and neuronal damage in COX-1\(^{-/-}\) mice after LPS, which would make unnecessary for new hippocampal cells to survive as in vehicle-injected WT and COX-1\(^{-/-}\) mice.

New hippocampal neurons that survive chronic inflammatory stress differentiate and integrate as granule neurons, although with a heightened degree of synaptic plasticity.\(^{41,42}\) Recent work showed that new neurons exposed to the chronic pathological environment are severely controlled,\(^{41,43,44}\) and can exhibit subtle changes in development of dendritic arborizations and spine density,\(^{45}\) which are dependent on the characteristics of the pathological environment.\(^{45}\) Apical dendrites reached the molecular layer during the first 2 weeks after their birth, and the dendritic arborizations and the development of spines occurs during the first 3–4 weeks.\(^{41}\) Since pilot studies in our lab showed that LPS-induced neuroinflammation peaks at 24 h and then resolves in few days (Choi et al. 2008), one could speculate that new hippocampal cells develop normally and integrate into the hippocampal network, without undergoing morphological or functional changes. However, only electrophysiological studies can confirm a functional integration of new hippocampal cells into the hippocampal functional circuitry.

Neuroinflammation is a complex mechanism, in which different pathways, intracellular and extracellular, can interact and both directly and indirectly modulate the neurogenic niche. In addition to a TLR4-dependent mechanism, we suggest that COX-1 plays a role in the inhibition of hippocampal neurogenesis after LPS injection.\(^{32,34,46}\) COX-1-derived prostaglandins, such as PGE\(_2\), could directly affect the neurogenic niche, although it
remains to be fully elucidated which type(s) of prostaglandins and downstream receptors play a role in the modulation of neurogenesis. A recent study by Keen et al. (2009) tested the hypothesis that activation of specific PGE_2 receptors is responsible for suppression of hippocampal neurogenesis after LPS-induced neuroinflammation. They demonstrated that EP1, but not EP2, is expressed by progenitor cells. EP1 receptor gene deletion protected hippocampal progenitor cells from PGE_2-mediated toxicity directly and also indirectly by partially suppressing microglia activation and the propagation of inflammatory response. In contrast, EP2 was not detectably expressed by progenitor cells, and its ablation did not protect from direct toxic effect of PGE_2.

Overall, our past data suggest that the inhibition of hippocampal neurogenesis by LPS in WT, but not COX-1/- mice, could be linked to the increase in NFkB activation, expression of pro-inflammatory cytokines, propagation of neuroinflammation and PGE_2 levels, all of which are attenuated by COX-1 gene deletion. We demonstrate for the first time that in LPS-induced neuroinflammation, COX-1 activity is detrimental to the generation of new hippocampal progenitor cells. Thus, COX-1 inhibition may represent a viable therapeutic target to promote neurogenesis in neurodegenerative diseases with a strong inflammatory component, where neuronal loss and memory deficits are known to occur.

Materials and Methods

Animals and procedures. All animal procedures were performed under an animal study proposal approved by the National Institutes of Health (NIH) Animal Care and Use Committee, in accordance with NIH guidelines on the care and use of laboratory animals. Three-month-old male WT and homozygous (COX-1/-) mice on a C57BL/6-129/Ola genetic background were used. Vehicle (sterile saline, 5 μl) and LPS (Escherichia coli serotype 0127:B8; 5 μg in 5 μl of sterile saline) were administered by intracerebroventricular (i.c.v.) injection into the lateral ventricle as previously described. 5-bromo-2′-deoxyuridine (BrdU) was used to label the neuronal progenitor cell in proliferation. Mice were given 2 BrdU injections with an interval of 12 h, the first 30 min prior to LPS injection (dissolved in 0.9% NaCl; 50 mg/Kg; 10 mg/ml, i.p.; Sigma Aldrich, St. Louis, MO). To detect the proliferation of hippocampal progenitor cells, mice were euthanized 24 h after LPS injection. To detect the phenotype of new born progenitor cells, mice were euthanized 4 weeks after LPS injection.

DNA denaturation, immunohistochemistry and immunofluorescence. Immunohistochemistry and immunofluorescent triple labeling for BrdU were performed on free-floating 40 μm sagittal sections that were pretreated with denaturing DNA, as described previously in reference 48. The antibodies were mouse BrdU-antibody (1:100, DAKO, Denmark), rat anti-BrdU for triple labeling (1:200; Accurate Chemical and scientific, Westbury NY), rabbit anti-S-100β (1:200; Abcam, Cambridge, MA), mouse anti-NeuN (1:1,500; Chemicon, Billerica, MA). For immunohistochemistry the peroxidase method (ABC system) with biotinylated donkey anti-mouse IgG antibodies and diaminobenzidine as chromogen was used (Vector laboratories). Immunohistochemistry images were detected with a light microscope Olympus CXX41, using X40 and X60 objective (Olympus). The fluorescent antibodies 488-Alexa Flour anti-mouse IgG (1:500), 594-Alexa Fluor anti-rat IgG (1:500) and 405-Alexa Fluor anti-rabbit IgG (1:500) (Invitrogen, Carlsbad, CA) were used. Fluorescent signals were detected and processed using an inverted confocal microscope (model IX81, Olympus America Inc., Center Valley, PA) with Fluoview 1000 scanning head. Fluorescent images were acquired using a UPlanSapo X10 numerical aperture (NA) 0.4 dry objective and a UPlanSapo X60 NA 1.42 oil immersion objective (Olympus America Inc.), and were processed using Imaris 5.7 (Bitplane) and assembled using Adobe Photoshop CS.

Cell counting and volumetric analysis. BrdU-labeled cells were counted in the subgranular zone, which was defined as a 2-nucleus-wide band below the apparent border between the GCL and the hilus. We detected one every six sections and covered the entire area of dentate gyrus. To measure the DG area, slices were stained with hematoxylin (Vector, Burlingame, CA) and the area was traced using ImageJ Software. The mean density of BrdU-labeled cells in each mouse was calculated as the total number of labeled nuclei divided by the volume of DG (cell density per μm^3). To determine the percentage of neuronal differentiation of newborn cells, one every six sections was analyzed for the entire area of dentate gyrus. For each animal 50 BrdU-positive cells were randomly selected and analyzed.

Statistical analysis. All data are expressed as means ± SEM. Statistical significance was assessed with two-way ANOVA followed by Bonferroni’s post hoc test using GraphPad Prism. Significance was taken at p < 0.05.

Acknowledgments

This research was supported by the Intramural Research Program of the NIH, NIA. We would like to thank Henriette Van Praag for useful discussion and technical advice, Yosuke Mukoyama for kindly providing microscopy and Erik Runko for critically reading and editing this manuscript.

References


