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Abstract Damaged DLC coatings usually require
remanufacturing of the entire coated components starting from
an industrial chemical de-coating step. Alternatively, a complete
or local coating repair can be considered. To pursue this ap-
proach, however, a local coating removal is needed as first op-
eration. In this context, controlled decoating based on laser
sources can be a suitable and clean alternative to achieve a pre-
fixed decoating depth with high accuracy. In the present study,
we investigated a laser-based decoating process executed on
multilayered DLC films for advanced tribological applications
(deposited via a hybrid PVD/PE-CVD technique). The results
were acquired via multifocal optical digital microscopy (MF-
ODM), which allowed high-resolution 3D surface reconstruction
as well as digital profilometry of the lasered and unlasered sur-
face. The study identifies the most critical process parameters
which influence the effective decoating depth and the post-
decoating surface roughness. In particular, the role of pulse over-
lap (decomposed along orthogonal directions), laser fluence,
number of lasing passes and assist gas is discussed in text. A
first experimental campaign was designed to identify the best
conditions to obtain full decoating of the DLC + DLC:Cr layers.
It was observed that decreasing the marking speed to 200 mm/s
was necessary to obtain a sufficient pulse overlap and a nearly
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planar ablation profile. By operating with microsecond pulses
and 1 J/em? (fairly above the ablation threshold), less than 10
passes were needed to obtain full decoating of the lasered area
with an etching rate of 1.1 um/loop. Further experiments were
then executed in order to minimise the roughness of the rest
surface with the best value found at around 0.2 um. Limited
oxidation but higher R, values were observed in Ar atmosphere.

Keywords Laser decoating - Laser etching - DLC - PE-CVD

1 Introduction

DLC films are employed as protective coatings in different en-
gineering contexts due to excellent material properties like high
hardness, chemical stability, optical transparency, dielectricity
and biocompatibility [1, 2]. These coatings also possess a very
favourable tribological behaviour as low-friction films for dif-
ferent mechanical components. Just to mention a few examples,
superlubricity of DLC films applied to engine components was
recently shown by Kano and coworkers [3, 4], whereas excel-
lent fatigue performance for biomedical load bearing joints was
demonstrated by Thorwarth et al. in [5]. To author’s knowledge,
however, very little attention has been devoted so far to the issue
of decoating of DLC films deposited via physical or chemical
vapour deposition (PVD/CVD) processes.

In spite of being protective, DLC films can still be subject-
ed to various damage processes like mechanical impact, de-
lamination, cracking, wear and corrosion. In [5], stress-
corrosion-cracking (SCC) from oxygen contamination was
shown to possibly cause massive delamination of DLC coat-
ings. Damaged coatings usually require remanufacturing of
the entire coated components from scratch. Alternatively, a
complete or local coating repair can be considered. To pursue
this approach, however, a local coating removal is needed as
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first operation. In this context, controlled decoating based on
laser sources can be a suitable and clean alternative to achieve
a pre-fixed decoating depth with high accuracy. Moreover, it
allows to control the surface finishing before the second pro-
cessing stage, i.e. the redeposition process, takes place.
Removing a DLC coating via laser ablation may offer some
advantages over common removal techniques. Mechanical
grinding, for instance, is usually hand-performed, difficult to
automate and responsible for residual mechanical stress or
damage. On the other hand, chemical routes are suitable to
large surfaces but also difficult to control when micrometric
or nanometric multilayer structures are involved. In addition,
they involve acid solutions and polluting chemicals as in the
method patented by Hsiao [6]. Another approach based on
plasma jet is worth mentioning [7], although the very low
etching rate achievable (~60 nm/min) makes this method un-
suitable for thick DLC coatings (total thickness > 5-10 wm)
typical of tribo-mechanical applications.

A viable alternative is offered by laser ablation/laser etch-
ing processes. Upon these processes are based laser cleaning
techniques which aim at removing rust, oil and unwanted
particles from metallic surfaces [8—10]. Removal of rust and
carbonaceous deposits from carbon steel usually require high
power densities (> 10 MW/cm?) and short pulses (< 10 ns) [8,
9]. On the other hand, removal of thick DLC layers can be
achieved with longer pulses (> 1 us) and correspondingly
lower power density (< 1 MW/ecm?) [11].

So far, laser ablation on DLC films was mainly conceived as
a laser surface texturing (LST) technique and not as a cleaning
or decoating technique. The work of Amanov et al. [12] and
Schum and al. [13], for instance, showed how regular arrays of
dimples obtained via LST on DLC films were able to reduce the
friction coefficient considerably under oil lubrication. In recent
years, LST has become a key technology for enhancing specific
tribological properties of DLC coatings [14—17].

In the present work, we are showing controlled laser
decoating of DLC films based on planar ablation. In the
proposed method, the effective decoating depth and the
post-decoating surface roughness were controlled via
high-resolution 3D optical digital microscopy (3D—
ODM) in combination with independent calotest mea-
surements. Parameters of the LST process were careful-
ly investigated in order to attain complete removal of
the DLC film and, at the same time, planarity and lim-
ited oxidation of the rest surface to allow subsequent
redeposition.

Nowadays, complex multilayer DLC architectures with
several doped layers and metallic adhesion interlayers are en-
countered in the most advanced tribology applications [18,
19]. During decoating and repair of such multilayered films,
controlling the ablation depth with micrometric accuracy be-
comes a critical requirement, and it is the main subject of the
present paper.
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2 Experiment and method

A low-power (8 W) O-switched laser source (LEP Lee Laser,
USA) coupled with galvanometric optics and sample holder
with adjustable focal distance was employed as laser
decoating setup (Fig. 1a). The laser source (Nd:YVOy,
A = 532 nm) was operated in pulsed mode with long pulse
duration (10 wps). To impose a remote control of the pulses
along the x and y directions, the outgoing laser beam was
collimated in galvanometric mirrors as illustrated in Fig.1b.
DLC-coated samples with diameter of 30 mm each were
mounted on a holder at a fixed focal distance from the objec-
tive lens (160 mm). Due to the several configurations tested on
each sample, the individual lasing area was limited to
3 x 3 mm?.

DLC films were growth on ultrasound-cleaned and careful-
ly polished AISI 1040 C40 carbon steel. The films were de-
posited in a single-batch operation, using a hybrid proprietary
PVD-CVD coating system (Powerflex 1100 CR from Protec
Surface Technologies [20]). The system is equipped with
magnetron sputtering (MS) and cathodic-arc evaporation
(CAE) PVD modules as well as with a radio-frequency plas-
ma-enhanced CVD (PE-CVD) source. Process parameters are
proprietary. The steel substrate was first treated in ultra-
demineralised water and then sputter-cleaned with Ar (2 Pa)
in the evacuated deposition chamber (pressure 5 x 10> Pa).
First, a 0.4-pum-thick metallic CrC/Cr interlayer was deposited
via cathodic arc evaporation (CAE-PVD) using solid targets.
Then, a doped DLC:Cr layer (4 wm) was deposited on top of
the interlayer by a continuous hybrid CAE-PVD + PE-CVD
process, followed by a top layer of pure DLC (2.2 um) from
nanoliquid diamond (NLD) precursors deposited via PE-
CVD. The resulting multilayer structure was first measured
with ball calotest (CSM Instruments) to get independent thick-
ness measurements taken as reference (Fig. 2).

Lased samples with different lasing parameters were
analysed via multifocal optical digital microscopy (Hirox
KH-8700 equipped with a dual-illumination revolver zoom
optic). The microscope was operated in mixed mode (co-axial
+ dark field) to overcome DLC transparency. Multiple scans
were necessary to scan a sufficiently extended area per tested
configuration (about 1 x 1 mm?) at the required magnification
(x1000). This was achieved moving the motorised sample
table ona 5 x 5 position array with intervals of ~200 pwm along
the x and y axes. Multifocal images in tiling mode allowed
correct reconstruction in 3D of the lased + unlased surfaces.

2.1 Laser process parameters

A description of all experimental parameters is provided in
Table 1. In experiments, a number of fixed and varied param-
eters were involved. The fixed parameters were focal length
(FL), laser spot diameter (D), frequency (/) and pulse length
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Fig. 1 a Laser decoating experimental setup. b Schematic view of laser
decoating on multilayer sample (not in scale). ¢ Laser path and spot centre
array (blue points) in the x-y plane. d Distance between pulses in

(df), whereas the varied controlling factors were laser power
(P), beam scanning velocity (v), pulse frequency (f), pulse
duration (dt), filling line gap (flg), overlap percentages be-
tween consecutive pulses decomposed along orthogonal di-
rections (OL, and OL,) and number of lasing loops (Vieep)-
The flg parameter is defined as the distance between two par-
allel lines of the laser path. The selected laser path was a
rectangular serpentine pattern with parallel lines filled from
top to bottom and from left to right (Fig.1c). Because of the
rectangular lasing pattern, it was possible to decompose the
pulse overlap along the two in-plane orthogonal directions. As
shown in Fig. 1d, the overlap percentages OL, and OL, were
indirectly controlled by the flg parameter and the ratio v/f,
respectively (OL, = 1 — flg/D and OL,, = 1 — v/fD).

The values of all varied laser parameters (directly and indirect-
ly controlled) are listed in Table 2. Three levels of lasing speed
(v=2500, 600, 200 mmy/s, corresponding to OL, = —25, 70 and
90%) and four levels of lasing 10ops (Njeep =5, 10,20 and 30) were

Galvo system

DLC
Coating

Adhesion
Interlayer

Steel
Substrate

orthogonal directions (v/f and flg) on the DLC surface. The pulses are
non-overlapping in this case

explored. The flg parameter was changed over two levels (0.1 and
0.01 mm), corresponding to 0 and 90% of OL, overlap. A prelim-
inary campaign at low fluence performed with non-overlapping
pulses (F'=0.1 Jem?; flg=0.1 mm; v=2500 mn/s; Voo, = 10,20,
30) showed that even at Ny, = 30, the DLC layer appeared only
slightly damaged. For this reason, during all further configura-
tions, the fluence value was increased to 1 J/cm? (fairly above the
ablation threshold of DLC, whichis reported in the interval of 0.2—
0.3 J/em>[11]).

2.2 Ablation depth measurement

Average and maximum ablation depth were estimated from
several different line profiles per sample from surface recon-
struction via 3D-ODM, whose total length L was compliant
according to DIN EN ISO 4288. Exemplary reconstructions
and corresponding profiles are shown in Figs. 2 and 3. Given a
discrete line profile z,(x;) starting outside the lased region, two
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Table 1 Laser setup parameters

and material data used in the Laser

present study Mode
Wavelength
Spot diameter (D)
Focusing length (FL)

Frequency (f)

Duty cycle (dc)
Pulse duration (df)
Peak power

Max power (average)
Max power density
Marking speed (v)
Number of loops (Nioop)
Filling line gap (flg)
OL,=1-flg/D
OL,=1-v/D
Laser path

Lasing atmosphere

Material
Coating type
Substrate
Interlayer
Deposition technique

Lased area per configuration

O-switching pulsed
532 nm

0.1 mm

160 mm

20 kHz

20%

10 us

40 W

8 W

10 MW/em®
200-2500 mm/s
1-30

0.01-0.1 mm

0, 90%

=25, 70, 90%
Serpentine

Air 1 bar/Ar 5 bar

DLC + DLC:Cr (6.2 pm)
C40 EN 10083

CrC/Cr (0.4 pum)
PE-CVD (2.2 um DLC)

Hybrid CAE-PVD + PE-CVD (4 pm Cr:DLC)
CAE-PVD (0.2 pm CrC + 0.2 pm Cr)

<3 x 3 mm?

Table 2 Varied laser parameters

and related configuration ID ID P (W) flg(mm)*  v(mm/s* AN F(lm’  OL, OL,  Full DLC removal

#1 0.65 0.1 2500 1 0.1 —25% 0% OFF
#2 0.65 0.1 2500 10 0.1 —25% 0% OFF
#3 0.65 0.1 2500 20 0.1 —25% 0% OFF
#4 0.65 0.1 2500 30 0.1 —25% 0% OFF
#5 2.09 0.1 2500 1 1 —25% 0% OFF
#6 2.09 0.1 2500 10 1 —25% 0% OFF
#7 2.09 0.1 2500 20 1 —25% 0% OFF
#8 2.09 0.1 2500 30 1 —25% 0% OFF
#9 2.09 0.01 2500 5 1 —25% 90% OFF
#10  2.09 0.01 2500 10 1 —25% 90% OFF
#11 2.09 0.01 2500 20 1 —25% 90% OFF
#12 2.09 0.01 2500 30 1 —25% 90% OFF
#13 2.09 0.01 600 5 1 70% 90% OFF
#14 2.09 0.01 600 10 1 70% 90% OFF
#15 2.09 0.01 600 20 1 70% 90% OFF
#16 2.09 0.01 600 30 1 70% 90% OFF
#17 2.09 0.01 200 10 1 90% 90% ON

The ON/OFF output variable refers to complete DLC removal along z

# Directly controlled parameters

@ Springer
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Fig. 2 a Ball imprint from calotest imaged with ODM. The thin CrC/Cr interlayer is visible at the interface between DLC and C40 substrate. b

Multilayer thicknesses as measured from calotest

estimators of total ablation depth were introduced as delta
operators (considering the x axis direction parallel to the lasing
speed direction).

The first one, Azyax, €stimates the maximum ablation depth
of a decoating texture by averaging on the five deepest valleys
of an ODM profile of total length L along x:

AZmax =

(1)

5 Zj:l ‘Zmin (xj) ~Zdle
where z,,;,, contains the local minima of the profile in ascending
order and Z, is the reference height of the DLC coating, mea-
sured outside the lased zone. Due to possible local variation of
the effective coating thickness, Zq. was recalculated on each
profile according to the following formula: Zg. =
2y, > 14,%(x:), where Ly is the profile ordinate correspond-
ing to the origin of the untouched DLC region and N is the
number of profile points considered.

The estimator Az, is obviously not suitable to check a full
decoating condition (complete film removal in all directions)
since it cannot distinguish between a channelling texture from
a full decoating texture with the same depth (providing the
same result in both cases). A second average estimator was
therefore introduced, which runs over all profile points of the
lased region:

1
Azavg = N Zin< L

(2)

2i(X;)~Zate

This estimator outputs an average ablated thickness and can
check whether one laser configuration is able to effectively
achieve full decoating. In fact, because of symmetry of the laser
path (producing parallel lines along the whole lased surface), in
order to test full decoating, it is sufficient to test Az, along the
direction perpendicular to the ablation channels (Fig. 3).

To assess full decoating on the several configurations test-
ed, an ON-OFF criterion was defined comparing decoating

thickness values from ODM with independent thickness mea-
surements obtained from calotest, the latter one assumed as

reference. Given a DLC layer thickness from calotest #51°, the
used criterion for full decoating simply reads

Azavg > 1" + Oacavg (3)

where o4, decoating is the standard deviation of Az,,. It is
noted that the above inequality expresses a statistically con-

servative condition since the reference thickness 5 is in-
creased by the profile measurement error.

2.3 Rest surface optimisation

Selected configurations satisfying Eq. 3 were further analysed
considering the post-decoating surface roughness R, as a fig-
ure of merit. Hence, additional configurations were introduced
at 200 mm/s (Njoop = 7 and 15) in order to explore a possible
local minimum of R,. Finally, the sequence at 200 mm/s was
entirely repeated in Ar to study oxidation of the rest surface
and influence of the assist gas Ar. All configurations investi-
gated in this second optimisation stage are listed in Table 3.

3 Results
3.1 Surface texturing and influence of marking speed

Ablated surfaces at different lasing speed were first inspected via
optical digital microscopy (Fig. 3). In these configurations, the
pulse overlap along y was kept fixed to 90% by fixing the flg
parameter to 0.01 mm, whereas the pulse overlap along x was
varied from —25 to 90% by varying accordingly the marking
speed. As evident in Fig. 3a, b at high marking speed
(2500 mm/s), the result is a texture with well-separated and
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Fig.3 3D surface reconstructions from optical digital microscopy (Hirox KH-8700, x1000 magnification, mixed illumination) and corresponding depth

profiles

parallel ablation channels within zones of untouched DLC. At this
speed, channelling was observed at all Ny, values.

At 600 mm/s, a slight “channelling” effect is still observable
even after 30 loops as confirmed by the thin residual DLC ridges
(thickness <2 um) visible on the rest surface (Fig. 3c). This fact is
rather surprising; given the high theoretical overlap (70% along x
and 90% along y) and the high number of passes, one had expected
a full decoating texture. However, the inhomogeneous energy dis-
tribution within a single laser pulse must be also considered. Since
the energy distribution within one pulse is peaked at the spot centre,
a lower lasing energy overlap results at the boundary between two
parallel ablation channels, eventually leading to fluence values

@ Springer

which are locally below the ablation threshold. At 200 mm/s
(90% overlap along both x and y), the resulting total energy distri-
bution over two consecutive pulses lies entirely above the DLC
ablation threshold and a planar decoating texture is observed with-
out channelling effect (Fig. 3e, g). However, some DLC rests at the
interface with the underlying CrC layer are still visible after five
loops (Fig. 3g).

3.2 Depth measurements and conditions for full decoating

Results from 3D-ODM profilometry compared to indepen-
dent calotest measurements are shown in Fig. 4a, b. Error bars
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Table 3 Parameters for the post-
decoating surface optimisation I P (W' flg(mm)®  v(mm/s)* N F(@/km’ OL, OL, Full DLC removal
campaign

#18 2.09 0.01 200 5 1 90%  90%  OFF

#19 2.09 0.01 200 7 1 90%  90%  ON

#20 2.09 0.01 200 10 1 90%  90%  ON

#21 2.09 0.01 200 15 1 90%  90%  ON

#22 2.09 0.01 200 20 1 90%  90%  ON

#23 2.09 0.01 200 30 1 90%  90%  ON

#18Ar  2.09 0.01 200 5 1 90%  90%  ON

#19Ar  2.09 0.01 200 7 1 90%  90%  ON

#20Ar  2.09 0.01 200 10 1 90%  90%  ON

#21Ar  2.09 0.01 200 15 1 90%  90%  ON

#22Ar  2.09 0.01 200 20 1 90%  90%  ON

#23Ar  2.09 0.01 200 30 1 90%  90%  ON

? Directly controlled parameters

of £0.5 pum are due to instrumentation error and layer thick-
ness irregularity during deposition. Green markers refer to
engraved channelling texture obtained at high scanning veloc-
ity (2500 mm/s), whilst black and red markers refer to

a 10
B 200 mm/s
91 m 600 mmis [
8. ® 2500 mm/s i z, (calotest) Steel
/ ]
74 [ ] Y
Ry
= 6 o p—y T Interlayer
g8 57
£ \
N4 2, (calotest)
[ |
34 DLC
2]
14
04 m
-1 T T T T T T T T
0 5 10 15 20 25 30 35
loop
101 4 200 mms 4
. A 600 /
9 1 % 2500m:n33 t,c+ toc(calotest) Steel
8+ \
- 7. A | Ly
£ ] i [ |
2 6] ¥ e B S— | ; Interlayer
2 i % * 4
N® 54 1 /
< 4 ] to.c (calotest)
| A DLC
3] A
2
1 ] l
o_ f T T T T T 1 T
0 5 10 15 20 25 30 35

N

loop

Fig. 4 Ablation depth estimators Azy,y (a) and Az, (b) from 3D-
ODM profiles for different values of Njo,, and marking speed v. The
results are compared with thickness measurement from calotest. All
values are in um

homogeneous decoating textures obtained at intermediate
and low lasing speed (600 and 200 mm/s, respectively). At
200 mm/s, values are almost identical using either Az, or
Az, due to the planarity of the resulting texture.

A clear trend is noted for Az, (measuring the maximum
ablation depth); as expected, Az, increases for increasing
number of loops at all lasing speeds (Fig. 4a). However, a
change in ablation rate (slope of the curves) is observed after
reaching the metallic substrate (z = fprc), when the laser
pulses are facing an increase of the ablation threshold. The
average etching rate decreased from 1.1 pum/loop during
DLC ablation to about 0.09 pm/loop in the steel substrate.
At 2500 mm/s (OL, = 70%), once the DLC film has been
removed, the laser ablation process is occurring within the
CrC interlayer and a saturation effect is observed for Az
at Nigop > 10 (Fig. 4b). At 600 and 200 mmy/s (OL, = 70 and
90%, respectively), the adhesion interlayer is removed after 10
passes only and the maximum ablation depth reaches the steel
substrate.

On the other hand, the average depth estimator Az,,, var-
ied stronger with marking speed (Fig. 4b). Whilst at 2500 mm/
s, the green markers in graph lay entirely below the DLC level
(t41c) and the full decoating condition (Eq. 3) is obviously not
satisfied; at 600 mm/s, only residual DLC borders are
preventing the condition to be satisfied. In this case, the black
markers are indeed closer to the level corresponding to the
DLC/CrC interface. At 200 mm/s, full decoating is finally
verified after 10 repetitions, whereas after 5 passes, diluted
residual DLC impurities on the rest surface (visible in
Fig. 3g) prevent the condition to be fully satisfied.

3.3 Effect of IV,,op and lasing speed on rest-surface
roughness

The effect of Nyo0p and v in air on the surface roughness (R,,) is
shown in Fig. 5a. At 2500 and 600 mm/s (OL, = —25 and

@ Springer
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Fig. 5 a Rest surface roughness from ODM digital profilometry as a
function of marking speed and number of loops. b Rest surface
roughness after full decoating (with and without assist gas)

70%, respectively), high values of R, are reported. In the first
case, this is due to absence of pulse overlap along y producing
alternatively ablation channels and untouched DLC zones. At
600 mmV/s, a decreasing trend of R, for increasing Nioop 1S
justified by the much higher overlap percentage, resulting in
a quasi decoating texture (Fig. 4c). At 200 mm/s, full
decoating of the DLC film is occurring and R, is only deter-
mined from the metallic rest surface. Moreover, whilst reduc-
ing the number of loops from 20 to 10, R, is decreasing of
about 50%. In order to confirm this trend and explore a pos-
sible minimum, further configurations were studied at
Nigop = 5, 7 and 15. At Niyp, = 7, a clear minimum of R,
was observed in air (Fig. 5b). The lowest values were reported
in air (R,~0.2-0.3 um) compared to 0.4-0.6 um in Ar. A
different monotonic behaviour using Ar was also observed
starting at Nyop = 5 (yellow markers in Fig. 5b). It is finally
noted that all R, values obtained here for DLC removal with a
low power source (maximum peak power of 40 W and micro-
second pulses) are sensibly lower compared to R, values ob-
tained via high-power laser cleaning of rust and oil on a
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similar steel substrate (40-MW peak power, ns pulses,
R,~2-3 pm [9)).

3.4 Surface oxidation and effect of Ar

Samples where full decoating was verified were expected to
oxidise in air. Limiting oxidation is a critical requirement for
subsequent redeposition and coating repair. In order to limit
oxidation, the whole series at 200 mm/s in air was repeated
using Ar as assist gas (Ar pressure 5 bar, incidence angle 45°).
EDX analysis, performed on both series—with and without
Ar—confirmed a generally lower O, content in Ar atmo-
sphere. In air, different surface colours registered via optical
digital microscopy (Fig. 6a, c) are clues for different oxidation
mechanisms occurring on different metallic surfaces, whereas
the corresponding surfaces in Ar appeared of the same neutral
colour. Combining this information with EDX analysis on Cr
and O, content as a function of N, (Fig. 7), the dark orange
surface at N0, = 7 (Fig. 6a) was attributed to oxidation of the
CrC interlayer. The partially blue surface observed after 15
loops (Fig. 6¢) was attributed to steel oxidation of the mixture
interlayer steel. It was noted that the blue content increased at
higher Moo, When the laser passes interested only the steel
substrate.

The best rest-surface quality without oxidation was repre-
sented by the minimum of the R, curve in Ar satisfying also
the decoating condition (R, = 0.45 pm at Ny,o, = 10). The
corresponding surface (shown in Fig. 6b) appears indeed
cleaner and flatter if compared to other rest surfaces in Ar at
higher Njoop,. After 15 loops, a clear worsening effect of the
surface morphology was observed and attributed to prolonged
Ar exposure (Fig. 6d). At even higher Mo, (>20), we even-
tually found extended DLC debris from Ar bombardment to
be redeposited at the border of the melting pool (shown in
Supplementary Fig. S2).

4 Conclusion

In the present paper, the process of controlled laser removal of
a PVD/PE-CVD DLC film has been investigated through a
low-power pulsed laser source in combination with high-
resolution 3D digital microscopy and digital profilometry.
This approach, based on the reconstruction of the post-
decoating surface, allows selective removal of micrometric
DLC layers with effective depth accuracy of +0.5 um.
Effective decoating depth and conditions for full planar
decoating were studied as a function of the following lasing
parameters: laser fluence, pulse overlap along orthogonal di-
rections x and y and number of lasing loops. Full decoating up
to the metallic interlayer of a 6-um-thick DLC film was ob-
tained in air with the following parameter values: F'=1J /cmz,
7 < Nigop < 15 and v < 200 mm/s. The estimated DLC etching
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Fig. 6 ODM surface images after as
full decoating. fop images Lasing
in air. bottom images Lasing with
Ar (5 bar)
7 v=200 mm/s
Nloop =10
v =200 mm/s
Nloop =15

rate in this case was about 1.1 pum/loop. The lowest post-
decoating R, values (~0.2 pm) are reported in air with
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Fig. 7 The %O, and %Cr from EDX analysis on the rest surfaces after
full decoating of samples #18-23 and #18-23Ar

oxidation of the rest surface. Limited oxidation but higher
R, values were observed in Ar and attributed to prolonged
Ar bombardment during the laser decoating process.

As future development of the present work, an investiga-
tion of the redeposition process of DLC films on laser-
decoated surfaces (recoating) including an extensive tribo-
mechanical characterisation of the redeposited films is
planned.
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