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Derivation of flood frequency curves through a bivariate

rainfall distribution based on copula functions:

application to an urban catchment in northern Italy’s

climate

M. Balistrocchi and B. Bacchi
ABSTRACT
The utilization of continuous approaches, namely analytical-probabilistic methods, has often been

advocated for hydraulic device sizing, in order to overcome some deficiencies of the design event

method. In the analytical distribution derivation, however, strong simplifying hypotheses are usually

adopted. Rainfall depth and duration independency is the most unrealistic, even if it usually leads to

satisfactory agreements between derived and benchmarking distributions. The reason can lie in

drawbacks related to conventional assessment techniques of multivariate rainfall distributions.

Copula functions recently provided a significant improvement in statistical inference capabilities and

greatly simplified the distribution assessment. Nonetheless, the generalization of the return period

concept, well defined in the univariate case, to multivariate cases has not found a blanket solution

yet. Effective estimate methods can, however, be developed for the design and performance

assessment of specific hydraulic devices. With regard to urban catchment applications, a criterion to

derive flood frequency curves from a rainfall volume and duration distribution is herein proposed.

Further, a method to estimate the return period of bivariate rainfall events based on a device-

targeted approach is developed. Hydrologic simulations are conducted to support model reliability

through a test case, featuring a northern Italian rainfall regime.
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INTRODUCTION
Although the design event method is still a very popular

approach for sizing hydraulic devices and for evaluating

drainage system performances, its limitations have long

been highlighted and debated (Adams & Howard ;

Yen ). The main reason lies in assuming that the fre-

quency of occurrence of the total depth of the design

rainfall hyetograph equals that of the derived flood hydro-

graph. It is well known that the flood hydrograph depends

on a number of factors, which are not accounted for by

the rainfall statistics on which design event methods are

based. Therefore, crucial characteristics, such as the
catchment initial condition, the wet weather duration and

the rainfall time pattern, are arbitrarily set. As a result, esti-

mates derived by design event methods are always biased

(Bacchi et al. ).

In order to overcome such deficiencies, continuous

approaches should be preferred. In particular, the analyti-

cal-probabilistic methods, originally developed by Eagleson

(), recently aroused researcher interest (Guo et al. ).

In fact, these methods feature all the advantages of continu-

ous approaches, even if they yield closed-form analytical

expressions analogous to those of the design event methods.

mailto:matteo.balistrocchi@unibs.it


750 M. Balistrocchi & B. Bacchi | Flood frequency curve derivation through a bivariate rainfall distribution Hydrology Research | 48.3 | 2017
According to the derived distribution theory, complete

cumulative distribution functions (CDFs) of the runoff vari-

ables of interest can be defined from joint distribution

functions (JDFs) of the rainfall variables (Adams & Papa

). Nevertheless, to have the possibility of analytically

integrating the derived distributions, simplifying hypotheses

must be adopted in the rainfall probabilistic model: usually

exponential CDFs are utilized for the marginals and the

mutual variable dependency is disregarded (Guo & Adams

; Balistrocchi et al. ).

When dealing with rainfall depth and wet weather dur-

ation JDFs, more complex CDFs are often needed to

properly suit empirical marginal distributions, while the

independence hypothesis is largely rejectable. Surprisingly,

simplified JFDs produce results in better agreement with

benchmarks, and more conservative, than those achieved

by the more realistic ones (Adams & Papa ). Even if

not totally explained, the reasons can lie in a compensation

of errors in the simplified models and in drawbacks related

to the JDF assessment by means of traditional techniques in

the complete models.

Fortunately, copula functions (Nelsen ), recently

introduced in hydrologic research (De Michele & Salvadori

; Favre et al. ), offer the opportunity to broaden the

multivariate inference capability. Indeed, through copula

approach, the assessment of the dependence structure relating

to randomvariables canbe carriedout separately from those of

marginal distributions (Genest & Favre ; Salvadori et al.

). As a consequence, the dependence structure analysis

is no longer affected by marginal behaviours. Further, copula

functions and marginal distributions belonging to different

probability families, even complex, can be utilized to develop

the JDF. The derivation procedure therefore becomes straight-

forward, eliminating additional sources of uncertainty, such as

preliminary sample data transformations, and permitting an

effective verification of model reliability by means of blanket

test statistics (Genest et al. ).

Owing to these significant advances, the longstanding

debate regarding the generalization of the return period con-

cept, from the univariate case to the multivariate one, has

been notably reopened. Traditionally, two methods based

on simple logical expressions ‘AND’ ‘OR’, already utilized

in conventional multivariate statistics but susceptible

to copula interpretation, were utilized. More recently,
Salvadori & De Michele () proposed a new estimation

method relying on Kendall function.

However, as can be seen in Gräler et al. (), where a

review of approaches to develop multivariate design events

is provided, all these methods lead to statistically different

outcomes; moreover, a generally applicable solution

cannot be suggested, so that the most suitable method

should be selected in consideration of the specific hydraulic

application at hand. Hydrologic event severity is actually

related to hydraulic device performances: on the one

hand, all events yielding identical performances can be

associated with the same return period; on the other hand,

the same event can be associated with different return

periods depending on the type of device.

According to this device-targeted approach, the return

period of a derived variable, exploited to express device per-

formances, can be estimated by conventional univariate

techniques and thus be associated with the input multivariate

event. For instance, the return period of bivariate flood

events, defined by using peak discharge and runoff volumes,

was estimated with reference to routing reservoir perform-

ances by Requena et al. () and Volpi & Fiori (), by

using univariate statistics of maximum water level of the

stored volume and maximum routed discharge, respectively.

Bearing in mind these encouraging results, herein the

derivation of a flood frequency curve (FFC) from a JDF of

storm volume and wet weather duration is developed for

urban applications in medium-size catchments (area less

than 100:200 ha) located in northern Italy. To do so, a hydro-

logic loss model and a runoff routing model must be

established. As demonstrated by Candela et al. () dealing

with extended naturalwatersheds, a copula-based rainfall sto-

chastic generator can be successfully coupled with a fully

conceptual distributedmodel. Nevertheless, a lumpedmodel-

ling based on hydrologic parameters operatively adopted in

practical engineering was preferred in this study. Owing to

rainfall–runoff transformation dynamics in urban catch-

ments, this type of modelling was considered to be

sufficiently reliable and more appealing for practitioners.

The objective of this paper is two-fold: first, quantifying

the modelling improvement achievable by a complete JDF

with respect to a simplified analytical-probabilistic model,

in a case where the speculated compensation of errors does

not occur; second, developing a device-targeted criterion to
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estimate the return period of bivariate rainfall events from

univariate statistics of the runoff peak discharge.

Hereafter, copula analysis technique and JDF construc-

tion are briefly recalled in the first section, while special

attention is given to the return period estimate in the second

one, focusing on the existing method drawbacks and on the

development of the proposed method. The continuous simu-

lation model employed to derive the benchmarking FFC,

available data and the test watershed are described in the fol-

lowing sections. JDF fitting results and the FFC derivation

are then discussed. Conclusions are drawn in the last section.
BIVARIATE ANALYSIS OF RAINFALL DEPTH AND
DURATION

To cope with JDF assessment by using copula functions,

random variables uniformly distributed on I¼ [0,1] must be

derived from original random variables through probability

integral transform. In this bivariate case, uniform random

variables u and v are defined with respect to their natural

counterparts, the storm volume h and the wet weather dur-

ation d, by means of the respective CDFs PH and PD as

shown in Equation (1):

u ¼ PH(h)
v ¼ PD(d)

�
(1)

A 2-copula is a bivariate JDF C(u,v): I2 ! I, such that

constrains (2) and (3) are satisfied. The first one states that

copula’s marginals are uniformly distributed on I, while

the second one establishes a bivariate increasing trend.

C(u, 0) ¼ 0, C(u, 1) ¼ u, C(0, v) ¼ 0, C(0, 1) ¼ v

with u, v ∈ I
(2)

C(u2, v2)� C(u2, v1)� C(u1, v2)þ C(u1, v1) � 0

for every u1, u2, v1, v2 ∈ I

such that u1 � u2, v1 � v2

(3)

According to the fundamental Sklar theorem

(Sklar ), the bivariate JDF PHD(h,d):R
þ2 ! I can be

expressed by means of an underlying 2-copula C, as shown
in Equation (4). The Sklar theorem ensures that this func-

tion exists and, if the marginals are continuous, is unique.

PHD(h, d) ¼ C[PH(h) , PD(d)] (4)

It is evident that, unlike PHD, the copula function is not

affected by marginal distributions and exclusively expresses

the dependence structure. Thus, the assessment of PHD can

be carried out in two distinct phases, involving that of the

copula C and those of univariate distributions PH and PD.

To perform an event based analysis, however, the con-

tinuous series must preliminarily be separated in

independent occurrences by a discretization procedure, to

obtain a bivariate sample of rainfall depths ĥi and wet

weather durations d̂i. Plotting positions of natural occur-

rences, usually called pseudo-observations, define sample

versions ûi and v̂i of uniform random variables and allow

construction of the empirical copula (Ruymgaart ).

Equation (5) reports the expression of the bivariate empiri-

cal copula Cn, in which 1(.) is the indicator function, R(.)

is the rank operator and n is the sample size.

Cn(u, v) ¼ 1
n

Xn
i¼1

1( ûi � u, v̂i � v)

¼ 1
n

Xn
i¼1

1
R(ĥi)
nþ 1

� u,
R(d̂i)
nþ 1

� v

 !
(5)

Cn being a consistent estimator of the underlying copula

C (Deheuvels ), it plays a pre-eminent role when the

most suitable copula family is selected and fitted to

pseudo-observations. Conversely, the assessment of mar-

ginal distributions PH and PD can be carried out by using

well-established univariate inference techniques with

regard to natural observations ĥi and d̂i.

In the following sub-sections, the three phases outlined

above – (i) discretization procedure, (ii) underlying copula

assessment and (iii) marginal distribution assessments –

are discussed in more detail, justifying the selection of theor-

etical functions with reference to existing literature.

Continuous rainfall series discretization

The separation of a continuous precipitation record into

independent events can be carried out by applying two



752 M. Balistrocchi & B. Bacchi | Flood frequency curve derivation through a bivariate rainfall distribution Hydrology Research | 48.3 | 2017
discretization thresholds: an interevent time definition

(IETD) and a rainfall depth threshold (Balistrocchi et al.

). The first one represents the minimum dry weather

period needed for two following hyetographs to be con-

sidered independent. Hence, if two rain bursts are

detached by a dry weather period shorter than IETD, they

are aggregated into a unique event, whose duration and

depth are computed from the beginning of the first one to

the end of the latter one.

The second parameter corresponds to the minimum

rainfall depth that must be exceeded in order to have a rain-

fall relevant to analysis purposes. When this condition is not

satisfied, the event is suppressed and the corresponding wet

weather duration is assumed to be rainless and joined to the

adjacent dry weather periods.

Discretization parameters strongly affect the derived

sample statistics, namely the mean annual number of rain-

fall events and marginal parameters. Then, their values

must be chosen very carefully. When dealing with FFC deri-

vation, a suitable criterion is focusing on runoff discharge

characteristics: the IETD can be estimated as the minimum

time that avoids the hydrographs generated by two sub-

sequent rainfalls to overlap, while the depth threshold can

be identified with the initial abstraction (IA) of the catch-

ment hydrological losses.
Dependence structure modelling

As demonstrated by Balistrocchi & Bacchi (), the

Gumbel–Hougaard 2-copula (Nelsen ; Salvadori et al.

) provides a suitable model to represent the dependence

structure of storm volume and wet weather duration in Ita-

lian climates. This family belongs to Archimedean copulas

and derives from the generator function ψ (6), in which θ

represents the dependence parameter:

ψ(t) ¼ (�ln t)θ with t ∈ I (6)

Hence, bivariate members of this family can be obtained

as shown in Equation (7), by using ψ and its pseudo-inverse

function ψ [�1]:

C(u, v) ¼ ψ[ψ(u)þ ψ(v)][�1] (7)
Substituting the function (6) in Equation (7), the bivari-

ate function (8) is written for the Gumbel–Hougaard

2-copula. This is a symmetric, mono-parametric and extreme

value copula, which is able to suit only concordant associ-

ations:

C(u, v) ¼ exp {� [(� lnu)θ þ (� ln v)θ] 1=θ} (8)

In this copula θmust be greater than or equal to one and

is algebraically related to the Kendall coefficient τK through

the relationship (9), so that the stronger the concordance,

the larger θ is. However, the Gumbel–Hougaard copula is

comprehensive of the independence copula, which is

obtained when τK is zero and θ is equal to one:

τK ¼ θ � 1
θ

with θ � 1: (9)

The satisfactory adaptation of the Gumbel–Hougaard

copula to pseudo-observations is mainly due to its behaviour

both in the upper tail and in the lower tail: in the Gumbel–

Hougaard copula, the upper tail dependence coefficient (10)

exists and increases with θ, while the lower tail dependence

coefficient is identically null:

λu ¼ 2� 21=θ (10)

Consequently, an attitude to generate strongly concor-

dant rainfall events arises in the upper tail; on the

contrary, in the lower tail the association is weaker. This

matches with the empirical evidence in the sub-alpine cli-

mate (Balistrocchi et al. ; Balistrocchi & Bacchi ).

Short wet weather durations are often associated with

heavy rainfall depths, especially in spring and summer,

when intense convective storms can easily occur. Conver-

sely, extended frontal rainfall events, which prevail in

other seasons, determine a more proportional relationship

between wet weather durations and rainfall depths. When

all these events are joined in a single sample, the global

effect is to decrease the concordance of short duration

events, while the strong concordance of long duration

ones persists.

The Gumbel–Hougaard 2-copula (8) fitting to pseudo-

observations can be performed by using the moment-like
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method or the maximum likelihood criterion. In the first

method, the dependence parameter θ is simply expressed

as a function of the sample version of the Kendall coeffi-

cient, by inverting Equation (9); in the second one, the

dependence parameter is estimated as the one that maxi-

mizes the pseudo-log-likelihood estimator (11), in which c

is the copula density:

L(θ) ¼
Xn
i¼1

log [c(ûi, v̂i)] (11)

The null hypothesis that the underlying copula is the

fitted Gumbel–Hougaard 2-copula must be verified by

test statistics. In this regard, an effective blanket test

has been developed by Genest et al. () to assess

the goodness-of-fit of the selected theoretical copula

with respect to the empirical one. In this test, the

residuals between the theoretical copula (8) and the

empirical copula (5) are summarized in a Cramér–Von

Mises statistic Sn (12) and compared to those of samples

generated by using Monte Carlo-like simulations, under

the null hypothesis:

Sn ¼
Xn
i¼1

Cn(ûi, v̂i)� C(ûi, v̂i)½ �2 (12)

An empirical estimate p of the test significance,

according to which the null hypothesis cannot be

rejected, is hence given by Equation (13), where N is

the number of simulation runs, much larger than the

sample size n, and Sn,k are corresponding statistics:

p ¼ 1
N

XN
k¼1

1(Sn, k > Sn) (13)

Finally, as already highlighted by Poulin et al. (), the

proper representation of the tail behaviour is crucial to

achieving a reliable return period estimate. Thus, in addition

to the assessment of the overall goodness-of-fit, the consist-

ency between the upper tail dependence coefficient of the

fitted copula (10) and that of the empirical copula λ̂u must

be ensured. Herein, the non-parametric estimator (14) was

employed as a term of comparison, since Frahm et al.
() demonstrated that it performs well if the upper tail

dependence exists.

λ̂u ¼ 2

� 2 exp
1
n

Xn
i¼1

log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log

1
ui

log
1
vi

s ,
log

1

max (ui, vi)
2

" #( )

(14)
Marginal distribution modelling

An appropriate model for both marginals was identified in

the Weibull CDF, that can be viewed as a generalization

of the exponential model (Balistrocchi & Bacchi ): PH

and PD are therefore represented by means of CDFs (15)

and (16), respectively:

PH(h) ¼ 1� exp � h� IA
ζ

� �β
" #

for  h � IA

0 otherwise

8><
>: (15)

PD(d) ¼ 1� exp � d
λ

� �γ� �
for d � 0

0 otherwise

8<
: (16)

Exponents β and γ are dimensionless parameters that

rule the distribution shape, while the denominators ζ (mm)

and λ (h) are scale parameters. The lower limit IA in CDF

(15) is set in accordance with the volume threshold

employed in the rainfall discretization procedure. In fact,

the shape parameter makes the distribution very versatile

and leads to fittings as satisfactory as those achievable by

using more complex models. The exponent less than one

delineates a probability density function monotonically

decreasing from the lower limit, where a vertical asymptote

is present. The exponent greater than one shows that the

probability density function has a finite mode and exhibits

a right tail.

In order to quantify the impact on the whole model

reliability of assuming exponential marginals, as in the

most common analytical-probabilistic models, JDF with

exponential marginals were fitted as well. Equations (15)

and (16) consequently simplify, being the shape parameters
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β and γ unitary, and feature a finite mode in the lower limit,

equal to the reciprocal of the scale parameter.
RETURN PERIOD ESTIMATE

In general, the estimate of the return period Tr associated

with a given value x of the random variable of interest X

requires the population to be split in two dichotomic

regions: the sub-critical one and the super-critical one. The

first one collects the less severe events (X� x), while the

second one collects the more severe ones (X> x). The

return period Tr, defined as the average period elapsing

between two subsequent occurrences of the expected

event, is operatively estimated in (17) by using the non-

exceedance probability PX and the annual average number
Figure 1 | Sub-critical regions (shaded areas) of a generic bivariate event (u,v)¼ (0.65, 0.35) fo
of occurrences ω:

Tr(x) ¼ 1
ω[1� PX(x)]

(17)

Unfortunately, reproducing this simple procedure in a

multivariate case is problematic, since a total order relation

does not exist and the population splitting is not univocal.

The oldest methods attempted to mimic the sub-critical

subset definition of univariate analysis, by exploiting intuitive

logical expressions. The concepts of ‘OR’ return period TOR
r

and ‘AND’ return period TAND
r were thus suggested (Salva-

dori et al. ; Serinaldi  and references therein).

In the TOR
r formulation, a super-critical event occurs

when at least one of the random variables defining the

event of interest is exceeded; a graphical illustration of the

following unitary square partition is given in Figure 1(a).
r the analysed test case by Tr estimate methods: (a) TORr , (b) TANDr , (c) TKENr and (d) TQPr .
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Owing to copula function properties, C(u,v) can formally

substitute the non-exceedance probability in Equation (17)

yielding the TOR
r estimate (18):

TOR
r (u, v) ¼ 1

ω(1� Prob{U � u ∧ V � v})

¼ 1
ω[1� C(u, v)]

(18)

Otherwise, in the TAND
r formulation, a super-critical

event occurs when all the random variables defining the

event of interest are exceeded (see Figure 1(b)). To estimate

TAND
r , the exceedance probability can be more conveniently

exploited, as shown in Equation (19), where the survival

copula �C, direct extension of the univariate survival prob-

ability function, is used. The survival copula �C is related to

copula C, so that the last estimator in Equation (19) is

obtained:

TAND
r (u, v) ¼ 1

ωProb{U > u ∧ V > v}

¼ 1

ω �C(1� u, 1� v)

¼ 1
ω[1� u� vþ C(u, v)]

(19)

These formulations usually yield very different return

period estimates and the real value is arbitrarily supposed

to be included in this range. In addition, neither approach

induces a dichotomic splitting of the population, as in the uni-

variate case. Isolines of constant return period are actually

given by copula contours, in the TOR
r formulation, or survival

copula contours in the TAND
r one. Distinct events belonging to

such lines therefore have the same return period, even if their

sub-critical regions are different and partially overlap.

In order to overcome this crucial conceptual drawback,

Salvadori & De Michele () proposed to utilize the

Kendall measure KC (20). This function estimates the prob-

ability of occurrence of an event belonging to the region

included between the lower-left corner of the unit square

and the copula contour of level t¼C(u,v); such a region is

illustrated in Figure 1(c):

KC(t) ¼ Prob{(U, V) ∈ I2 :C(U, V) � t } with t ∈ I (20)
The function KC(t) is a univariate probability distri-

bution exclusively depending on the copula and associated

with a dichotomic splitting of I, since all events belonging

to the contour line of level t have the same sub-critical

region. Unlike previous formulations, the sub-critical

region depends on the copula function and its parameters.

Formally, Equation (20) can be substituted in the univariate

return period expression (17), yielding the estimate of the

Kendall return period TKEN
r (21):

TKEN
r (u, v) ¼ 1

ω[1�KC(C(u, v))]
(21)

For Archimedean copulas, function (20) is explicit and

can be expressed in terms of generator function as shown

in Equation (22):

KC(t) ¼ t� ψ(t)
ψ 0(t)

(22)

Substituting the generator function (6) in (22), the

simple Equation (23) of the Kendall function for Gumbel–

Hougaard 2-copula is obtained:

KC(t) ¼ t� t
θ
ln (t) (23)

Owing to the increasing portion of I that TOR
r , TKEN

r and

TAND
r involve, respectively (compare Figure 1(a)–1(c)),

larger non-exceedance probabilities are estimated, so that

inequality (24) must hold:

TOR
r < TKEN

r � TAND
r (24)

Despite the fundamental progress in understanding and

overcoming the inherent limitations of the previous ones,

TKEN
r estimate method demonstrates that it is affected by

conceptual drawbacks and yields unacceptable estimates

when applied to FFC derivation from the constructed JDF.

Indeed, in hydrologic practice, the problem of multi-

variate return period estimate arises when performances of

any hydraulic device of interest are strongly sensitive to var-

ious characteristics of the input hydrologic event. When
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such performances can be referred to a single derived vari-

able, the multivariate return period estimate can be

brought back to that of a univariate return period. In fact,

according to the derived distribution theory, the non-excee-

dance probability of the derived variable must equal that of

the input hydrological event.

The transformation function relating to the input vari-

ables and the derived variable, called by some authors

structure function (Volpi & Fiori ; Salvadori et al.

; Pappadà et al. ), must be a subjective function

such that a sub-set of the input variable population is related

to a single occurrence of the derived variable. This sub-set

separates the sub-critical region from the super-critical

one, by discriminating input events leading to lower or

greater values of the derived variable, respectively. It is

apparent that these regions are dichotomous and that infi-

nite input events are associated with a unique return period.

Following this criterion, for instance, in Requena et al.

(), copula simulation techniques were exploited to gen-

erate from a bivariate distribution of peak discharge and

runoff volume a number of flood events, forcing a real-

world routing reservoir. Hydraulic simulations were utilized

as transformation function to obtain maximum water levels

occurring in the storage volume during the routing process.

Thus, flood events were associated with the return period of

corresponding maximum water levels, estimated by means

of their empirical frequencies.

Conversely, Volpi & Fiori () analysed the same pro-

blem from a theoretical point of view, by assuming a

constant inflow discharge and a linear behaviour for the

reservoir. Under such simplifying hypotheses, an analyti-

cally closed-form transformation function relating inflow

peak discharge and runoff volume to routed peak discharge

can be derived. Such a function was exploited to delimitate

sub-critical regions in the population of inflow flood vari-

ables for constant values of routed peak discharge. The

bivariate return period estimate was therefore carried out

with reference to non-exceedance probabilities, obtained

by integrating copula density functions suggested in the lit-

erature on such regions.

Differently, peak discharge must be accounted for when

dealing with open channel design or safety verification. This

variable depends on the rainfall volume and the wet weather

duration and can be derived from their JDF. Further, all
rainfall events leading to an identical peak discharge can

be associated with the same severity, or return period.

To derive peak discharges from an input rainfall event, a

simplified lumped hydrological model, similar to those com-

monly adopted in practical applications of urban hydrology,

is herein set up. In order to approximate the natural depletion

of the hydrological losses during the wet weather period, the

rainfall excess hr (25) is evaluated bymeans of a runoff coeffi-

cient Φ applied to rainfall portion exceeding the initial

abstraction IA, chosen in accordance with the volume

threshold of the discretization procedure. Consequently, the

number of rainfall event ω equals the number of flood events:

hr ¼ Φ (h� IA) (25)

Further, similarly to Wycoff & Singh (), the flood

hydrograph shape is assumed to be triangular, with a base

given by the sum of the rainfall excess duration dr and the

catchment time of concentration tc. If a constant rainfall

intensity is assumed, dr can be estimated by expression (26):

dr ¼ d
h� IA

h
(26)

The runoff volume (25) must equal the area of the flood

hydrograph, so that the peak discharge qp can be expressed

in terms of the rainfall random variables h and d as shown

below. Equation (27) represents an analytical transformation

function relating to the bivariate input rainfall event and the

peak discharge:

qp(h, d) ¼ 2 Φ h (h� IA)
d (h� IA)þ h tc

(27)

Through the derived distribution theory, the non-excee-

dance probability of the peak discharge PQP can be

expressed in the terms of the following equation. In the pro-

posed estimate method, non-exceedance probability (28) is

thus assigned to all infinite rainfall events leading to the

same discharge peak qp (27):

PQP(qp) ¼ Prob{Qp � qp} ¼ Prob
2 Φ h (h� IA)
d (h� IA)þ h tc

� qp

� �
(28)
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Such a formulation allows to define in I2 the sub-critical

region ΛQP (29), if uniform random variables u and v are

made explicit in relationship (27), by means of inverse CDFs

(1). ΛQP depends on marginals and on two hydrologic catch-

ment parameters IETD and IA but, differently from the

formulation relying on the Kendall function, it is independent

of the underlying copula. An example of the unitary square

splitting related to Equation (29) is given in Figure 1(d):

ΛQP(u, v) ¼ {(U, V) ∈ I2:qp(P
[�1]
H (U), P[�1]

D (V))

� qp(P
[�1]
H (u), P[�1]

D (v))} (29)

The return period associated with a bivariate rainfall

event TQP
r can finally be estimated through the univariate

return period associated with qp, as shown in expression

(30), where the non-exceedance probability of the peak dis-

charge PQP is estimated by integrating the copula density c

over the super-critical region ΛQP (29):

TQP
r (u, v) ¼ 1

ω [1� PQP(u, v)]

¼ 1

ω 1� Ð
ΛQP(u,v)

c(x, y) dx dy

" # (30)

The integral in (30) must be computed numerically,

unless the JDF is constructed by coupling exponential func-

tions through the independence copula and Equation (27) is

simplified by assuming the wet weather duration to be equal

to the rainfall excess duration, as in Balistrocchi et al. ().

Numerical computing is, however, facilitated by operating in

the unitary square, which allows only proper integrals to

be used.
CONTINUOUS SIMULATION MODEL

Hydrological simulations were conducted to obtain the con-

tinuous discharge series generated by the test catchment, as

a result of the observed rainfalls. A conceptual lumped

model was developed, aiming at limiting discrepancies

with respect to the one implemented in the derivation

of the TQP
r expression. Hence, the rainfall–discharge
transformation process was again represented by the loss

model (25), while the rainfall excess routing was executed

by using a triangular instantaneous unitary hydrograph,

with duration equal to tc.

Finally, following the individual event statistics cri-

terion, the simulation output was separated in independent

floods, detecting their peak discharges and counting their

average annual number ωf. Thus, the experimental return

period T̂QP
r of peak discharges was estimated by relationship

(31), where FQP is the qp Weibull plotting position. The

IETDs adopted to account for the hydrologic losses and to

identify the flood events were equal to that utilized in the

previous rainfall discretization procedure. A very small dis-

charge threshold was further used to delete from the flood

event samples too small to be considered simulation

nuisances:

T̂QP
r ¼ 1

ωf(1� FQP)
(31)
TEST WATERSHED

The JDF PHD is herein constructed with reference to a 45-

year long time series of observed rainfall depths, recorded

every 30 minutes from 1949 to 1993 by the ITAS Pastori

raingauge, located in Brescia, northern Italy, next to the

transition between the Padan Plain and the southern foot-

hills of the Alps. The rainfall regime is classified as sub-

alpine, characterized by two maxima, in spring and

autumn, and two minima, in winter and summer. During

summer, short duration and high intensity storms separated

by long dry weather periods occur, while longer but less

intense precipitations are more common in the other sea-

sons. The annual average rainfall depth is quite large with

respect to other Italian climates and amounts to about

1.000 mm.

Bearing in mind small–medium size urban catchment

applications, analyses referred to a synthetic test watershed

characterized by this parameter set: catchment area A

100 ha, time of concentration tc 20 minutes and hydrological

losses expressed by an initial abstraction IA 5 mm and a

runoff coefficient Φ 0.45, for the exceeding portion. The
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discretization of the continuous rainfall time series into

independent rainfall events was hence conducted by using

an IETD corresponding to the minimum suggested value

of 3 h (Adams & Papa ) and a volume threshold equal

to 5 mm.
RESULTS AND DISCUSSION

The application of the discretization procedure to Brescia’s

rainfall time series yields a mean annual number ω of 48.2

independent rainfall events. This result can be considered

reasonable in this rainfall regime, owing to the very small

IETD adopted for the test catchment.

The maximum likelihood criterion was employed to fit

the theoretical copula (8) to pseudo-observations, estimating

a value of 1.41 for the dependence parameter θ. Although

this value corresponds to a concordance coefficient τK

equal to 0.29, a significant association is however shown.

Indeed, when a goodness-of-fit test is performed according

to statistics (12) by assuming that the dependence structure

is given by the independence copula, that is, disregarding

the association degree, the null hypothesis can be rejected

for a p value (13) less than 0.1%.

Conversely, the null hypothesis that the underlying copula

is expressed by copula (8) cannot be rejected for a p value

greater than 80.0%.Moreover, the upper tail dependence coef-

ficient λU (10) corresponding to θ estimate is 0.366, whereas

the non-parametric estimate (14) yields a value of 0.346.

Marginals (15) and (16) were finally fitted to h and d

samples by the maximum likelihood criterion, as well, lead-

ing to the following parameter set: 0.88, 1.18, 10.9 mm and

9.5 h for β, γ, ζ and λ, respectively. A β value less than one

evidences a significant presence of rainfall events having

very small depth, while a γ value greater than one shows

that wet weather durations tend to be less asymmetric. The

goodness-of-fit was verified by means of the confidence

boundary test, revealing that these distributions cannot be

rejected for conventional levels of significance of 5–10%.

When marginals are simplified in exponential distributions,

shape parameters are set equal to one, while scale parameter

estimates are: 12.0 mm for ζ and 8.9 h for λ. However, such

distributions can be rejected for a significance less

than 1.0%.
On the whole, the JDF constructed by coupling, accord-

ing to Equation (4), Weibull marginals (15) and (16) by

means of the Gumbel–Hougaard copula (8) appears to be

a suitable model to represent the bivariate variability of

the rainfall volume and the wet weather duration in this

rainfall regime. For the sake of completeness, a visual good-

ness-of-fit of the fitted JDF is proposed in Figure 2, where

contour lines of the theoretical JDF are compared to those

of the empirical JDF; the satisfactory agreement stated by

performed test statistics is clearly evident.

FFC curves derived for the test catchment through con-

tinuous simulations CS are drawn in Figure 3, along with

those derived from the probabilistic approach by assuming

diverse change in combinations of copula and marginals:

independence copula and exponential marginals IE, inde-

pendence copula and Weibull marginals IW, Gumbel–

Hougaard copula and exponential marginals GE and,

finally, Gumbel–Hougaard copula and Weibull marginals

GW. In this chart, return period estimates are carried out

only according to the proposed method TQP
r (30).

As can be seen, a good agreement between CS FFC and

GW FFC is evidenced. The largest residual, about 23%, is

given by the peak estimate corresponding to the 45-year

return period, that is the series length, and it can be con-

sidered acceptable. Instead, in the range of 5:20 years Tr,

residuals are much smaller and the probabilistic model

slightly overestimates CS FFC. This can be justified by con-

sidering that the rainfall series time step is comparable to

tc, so that simulated peak discharges are expected to be

more attenuated than the real ones. However, GW FFC

appears to be a little more conservative than benchmarking

outcomes and its values match those suggested in the ana-

lysed rainfall regime for urban sewer design (a term of

reference adopted by practitioners is about 100 l/(s ha) for

Tr 10 years). This result definitively supports both the

reliability of the JDF based on such functions and the

device-targeted method to estimating the return period of

bivariate rainfall events (30) herein developed.

On the contrary, in the other couplings, unacceptably

large estimates are obtained. The worse result is provided

by IE FFC, since almost double peak discharges than the

benchmarking ones are derived. Hence, the most common

assumptions on which analytical-probabilistic models

commonly rely, in this situation, do not yield the



Figure 2 | Contour lines of the theoretical JDF and of the empirical JDF, obtained for rainfall events derived from continuous rainfall series by using IETD¼ 3 h and IA¼ 5 mm.

Figure 3 | FFCs derived according to various methods: continuous simulations CS, probabilistic models derived by independence copula and exponential marginals IE, independence

copula and Weibull marginals IW, Gumbel–Hougaard copula and exponential marginals GE and Gumbel–Hougaard copula and Weibull marginals GW.
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compensation of errors occurring elsewhere. The most sig-

nificant reliability improvement is due to a correct

representation of the dependence structure rather than a

better fitting of marginals. In fact, GE FFC is much closer

to the CS FFC than IW FFC. This occurrence may be
explained by considering that, even if rejected by test stat-

istics, exponential distributions approximately suit the

empirical marginal distributions, while the observed depen-

dence structure is substantially different from the

independence copula.
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Isolines of bivariate rainfall events characterized by con-

stant TQP
r , which at this stage may be considered realistic,

are compared to those derived for constant TOR
r , TAND

r and

TKEN
r , respectively (Figure 4(a)–4(c)). The catchment time

of concentration tc being equal to 20 minutes, sub-hourly

wet weather durations are basically of interest for open

channel applications. A broader range up to 2 h has, how-

ever, been considered, to provide a more comprehensive

illustration.
Figure 4 | Detail of isolines for constant Tr (years) obtained by TQPr method (black),

compared to those (grey) obtained by using (a) TOR
r ,(b) TAND

r and (c) TKENr

methods.
First, it is well known that, for a given Tr, the rainfall

volume is expected to increase with respect to the wet

weather duration. This behaviour is respected by TQP
r iso-

lines, which also provide a rainfall volume greater than

zero for null durations. These trends are a consequence of

the super-critical region delimitated by the TQP
r method,

which is mainly located in the lower-right corner of the uni-

tary square. As can be seen in the example in Figure 1(d), in

this approach, super-critical events are those featured by

large depth but short duration, which exceed the hydrologic

losses; the conceptual soundness of the proposed model is

therefore further supported.

The extremely large peak discharge obtained from JDFs

based on the independence copula can be explained, as well.

In the independent copula, the copula density is uniformly

distributed on I, while, in the Gumbel–Hougaard copula, it

concentrates on the main diagonal in the lower-left and in

the upper-right corners. Thus, in the first case, the non-

exceedance probability is underestimated, consequently

leading to an excessively low return period.

When return periods are estimated by using TOR
r and

TKEN
r methods very similar outcomes are obtained. Isolines

exhibit a decreasing trend of the rainfall volume with respect

to the wet weather duration. In addition, since return period

isolines correspond to JDF contour lines, a significant range

of short durations next to the axis origin is excluded: the

greater the return period, the larger this range is. On the

contrary, the wet weather duration range must span from

zero to infinite. Furthermore, in both methods, estimated

return periods are evidently meaningless. More reasonable

values are instead assessed by means of the TAND
r method,

although the rainfall volumes appear to be almost indepen-

dent of the wet weather duration. This occurs because, in

the region taken into consideration, survival copula contour

lines are almost straight and parallel to wet weather dur-

ation axis.

Such huge discrepancies between TQP
r and the others can

be explained by the substantially different splitting of the

bivariate population, by which they estimate the non-

exceedance probability. The extreme sensitivity of the

return periodwith respect to this estimate further accentuates

such discrepancies. In complete agreement with Serinaldi

(), TOR
r , TAND

r and TKEN
r methods can be adopted only if

they match the failure mechanism of the analysed device.
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For example, fewer discrepancies were found by Requena

et al. (), when the estimate method based on routing reser-

voir performances is compared to TOR
r and TKEN

r . In this

application, peak discharge must actually decrease with the

runoff volume when the maximum water level, or the routed

peak discharge, is constant. Therefore, the failuremechanisms

on which TOR
r and TKEN

r rely are more similar to the device

one. Conversely, as in the problem dealt with in this study,

they do not provide suitable return period estimates.
CONCLUSIONS

In this paper, a FFC for a small–medium size urban catch-

ment in a northern Italian rainfall regime has been derived,

from a JDF of rainfall depths and wet weather durations. To

do so, a Gumbel–Hougaard copula and Weibull marginals

were combined and a bivariate return period estimate

method was developed, by using a lumped conceptual

scheme for the rainfall–runoff transformation and routing

processes. The proposed model soundness is supported by a

satisfactory agreement with benchmarking continuous simu-

lations. Two main consequences can be drawn from this.

First, although a method of general applicability to esti-

mating multivariate return periods cannot reasonably be

established, it is however possible to delineate a common

strategy, addressing the real-world application dynamics. In

this circumstance, if device performances can be referred to

a single constituent variable, the derived distribution theory

allows the multivariate case to be traced back to the univari-

ate one. In fact, with regard to the derived hydrologic

variable, the population of the input random variable can

effectively be split in the dichotomous regions, collecting

sub-critical and super-critical events. Furthermore, it is impor-

tant to point out that, in a multivariate framework, defining a

single change in event for a given return period appears to be

meaningless. When an estimate method is chosen, a single

event corresponds to a unique return period but, on the con-

trary, infinite events share the same return period.

Second, the utilization of the copula approach in the

rainfall JDF construction demonstrated to yield a substantial

improvement in the overall model reliability. Differently

from what is reported in the literature concerning the

analytical-probabilistic modelling, JDFs properly accounting
for the observed dependence structure of random variables,

featuring a non-negligible association, performed better than

those assuming their independence. Nonetheless, in the

latter case, more conservative results are obtained. In any

case, the model choice should be carried out carefully,

balancing the definitive advantage of an analytical formu-

lation and the real need for accuracy improvement

following a more precise probabilistic model.

Future developments regarding the method herein pro-

posed to estimating the multivariate return period are still

desirable. On the one hand, the FFC derivation could be

generalized towards natural watershed applications, whose

scale and hydrological processes require more complex

modelling. On the other hand, it could be attractive to

more deeply understand, with regard to real-world test

cases, whether the method can be suitably exploited to

face other multivariate problems, or not. Indeed, a number

of hydraulic design and verification problems, in which

the hydrologic input would be more efficaciously outlined

by a multivariate continuous approach, exists, namely land-

slide triggering risk assessment, routing reservoir design,

spillway safety verification and flooding area delimitations.
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