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Abstract

For a class of systems of nonlinear and nonlocal balance laws in several space dimensions, we prove 
the local in time existence of solutions and their continuous dependence on the initial datum. The choice 
of this class is motivated by a new model devoted to the description of a metal plate being cut by a laser 
beam. Using realistic parameters, solutions to this model obtained through numerical integrations meet 
qualitative properties of real cuts. Moreover, the class of equations considered comprises a model describing 
the dynamics of solid particles along a conveyor belt.
© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

We are concerned with a system of n balance laws in several space dimensions of the type{
∂tui + divx ϕi(t, x, ui,ϑ ∗ u) = �i(t, x,ui,ϑ ∗ u)

ui(0, x) = ūi (x)
i = 1, . . . , n . (1.1)
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Here, t ∈ [0,+∞[ is time, x ∈ R
N is the space coordinate and u ≡ (u1, . . . , un), with ui =

ui(t, x), is the unknown. The function ϑ is a smooth function defined in RN attaining as values 
m × n matrices, so that

ϑ ∈ C2
c(R

N ;Rm×n) , (ϑ ∗ u(t)) (x) =
∫
RN

ϑ(x − ξ) u(t, ξ)dξ , (ϑ ∗ u(t)) (x) ∈R
m .

The flow ϕ ≡ (ϕ1, . . . , ϕn), with ϕi(t, x, ui, A) ∈ R
N , and the source � ≡ (�1, . . . , �n), with 

�i(t, x, ui, A) ∈ R, have the peculiar property that the equations are coupled only through the 
nonlocal convolution term ϑ ∗ u.

The driving example for our considering the class (1.1) is a new model for the cutting of 
metal plates by means of a laser beam, presented in Section 3. A sort of pattern formation phe-
nomenon, typical of various nonlocal equations [7], provides a first preliminary description of 
the formation of the well known ripples whose insurgence deeply affects the quality of the cuts. 
In fact, two types of lasers are mainly used in the cutting of metals: CO2 lasers and fiber lasers. 
The former ones are more powerful and more precise, but also more expensive. Recent techno-
logical improvements are apparently going to allow also to the cheaper devices of the latter type 
to cut thick plates, nowadays treated typically with CO2 lasers. Unfortunately, a typical draw-
back of fiber lasers is that along the cut ripples are generated, see [26,28,33]. The modeling of 
these ripples often relies on the introduction of imperfections in the metal or of inaccuracies in 
the laser management, see also [25,27]. Here, using realistic numeric parameters and in spite of 
the rather simplified physics involved, in Section 3 we present a first preliminary model capable 
of describing the formation of a geometry similar to the ripples observed in industrial cuts. We 
remark that in the present construction neither the initial data nor the parameters in the equations 
contain any oscillating term.

Furthermore, in Section 4, we slightly extend the model introduced in [12] to describe the 
dynamics of bolts along a conveyor belt. The resulting equations fit in the present framework and 
is proved to be well posed.

Besides, we also note that several crowd dynamics models considered in the literature fit 
into (1.1), e.g. [7,9,11,18].

The particular structure of (1.1) allows to prove its well posedness. Indeed, for small times, 
system (1.1) admits a unique solution u = u(t, x). Moreover, u is proved to be a continuous 
function of time with respect to the L1 topology and an L1-Lipschitz continuous function of the 
initial datum ū. In all this, the particular coupling among the equations in (1.1) plays a key role. 
At present, the well posedness of general systems of balance laws in several space dimensions is 
a formidable open problem. In the present work, the functional setting is provided by L1 ∩ L∞ ∩
BV, as usual in the framework of nonlocal conservation laws. The existence result is obtained 
through a careful use of the general estimates [10,21]. They provide the necessary analytic tool 
to apply Banach Contraction Theorem.

A preliminary result related to Theorem 2.2 below is presented for instance in [1], see also [3]. 
There, the existence of solution to (1.1) in the case � ≡ 0 is obtained proving the convergence 
(up to a subsequence) of a Lax–Friedrichs type approximate solutions. Note however that differ-
ently from the present situation, in the case considered in [1], positive initial data yield positive 
solutions so that the L1 norm is conserved.

We remark that most of the results related to nonlocal balance laws are currently devoted to 
conservation laws, i.e., to equations that lack any source term. Here, we allow for the presence 
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of source terms that can be nonlinear in both the unknown variable u and the convolution term 
ϑ ∗ u. The unavoidable cost of this extension is a local in time existence result, as shown by an 
example in Section 2.

Nonlocal conservation and balance laws are currently widely considered in various modeling 
frameworks. Besides those of crowd dynamics, laser cutting and conveyor belt dynamics consid-
ered above, we recall for instance granular materials, see [2], and vehicular traffic, see [4]. For a 
different approach, based on measure valued balance laws, we refer to [24].

The paper is organized as follows: the next section is devoted to the analytic results. Section 3
presents the laser cutting model, its well posedness and some qualitative properties with the 
help of numerical integrations. Conveyor belts dynamics is the subject of Section 4. All analytic 
proofs are postponed to the last Section 5.

2. Analytic results

Throughout, we denote by gradx f , respectively divx f , the gradient, respectively the di-
vergence, of f with respect to the x variable, with x ∈ R

N . All norms in function spaces are 
denoted with a subscript indicating the space, as for instance in ‖u(t)‖L1(RN ;Rn). When no space 
is indicated, the norm is the usual Euclidean norm in Rk, for a suitable k, as for instance in 
‖u(t, x)‖. Throughout, we fix the nontrivial time interval Î = [0, ̂T ]. For any U > 0, we also 
denote UU = [−U, U ].

Our starting point is the definition of solution to (1.1), which extends [1, Definition 2.1] to the 
case of balance laws.

Definition 2.1. Fix a positive T . Let ū ∈ L∞(RN, Rn). A map u : [0, T ] → L∞(RN, Rn) is a 
solution on [0, T ] to (1.1) with initial datum ū if, for i = 1, . . . , n, setting for all w ∈R

ϕ̃i (t, x,w) = ϕi (t, x,w, (ϑ ∗ u)(t, x)) and �̃i(t, x,w) = �i (t, x,w, (ϑ ∗ u)(t, x))

the map u is a Kružkov solution to the system{
∂tui + divx ϕ̃i(t, x, ui) = �̃i(t, x, ui)

ui(0, x) = ūi (x)
i = 1, . . . , n . (2.1)

Above, for the definition of Kružkov solution we refer to the original [20, Definition 1].
We are now ready to state the main result of the present paper.

Theorem 2.2. Assume that there exists a function λ ∈ (C0 ∩ L1)(Î ×R
N ×R

+; R+) such that:

(ϕ) For any U > 0, ϕ ∈ (C2 ∩ W2,∞)(Î × R
N × UU × Um

U ; Rn×N) and for all t ∈ Î , x ∈ R
N , 

u ∈ UU , A ∈ Um
U

max

⎧⎪⎨⎪⎩
∥∥gradx ϕ(t, x,u,A)

∥∥ , ‖divx ϕ(t, x,u,A)‖ ,∥∥gradx divx ϕ(t, x,u,A)
∥∥ ,

∥∥gradx gradA ϕ(t, x,u,A)
∥∥ ,∥∥gradA ϕ(t, x,u,A)

∥∥ ,
∥∥grad2

A ϕ(t, x,u,A)
∥∥

⎫⎪⎬⎪⎭≤ λ(t, x,U) .
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(�) For any U > 0, � ∈ (C1 ∩ W1,∞)(Î × R
N × UU × Um

U ; Rn) and for all t ∈ Î , x ∈ R
N , 

u ∈ UU , A ∈ Um
U

max
{‖�(t, x,u,A)‖ ,

∥∥gradx �(t, x,u,A)
∥∥}≤ λ(t, x,U) .

(ϑ ) ϑ ∈ C2
c(R

N ; Rm×n).

Then, for any positive C̄ there exists a positive T∗ ∈ I and positive L, C such that for any datum

ū ∈ (L1 ∩ L∞ ∩ BV)(RN ;Rn) with ‖ūi‖L1(RN ;Rn) ≤ C̄, ‖ūi‖L∞(RN ;Rn) ≤ C̄ and TV(ūi) ≤ C̄,

(2.2)

problem (1.1) admits a unique solution

u ∈ C0
(
[0, T∗];L1(RN ;Rn)

)
in the sense of Definition 2.1, satisfying the bounds

‖u(t)‖L1(RN ;Rn) ≤ C , ‖u(t)‖L∞(RN ;Rn) ≤ C and TV(u(t)) ≤ C ,

for all t ∈ [0, T∗]. Moreover, if also w̄ satisfies (2.2) and w is the corresponding solution to (1.1), 
the following Lipschitz estimate holds:

‖u(t) − w(t)‖L1(RN ;Rn) ≤ L ‖ū − w̄‖L1(RN ;Rn) .

The proof is deferred to Section 5. Observe that the whole construction in the present paper 
can be easily extended substituting the convolution ϑ ∗u with a nonlocal operator having suitable 
properties that comprise those of the convolution, as was done for instance in [7,9].

A natural question arises, namely whether the above result can be extended to ensure the 
global in time existence of solutions. In this connection, consider the following particular case 
of (1.1)

{
∂tu = (u ∗ η)u

u(0, x) = 1 .
(2.3)

Here, n = 1 and m = 1 while N does not play any particular role. Moreover, η ∈ C2
c(R

N ; R) is 
nonnegative and satisfies 

∫
RN η(x)dx = 1. The solution is u(t, x) = 1/(1 − t), which exists only 

up to time t = 1. The above example (2.3) admits an explicit solution but does not fit into the 
setting of Theorem 2.2, since the initial datum is not in L1(RN ; R). On the other hand, setting 



R.M. Colombo, F. Marcellini / J. Differential Equations 259 (2015) 6749–6773 6753
Fig. 1. Numerical integration of (2.4) for t ∈ [0, 1.05]. The values of the L1 norm of the solution is plotted vs. time in 
Fig. 2.

N = 1, the similar problem

{
∂tu = (u ∗ η)uψ(x)

u(0, x) = ψ(x)
where

ψ(x) =
⎧⎨⎩

1 |x| ∈ [0,1](
1 − (x − 1)3

)4 |x| ∈ ]1, 2[
0 |x| ∈ [2,+∞[

(2.4)

apparently has a qualitatively analogous blow up pattern, as shown by the numerical integration 
displayed in Fig. 1. To obtain it, we use an explicit forward Euler method, with space mesh 

x = 10−3 and time mesh 
t = 10−3 on the space domain [−3, 3] and for t ∈ [0, 1.05]. The 
graph of the L1 norm of the numerical solution to (2.4) is in Fig. 2. It is straightforward to see 
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Fig. 2. L1 norm of the solution to (2.4), suggesting a blow up at finite time, similar to the solution to (2.3).

that (2.4) fits into the framework of Theorem 2.2, setting

N = 1
n = 1
m = 1

ϕ(t, x,u,A) = 0

�(t, x,u,A) = ψ(x)uA .

The requirements (ϕ) and (�) are easily seen to be satisfied.

3. A laser beam cutting a metal plate

A thin horizontal metal plate can be cut by means of a moving vertical laser beam. More 
precisely, the laser energy melts the metal along a prescribed trajectory. A wind, suitably pro-
voked around the beam, pushes the melted material downwards. For its industrial interest, this 
phenomenon is widely considered in the specialized literature, see [13–16,26–28,32,33], while 
information specific to the cut of aluminum are for instance in [30]. A phenomenological de-
scription of the whole process can be summarized as follows. We fix a 3D geometric framework, 
with the laser beam parallel to the vertical z axis, see Fig. 3, left. The trajectory of the laser is 
prescribed by the map xL = xL(t). We distinguish the height hs of the solid metal and that of the 
melted part, denoted hm, see Fig. 3, right.

A 1D system of balance laws is used to describe the dynamics of the melted and of the solid 
material in [8]. Here, we present a description of this dynamics by means a 2D system of balance 
laws of the form: {

∂thm + divx(hm V ) = L
∂ths = −L .

(3.1)

The vector V = V (t, x) describes the projection of the melted material velocity on the horizontal 
(x, y)-plane. Its modulus must depend on the wind speed w = w(t, x), which is centered at the 
laser beam sited at x = xL(t). Its direction depends on the geometry of the melted metal and of 
the solid surface z = H(t, x), where H = hs + hm. The source term L is directly related to the 
laser position and intensity: it describes the net rate at which the solid part turns into melted. Also 
L depends on the metal geometry, since the heat absorption is strictly related to the incidence 
angle between the moving melted metal surface and the vertical laser beam, see Fig. 4, left.
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Fig. 3. Left, reference frame with respect to the metal plate being cut. The laser beam is parallel to the z axis, while the 
plate lies on the z = 0 plain. Right, the distinction between the melted part hm and the solid one hs .

Fig. 4. Left, the incidence angle α of the laser beam on the surface z = H(t, x). Right, a possible profile for the functions 
W and I in (3.4).

Here, we posit the following assumptions:

V = (w(t, x) − τghm

) −gradx(η ∗ hs)√
1 + ∥∥gradx(η ∗ hs)

∥∥2
(3.2)

L = i(t, x)

1 + ∥∥gradx(η ∗ H)
∥∥2

. (3.3)

The term with the coefficient τg in (3.2) is related to the shear stress, inspired by [8,33]. The 
denominator in (3.2) is due to a (smooth) normalization of the direction − gradx(η ∗ hs) of 
the average steepest descent along the surface z = hs(t, x). Indeed, the convolution kernel η
is chosen smooth, compactly supported and with total mass 1, so that gradx (η ∗ hs(t)) (x) is the 
average gradient at position x and time t of the surface z = hs(t, x).

In (3.3), the numerator i = i(t, x) is related to the laser intensity. It can be reasonably de-
scribed through a compactly supported bell shaped function centered at the location of the 
moving focus of the laser beam. The denominator is the squared cosine of an averaged incidence 
angle of the laser on the surface z = H(t, x), see Fig. 4, left. In fact,

cos2 α =

⎛⎜⎜⎜⎜⎜⎜⎝
[−∂x1H − ∂x2H 1]

⎡⎣ 0
0
1

⎤⎦
∥∥[−∂x1H − ∂x2H 1]∥∥ ‖[0 0 1]‖

⎞⎟⎟⎟⎟⎟⎟⎠

2

= 1

1 + ∥∥gradx H
∥∥2

.
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For the wind function w = w(t, x) and for the laser intensity function i = i(t, x) we choose a 
dependence on the form

w(t, x) =W (‖x − xL(t)‖) and i(t, x) = I (‖x − xL(t)‖) (3.4)

where both maps W and I have the form in Fig. 4, right. More precisely, in the real setting under 
consideration, the diameter of the support of W is a few times larger than that of I .

We stress that the present model describes how the laser beam digs a block of metal along its 
movement, i.e., it describes the dynamics of the melted metal and the profile of the solid material 
during the passing of the laser beam. At the physical level, the actual formation of the hole makes 
the melted material fall and, essentially, disappear. At the analytic level, the appearance of the 
hole causes major discontinuities that can hardly be described within a model of the form (3.1). 
Therefore, we provide (3.1)–(3.2)–(3.3) with an initial datum

hs(0, x) = ho
s and hm(x) = 0 (3.5)

where the constant ho
s is the uniform thickness of the plate under consideration. Then, we inter-

pret the region where hs(t, x) < 0 as the region where the cut is accomplished.
As a result we obtain the following model:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂thm + divx

⎡⎢⎣(w(t, x)hm − τg(hm)2
) −gradx(η ∗ hs)√

1 + ∥∥gradx(η ∗ hs)
∥∥2

⎤⎥⎦= i(t, x)

1 + ∥∥gradx(η ∗ H)
∥∥2

∂ths = − i(t, x)

1 + ∥∥gradx(η ∗ H)
∥∥2

H = hs + hm

(3.6)

To apply Theorem 2.2 to the model (3.6), a formal modification is necessary. Indeed, we 
introduce a cutoff function

Tg(t, x) = τg S (‖x − xL(t)‖) where S(ξ) =
{

1 ξ ∈ [0, r]
0 ξ ∈ [R,+∞[

(3.7)

for a smooth S and suitable (large) r and R, with r < R. We thus obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂thm + divx

⎡⎢⎣− (w(t, x)hm − Tg(t, x)(hm)2
)

gradx(η ∗ hs)√
1 + ∥∥gradx(η ∗ hs)

∥∥2

⎤⎥⎦= i(t, x)

1 + ∥∥gradx(η ∗ H)
∥∥2

∂ths = − i(t, x)

1 + ∥∥gradx(η ∗ H)
∥∥2

H = hs + hm

(3.8)

When used with real data, the two problems (3.6) and (3.8) are indistinguishable.
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Proposition 3.1. The model (3.8) fits into (1.1) setting:

N = 2
n = 2
m = 4
u1 = hm

u2 = hs

ϑ(x) =

⎡⎢⎢⎣
∂x1η(x) 0

0 ∂x1η(x)

∂x2η(x) 0
0 ∂x2η(x)

⎤⎥⎥⎦
ϕ1(t, x,u1,A) = − (w(t, x)−Tg(t, x)u1

)
u1√

1 + (A3)2 + (A4)2

[
A3
A4

]
ϕ2(t, x,u2,A) = 0

�1(t, x,u,A) = i(t, x)√
1+ (A1 +A3)2 + (A2 +A4)2

�2(t, x,u,A) = − i(t, x)√
1+ (A1 +A3)2 + (A2 +A4)2

,

where w, i are defined in (3.4) and Tg in (3.7). Moreover, if

xL ∈ (C2 ∩ W2,∞)([0, T̂ ];R2) , W,I,S ∈ C2
c(R;R) and η ∈ C3

c(R
2;R) (3.9)

for a positive T̂ , then, assumptions (ϕ), (�), (ϑ ) hold.

The proof is deferred to Section 5. The above Proposition 3.1 allows to apply Theorem 2.2 to 
model (3.8), ensuring its well posedness.

3.1. Numerical Integration

The model (3.6), fed with realistic values of the various parameters, is able to reproduce the 
rising of ripples. The following numerical integrations show this qualitative feature.

We use below the numerical method presented in [1], where it is proved to be convergent up 
to a subsequence in the case of a system of nonlocal conservation laws. As it is usual, we deal 
with the source terms by means of the fractional step method, see for instance [22, Section 12.1]. 
In other words, we use a Lax–Friedrichs type algorithm for the convective part and a first order 
explicit forward Euler method for the ordinary differential equations arising from the source 
terms.

The computational domain is the rectangle [0, 40] × [−2, 2], entirely contained in the metal 
plate to be cut (all lengths being measured in millimeters). The mesh size is 5 · 10−3 along both 
axis. The integration is computed for t ∈ [0, 1], time being measured in seconds.

The laser trajectory is

xL(t) =
{

(3, 0) t ∈ [0, 0.1]
(3 + 40 (t − 0.1), 0) t ∈ ]0.1, 1]

meaning that for t ∈ [0, 0.1] the initial hole is drilled centered at (3, 0), in the interior of the 
metal plate. The speed of the laser beam, 40 mm

sec , is coherent with the data in [31], see also [8, 
Table 1].

The wind and laser functions are given by (3.4) setting

W(ξ) =
(

1 −
(

ξ

3.6

)2
)4

for ‖ξ‖ ≤ 3.6
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I(ξ) = 2

(
1 −

(
ξ

1.2

)2
)6

for ‖ξ‖ ≤ 1.2

corresponding to a laser beam with radius 1.2 mm, see [31]. The radius of the surface where the 
wind blows downward is 3 times that of the laser beam. Besides, we set τg = 4. The convolution 
kernel is

η(x) = 1∫
R2 η̃(y)dy

η̃(x) where η̃(x) =
(

1 −
(‖x‖

2.4

)2
)3

for ‖x‖ ≤ 2.4 .

As initial datum, we choose

h̄m(x) = 0 and h̄s(x) = 4.5 for all x ∈ R
2 ,

representing a flat metal plate 4.5 mm thick, see [31].
The result of this integration is in Fig. 5, which displays the contour plot of the surface z =

hs(t, x) remaining after the cut, restricted to the interval [0, 4.5] mm. The white part corresponds 
to a level below 0 and should be understood as expelled, corresponding to the cut. Remark the 
oscillations arisen along the sides of the cut. No parameter and no datum in the integration 
oscillates, nevertheless, the solution displays these sort of “ripples”. Fig. 6, compares a real 
cut to the result of this integration, shown with the same scale along the two axis.

This rather preliminary model is essentially limited to the digging done by the laser beam. 
The formation of a hole in the steel does not appear explicitly. Indeed, it is immediate to observe 
that (3.6) is translation invariant with respect to hs , see also Fig. 7. The formation of a hole in 
the steel is such an abrupt change in the steel plate geometry that can hardly be described within 
the present analytic framework.

4. Materials flowing on a conveyor belt

A macroscopic model for the flow of materials along a conveyor belt is presented in [12]. The 
material consists of a large number of solid identical particles, called cargo. From a macroscopic 
point of view, the cargo state is identified by a density ρ = ρ(t, x), where t is time and x ≡
(x1, x2) is the coordinate along the conveyor belt. The industrial interest behind these modeling 
efforts is motivated by the need of an efficient management of specific parts of the production 
process. A standard example is the pouring of newly produced bolts in boxes. In this case, a 
selector is positioned on the belt to drive the bolts in a short segment of the belt, so that at 
the end of the conveyor they fall in their boxes, see [12] and Fig. 8, left. For other references 
on these modeling issues, both from the microscopic and macroscopic points of view, see for 
instance [23], related to conveyor belts in mines, or [17,29] and the review [19].

With the notation in [12, Section 3], a macroscopic description for the cargo dynamics is 
provided by the equation

∂tρ + divx

(
ρ
(
vstat(x) + H(ρ − ρmax)I(ρ)

))= 0 . (4.1)
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e contour plots of the solid metal level hs in the interval 
les on the two axis) is the support of the laser beam. The 
twards. Note the formation of “ripples”, i.e., the sides of 
or interpretation of the colors in this figure, the reader is 
Fig. 5. Numerical integration of (3.6) with the data and parameters provided in Subsection 3.1, see [8,31]. These are th
[0, 4.5] over the domain [0, 40] × [−2, 2] millimeters. The inner circle (appearing as an ellipse due to the different sca
outer one is the support of the wind. At time t = 0.1, the initial hole is terminated and the laser beam starts moving righ
the cut are not flat but present an apparently regularly oscillating profile. Neither data nor parameters are “pulsating”. (F
referred to the web version of this article.)
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Fig. 6. Left, a real piece of metal with a hole and a cut made by a laser beam. Right, the result of the numerical integration 
of the model (3.6) as in Fig. 5, but plotted with the same scales along the two axis. (For interpretation of the colors in this 
figure, the reader is referred to the web version of this article.)

Fig. 7. Integration of (3.6), the only varying parameter being the steel thickness. Top: left, h̄s = 4.5 and, right, h̄s =
10. Bottom: left, h̄s = 20 and, right, h̄s = 30. In the last case, the steel is perforated only at the initial position. (For 
interpretation of the colors in this figure, the reader is referred to the web version of this article.)

Here, vstat is the time independent velocity of the underlying conveyor belt. The fixed positive 
ρmax is the maximal cargo density and H is the usual Heaviside function. The term

I(ρ) = ε
−gradx(η ∗ ρ)√

1 + ∥∥grad (η ∗ ρ)
∥∥2

(4.2)
x
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Fig. 8. Left, a conveyor belt with a selector restricting the possible path of the carried cargo. Right, geometry and notation 
of the conveyor belt.

describes how the cargo velocity is modified when the maximal density is reached: particles 
move towards regions with lower average cargo density, η being a C2

c positive function with 
integral 1, so that η∗ρ is an average cargo density. Further details are available in [12, Section 3], 
where (4.1) is supplied with suitable boundary conditions along the sides of the conveyor belt. 
The numerical study therein shows a good agreement between the solutions to (4.1) and real data.

Next, we slightly modify (4.1). The conveyor belt is described by the strip |x2| ≤ �. First, we 
replace the Heaviside function by a regularization

Hμ ∈ C2(R; [0,1]) with Hμ(ξ) = H(ξ) ∀ξ with |ξ | > μ. (4.3)

Then, we modify vstat(x) so that it incorporates the upper and lower conveyor boundaries. To 
this aim, we introduce the vector field b(x) ∈ C2

c(R
2; R2), see Fig. 8, right, such that:

(b(x1, �))2 = −̂ε ∀x1 ∈ R , (b(x))1 = 0 ∀x ∈ R
2 ,

(b(x1,−�))2 = ε̂ ∀x1 ∈ R , (b(x))2 = 0 ∀x ∈ R
2 with |x2 − �| > δ or |x2 + �| > δ .

We therefore obtain the equation

∂tρ + divx

(
ρ
(
vstat(x) + b(x) + Hμ(ρ − ρmax)I(ρ)

))= 0 (4.4)

which describes the cargo dynamics along the conveyor belt. Thanks to the framework provided 
by Theorem 2.2, we can incorporate in the model also the cargo source and sink. Indeed, we 
assume that the solid particles are poured on the belt in a region, say, Rin = [0, a] × [−�, �] and 
fall out of the belt in the region Rout = [L − a, L] × [−�, �]. To this aim, for a positive T̂ , we 
introduce the source and sink functions

�in ∈ C2([0, T̂ ] × Rin;R+) with spt�in(t, ·) ⊆ Rin for all t ∈ [0, T̂ ]

�out ∈ C2([0, T̂ ] × Rin ×R;R+) with
spt�out(t, ·, ρ) ⊆ Rout for all t ∈ [0, T̂ ] and ρ ∈R

�out(·, ·, ρ) = 0 for all ρ ≤ 0

(4.5)

The function �in is the rate at which particles are poured in Rin, while �out describes the outflow 
from the belt.
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We can assume that the belt is initially empty, thus we obtain the following Cauchy Problem, 
where we set v = vstat + b,{

∂tρ + divx (ρ (v(x) + Hμ(ρ − ρmax) I(ρ))) = �in(t, x) − �out(t, x, ρ)

ρ(t,0) = 0
(4.6)

Proposition 4.1. Fix positive T̂ , �, L, μ, ρmax, ε, ̂ε with ̂ε > ε. Let B = [0, L] × [−�, �] be the 
conveyor belt. If v ∈ C2(R2; R2) is such that

(v(0, x2))1 ≥ 0 ∀x2 ∈ [−�, �] (v(L,x2))1 ≤ 0 ∀x2 ∈ [−�, �]
(v(x1,−�))2 ≥ ε̂ ∀x1 ∈ [0,L] (v(x1, �))2 ≥ ε̂ ∀x1 ∈ [0,L] , (4.7)

Hμ is as in (4.3), I is as in (4.2) and �in, �out are as in (4.5), then there exists a positive T∗
such that problem (4.6) admits a solution on the time interval [0, T∗]. Moreover, this solution is 
supported in B for all t ∈ [0, T∗].

The proof is deferred at the end Section 5.

5. Technical details

The proof of Theorem 2.2 consists of several steps. We briefly describe here the overall formal 
structure.

Fix a positive T ∈ Î and let I = [0, T ]. Introduce the map

T : (w, ũ) → u

where u ≡ (u1, . . . , un) and its i-th component ui solves the nonlinear balance law{
∂tui + divx ϕi(t, x, ui,ϑ ∗ w) = �i(t, x,ui,ϑ ∗ w)

ui(0, x) = ũi (x)
(5.1)

for i = 1, . . . , n. By construction, solving (1.1) is equivalent to solving the fixed point problem 
u = T (u, ū). The core of the proof thus consists in choosing T and suitable subsets

W ⊂ C0
(
I ;L1(RN ;Rn)

)
and U⊂ L1(RN ;Rn),

see (5.2), so that⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(i) ∀(w, ũ) ∈W×U, T (w, ũ) is well defined,

(ii) ∀(w, ũ) ∈W×U, T (w, ũ) is in W,

(iii) ∀ũ ∈ U, w → T (w, ũ) is a contraction,

(iv) ∀w ∈W, ũ → T (w, ũ) is Lipschitz continuous,

(v) ∀(w, ũ) ∈W×U, t → (T (w, ũ)) (t) is continuous.
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Steps 1 and 2 in the proof below give (i). The a priori bounds proved in Steps 3, 4, 5 and 6
ensure (ii). The key estimate (5.19), which has the form∥∥T (w′, ũ) − T (w′′, ũ)

∥∥
C0(I ;L1(RN ;Rn))

≤ O(1) T
∥∥w′ − w′′∥∥

C0(I ;L1(RN ;Rn))

and is proved in Step 7, shows that (iii) holds for T small. The statement (iv) is obtained in Step 9
through an estimate of the form∥∥T (w, ũ′) − T (w, ũ′′)

∥∥
C0(I ;L1(RN ;Rn))

≤ O(1)
∥∥ũ′ − ũ′′∥∥

L1(RN ;Rn)
,

see (5.20). Finally, (v) is the content of Step 4, see (5.9)–(5.10), used also in the proof of (ii).
Once the statements (i), . . . , (v) are obtained, the proof of Theorem 2.2 is essentially com-

pleted.

Proof of Theorem 2.2. Throughout, we use the standard properties of the convolution product 
and, in particular, the following bounds. If ϑ satisfies (ϑ ) and u ∈ L1(RN ; Rn), then

‖ϑ ∗ u‖L∞(I×RN ;Rn) ≤ ‖ϑ‖L∞(RN ;Rm×n) ‖u‖C0(I ;L1(RN ;R))

which is a straightforward generalization, for instance, of [6, Theorem IV.15]. By (ϑ ), without 
any loss of generality, we may assume that∥∥ϑji

∥∥
L1(RN ;R)

≤ 1/n for all j = 1, . . . ,m and i = 1, . . . , n .

This requirement simplifies several estimates below, since it ensures that

ui(x) ∈ UU for all i = 1, . . . , n and x ∈ R
N ⇒ (ϑ ∗ u)(x) ∈ Um

U for all x ∈ R
N .

1: Notation and definition of T . Fix positive K , U , Ū , R and R̄ with

‖ū‖L1(RN ;Rn) ≤ R̄ < R , ‖ū‖L∞(RN ;Rn) ≤ Ū < U and TV(ū) < K .

Introduce the L1 closed sphere centered at the initial datum ū with radius R and its intersection 
with BV as follows:

BL1(ū,R,U) =
{
u ∈ L1(RN ;Rn) : ‖u − ū‖L1(RN ;Rn) ≤ R and u(x) ∈ Un

U

}
BL1∩BV(ū, R̄, Ū ,K) = {u ∈ BL1(ū, R̄, Ū ) : TV(u) ≤ K

}
.

For any positive T ∈ Î , denote I = [0, T ] and define the map

T : C0
(
I ;BL1(ū,R,U)

) × BL1∩BV(ū, R̄, Ū ,K) → C0
(
I ;BL1(ū,R,U)

)
w , ũ → u

(5.2)

where the function u ≡ (u1, . . . , un) is such that for i = 1, . . . , n, ui solves (5.1). We equip the 
Banach space C0

(
I ;L1(RN ;Rn)

)
with its natural norm
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‖u‖C0
(
I ;L1(RN ;Rn)

) = sup
t∈I

‖u(t)‖L1(RN ;Rn) ,

and the metric space BL1∩BV(ū, r, K) with the L1-distance. Denote below

�T = I ×R
N ×R and �U

T = I ×R
N × UU .

Moreover, we set

�(t,U) = ‖λ(·, ·,U)‖L1([0,t]×RN ;R) (5.3)

so that �(·, U) ∈ C0(Î ; R) is nondecreasing, bounded and �(0, U) = 0 for all U ∈R
+.

Throughout, we denote by C a quantity dependent only on λ and on the norms in (ϕ), (�)
and (ϑ ), but independent of T , R, U , R̄, Ū and K . Similarly, CU is a constant depending only 
on ‖ϕ‖W2,∞(I×RN×UU ×Um

U ;Rn×m) and on ‖�‖W1,∞(I×RN×UU ×Um
U ;Rn).

2: Problem (5.1) admits a solution. Note that if i �= j , equation (5.1) is decoupled from the 
analogous equation for uj . Therefore, we want to apply the classical result by Kružkov [20, 
Theorem 1], see also [21, Theorem 2.1], to each equation in (5.1), setting iteratively for i =
1, . . . , n

f (t, x,u) = ϕi (t, x,u, (ϑ ∗ w)(t, x)) and F(t, x,u) = �i (t, x,u, (ϑ ∗ w)(t, x)) .

To this aim, we check that the assumption (H1*) in [21, Theorem 2.1], see also [20, Theorem 1], 
is satisfied.

(H1*) f ∈ C0(�T ; RN) holds by (ϕ) and (ϑ), since w ∈ C0
(
I ;L1(RN ;Rn)

)
.

F ∈ C0(�T ; R) holds by (�) and (ϑ ), since w ∈ C0
(
I ;L1(RN ;Rn)

)
.

f has continuous derivatives ∂uf , ∂u gradx f , grad2
x f , by (ϕ) and (ϑ).

F has continuous derivatives ∂uF and gradx F by (�) and (ϑ ).
∂uf ∈ L∞(�T

U ; R) by (ϕ).
(F − divx f ) ∈ L∞(�U

T ; R) by (ϕ) and (�).
∂u(F − divx f ) ∈ L∞(�U

T ; R) by (ϕ) and (�).

Therefore, problem (5.1) admits a solution u ∈ L∞ (I ;L1
loc(R

N ;Rn)
)
.

3: Total variation estimate. We want to apply [10, Theorem 2.5] as refined in [21, Theorem 2.2]. 
To this aim, we verify (H2*) in [21, § 2].

(H2*) gradx ∂uf ∈ L∞(�U
T ; RN×N) by (ϕ) and (ϑ).

∂uF ∈ L∞(�U
T ; R) since ∂uF = ∂ui

ϕi and since (�) holds.∫
I

∫
RN

∥∥gradx(F − divx f )(t, x, ·)∥∥L∞(UU ;RN )
dxdt < +∞: indeed, note that the inequal-

ity 
∥∥gradx F (t, x, ·)∥∥L∞(UU ;RN)

≤ λ(t, x, U) holds by (�). Moreover,

divx f (t, x,u) = divx ϕi (t, x,u, (ϑ ∗ w)(t, x))

+ gradA ϕi (t, x,u, (ϑ ∗ w)(t, x)) divx(ϑ ∗ w)(t, x) (5.4)
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and passing to the gradient

gradx divx f (t, x,u)

= gradx divx ϕi (t, x,u, (ϑ ∗ w)(t, x))

+ gradA divx ϕi (t, x,u, (ϑ ∗ w)(t, x)) gradx(ϑ ∗ w)(t, x)

+ gradx gradA ϕi (t, x,u, (ϑ ∗ w)(t, x)) divx(ϑ ∗ w)(t, x)

+ grad2
A ϕi (t, x,u, (ϑ ∗ w)(t, x)) gradx(ϑ ∗ w)(t, x) divx(ϑ ∗ w)(t, x)

+ gradA ϕi (t, x,u, (ϑ ∗ w)(t, x)) gradx divx(ϑ ∗ w)(t, x) ,

so that, using the standard properties of the convolution and (ϕ)∥∥gradx divx f (t, x,u)
∥∥≤ (1 + 3CU R T + CU R2 T 2) λ(t, x,U)

≤ CU (1 + R T + R2 T 2) λ(t, x,U)

and hence, using (ϕ), (�) and (5.3),∫
I

∫
RN

∥∥gradx(F − divx f )(t, x, ·)∥∥L∞(UU ;RN )
dxdt

≤
∫
I

∫
RN

(∥∥gradx F (t, x, ·)∥∥L∞(UU ;RN)
+ ∥∥gradx divx f (t, x, ·)∥∥L∞(UU ;RN)

)
dxdt

≤
∫
I

∫
RN

(
λ(t, x,U) + CU (1 + R T + R2 T 2) λ(t, x,U)

)
dxdt

= CU (1 + R T + R2 T 2) �(T ,U) . (5.5)

To apply [21, Theorem 2.5], with reference to [21, (2.6)] compute first

gradx ∂uf (t, x,u) = gradx ∂uϕi (t, x,u, (ϑ ∗ w)(t, x))

+ gradA ∂uϕi (t, x,u, (ϑ ∗ w)(t, x))gradx(ϑ ∗ w)(t, x)

so that ∥∥gradx ∂uf
∥∥

L∞(I×RN×UU ;RN×N )
≤ CU + CU C R T ≤ CU (1 + C R T )

and

κ∗
0 = (2N + 1)

∥∥gradx ∂uf
∥∥

L∞(I×RN×UU ;RN×N )
+ ‖∂uF‖L∞(I×RN×UU ;R)

≤ (2N + 1)CU (1 + C R T ) + CU

≤ C CU (1 + R T ) . (5.6)
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Denoting WN = ∫ π/2
0 (cosϑ)Ndϑ , use (5.5), (5.6) to obtain, for all t ∈ I ,

TV (ui(t)) ≤ TV(ũ)eκ∗
0 t + N WN

∫
I

eκ∗
0 (t−τ)

∫
RN

∥∥gradx(F − divx f )(τ, x, ·)∥∥L∞(UU ;RN)
dxdτ

≤
⎛⎜⎝TV(ũ) + N WN

∫
I

∫
RN

∥∥gradx(F − divx f )(τ, x, ·)∥∥L∞(UU ;RN)
dxdτ

⎞⎟⎠ eκ∗
0 t

≤
(
K + C CU (1 + R T + R2 T 2) �(T ,U)

)
eCCU (1+RT )T . (5.7)

4: L1 continuity in time. We use [21, Corollary 2.4]. To this aim, verify first that f , F sat-
isfy (H3*).

(H3*) ∂uf ∈ L∞(�U
T ; RN), already verified in (H1*).

∂uF ∈ L∞(�U
T ; R), already verified in (H2*).∫

I

∫
RN ‖(F − divx f )(t, x, ·)‖L∞(UU ;R)dxdt < +∞: use (5.4), (ϕ) and (�) to obtain the 

bound ∫
I

∫
RN

‖(F − divx f )(t, x, ·)‖L∞(UU ;R)dxdt

≤
∫
I

∫
RN

‖F(t, x, ·)‖L∞(UU ;R)dxdt +
∫
I

∫
RN

‖divx f (t, x, ·)‖L∞(UU ;R)dxdt

≤ �(T ,U) +
∫
I

∫
RN

‖divx ϕ (t, x, ·, (ϑ ∗ w)(t, x))‖L∞(UU ;R)dxdt

+
∫
I

∫
RN

∥∥gradA ϕ (t, x, ·, (ϑ ∗ w)(t, x))
∥∥

L∞(UU ;R)
dxdt

× ‖divx ϑ‖L∞(I×RN ;Rn)‖w‖C0(I ;L1(RN ;R))

≤ �(T ,U) + �(T ,U)
(
1 + ‖divx ϑ‖L∞(I×RN ;Rn)‖w‖C0(I ;L1(RN ;R))

)
= C (1 + R T )�(T ,U) . (5.8)

Repeating the same computations on the time interval between s and t , by (ϕ), [21, (2.8)], (5.7)
and (5.8), for all t, s ∈ I ,

‖ui(t) − ui(s)‖L1(RN ;R) (5.9)

≤

∣∣∣∣∣∣∣
t∫

s

∫
N

‖(F − divx f )(τ, x, ·)‖L∞(UU ;R)dx

∣∣∣∣∣∣∣+ |t − s| ‖∂uf ‖L∞(I×RN×UU ,R) sup
τ∈I

TV (ui(τ ))
R
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≤ C(1 + RT )|�(t,U) − �(s,U)|
+ C|t − s|

[
K + C(1 + RT + R2T 2)�(T ,U)

]
eCCU (1+RT )T (5.10)

proving the uniform L1-continuity in time of the map t → ui(t), where u = T (w, ũ).

5: L∞ bound. Passing to the limit ε → 0 in the classical estimate [20, Formula (4.6)], we have 
that, using [20, Formulæ (4.1), (4.2) and 4) in § 4], |u(t, x)| ≤ (Mo + coT )ec1T , where

Mo = ‖ū(x)‖L∞(RN ;R)

≤ R̄ .

co = ‖divx f (·, ·,0) − F(·, ·,0)‖L∞(I×RN ;R)

≤ ‖divx ϕi (·, ·,0, (ϑ ∗ w)(·, ·))‖L∞(I×RN ;R)

+ ∥∥gradA ϕi (·, ·,0, (ϑ ∗ w)(·, ·)) divx(ϑ ∗ w)(·, ·)∥∥L∞(I×RN ;R)

+ ‖�(·, ·,0, (ϑ ∗ w)(·, ·))‖L∞(I×RN ;R)

≤ CU + CU C R T + CU

≤ C CU (1 + R T ) .

c1 = sup
I×RN×UU

(−∂u divx f (t, x,u) + ∂uF (t, x,u))

≤ ‖∂u divx ϕi (·, ·, ·, (ϑ ∗ w)(·, ·))‖L∞(I×RN×UU ;R)

+ ∥∥∂u gradA ϕi (·, ·, ·, (ϑ ∗ w)(·, ·)) divx(ϑ ∗ w)(·, ·)∥∥L∞(I×RN×UU ;R)

+ ‖∂u�(·, ·, ·, (ϑ ∗ w)(·, ·))‖L∞(I×RN×UU ;R)

≤ CU + CU C R T + CU

≤ C CU (1 + R T ) .

Therefore,

‖u‖L∞(I×RN ;R) ≤ (R̄ + C CU (1 + R T )T
)

exp (C CU (1 + R T )T ) . (5.11)

6: T is well defined. Apply (5.9)–(5.10) with s = 0, obtaining that for all t ∈ I

‖ui(t) − ūi‖L1(RN ;R) ≤ ‖ui(t) − ũi‖L1(RN ;R) + ‖ũi − ūi‖L1(RN ;R)

≤ C(1 + RT )�(T )

+ CT
[
K + C(1 + RT + R2T 2)�(T )

]
eC(1+RT )T + R̄ .

This inequality, together with (5.11), ensures that if T is sufficiently small, u(t) = (T (w, ũ)) (t) ∈
BL1(ū, R) for all t ∈ I . This estimate, together with what was proved at 2 and 4, ensures that 
T (w, ũ) ∈ C0

(
I ;L1(RN ;Rn)

)
for any ũ ∈ BL1∩BV(ū, r, K).
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7: T is a contraction. Here we use the stability result [8, Theorem 2.6] as refined in [21, Theo-
rem 2.5]. To this aim, for w′, w′′ ∈ C0

(
I ;L1(RN ;Rn)

)
, call f ′, f ′′, F ′, F ′′ the corresponding 

fluxes and sources. We first verify that f ′ − f ′′ and F ′ − F ′′ satisfy (H3*).

(H3*) ∂u(f
′ − f ′′) ∈ L∞(�U

T ; RN) is proved as in (H1*).
∂u(F

′ − F ′′) ∈ L∞(�U
T ; R) is proved as in (H2*).

Using (�) and (5.4),∫
I

∫
RN

∥∥(F ′ − F ′′) − divx(f
′ − f ′′)(t, x, ·)∥∥L∞(UU ;R)

dxdt (5.12)

≤
∫
I

∫
RN

∥∥(F ′ − F ′′)(t, x, ·)∥∥L∞(UU ;R)
dxdt

+
∫
I

∫
RN

∥∥divx(f
′ − f ′′)(t, x, ·)∥∥L∞(UU ;R)

dxdt

≤
∫
I

∫
RN

∥∥�i

(
t, x, ·, (ϑ ∗ w′)(t, x)

)− �i

(
t, x, ·, (ϑ ∗ w′′)(t, x)

)∥∥
L∞(UU ;R)

dxdt

+
∫
I

∫
RN

∥∥divx

[
ϕi

(
t, x, ·, (ϑ ∗ w′)(t, x)

)− ϕi

(
t, x, ·, (ϑ ∗ w′′)(t, x)

)]∥∥
L∞(UU ;R)

dxdt

+
∫
I

∫
RN

∥∥∥gradA ϕi

(
t, x, ·, (ϑ ∗ w′)(t, x)

)
divx(ϑ ∗ w′)(t, x)

− gradA ϕi

(
t, x, ·, (ϑ ∗ w′′)(t, x)

)
divx(ϑ ∗ w′′)(t, x)

∥∥∥
L∞(UU ;R)

dxdt

≤ ‖�‖W1,∞(I×RN×UU ×Um
U ;Rn)

∫
I

∫
RN

∥∥(ϑ ∗ (w′ − w′′)
)
(t, x)

∥∥dxdt

+ ‖ϕ‖W2,∞(I×RN×UU ×Um
U ;Rn×N)

∫
I

∫
RN

∥∥(ϑ ∗ (w′ − w′′)
)
(t, x)

∥∥dxdt

+
∫
I

∫
RN

∥∥∥[gradA ϕi

(
t, x, ·, (ϑ ∗ w′)(t, x)

)
− gradA ϕi

(
t, x, ·, (ϑ ∗ w′′)(t, x)

) ]
divx(ϑ ∗ w′)(t, x)

∥∥∥
L∞(UU ;R)

dxdt

+
∫
I

∫
RN

∥∥∥gradA ϕi

(
t, x, ·, (ϑ ∗ w′′)(t, x)

)
[
divx(ϑ ∗ w′)(t, x) − divx(ϑ ∗ w′′)(t, x)

] ∥∥∥
L∞(UU ;R)

dxdt

≤ ‖�‖W1,∞(I×RN×U ×Um;Rn)‖ϑ‖L∞(RN ;Rm×n)

∥∥w′ − w′′∥∥
0 1 N n T
U U C (I ;L (R ;R ))
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+ ‖ϕ‖W2,∞(I×RN×UU ×Um
U ;Rn×N )‖ϑ‖L∞(RN ;Rm×n)

∥∥w′ − w′′∥∥
C0(I ;L1(RN ;Rn))

T

+ ‖ϕ‖W2,∞(I×RN×UU ×Um
U ;Rn×N )

×
∫
I

∫
RN

∥∥(ϑ ∗ (w′ − w′′)
)
(t, x)

∥∥dxdt
∥∥divx(ϑ ∗ w′)

∥∥
L∞(I×RN ;Rn)

+ ‖ϕ‖W1,∞(I×RN×UU ×Um
U ;Rn×N )

∫
I

∫
RN

∥∥(divx ϑ ∗ (w′ − w′′)
)
(t, x)

∥∥dxdt

≤ C CU T (1 + R)
∥∥w′ − w′′∥∥

C0(I ;L1(RN ;Rn))
. (5.13)

Recall the following quantities from [21, (2.10)] and use (5.4):

κ∗ = ∥∥∂uF
′∥∥

L∞(I×RN×R;R)
+ ∥∥∂u divx(f

′′ − f ′)
∥∥

L∞(I×RN×R;R)
(5.14)

≤ ‖�‖W1,∞(R+×RN×UU ×Um
U ;Rn×N )

+ ∥∥∂u divx

(
ϕi

(·, ·, ·, (ϑ ∗ w′)(·, ·))− ϕi

(·, ·, ·, (ϑ ∗ w′′)(·, ·)))∥∥L∞(I×RN×UU ;R)

+
∥∥∥∂u gradA ϕi

(·, ·, ·, (ϑ ∗ w′)(·, ·))divx(ϑ ∗ w′)(·, ·)

− ∂u gradA ϕi

(·, ·, ·, (ϑ ∗ w′′)(·, ·))divx(ϑ ∗ w′′)(·, ·)
∥∥∥

L∞(I×RN×UU ;R)

≤ ‖�‖W1,∞(R+×RN×UU ×Um
U ;Rn×N ) + 2‖ϕ‖W2,∞(R+×RN×UU ×Um

U ;Rn×N )

+ 2‖ϕ‖W2,∞(R+×RN×UU ×Um
U ;Rn×N )‖divx ϑ‖L∞(RN ;Rn)

∥∥w′∥∥
C0(I ;L1(RN ;Rn))

+ ‖ϕ‖W2,∞(R+×RN×UU ×Um
U ;Rn×N )‖divx ϑ‖L∞(RN ;Rn)

∥∥w′ − w′′∥∥
C0(I ;L1(RN ;Rn))

≤ 3CU + 4CU C R T

≤ C CU (1 + R T ) . (5.15)

M = ∥∥∂uf
′′∥∥

L∞(I×RN×R;R)

= ∥∥∂uϕi

(·, ·, ·, (ϑ ∗ w′′)(·, ·))∥∥L∞(I×RN×UU ;R)

≤ ‖ϕ‖W2,∞(R+×RN×UU ×Um
U ;Rn×N )

≤ CU .

By [21, Remark 2.8], (5.6) and (5.15)

eκ∗
0 t − eκ∗t

κ∗
0 − κ∗ ≤ t emax{κ∗

0 ,κ∗}t ≤ t eCCU (1+RT )t (5.16)

so that we can prepare the bound∥∥∂u(f
′ − f ′′)

∥∥
L∞(I×RN×UU )

= ∥∥∂uϕi

(·, ·, ·, (ϑ ∗ w′)(·, ·))− ∂uϕi

(·, ·, ·, (ϑ ∗ w′′)(·, ·))∥∥ ∞ N
L (I×R ×UU )
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≤ ‖ϕi‖W2,∞(I×RN×UU ×Um
U ;RN) ‖ϑ‖L∞(RN ;Rn×m)

∥∥w′ − w′′∥∥
C0(I ;L1(RN ;R))

≤ C CU

∥∥w′ − w′′∥∥
C0(I ;L1(RN ;R))

, (5.17)

and we can finally pass to the key estimate provided by [21, Theorem 2.5] using (5.16), (5.17), 
(5.5), (5.15) and (5.13)∥∥u′

i (t) − u′′
i (t)

∥∥
L1(RN ;R)

≤ eκ∗
0 t − eκ∗t

κ∗
0 − κ∗ TV(ũ)

∥∥∂u(f
′ − f ′′)

∥∥
L∞(I×RN×UU )

(5.18)

+ NWN

t∫
0

eκ∗
0 (t−τ) − eκ∗(t−τ)

κ∗
0 − κ∗

∫
RN

∥∥gradx(F
′ − divx f ′)(τ, x, ·)∥∥L∞(UU ;RN )

dxdτ

× ∥∥∂u(f
′ − f ′′)

∥∥
L∞(I×RN×UU )

+
t∫

0

eκ∗(t−τ)

∫
RN

∥∥((F ′ − F ′′) − divx(f
′ − f ′′)

)
(t, x, ·)∥∥L∞(UU ;RN)

dxdτ

≤ t eCCU (1+RT )t K C CU

∥∥w′ − w′′∥∥
C0(I ;L1(RN ;R))

+ C eCCU (1+RT )tCU(1 + R T + R2 T 2)�(T ,U)C CU

∥∥w′ − w′′∥∥
C0(I ;L1(RN ;R))

+ eCCU (1+RT )C CU T (1 + R)
∥∥w′ − w′′∥∥

C0(I ;L1(RN ;R))

≤ C CU T
(

1 + K + (1 + R T + R2 T 2)�(T ,U) + R
)

eCCU (1+RT )
∥∥w′ − w′′∥∥

C0(I ;L1(RN ;R))

(5.19)

which shows that there exists a positive T∗, such that the map

Tũ : C0
([0, T∗];BL1(ū,R,U)

) → C0
([0, T∗];BL1(ū,R,U)

)
w → T (w, ũ)

is a contraction, for any ũ ∈ BL1∩BV(ū, R̄, Ū , K).

8: The fixed point of T is the unique solution to (1.1). The fixed point of Tũ solves (1.1) by Defi-
nition 2.1 and from (5.2). On the other hand, any solution to (1.1) in the sense of Definition 2.1, 
is a fixed point of Tũ, proving also uniqueness.

9: Continuous dependence on the initial datum. Note first that T is L1-Lipschitz continuous in 
its second argument. Indeed, applying again [21, Theorem 2.5], we have:∥∥T (w, ũ′) − T (w, ũ′′)

∥∥
C0(I ;L1(RN ;Rn))

≤ eκ∗T ∥∥ũ′ − ũ′′∥∥
L1(RN ;Rn)

≤ eCCU (1+RT )
∥∥ũ′ − ũ′′∥∥

1 N n . (5.20)
L (R ;R )
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By [5, Theorem 2.7], the L1-Lipschitz continuous dependence on the fixed point of Tũ from ũ
follows. �
Proof of Proposition 3.1. To prove that (3.8) fits into the class (1.1), simply observe that

ϑ ∗ u =

⎡⎢⎢⎣
∂x(η ∗ u1)

∂y(η ∗ u1)

∂x(η ∗ u2)

∂y(η ∗ u2)

⎤⎥⎥⎦ . (5.21)

The regularity required in (ϕ) and (�) is immediate, the cutoff function Tg being useful in bound-
ing the terms gradA ϕ and grad2

A ϕ. The various estimates follow from (3.9) and from the fact that 
the map (x1, x2) → (x1, x2)/

√
1 + x1

2 + x2
2 is bounded, with all first and second derivatives 

also bounded. �
Proof of Proposition 4.1. Observe first that (4.7), the assumption ̂ε > ε and (4.2) ensure that 
the flow in the convective part of (4.6) points inward all along the boundary of B. Therefore, if 
there is a solution to (4.6), its support is contained in B for all times. To apply Theorem 2.2, we 
introduce a function s ∈ C2

c(R
2; R) such that s(x) = 1 for all x ∈ B. Then, note that (4.6) belongs 

to the class (1.1). Indeed, similarly to (5.21), set

N = 2
n = 1
m = 2
u = ρ

ϑ(x) =
[
∂x1η(x) ∂x1η(x)

∂x2η(x) ∂x2η(x)

]
ϕ(t, x,u,A) = u

(
v(x) − εHμ(ρ−ρmax) A√

1+‖A‖2

)
s(x)

�(t, x,u,A) = �in(t, x) − �out(t, x,u) .

(5.22)

The invariance of B proved above ensures that the function s has no effect whatsoever on the 
dynamics described by (4.6). Therefore, with the given initial datum (as well as with any other 
initial datum supported in B), any solution to (1.1)–(5.22) also solves (4.6), and viceversa. The 
estimates required in (ϕ) and (�) now immediately follow. �
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