
Journal of Pure and Applied Algebra 220 (2016) 1924–1934
Contents lists available at ScienceDirect

Journal of Pure and Applied Algebra

www.elsevier.com/locate/jpaa

Line polar Grassmann codes of orthogonal type

Ilaria Cardinali a, Luca Giuzzi b,∗, Krishna V. Kaipa c, Antonio Pasini a

a Department of Information Engineering and Mathematics, University of Siena, Via Roma 56, I-53100, 
Siena, Italy
b DICATAM – Section of Mathematics, University of Brescia, Via Branze 53, I-25123, Brescia, Italy
c Department of Mathematics, IISER Pune, Dr. Homi Bhabha Road, Pashan, 411008, Pune, India

a r t i c l e i n f o a b s t r a c t

Article history:
Received 8 September 2014
Received in revised form 23 
September 2015
Communicated by I.M. Duursma

MSC:
51A50; 51E22; 51A45

Polar Grassmann codes of orthogonal type have been introduced in [1]. They are 
punctured versions of the Grassmann code arising from the projective system defined 
by the Plücker embedding of a polar Grassmannian of orthogonal type. In the 
present paper we fully determine the minimum distance of line polar Grassmann 
codes of orthogonal type for q odd.
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1. Introduction

Codes Cm,k arising from the Plücker embedding of the k-Grassmannians of m-dimensional vector spaces 
have been widely investigated since their first introduction in [10,11]. They are a remarkable generalization 
of Reed–Muller codes of the first order and their monomial automorphism groups and minimum weights 
are well understood, see [4–6,8].

In [1], the first two authors of the present paper introduced some new codes Pn,k arising from embeddings 
of orthogonal Grassmannians Δn,k. These codes correspond to the projective system determined by the 
Plücker embedding of the Grassmannian Δn,k representing all totally singular k-spaces with respect to 
some non-degenerate quadratic form η defined on a vector space V (2n + 1, q) of dimension 2n + 1 over a 
finite field Fq. An orthogonal Grassmann code Pn,k can be obtained from the ordinary Grassmann code 
C2n+1,k by just deleting all the columns corresponding to k-spaces which are non-singular with respect to 
η; it is thus a punctured version of C2n+1,k. For q odd, the dimension of Pn,k is the same as that of G2n+1,k, 
see [1]. The minimum distance dmin of Pn,k is always bounded away from 1. Actually, it has been shown 
in [1] that for q odd, dmin ≥ qk(n−k)+1 + qk(n−k) − q. By itself, this proves that the redundancy of these 
codes is somehow better than that of C2n+1,k.
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In the present paper we prove the following theorem, fully determining all the parameters for the case of 
line orthogonal Grassmann codes (that is orthogonal polar Grassmann codes with k = 2) for q odd.

Main Theorem. For q odd, the minimum distance dmin of the orthogonal Grassmann code Pn,2 is

dmin = q4n−5 − q3n−4.

Furthermore, for n > 2 all words of minimum weight are projectively equivalent; for n = 2 there are two 
different classes of projectively equivalent minimum weight codewords.

Hence, we have the following.

Corollary 1.1. For q odd, line polar Grassmann codes of orthogonal type are [N, K, dmin]-projective codes 
with

N = (q2n−2 − 1)(q2n − 1)
(q2 − 1)(q − 1) , K =

(
2n + 1

2

)
, dmin = q4n−5 − q3n−4.

1.1. Organization of the paper

In Section 2 we recall some well-known facts on projective systems and related codes, as well as the 
notion of polar Grassmannian of orthogonal type. In Section 3 we prove our main theorem.

2. Preliminaries

2.1. Projective systems and Grassmann codes

Let W be a vector space. An [N, K, dmin]q projective system Ω ⊆ PG(W ) is a set of N points spanning
PG(K − 1, q) ≤ PG(W ) such that there is a hyperplane Σ of PG(K − 1, q) with #(Ω \ Σ) = dmin and for 
any hyperplane Σ′ of PG(K − 1, q),

#(Ω \ Σ′) ≥ dmin.

Existence of [N, K, dmin]q projective systems is equivalent to that of projective linear codes with the same 
parameters; see, for instance, [12]. Indeed, let Ω be a projective system and denote by G a matrix whose 
columns G1, . . . , GN are the coordinates of representatives of the points of Ω with respect to some fixed 
reference system. Then, G is the generator matrix of an [N, K, dmin] code over Fq, say C = C(Ω). The code 
C(Ω) is not, in general, uniquely determined, but it is unique up to code equivalence. We shall thus speak, 
with a slight abuse of language, of the code defined by Ω.

As any word c of C(Ω) is of the form c = mG for some row vector m ∈ FK
q , it is straightforward to see 

that the number of zeroes in c is the same as the number of points of Ω lying on the hyperplane Πc of 
equation m · x = 0, where m · x =

∑K
i=1 mixi and m = (mi)K1 , x = (xi)K1 . The weight (i.e. the number of 

non-zero components) of c is then

wt(c) := |Ω| − |Ω ∩ Πc|. (1)

Thus, the minimum distance dmin of C is

dmin = |Ω| − fmax, where fmax = max
Σ≤PG(K−1,q)

|Ω ∩ Σ|. (2)

dim Σ=K−2



1926 I. Cardinali et al. / Journal of Pure and Applied Algebra 220 (2016) 1924–1934
We point out that any projective code C(Ω) can also be regarded, equivalently, as an evaluation code over 
Ω of degree 1. In particular, when Ω spans the whole of PG(K − 1, q) = PG(W ), then there is a bijection, 
induced by the standard inner product of W , between the points of the dual vector space W ∗ and the 
codewords c of C(Ω).

Let G2n+1,k be the Grassmannian of the k-subspaces of a vector space V := V (2n +1, q), with k ≤ n and 
let η : V → Fq be a non-degenerate quadratic form over V .

Denote by εk : G2n+1,k → PG(
∧k

V ) the usual Plücker embedding

εk : Span(v1, . . . , vk) → Span(v1 ∧ · · · ∧ vk).

The orthogonal Grassmannian Δn,k is a geometry having as points the k-subspaces of V totally singu-
lar for η. Let εk(G2n+1,k) := {εk(Xk): Xk is a point of G2n+1,k} and εk(Δn,k) = {εk(X̄k): X̄k is a point of
Δn,k}. Clearly, we have εk(Δn,k) ⊆ εk(G2n+1,k) ⊆ PG(

∧k
V ). Throughout this paper we shall denote by 

Pn,k the code arising from the projective system εk(Δn,k). By [3, Theorem 1.1], if n ≥ 2 and k ∈ {1, . . . , n}, 
then dim Span(εk(Δn,k)) =

(2n+1
k

)
for q odd, while dim Span(εk(Δn,k)) =

(2n+1
k

)
−

(2n+1
k−2

)
when q is even.

We recall that for k < n, any line of Δn,k is also a line of G2n+1,k. For k = n, the lines of Δn,n are not 
lines of G2n+1,n; indeed, in this case εn|Δn,n

: Δn,n → PG(
∧n

V ) maps the lines of Δn,n onto non-singular 
conics of PG(

∧n
V ).

The projective system identified by εk(Δn,k) determines a code of length N =
∏k−1

i=0
q2(n−i)−1
qi+1−1 and 

dimension K =
(2n+1

k

)
or K =

(2n+1
k

)
−

(2n+1
k−2

)
according to whether q is odd or even. The following 

universal property provides a well-known characterization of alternating multilinear forms; see for instance 
[9, Theorem 14.23].

Theorem 2.1. Let V and U be vector spaces over the same field. A map f : V k −→ U is alternating k-linear 
if and only if there is a linear map f :

∧k
V −→ U with f(v1 ∧ v2 ∧ · · · ∧ vk) = f(v1, v2, . . . , vk). The map 

f is uniquely determined.

In general, the dual space (
∧k

V )∗ ∼=
∧k

V ∗ of 
∧k

V is isomorphic to the space of all k-linear alternating 
forms of V . For any given non-null vector v ∈

∧2n+1
V ∼= V (1, q) ∼= Fq, we have an isomorphism jv :∧2n+1−k

V → (
∧k

V )∗ defined by jv(ω)(x) = c for any ω ∈
∧2n+1−k

V and x ∈
∧k

V , where c ∈ Fq is 
such that ω ∧ x = cv. Clearly, as v 
= 0 varies in 

∧2n+1
V we obtain different isomorphisms. For the sake of 

simplicity, we will say that ω ∈
∧2n+1−k

V acts on x ∈
∧k

V as ω ∧ x.
For any k = 1, . . . , 2n and ϕ ∈ (

∧k
V )∗, v ∈

∧k
V , we shall use the symbol 〈ϕ, v〉 to denote the bilinear 

pairing

(
k∧
V )∗ × (

k∧
V ) → Fq, 〈ϕ, v〉 = ϕ(v).

Since the codewords of Pn,k bijectively correspond to functionals on 
∧k

V , we can regard a codeword as an 
element of (

∧k
V )∗ ∼=

∧k
V ∗.

In this paper we are concerned with line Grassmannians, that is we assume k = 2.
By Theorem 2.1, we shall implicitly identify any functional ϕ ∈ (

∧2
V )∗ with the (necessarily degenerate) 

alternating bilinear form {
V × V → Fq

(x, y) → ϕ(x ∧ y).

The radical of ϕ is the set

Rad(ϕ) := {v ∈ V : ∀w ∈ V, ϕ(v, w) = 0}.
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This is always a vector space and its codimension in V is even. As dimV is odd, 2n − 1 ≥ dim Rad(ϕ) ≥ 1
for ϕ 
= 0.

We point out that it has been proved in [8] that the minimum weight codewords of the line projective 
Grassmann code C2n+1,2 correspond to points of ε2n−1(G2n+1,2n−1); these can be regarded as non-null 
bilinear alternating forms of V of maximum radical. Actually, non-null bilinear forms of maximum radical 
may yield minimum weight codewords also for Symplectic Polar Grassmann Codes, see [2].

In the case of orthogonal line Grassmannians, not all points of G2n+1,2n−1 yield codewords of Pn,2 of 
minimum weight. However, as a consequence of the proof of our main result, we shall see that for n > 2 all 
the codewords of minimum weight of Pn,2 do indeed correspond to some (2n − 1)-dimensional subspaces of 
V , that is to say, to bilinear alternating forms of maximum radical. In the case n = 2, there are two classes 
of minimum weight codewords: one corresponding to bilinear alternating forms of maximum radical and 
another corresponding to certain bilinear alternating forms with radical of dimension 1.

2.2. A recursive condition

Since 
∧k

V ∗ ∼= (
∧k

V )∗ ∼=
∧2n+1−k

V , for any ϕ ∈ (
∧k

V )∗ there is an element ϕ̂ ∈
∧2n+1−k

V such that

〈ϕ, x〉 = ϕ̂ ∧ x, ∀x ∈
k∧
V.

Fix now u ∈ V and ϕ ∈ (
∧k

V )∗. Then, there is a unique element ϕu ∈
∧k−1

V ∗ such that ϕ̂u = ϕ̂ ∧ u ∈∧2n+2−k
V .

Let Q be the parabolic quadric defined by the (non-degenerate) quadratic form η. For any u ∈ Q, put 
Vu := u⊥Q/Span(u). Observe that as 〈ϕu, u ∧w〉 = ϕ̂∧u ∧u ∧w = 0 for any u ∧w ∈

∧k−1
V , the functional

ϕu :
{∧k−1

Vu → Fq

x + (u
∧k−2

V ) → ϕu(x)

with x ∈
∧k−1

V and u 
∧k−2

V := {u ∧ y : y ∈
∧k−2

V } is well defined. Furthermore, Vu is endowed with 
the quadratic form ηu : x + Span(u) → η(x). Clearly, dimVu = 2n − 1. It is well known that the set of all 
totally singular points for ηu is a parabolic quadric of rank n − 1 in Vu which we shall denote by ResQu. In 
other words the points of ResQu are the lines of Q through u.

We are now ready to deduce a recursive relation on the weight of codewords, in the spirit of [8].

Lemma 2.2. Let ϕ ∈
∧k

V ∗. Then,

wt(ϕ) = 1
qk − 1

∑
u∈Q
ϕu �=0

wt(ϕu).

Proof. Recall that

wt(ϕ) = #{Span(v1, . . . , vk): 〈ϕ, v1 ∧ · · · ∧ vk〉 
= 0, Span(v1, . . . , vk) ∈ Δn,k}

= 1
|GLk(q)|

#{(v1, . . . , vk): 〈ϕ, v1 ∧ · · · ∧ vk〉 
= 0, Span(v1, . . . , vk) ∈ Δn,k}, (3)

where the list (v1, . . . , vk) is an ordered basis of Span(v1, . . . , vk) ⊂ Q.
For any point u ∈ Q, we have Span(u, v2, . . . , vk) ∈ Δn,k if and only if Spanu(v2, . . . , vk) ∈

Δn−1,k−1(ResQu), where Δn−1,k−1(ResQu) is the (k − 1)-Grassmannian of ResQu and by the symbol 
Spanu(v2, . . . , vk) we mean Span(u, v2, . . . , vk)/Span(u). Furthermore, given a space Spanu(v2, . . . , vk) ∈
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Δn−1,k−1(ResQu), any of the qk−1 lists (u, v2 + α2u, . . . , vk + αku) is a basis for the same totally singular 
k-space through u, namely Span(u, v2, . . . , vk). Conversely, given any totally singular k-space W ∈ Δn,k

with u ∈ W , there are v2, . . . vk ∈ ResQu such that W = Span(u, v2, . . . , vk) and Spanu(v2, . . . , vk) ∈
Δn−1,k−1(ResQu). Let

Ωu := {(u, v2 + α2u, . . . , vk + αku): 〈ϕ, u ∧ v2 ∧ · · · ∧ vk〉 
= 0,

Spanu(v2, . . . , vk) ∈ Δn−1,k−1(ResQu), α2, . . . , αk ∈ F}.

Then, we have the following disjoint union

{(v1, . . . , vk): 〈ϕ, v1 ∧ · · · ∧ vk〉 
= 0, Span(v1, . . . , vk) ∈ Δn,k} =
⋃
u∈Q

Ωu. (4)

Observe that if u is not singular, then, Ωu = ∅, as Span(u, v2, . . . , vk) � Q; likewise, if ϕu = 0, then, 
〈ϕu, v2 ∧ · · · ∧ vk〉 = 0 for any v2, . . . , vk and, consequently, Ωu = ∅.

The coefficients αi, 2 ≤ i ≤ k, are arbitrary in F; thus,

#Ωu = qk−1#{(u, v2, . . . , vk) : 〈ϕu, v2 ∧ · · · ∧ vk〉 
= 0, Spanu(v2, . . . , vk) ∈ Δn−1,k−1(ResQu)}.

Hence,

|GLk(q)|wt(ϕ) =
∑
u∈Q
ϕu �=0

#Ωu =

= qk−1
∑
u∈Q
ϕu �=0

#{(u, v2, . . . , vk): 〈ϕu, v2 ∧ · · · ∧ vk〉 
= 0, Spanu(v2, . . . , vk) ∈ Δn−1,k−1(ResQu)}. (5)

Since u is fixed,

#{(u, v2, . . . , vk): 〈ϕu, v2 ∧ · · · ∧ vk〉 
= 0, Spanu(v2, . . . , vk) ∈ Δn−1,k−1(ResQu)}
= #{(v2, . . . , vk): 〈ϕu, v2 ∧ · · · ∧ vk〉 
= 0, Spanu(v2, . . . , vk) ∈ Δn−1,k−1(ResQu)}.

On the other hand, by (3) and by the definition of ϕu,

|GLk−1(q)|wt(ϕu) = #{(v2, . . . , vk): 〈ϕu, v2 ∧ · · · ∧ vk〉 
= 0, Spanu(v2, . . . , vk) ∈ Δn−1,k−1(ResQu)};

thus,

wt(ϕ) = qk−1 |GLk−1(q)|
|GLk(q)|

∑
u∈Q
ϕu �=0

wt(ϕu) = 1
qk − 1

∑
u∈Q
ϕu �=0

wt(ϕu). � (6)

3. Proof of the Main Theorem

As dimV is odd, all non-degenerate quadratic forms on V are projectively equivalent. For the purposes 
of the present paper we can assume without loss of generality that a basis (e1, . . . , e2n+1) has been fixed 
such that

η(x) :=
n∑

x2i−1x2i + x2
2n+1. (7)
i=1
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Let β(x, y) := η(x + y) − η(x) − η(y) be the bilinear form associated with η. As in Section 2.2, denote by 
Q the set of the non-zero totally singular vectors for η. Clearly, for any k-dimensional vector subspace W
of V , then W ∈ Δn,k if and only if W ⊆ Q.

Henceforth we shall work under the assumption k = 2. Denote by ϕ an arbitrary alternating bilinear 
form defined on V and let M and S be the matrices representing respectively β and ϕ with respect to the 
basis (e1, . . . , e2n+1) of V . Write ⊥Q for the orthogonal relation induced by η and ⊥W for the (degenerate) 
symplectic relation induced by ϕ. In particular, for v ∈ V , the symbols v⊥Q and v⊥W will respectively denote 
the space orthogonal to v with respect to β and ϕ. Likewise, when X is a subspace of V , the notations X⊥Q

and X⊥W will be used to denote the spaces orthogonal to X with respect to β and ϕ. We shall say that a 
subspace X is totally singular if X ≤ X⊥Q and totally isotropic if X ≤ X⊥W .

Lemma 3.1. Let Q be a parabolic quadric with equation of the form (7), and let p ∈ V , p 
= 0. Denote by ρ
a codeword corresponding to the hyperplane p⊥Q. Then,

wt(ρ) =

⎧⎨
⎩

q2n−1 if η(p) = 0
q2n−1 − qn−1 if η(p) is a non-zero square
q2n−1 + qn−1 if η(p) is a non-square.

Proof. If η(p) = 0, then p ∈ Q and p⊥Q ∩ Q is a cone with basis a parabolic quadric of rank n − 1; it has 
1 + (q2n−1 − q)/(q − 1) projective points, see [7]. The value of wt(ρ) now directly follows from (1).

Suppose now p to be external to Q, that is p⊥Q ∩ Q is a hyperbolic quadric; it is immediate to see that 
in this case wt(ρ) = q2n−1 − qn−1. Likewise, when p is internal to Q, wt(ρ) = q2n−1 + qn−1.

The orthogonal group O(V ) stabilizing the quadric Q has 3 orbits on the points of V ; these correspond 
respectively to totally singular, external and internal points to Q. By construction, all elements in the same 
orbit are isomorphic 1-dimensional quadratic spaces. In other words, the quadratic class of η(p) is constant 
on each of these orbits. In particular, the point e2n+1 is external to Q and η(e2n+1) = 1 is a square. Thus 
we have that external points to Q correspond to those p for which η(p) is a square, η(p) 
= 0 and internal 
points correspond to those for which η(p) is a non-square. �
3.1. Some linear algebra

Lemma 3.2.

1. For any v ∈ V , v⊥Q = v⊥W if and only if v is an eigenvector of non-zero eigenvalue of T := M−1S.
2. The radical Rad(ϕ) of ϕ corresponds to the eigenspace of T of eigenvalue 0.

Proof. 1. Observe that v⊥Q = v⊥W if and only if the equations xTMv = 0 and xTSv = 0 are equivalent for 
any x ∈ V . This means that there exists an element λ ∈ Fq \{0} such that Sv = λMv. As M is non-singular, 
the latter says that v is an eigenvector of non-zero eigenvalue λ for T .

2. Let v be an eigenvector of T of eigenvalue 0. Then M−1Sv = 0, hence Sv = 0 and xTSv = 0 for every 
x ∈ V , that is v⊥W = V . This means v ∈ Rad(ϕ). �

We can now characterize the eigenspaces of T .

Lemma 3.3. Let μ be a non-zero eigenvalue of T and Vμ be the corresponding eigenspace. Then,

(1) ∀v ∈ Vμ and r ∈ Rad(ϕ), r ⊥Q v. Hence, Vμ ≤ r⊥Q.
(2) The eigenspace Vμ is both totally isotropic for ϕ and totally singular for η.
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(3) Let λ, μ 
= 0 be two not necessarily distinct eigenvalues of T and u, v be two corresponding eigenvectors. 
Then, one of the following holds:
(a) u ⊥Q v and u ⊥W v.
(b) μ = −λ.

(4) If λ is an eigenvalue of T then −λ is an eigenvalue of T .

Proof. 1. Take v ∈ Vμ. As Tv = M−1Sv = μv we also have μvT = vTSTM−T . So, vTMT = μ−1vTST . Let 
r ∈ Rad(ϕ). Then, as ST = −S, vTMr = μ−1vTST r and vTSr = 0 for any v, we have vTMr = 0, that is 
r ⊥Q v.

2. Let v ∈ Vμ. Then M−1Sv = μv, which implies Sv = μMv. Hence, vTSv = μvTMv. Since vTSv = 0
and μ 
= 0, we also have vTMv = 0, for every v ∈ Vμ. Thus, Vμ is totally singular for η. Since Vμ is totally 
singular, for any u ∈ Vμ we have uTMv = 0; so, uTSv = μuTMv = 0, that is Vμ is also totally isotropic.

3. Suppose that either u 
⊥Q v or u 
⊥W v. Since, by Lemma 3.2, u⊥Q = u⊥W and v⊥Q = v⊥W , we have 
Mu = λ−1Su and Mv = μ−1Sv. So, u 
⊥Q v or u 
⊥W v implies vTMu 
= 0 
= vTSu. Since M−1Su = λu

and M−1Sv = μv, we have

vTSu = vTS(λ−1M−1Su) = λ−1(−M−1Sv)TSu = −(λ−1μ)vTSu;

hence, −λ−1μ = 1.
4. Let λ 
= 0 be an eigenvalue of T and x a corresponding eigenvector. Then M−1Sx = λx if and only 

if SM−1Sx = λSx, which, in turn, is equivalent to −(M−1S)TSx = λSx, that is (M−1S)T (Sx) = −λSx. 
Since λ 
= 0, Sx is an eigenvector of (M−1S)T of eigenvalue −λ. Clearly, (M−1S)T and M−1S have the 
same eigenvalues, so −λ is an eigenvalue of T . �
Corollary 3.4. Let Vλ and Vμ be two eigenspaces of non-zero eigenvalues λ 
= −μ. Then, Vλ ⊕ Vμ is both 
totally singular and totally isotropic.

3.2. Minimum weight codewords

Recall that ϕ ∈
∧2

V ∗ and, for any u ∈ Q, ϕu ∈ V ∗. In particular, ϕu either determines a hyperplane of 
Vu = u⊥Q/Span(u) or it is null on Vu.

Lemma 3.5. ϕu = 0 if and only if u is an eigenvector of T .

Proof. By Lemma 3.2, u is an eigenvector of T if and only if u⊥Q ⊆ u⊥W . By definition of ⊥Q, for every 
v ∈ u⊥Q∩Q, we have Span(u, v) ∈ Δn,2. However, as v ∈ u⊥W , also 〈ϕ, u ∧v〉 = 0. So, ϕu(v) = 0, ∀v ∈ u⊥Q. 
Thus, ϕu = 0 on ResQu. Conversely, reading the argument backwards, we see that if ϕu = 0 then u is 
eigenvector of T . �

We remark that ϕu = 0 if and only if u ∈ kerT (by Lemma 3.2(2)).

Lemma 3.6. Suppose u ∈ Q not to be an eigenvector of T . Then,

wt(ϕu) =

⎧⎨
⎩

q2n−3 if η(Tu) = 0
q2n−3 − qn−2 if η(Tu) 
= 0 is a square
q2n−3 + qn−2 if η(Tu) is a non-square.

Proof. Let au := Tu and let Qu := a⊥Q
u ∩ Q. Note that u ∈ Qu ∩ u⊥Q. Indeed, uTMTu = uTSu = 0. So, 

wt(ϕu) = wt(ϕau
). The quadric ResQu

u := (Qu ∩ u⊥Q)/Span(u) is either hyperbolic, elliptic or degenerate 
according as au is external, internal or contained in Q. The result now follows from Lemma 3.1. �
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Define

A′ := {u:u ∈ Q and u non-eigenvector of T}, A′ := #A′;

B := {u:u ∈ A′ and Tu ∈ Q}, B := #B;

C := {u:u ∈ A′ and η(Tu) is a non-square}, C := #C.

By definition, both B and C are subset of A′. Using (6) we can write

wt(ϕ) = q2n−3 − qn−2

q2 − 1 A′ + qn−2

q2 − 1B + 2qn−2

q2 − 1C. (8)

Put A = q2n−2 − 1 − #{u: u ∈ Q and u eigenvector of T}; then, (8) becomes

wt(ϕ) = q4n−5 − q3n−4 + qn−2

q2 − 1((qn−1 − 1)A + B + 2C). (9)

Clearly, B, C ≥ 0. We investigate A more closely. Let Spec′(T ) be the set of non-zero eigenvalues of T and 
let Vλ = ker(T − λI) be the corresponding eigenspaces for λ ∈ Spec′(T ). By Lemma 3.3, each space Vλ is 
totally singular; thus

A = q2n−2 − 1 −
∑

λ∈Spec′(T )

(#Vλ − 1) − #(kerT ∩Q). (10)

Let r ∈ N be such that dim Rad(ϕ) = dim kerT = 2(n − r) + 1, where by Theorem 2.1, we may regard ϕ as 
a bilinear alternating form.

The non-degenerate symmetric bilinear form β induces a symmetric bilinear form β∗ on V ∗, defined as 
β∗(v∗1 , v∗2) = β(v1, v2) where v∗1 , v

∗
2 are functionals determining respectively the hyperplanes v⊥Q

1 and v⊥Q
2 . In 

particular, given the basis (e1, . . . , e2n+1) of V , the above correspondence determines a basis (e1, . . . , e2n+1)
of V ∗, where ei, as a functional, describes the hyperplane e⊥Q

i for 1 ≤ i ≤ 2n + 1. As before, let also O(V )
be the orthogonal group stabilizing Q. We have the following theorem.

Theorem 3.7. For any ϕ ∈
∧2

V ∗ exactly one of the following conditions holds:

(1) r = 1; then wt(ϕ) ≥ q4n−5 − q3n−4 with equality occurring if and only if ϕ is in the O(V )-orbit of 
e1 ∧ e2n+1;

(2) r > 1 and A > 0: in this case wt(ϕ) > q4n−5 − q3n−4;
(3) r > 1 and A < 0: in this case r = n = 2 and ϕ is in the O(V )-orbit of e1 ∧ e2 + e3 ∧ e4 with 

wt(ϕ) = q3 − q2.

Proof. If r = 1, then dim Rad(ϕ) = 2n − 1. As ϕ ∈
∧2

V ∗ has tensor rank 1 (i.e. is fully decomposable), 
ϕ determines a unique 2-dimensional subspace Wϕ of V ∗. In particular, the subspace Wϕ is endowed with 
the quadratic form obtained from the restriction of β∗ to Wϕ. There are just 5 types of 2-dimensional 
quadratic spaces; they correspond respectively to the forms f1(x, y) = 0, f2(x, y) = y2, f3(x, y) = εy2, 
f4(x, y) = x2 − εy2 and f5(x, y) = xy, where ε is a non-square in Fq and the coordinates are with respect 
to a given reference system of Wϕ.

For each fi, 1 ≤ i ≤ 5, there are some ϕi ∈
∧2

V ∗ such that β∗|Wϕi

∼= fi. Examples of such ϕi inducing, 
respectively, fi for i = 1, . . . , 5 are the following: ϕ1 = e1 ∧ e3, ϕ2 = e1 ∧ e2n+1, ϕ3 = e1 ∧ (e3 + εe4), 
ϕ4 = e2n+1 ∧ (e1 − εe2) and ϕ5 = e1 ∧ e2.
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Using Witt’s extension theorem we see that there always is an isometry between a given Wϕ and any of 
these spaces Wϕi

(1 ≤ i ≤ 5) which can be extended to an element of O(V ). In other words any form with 
r = 1 is equivalent to one of the aforementioned five elements of 

∧2
V ∗.

A direct computation shows that the list of possible weights is as follows:

wt(e1 ∧ e2) = wt(e2n+1 ∧ (e1 − εe2)) = q4n−5 − q2n−3,

wt(e1 ∧ e3) = q4n−5, wt(e1 ∧ e2n+1) = q4n−5 − q3n−4,

wt(e1 ∧ (e3 + εe4)) = q4n−5 + q3n−4.

As an example we will explicitly compute wt(e1∧e2). The remaining cases are analogous. Since ϕ5 = e1∧e2, 
we have, by (3),

wt(ϕ5) = #{(v1, v2): v1, v2 ∈ {e1, e2}⊥Q ∩Q, β(e1 + v1, e2 + v2) = 0}.

In particular, as

β(e1 + v1, e2 + v2) = β(e1, v2) + β(v1, e2) + β(e1, e2) + β(v1, v2) = 1 + β(v1, v2)

we have β(v1, v2) = −1. Observe that Q′ := {e1, e2}⊥Q ∩Q is a non-singular parabolic quadric Q(2n − 2, q)
of rank n −1; thus it contains (q2n−2−1) non-zero vectors and we can choose v1 in (q2n−2−1) ways. For each 
projective point p ∈ Q′ with p /∈ v⊥Q

1 , there is exactly one vector v2 such that v2 ∈ p and β(v1, v2) = −1. 
The number of such points is

#Q′ − #(v⊥Q
1 ∩Q′) = q2n−2 − 1

q − 1 − (q
2n−4 − 1
q − 1 q + 1) = q2n−3.

In particular, the overall weight of wt(ϕ5) is

wt(ϕ5) := q2n−3(q2n−2 − 1) = q4n−5 − q2n−3.

The case e1 ∧ e2n+1 will yield words of minimum weight.
Suppose now r > 1. Clearly,

# ker(T ) ∩Q ≤ # ker(T ) − 1 = q2n−2r+1 − 1.

Furthermore, if λ ∈ Spec′(T ) then also −λ ∈ Spec′(T ) by Lemma 3.3 (4). Thus, we can write Spec′(T ) =
{λ1, . . . , λ�} ∪ {−λ1, . . . , −λ�} with λi 
= ±λj if i 
= j. By Corollary 3.4, the space X+ := ⊕�

i=1Vλi
is totally 

singular; hence, dimX+ ≤ n and

�∑
i=1

#(Vλi
\ {0}) ≤ #X+ − 1 ≤ qn − 1;

likewise, considering X− := ⊕�
i=1V−λi

, we get 
∑�

i=1 #(V−λi
\ {0}) ≤ qn − 1. Thus,

A ≥ q2n−2 − q2n−2r+1 − 2(qn − 1). (11)

If A > 0, then wt(ϕ) > q4n−5 − q3n−4. We now distinguish two cases.
Suppose that Rad(ϕ) contains a singular vector u; then, by statement (1) of Lemma 3.2, X+ ⊕ Span(u)

would then be a totally singular subspace; thus, dimX± ≤ n − 1 and

A ≥ q2n−2 − q2n−2r+1 − 2(qn−1 − 1) > qn−1(qn−1 − qn−2 − 2) ≥ 0;
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therefore, A > 0. By Chevalley–Warning theorem, as 2(n − r) + 1 ≥ 3, the set Rad(ϕ) ∩Q always contains 
a non-zero singular vector.

Suppose now that Rad(ϕ) does not contain any non-zero singular vector; then n = r and, consequently, 
A ≥ q2n−2 − 1 − 2(qn − 1) (where we have replaced by 1 the term q2(n−r)+1 of (11), which was an upper 
bound for the number of singular vectors in Rad(ϕ)). This latter quantity is positive unless n = 2.

Therefore, A ≤ 0 and r > 1 can occur only for r = n = 2.
If A = 0, then

#{u:u ∈ Q and u eigenvector of T} ∪ {0} = q2.

This happens only if there exists an eigenvalue λ 
= 0 such that Vλ ⊆ Q and dim(Vλ) = 2. By Lemma 3.3(4), 
also −λ is an eigenvalue, so V−λ ⊆ Q. Then,

#{u:u ∈ Q and u eigenvector of T} ∪ {0} > q2, a contradiction.

Hence, A < 0 and r > 1. In this case Rad(ϕ) would be a one dimensional subspace of V not contained 
in Q. We claim that actually ϕ is in the O(V ∗)-orbit of e1 ∧ e2 + e3 ∧ e4. As before, let Spec′(T ) =
{λ1, . . . , λ�} ∪ {−λ1, . . . , −λ�}. Since X+ is totally singular, dimX ≤ 2, whence � ≤ 2. If � = 2, then 
dimX+ = dimX− = 2. Thus, all four eigenspaces V±λi

have dimension 1 and 
∑

λ∈Spec′(T ) #(Vλ \ {0}) =
4(q − 1). It follows A ≥ q2 − 1 − 4(q − 1) = (q − 2)2 − 1 ≥ 0 and we are done. Therefore, � ≤ 1. If � = 0, 
then A ≥ q2 − 1 > 0. Likewise, if � = 1 and dimVλ1 = dimV−λ1 = 1, then A ≥ q2 − 1 − 2(q − 1) > 0. 
There remain to consider only the case � = 1 and dimVλ = dimV−λ = 2. Observe first that if there were a 
vector b3 ∈ V−λ ∩ V ⊥Q

λ , then Vλ ⊕ Span(b3) would be totally singular — a contradiction, as the rank of Q
is 2. Therefore we can choose a basis (b1, b2, . . . , b5) for V such that Vλ = Span(b1, b3), V−λ = Span(b2, b4), 
β(b2, b1) = 1, β(b3, b2) = 0, Rad(ϕ) = Span(b5) and Span(b1, b2, b5)⊥Q = Span(b3, b4). Indeed, we may 
assume that b3, b4 are a hyperbolic pair. By construction β(Tb4, bi) = −β(b4, Tbi) = 0 for i = 1, 2, 4, 5. 
Hence T has matrix diag(λ, −λ, λ, −λ, 0) with respect to this basis, that is ϕ = b1 ∧ b2 + b3 ∧ b4. We now 
compute wt(ϕ) directly, under the assumption n = 2 and obtain

wt(ϕ) = q3 − q2.

This completes the proof of the Main Theorem. �
Corollary 3.8. If n > 2 the codewords of minimum weight all lie on the orbit of e1 ∧ e2n+1 under the action 
of the orthogonal group O(V ). For n = 2 the minimum weight codewords either lie in the orbit of e1 ∧ e5 or 
in the orbit of e1 ∧ e2 + e3 ∧ e4.
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