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Bridging the past and the future of virology: Surface plasmon resonance
as a powerful tool to investigate virus/host interactions

Marco Rusnati, Paola Chiodelli, Antonella Bugatti, and Chiara Urbinati

Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy

Abstract

Despite decades of antiviral drug research and development, viruses still remain a top global
healthcare problem. Compared to eukaryotic cells, viruses are composed by a limited numbers
of proteins that, nevertheless, set up multiple interactions with cellular components, allowing
the virus to take control of the infected cell. Each virus/host interaction can be considered as a
therapeutical target for new antiviral drugs but, unfortunately, the systematic study of a so
huge number of interactions is time-consuming and expensive, calling for models overcoming
these drawbacks. Surface plasmon resonance (SPR) is a label-free optical technique to study
biomolecular interactions in real time by detecting reflected light from a prism-gold film
interface. Launched 20 years ago, SPR has become a nearly irreplaceable technology for the
study of biomolecular interactions. Accordingly, SPR is increasingly used in the field of virology,
spanning from the study of biological interactions to the identification of putative antiviral
drugs. From the literature available, SPR emerges as an ideal link between conventional
biological experimentation and system biology studies functional to the identification of highly
connected viral or host proteins that act as nodal points in virus life cycle and thus considerable
as therapeutical targets for the development of innovative antiviral strategies.
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Introduction cells release virokines or viroceptors, a peculiar class of viral
proteins that, acting in a cytokine-like manner, interfere with
the host immune system, maintaining a suitable environment
for viral infection and replication (Smith & Kotwal, 2001).
Each virus/host interaction can be considered as a therapeu-
tical target for the development of antiviral drugs (Brown
et al., 2011), but their systematic study may be quite complex,
time-consuming and expensive, calling for models over-
coming these drawbacks. To this aim, several high-throughput
methodologies have been developed in the last years,
including proteomic, genomic and computational biology
approaches. These methodologies have provided and are still
providing an incessant torrent of **-omics’’ data, functional to
the definition of the closely related viral ‘‘interactome’,
““infectome’ and ‘‘diseasome’ (Kadaveru et al., 2008;
Viswanathan & Fruh, 2007).

Surface plasmon resonance (SPR) is a handy-user, reliable
and high-throughput optical technique to evaluate biomole-
cular interactions. It has been launched less than 20 years ago
and has been exploited in a variety of fields, including the
study of the virus/host interactions. Here the contribution
given by SPR to the advance of the knowledge in the field of
virology will be reviewed, discussing its limits, advantages
and future developments.

Viruses are the etiological cause of important human diseases
worldwide. Despite decades of drug research and develop-
ment, they are still a top global healthcare problem. As a
consequence, virus detection, the study of their mechanism of
action and the identification of new antiviral drugs remain
extremely important for medical healthcare. Although very
simple if compared to eukaryotic cells, viruses are very
heterogeneous in their structures and mechanisms of action
and are prone to a high mutation rate, making their study very
diversified and difficult. Although a virus encodes only tens
of proteins, it succeeds in taking control of a whole eukaryotic
cell since its few proteins set up multiple interactions with
cellular components, sometimes out-competing physiological
ligands. In effect, every step of the virus life cycle depends on
molecular interactions (Figure 1): during the early phases of
infection, proteins of the viral envelope acting as determinant
of infectivity bind to host cell surface receptors (Bowden
et al., 2011). Once internalized, viral components bind to
intracellular host cytoskeleton, second messengers, nucleic
acids (Ou et al., 2010) and components of cellular secretory
pathway (Hsieh et al., 2010), promoting virus replication and
new virion assembly and egress. In the meantime, infected

SPR spectroscopy: an introduction
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A comprehensive description of SPR technology can be easily
found elsewhere. However, to understand how SPR has
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Figure 1. Schematic representations of the
virus/host interactome. (A) In the early
phases of infection, the virus binds to
co-receptors of target cell, increasing its
concentration at the cell surface and resulting
protected from degradation (1). Then,
co-receptors present the virus to entry-
receptors (2) that mediate virus fusion and
internalization (3). (B) Inside the infected
cell, viral proteins can interact with cyto-
skeleton’s components (1), intracellular
second messengers (2), cellular chaperones
(3), components of the proteasome (4),
transactivating factors and nucleic acids (5),
often generating multimolecular complexes
such that occurring among Tat, RNA and
cofactors. (C) Infected cells release virokines
(1) that hijack specific receptors on unin-
fected cells inducing pathological effects that
lead to infection-associated diseases (2) or
increasing cell susceptibility to infection (3).
Other extracellular interactions occur
between viral proteins and effectors of
inflammation and immunity that lead to virus
neutralization or, alternatively, favor virus
spread by inducing immunosuppression (4).
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contributed (and may further contribute) to virology, a monochromatic visible light is passed through a prism fitted
cursory appreciation of its basic fundamentals is needed. with a glass slide coated with about 50nm of gold, from

A typical setup of a solid-phase bioassay based on SPR which it is reflected. An electric field intensity, known as
spectroscopy is sketched in Figure 2(A). A polarized beam of  evanescent wave, is generated when the light strikes the glass
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Figure 2. Schematic representation of SPR technology. (A) The molecule immobilized onto the sensorchip is named ligand whereas the putative
partner injected into the microfluidic system is named analyte. (B) The real-time progress of the ligand/analyte interaction is monitored as a
sensorgram. The analyte binds to surface-immobilized ligand during injection, resulting in an increase in the RU signal (association phase) and then in a
transient equilibrium binding phase. At the end of the injection the analyte is replaced by a continuous flow of buffer, with the consequent decrease in
the RU signal reflecting the dissociation of the analyte from the surface. In the presence of slow k. an additional regeneration step is required to
remove the analyte bound to the immobilized ligand (not shown). This allows to perform several cycles of binding at different analyte concentrations, a

procedure required to get accurate measurements.

in total internal reflection conditions. The evanescent wave is
absorbed by the free electron clouds of the gold layer
generating electron charge density waves called plasmons
and causing a reduction in the intensity of the reflected
light. The angle corresponding to the sharp intensity
minimum that occurs at the SPR condition is called
resonance angle. It depends on the refractive index of the
material above (about 300nm) the gold surface, and is
monitored following the specularly reflected light intensity
versus angle at fixed wavelengths or versus wavelength at
fixed angle. In a SPR assay, the receptor specific for a
particular analyte is chemically immobilized to the gold
film. When the sensor is exposed to a sample containing that
analyte, the analyte/receptor interaction causes an increase
of the mass that, changing the refractive index at the gold
surface, leads to the shift of the resonance angle that
eventually provides label-free transduction of the binding
reaction. The data are then presented as a real-time graph
(sensorgram) of the response units (RU, directly proportional
to the increase of the mass of the complex formed at the
surface of the gold film) against time (Figure 2B). SPR
allows the detection of analytes over a wide range of
molecular weights and binding affinities, from weakly
interacting small molecules (as antiviral prodrugs) to huge
structures (as intact virions). In respect to conventional
fluorescent-, enzyme- or radio-labeled assays, SPR adds to
real-time, label-free molecular recognition other advantages,
including the possibility to investigate and manipulate
minute concentrations of molecules semi-automatically in a
multiplexed way. Also, SPR gives access to:

(i) kinetics analyses that, by evaluating the association
(kon) and dissociation (k.g) rates, measure how fast a
molecule binds to and detaches from another;

(i1) equilibrium analyses. that allow the determination of
the stoichiometry of the interaction (further discussed
in the Section “‘What must be improved’”) and of the
equilibrium dissociation constant (Kp), inversely pro-
portional to the binding affinity;

(iii) determination of thermodynamic parameters such as
changes in enthalpy (AH) and entropy (AS) by
measuring rate constants at different temperatures;

(iv) sequential injection of distinct analytes over an
immobilized receptor, that can give insights on the
formation of multi-molecular complexes.

Exploiting SPR in virology

The use of SPR has seen tremendous growth over the last two
decades, and this trend is predicted to continue as the
technology becomes more accessible and its applications
more diverse. Accordingly, the number papers containing
SPR analyses in the field of virology has steadily increased,
with a total of about 1000 papers published to date
(Figure 3A). About 37% of these papers deal with HIV,
with the remaining papers scattered among the other viruses
in percentages equal or lower than 10% (Figure 3B). For the
majority of the viruses considered, the papers containing
SPR-analyses impact the total scientific production with
percentages equal to about 0.1%, with the only remarkable
exceptions of SARS and ebola virus (0.5%).

As shown in Figure 3(C), few SPR analyses are dedicated
to virus detection or genotyping, also if 2012 registered a
remarkable increment of this kind of study. Rather, SPR has
been mainly used to identify antiviral antibodies/drugs and to
characterize viruses/host interactions. Due to the huge amount
of literature available, in this review we will discuss only the
latter type of study.

The various virus/host interactions can be ideally divided
in five groups: viral proteins self interactions, viral envelope
proteins interacting with host receptors, viral enzymes/
transactivating factors interacting with host intracellular
proteins or with host nucleic acids and virokines interacting
with cellular or molecular host structures. Among these
groups, SPR has been mainly exploited to study the
interactions of viral determinants of infectivity with host
receptors (Figure 3D). This is not surprising since the early
stages of virus infection are widely recognized as promising
targets for the development of vaccines or antiviral drugs.

SPR analyses of viral proteins self-interaction

The structural organization of viruses is based on different
viral proteins that assemble, mature and bud into infective
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Figure 3. Statistic of virology-oriented papers containing SPR analyses.
(A) SPR analyses published in the last 20 years in the field of virology.
(B) Distribution of SPR analyses among the various viruses. (C)
Distribution of SPR analyses among the various areas of virology. (D)
Distribution of SPR analyses among the various categories of virus/host
interactions.

virions. This process has been so far investigated mainly by
high-resolution X-ray crystallography, cryo-electron micros-
copy and mathematical models (Twarock, 2006). These
studies pointed out a common theme in virion assembly that
is the conformational change of interacting viral proteins and
the consequent allosteric regulation of their aggregation. In
turn, this points to the prevention of viral proteins assembly
by non-competitive small molecules as an attractive antiviral
strategy (Zlotnick & Mukhopadhyay, 2011). Relevant to this
point, dedicated SPR models have been successfully set up to
characterize allosteric regulation of protein bindings and to
identify second site non-competitive binders (Navratilova
et al., 2012) that, if appropriately exploited, would positively
impact this area of virology.

Viral proteins’ self-assembly occurs with a mean affinity
(Kp in the micromolar range) that is significantly lower
than those of viral proteins’ interactions with host structures
(Table 1 and Figure 5A). Since viral proteins self-assembly
takes place in secluded environment such as specialized
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membrane microdomains (Bieniasz, 2009), it is possible that
no selective pressure weights on this process, at variance with
what occurs for envelope glycoproteins that, to successfully
bind host receptors, must outcompete physiological ligands,
thus requiring to develop high affinity interactions.

SPR analyses of viral envelope proteins interacting
with cell surface receptors

Very frequently, a productive infection is the result of a multi-
step process during which the virus initially interacts with
“‘co-receptors’’ [often represented by glycosphingolipids or
proteoglycans (Urbinati et al., 2008)] that protect virion from
degradation (Bobardt et al., 2003) and allow its concentration
at the cell surface, compensating for the low expression of the
“factual’” entry receptors (often represented by glycoproteins)
(Gallay, 2004) (Figure 1A). Then, co-receptors present virions
to entry-receptors that mediate virus fusion and internaliza-
tion (Nowak & Chou, 2009). Thus, the formation of
multimeric complexes among viral envelope proteins and
different host receptors represents a common theme in the
process of virus infection that can be appropriately studied by
SPR, as demonstrated by the successful characterization of
the complexes formed by HIV-1 gp120 and CD4 with CCR5
(Lam et al., 2008), with CXCR4 (Chien et al., 2008), with
heparan sulfate proteoglycans (HSPGs) (Crublet et al., 2008)
and with Langerin and DC-SIGN (Hijazi et al., 2011).

SPR-calculations of K, values for viral protein/host recep-
tor interactions can be very heterogeneous, passing from low
nanomolar to micromolar values [i.e. the interaction of HIV
gpl20 with CD4 and of adenovirus fiber knob protein with
coxsackie B virus-adenovirus receptor (CAR) (Table 2)]. To
this variability surely contributes the high rate of mutation of
viral envelope proteins, but a significant burden is also brought
by the heterogeneous procedures adopted for receptor immo-
bilization that can span from the most simple amine-coupling
(that yields a random orientation of the immobilized receptor)
to the most complex incorporation of receptors in lipid layers
(Figure 4A). The simpler immobilization procedures are
expected to be the most artifactual, providing binding param-
eters hardly comparable to those calculated in living cells. At
variance, the most complex and time-consuming procedures
are likely expected to guarantee the proper orientation and
stability of the immobilized receptor, thus providing binding
conditions closer to the physiological settings. A good
compromise is the use of N- or C-terminal tagged receptors
[i.e. with Fc (Jennings et al., 2008), glutathione-S-transferase,
maltose-BP (Zanier et al., 2005), Gal4 DNA-binding domain
(Nedialkov & Triezenberg, 2004) and the FLAG epitope
(Navaratnarajah et al., 2008)] to be coupled to specific ligands
immobilized to the sensorchip (Figure 4A),

Among the various host structures that act as virus
receptors, HSPGs are the most shared (Table 2). HSPGs are
present on the surface of almost all eukaryotic cells and
consist of a core protein with attached glycosaminoglycan
(GAG) chains represented by unbranched anionic polysac-
charides (Lindahl et al., 1994). The interactive capacity of
HSPGs depends mainly on their GAG portion. Accordingly,
heparin (structurally resembling the GAG chain of HSPGs)
interacts with a wide array of viral proteins (Tables 2 and 6)
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Table 1. SPR analysis of the interactions between viral proteins.

Crit Rev Microbiol, 2015; 41(2): 238-260

Core protein/envelope protein
NS5A polymerase/NS3 helicase

Virus Interacting viral proteins Kp (nM) Reference

HPV E6 oncoprotein/ubiquitin ligase E6AP nM range Zanier et al., 2005
M range Liu et al., 2009b

30000 Zanier et al., 2009

E7 protein/E2 protein 730 Saitoh et al., 2008

Hepatitis viruses NS3 protease/NS4A cofactor 1900-5000 Gallo et al., 2010
Core protein self-assembly pM range Kang et al., 2008

pM-mM range
nd

Choi et al., 2004
Jennings et al., 2008

HIV-1 Nucleocapsid protein/reverse transcriptase 1700 Ramboarina et al., 2004
Integrase/reverse transcriptase 61 Wilkinson et al., 2009
141 Herschhorn et al., 2008b
SARS-CoV Nucleocapsid protein self assembly nd Luo et al., 2004b
Nucleocapsid protein/membrane protein 550 Luo et al., 2006
Measles virus Nucleoprotein self-assembly 81 Bourhis et al., 2005
Rotavirus NSP4 enterotoxin/outer capsid VP4 protein 470 Hyser et al., 2008
Influenza virus Polymerase subunits (PB1/PA) 1600 Wunderlich et al., 2011
Polymerase subunits (PB2/PA) nd Ng et al.,, 2012
Chandipura virus Nucleocapsid N protein/P phospoprotein 10000 Majumdar et al., 2004
HSV Type | primosome/single strand DNA binding protein (ICP8) nd Falkenberg et al., 1997
Dengue virus Surface premembrane protein/envelope protein 290-730 Zhang et al., 2012

nd: not determined.

Table 2. SPR analysis of the interaction of intact viruses or of viral envelope proteins with host cell surface receptors functional to infection.

Nirul protein Host binder Kp (nM) Reference
HIV-1 )
epl20 CD4 2.6 Ferrer et al., 1999
30.1-1190 Ryzhova et al., 2002
38-494 Martin-Garcia et al., 2005
5.5-10.5 Dey et al., 2009
5.6-1.7 Stricher et al., 2008
86 Zhao et al., 2005
9.2 Zhao et al., 2005
22-220 Myszka et al., 2000
0.9-8.9 VanCott et al., 1994
5.3-97.2 Cocklin et al., 2007
8 Crublet et al., 2008
48.1 Chaudhari et al., 2006
429 Biorn et al., 2004
1.98 Frey et al., 2008
1-7 Feng et al., 2011
Heparin (HSPGs analog) 220 Moulard et al., 2000
0.6 Bugatti et al., 2007
CCRS 1900 Lam et al., 2008
CXCR4 nd Chien et al., 2008
apl40 CD4 243 Hijazi et al., 2011
DC-SIGN 62-3270
Langerin 11-800
gp4l Cellular receptor p45 nd Xiao et al., 2000
Poxviruses
Vaccinia virus Heparin (HSPGs analog) 12.5 Shih et al., 2009
envelope protein A27
7.7 Ho et al., 2005
Chondroitin sulfate 32.3 Shih et al., 2009

R
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Table 2. Continued
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Viral protein Host binder Kp (nM) Reference
Adenoviruses
Intact virion Desmoglein-2 nd Wang et al., 2010a
Virus-like particles Desmoglein-2 2.5
Fiber knob protein CAR 7.3-6400 Kirby et al., 2001
0.9-26.4 Lortat-Jacob et al., 2001
14.8 Kirby et al., 2000
20 Seiradake et al., 2006
CD46 13-284 Cupelli et al., 2010
13.7-15.5 Wang et al., 2007
0.02-0.4 Trinh et al., 2012
avp3 integrin nd Lord et al., 2006
Exon Heparin (HSPGs analog) nd Corjon et al., 2011
HSV
Glycoprotein B Heparin (HSPGs analog) 770 Williams & Straus, 1997
Heparan sulfate, nd
chondroitin sulfate,
dermatan sulfate
Glycoprotein D Herpes virus entry mediator 1500-3200 Willis et al., 1998
Heparin (HSPGs analog) 3200 Willis et al., 1998
Hepatitis viruses
Envelope glycoprotein E2 CD81 10-92 Nakajima et al., 2005
Heparin (HSPGs analog) 5.2 Barth et al., 2003; Barth et al., 2006
Envelope glycoprotein El Heparin (HSPGs analog) 53 Barth et al., 20006
Influenza viruses
Intact virion Fetuin 0.2-0.9 Meng et al., 2010
A hemagglutinin Fetuin 100 Meng et al., 2010; Takemoto et al., 1994
Sialic acid-bearing glycans 1.8 Suenaga et al., 2012
2.5-29 Lewallen et al., 2009
EBV
Surface glycoprotein CD21 4.6-45 Sarrias et al., 2001
2p350/220 Chondoritin sulfate nd Birkmann et al., 2001
Glycoproteins avf5 integrin 4.3 Chesnokova & Hutt-Fletcher, 2011
gHgl. complex avp6 integrin 2.4
avp8 integrin 6
Measles virus
Intact virion Heparin, chondoritin sulfate nd Terao-Muto et al., 2008
Hemagglutinin Signaling lymphocytic 80 Navaratnarajah et al., 2008
activation molecule 180-800 Santiago et al., 2002
CD46 79 Navaratnarajah et al., 2008
95-250 Santiago et al., 2002
HPV
Virus-like particles Tight junction MAGI-1 1100-3300 Fournane et al.. 2010
Heparin (HSPGs analog) nd Lembo et al., 2008
Reoviruses
Intact virion Glycophorin 4.8 Barton et al., 2001
Attachment protein ol Junctional adhesion molecule-A 24 Guglielmi et al., 2007
Kaposi’s sarcoma-associated herpesvirus (KSHV/HHV-8)
| Envelope glycoprotein K8-1 IHcparin (HSPGs analog) 48 Birkmann et al., 2001
Human rhinovirus
Intact virion ICAM-1 700 Casasnovas & Springer, 1995
180-380 Xing et al., 2000
Echovirus
Intact virion CD55 3000 Lea et al., 1998
7004000 Pettigrew et al., 2006

(continued )

RIGHTS

is



Critical Reviews in Microbiology Downloaded from informahealthcare.com by University Studi Di Torino on 06/09/15
For personal use only.

244 M. Rusnati et al. Crit Rev Microbiol, 2015; 41(2): 238-260

Table 2. Continued

Viral protein I Host binder Kp (nM) Reference
T
Dengue virus
Envelope protein Heparin (HSPGs analog) 56 Marks et al., 2001
31 Zhang et al., 2002
Heparan sulfate, chondroitin nd Marks et al., 2001

sulfate, dermatan sulfate,
hyaluronic acid

Poliovirus
Intact virion Poliovirus receptor 170-430 Xing et al., 2000
670 McDermott et al., 2000
Nipah virus
Attachment protein G Ephrin B2 0.1 Negrete et al., 2006
Ephrin B3 2.8
Respiratory syncizial virus
Attachment glycoprotein G DC-SIGN nd Johnson et al., 2011
L-SIGN nd

Fetuin and glycophorin were used as sialic acid-bearing receptor analogs. nd: not determined.
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Figure 4. Procedures of immobilization of virus receptors to SPR surfaces. (A) The simplest amine-coupling leads to the immobilization of randomly
oriented receptor-derived peptides (i.e. extracellular binding domains) (1) or intact receptors (2). Alternatively, virus receptors can be produced fused
with a tag that is then exploited for its immobilization in a proper orientation (3). To increase the physiology of the SPR experimental conditions, lipid
mixtures are deposited on the sensorchip, “‘reproducing’” a membrane lipid bilayer that favors receptor stability and orientation (4). Finally, membranes
isolated from living cells can be directly immobilized to the sensorchip, retaining the presence of possible co-receptors (5). (B) HSPGs are composed of
a core protein attached to heparan sulfate chains that mediate the binding to viral proteins (1). Heparin is a structural analog of heparan sulfate that can
be biotinylated at its reducing end and immobilized through streptavidin to the carboxymethyl (CM) dextran of the sensorchip (2), allowing SPR
analyses predictive of the interactions occurring in vivo between viral proteins and cell surface-associated HSPGs.
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and heparin immobilized to a SPR sensorchip resembles cell
surface-associated HSPGs (Figure 4B), as demonstrated by
the fact that the Kp values calculated with this model are
comparable to those calculated for HSPGs associated to
living cells (Rusnati et al., 2009). The biological importance
of heparin/HSPG in virology luckily meets the easiness
of heparin-based SPR analyses. This is mainly due to the fact
that the immobilization of heparin evades those problems
related to orientation and stability that instead affect those
SPR analyses requiring the immobilization of proteins to the
sensorchip (Figure 4B).

In effect, several proteins acting as virus receptors present
structural features that make their immobilization very
difficult. Paradigmatic are seven transmembrane-spanning
chemokine receptors, deeply involved in HIV biology but
basically neglected in SPR analyses. This mainly depends on
their structural complexity that, in turn, makes their
sensorchip-immobilization a hard challenge. In the past, this
has been tentatively overcome by amine-coupling of linear
peptides representing their extracellular domains (Baritaki
et al., 2002), a simple model that, however, did not resemble
physiological interactions. More recently, procedures have
been set up to incorporate on the sensorchip lipid mixtures
that, resembling plasma membrane, allow a stable and
properly oriented immobilization of intact receptors
(Navratilova et al., 2005). These procedures have been
successfully used to characterize the interaction of HIV
gpl20 with CCRS5 (Lam et al., 2008) and of HIV pl7 with
CXCRI (Giagulli et al., 2012) and CXCR2 (Caccuri et al.,
2012). Very promising in this context is also the possibility to
transfect cells to overexpress specific viral receptors and then
to capture to the sensorchip the membranes isolated from
transfected cells (Zhu et al., 2009). In effect, it is well known
that host plasma membranes play essential roles in virus
infection (Ghanam et al., 2012; Moriishi & Matsuura, 2012)
pointing to lipid layers as particularly important in SPR
analyses of virus/host receptors interaction. In particular,
gangliosides are sialic acid-containing glycosphingolipids
largely represented in eukaryotic cell membrane and involved
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in virus attachment (Taube et al., 2010). Although a
significant amount of SPR analyses has been done to study
the interactions of viral proteins with gangliosides and other
lipids, affinity values have been seldom calculated in these
analyses (Table 3). This is likely due to the complexity of
proteins/lipids interactions, often characterized by multi-
phasic kinetics and/or cooperativity. Briefly, cooperativity is
a case of allostery in which a macromolecule (i.e. a lipid) has
more than one binding site and the interaction of the ligand
(i.e. a viral protein) at one site increases its affinity at the
contiguous site. Multiphasic or cooperative interactions are
difficult to study with classical binding assays, while suitable
SPR model have been developed to this aim (Galdiero et al.,
2010; Nilsson et al., 2010).

Although within the limit of the high variability of the Kp
values calculated, it seems that viral proteins bind host
receptors with affinities that are lower than those of
physiological ligands (Figure 5B). On the other hand, the
overall affinity of the interaction of viral proteins with HSPGs
seems higher than those with chemokine receptors or with
integrins (Figure 5B), suggesting that HSPGs are ‘‘more
hijackable’” by viruses, thus explaining their diffusion as viral
co-receptors. Finally, the interaction of viral determinant of
infectivity with host receptors seems to occur with an overall
affinity (Kp in the high nanomolar range) that is lower than
that of the other viral proteins with nucleic acids and of
virokines with their receptors (Kp in the low nanomolar)
(Figure 5A). Relevant to this point, in vive, viral determinants
of infectivity often interact with their specific entry receptors
only after a proper presentation by co-receptors while, in SPR
analyses, they are analyzed in the presence of isolated
receptors, likely underestimating their affinity.

SPR analyses of viral proteins interacting with
intracellular host factors

After virus internalization or following de novo synthesis
from integrated viral genome, viral proteins enter the crowded
cytoplasmic compartment, where they set up the various

Table 3. SPR analysis of the interaction of viruses or of viral envelope proteins with plasma membrane lipids.

Viral protein Host binder Kp (nM) Reference
HIV-1
gpdl Lipid monolayer and bilayer nd Galdiero et al., 2010
jals] Lipid bilayer uM range Solbak et al., 2012
Adenoviruses
Fiber knob protein |Ganglinside GDa 19.000-265 000 | Nilsson et al., 2010 I
HSV
Glycoprotein B Lipid monolayer and bilayer nd Galdiero et al., 2010
Glycoprotein H Lipid monolayer and bilayer nd
Influenza viruses
Intact virion Sialoglycolipid neomembrane nd Critchley & Dimmock, 2004
Gangliosides NeuSAca2-3nLe4Cer. nd Hidari et al., 2007
NeuS5Aco2-6nLe4Cer and GM3
Parvovirus
Virus-like particles Globotetraosylceramide nd Kaufmann et al., 2005

nd: not determined.
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Figure 5. (A) Affinity of the various categories of virus/host interactions. The mean value of the dissociation constant (Kpy) of the interactions of viral
proteins with different host structures are reported. (B) Affinity of the interactions of host structures with physiological ligand or with viral proteins.
The mean value of the Ky, of the interactions of viral determinant of infectivity, virokines or physiological ligands with selected receptors are shown,
The number of measurements taken in consideration are reported in brackets.

interactions required to virus replication, assembly and egress.
Different types of host intracellular proteins are involved in
these interactions (Table 4 and Figure 1B): cytoskeleton
components, mainly implicated in virus endocytosis and new
virions egress (Taylor et al., 2011); second messengers and
enzymes, exploited by the virus to maintain a cell environ-
ment favorable to its replication (Greco-Stewart & Pelchat,
2010); cellular chaperones, that marshal viral components
from and to the various cellular compartments (Stamminger,
2008); proteasome components, that modulate the stability of
viral proteins (Choi et al., 2012); transactivating factors and
DNA-associated proteins, that regulate replication and tran-
scription of viral nucleic acids (Engelhardt & Fodor, 2006).

Very frequently these interactions lead to the formation of
large multimeric complexes, as exemplified by the main
transactivator of HIV-1 Tat that, to exert its full transactivat-
ing activity, set up a complex with RNA and nine different
cofactors (He et al., 2010) (Figure 1B). These multimeric
complexes are often characterized by allosteric regulation
(Leavitt et al., 2004) that can be properly dissected and
characterized by SPR (Navratilova et al., 2012) as success-
fully performed for the study of the interaction of the HIV-1
Gag protein with Tsgl101 and ubiquitin (Garrus et al., 2001)
and of the Epstein-Barr virus (HBV) EBNA-5 protein with
MDM?2 and p53 (Kashuba et al., 2010).

Interestingly, intracellular host proteins can also interact
with viral proteins within mature virions. Although originally
considered purification contaminants, it is now accepted that
host components are present in virions, although their roles
remain unknown. HSV is particularly prone to incorporate
host proteins, but also vaccinia virus (VV), influenza virus

and HIV share this capacity. The host proteins more often
found in virions are actin, annexins, cofilin, translation
factors, GAPDH, heat shock proteins, pyruvate kinase M2
and Rab GTPases (Lippe, 2012). The exploiting of SPR in a
systematic research and characterization of their interactions
inside the virion may contribute to the better comprehension
of this otherwise obscure field of virology.

SPR analyses of viral proteins interacting with host
nucleic acids

Historically, the interaction of viral enzymes/transactivators
with host nucleic acids received great attention and several
biochemical models (including SPR) have been developed
(Majka & Speck, 2007). An important issue in protein/DNA
interaction is the discrimination of specific (productive)
bindings with an actual biological meaning from aspecific
bindings that often occur with highly negatively charged
nucleic acids. This discrimination can be usually achieved
only by time consuming binding assays at different times and
temperatures hardly practicable with classical biochemical
models. At variance, due to its quick and high-throughput
features, SPR has proven to be appropriate for this type of
studies (Oda & Nakamura, 2000). Another important tech-
nical issue that makes SPR analysis a first choice for the
analysis of viral proteins interaction with nucleic acids is the
easiness of the surface-immobilization of DNA or RNA,
usually achieved through their biotinylation and binding to
streptavidin sensorchips. Once surface-immobilized, nucleic
acids do not pose problems of orientation or of masking of
functional domains (Majka & Speck, 2007), resulting in
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Viral protein Host binder Kp (nM) Reference
HIV-1
gpl20 Intracellular mannan-binding protein 1.7-5.0 Nonaka et al., 2007
H1 histone 34.3 Mamikonyan et al., 2008
integrase H1 histone 38.3
ap4l Cellular transportin 3 261 Krishnan et al., 2010
Gag Phosphoinositide phosphates 1M range Anraku et al., 2010
Endosomal sorting complexes required for UM range | Munshi et al., 2007
transport-associated protein Alix
Tsgl01 UM range | Garrus et al., 2001
Nef Calmodulin 94 Matsubara et al., 2005
Src kinase Hck 250 Manninen et al., 1998
Vpr Cyclophilin A puM range Solbak et al., 2010
280 Solbak et al., 2011
Adenine nucleotide translocator 10-100 | Sabbah et al., 2006
9.7 Jacotot et al., 2001
Importin-o 4300-8900) Takeda et al., 2011
Tat 1kB-o 178 Vitagliano et al. 2011
Dopamine transporter nd Zhu et al., 2009
Reverse transcriptase Topoisomerase 1 nd Takahashi et al., 2004
Adenoviruses
Early trascription unit E3 AP-1 480-520 | Hilgendorf et al., 2003
AP-2 300400
Virus-like particles Ubiquitin-protein ligase WWP1 65 Galinier et al., 2002
Rep52 protein Protein kinase PrKX 385 Chiorini et al., 1998
Protein kinase A 320
Rep68 protein Protein kinase PrKX 2100
Rep78 protein Protein kinase PrKX 680
Co-activator protein E1A 138 NF-kB p65 26 Paal et al., 1997
HSV
Co-activator protein VP16 TATA-binding protein 35 Nedialkov et al., 2003
16 Bamdad, 1998
44 Nedialkov & Triezenberg, 2004
TATA-binding protein -associated factor 9 73 000 Nedialkov & Triezenberg, 2004
Transcription factor TFIIA nd
Transcription factor TFIIB 3000
Swiland Snf5 subunits of the chromatin nd Ferreira et al., 2005
remodeling complex
Exonuclease UL12 DNA double-strand break-sensing complex 31.1 Balasubramanian et al., 2010
Hepatitis viruses
Core protein Microtubulin 75-100 Roohvand et al., 2009
Nucleophosmin-1 2510 Lee et al., 2009
Aminoacylase 3 10100 Tsirulnikov et al., 2012
Apolipoprotein B mRNA-editing enzyme nd Zhao et al., 2010
catalytic polypeptide 1-like
NS5A polymerase Fyn tyrosine kinase 556-629 | Shelton & Harris, 2008
FK506-binding protein 8 82 Okamoto et al., 2008
HBx co-activator Glioma-associated oncogene homologue 1 UM range Jo et al., 2011
Influenza viruses
Polymerase PB2 Human importin-o1,3,5.7 1.3-8.5 Boivin & Hart, 2011
Measles virus
Nucleocapsid protein Heat shock protein 72 1000 Zhang & Oglesbee, 2003
Helical ribonucleoprotein Heat shock protein 72 16 Zhang & Oglesbee, 2003

(continued )
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Table 4. Continued

Viral protein Host binder Kp (nM) Reference
HPV
E6 oncoprotein Human homolog of the Drosophila discs large UM range | Liu et al., 2009b
tumor suppressor protein/synapse associated protein
E6-binding protein nd Beerheide et al., 1999
E7 protein Retinoblastoma tumor suppressor Rb 5000 Jung et al., 2005
SARS-CoV
Nucleocapsid protein Heterogeneous nuclear ribonucleoprotein Al 350 Luo et al., 2005
Cyclophilin A 6.1-159 Luo et al., 2004a
40 Chen et al., 2005¢
Proteasome subunit p42 nd Wang et al., 2010b
Kaposi’s sarcoma-associated herpesvirus (KSHV/HHV-8)
Viral K15 protein Intersectin 2 13500 Lim et al., 2007
Viral G protein-coupled receptor Protein tyrosine phosphatase Shp2 6.1 Philpott et al., 2011
Ebola virus
| Matrix protein VP40 | Human ubiquitin ligase Nedd4 | 800 | Timmins et al.. 2003
Poxviruses
V39 subunit of VV poly(A) polymerase | S-adenosyl-L-methionine nd Shi et al., 1996
A46 protein of VV MyD88-adaptor like protein 1.7 Oda et al., 2011

SPR was used to assess the kinetics of interaction between the indicated viral proteins and their cognate/putative viral or host binder. nd: not

determined.

highly accessible DNA or RNA surface, the only drawback
being possible non-specific binding of positively charged
proteins, a problem that can be solved by immobilizing the
protein and injecting the nucleic acids.

Collectively, the affinity of the interaction of viral proteins
with nucleic acids (Kp in the low nanomolar range) seems the
highest among all the other interactions considered
(Figure 5A). Relevant to this point, although nucleic acids
are repetitive macromolecules devoid of the structural com-
plexity that usually confer to an interaction high affinity and
specificity, they can set up multimeric interaction with viral
proteins (Figure 1B) that are very often cooperative (Majka &
Speck, 2007), two features that may increase the length of the
nucleic acid recognized by the transcription factors and the
specificity and affinity of the binding. Also, the stacking
interactions between the nucleotide bases and aromatic
residues of the protein and hydrogen bonds between the
protein and the nucleic acids, allow an exquisite tuning of the
interaction. Finally, nucleic acids are endowed with intrinsic
flexibility, which, through their looping, allows long-range
interactions of viral proteins with distal DNA/RNA elements,
again increasing complexity, affinity and specificity.
Appropriate SPR analyses with DNA or RNA have been
optimized to unravel the intricacy of their interaction with
protein (Okumoto et al., 2002; Smith et al, 2002).
Accordingly, SPR allowed the successful characterization of
complex interactions between DNA and proteins from the
most important human viruses (Table 5).

SPR analyses of interactions of viral proteins released
by infected cells

In the extracellular environment, an intricate network of
interactions occurs between viral proteins released by infected
cells and the surrounding components of the host (Table 6 and

Figure 1C). Some of these interactions are functional to the
protection of the host from virus infection, as typically
exemplified by the binding of T cell receptors or to defensins
to viral peptides. Interestingly, T cell receptors bind viral
restricted peptides with a mean affinity (K}, in the micromolar
range) that is the lowest among those here considered (Table 6
and Figure 5A). This may be due to two concurrent reasons:
the interactions involving short linear peptides devoid of
structural complexity (as processed viral peptides) are usually
characterized by low affinity. On the other hand, T cell
receptors maintain the capacity to recognize a broad range of
restricted peptides, lowering their specificity and affinity for
their ligands.

Other interactions instead lead to immunosuppression:
virokines (also termed viroceptors) are viral proteins actively
released by infected cells that bind and inactivate inflam-
matory cytokines or component of the complement cascade,
creating a suitable habitat for viral replication and spreading
(Smith & Kotwal, 2001). Also, some proteins of HIV (the
gpl20 envelope protein, the pl7 matrix component and the
transactivating factor Tat) are released by infected cells and,
once in the extracellular environment, engage receptors of
surrounding cells causing a variety of effects that concur to
increase cell susceptibility to HIV infection and to promote
the arise of AIDS-associated diseases (Bugatti et al., 2007;
Fiorentini et al., 2006). Virokines bind to their receptors
with affinities that are higher than those of the other virus/
host interactions considered here (Figure 5A). Two lines of
reasons may explain this feature: virokines are usuvally
encoded by genes that viruses have acquired by eukaryotic
cells and, as already mentioned, the interaction of eukaryotic
proteins are usually characterized by affinities that are
higher than those of viral proteins (Figure 5B). Also, in the
course of virus evolution, virokines may mutate freely to
increase their affinity for targets, being not burdened by
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Table 5. SPR analysis of the interaction of viral proteins with viral or host nucleic acids.

Viral protein Host binder Kp (nM) Reference
HIV-1
Integrase DNA 2.2-14 Ramcharan et al., 2006
2.9-31.3 Ramcharan et al., 2006
1.3-53 Yi et al., 1999
Reverse trascriptase DNA 31 Herschhorn et al., 2008a
170 Lin et al., 2000
RNA-DNA hybrids 2.7-33.3 Gorshkova et al., 2001
Nucleocapsid protein DNA 13.7-277 Ramboarina et al., 2004
RNA 2.9-9 Ramboarina et al., 2004
0.7 Kim et al., 2002
2.4 Kim & Jeong, 2003
Rev RNA 0.04-90 Van Ryk & Venkatesan, 1999
2.7 West & Ramsdale, 1996
2000 Gallego et al., 2003
Tat RNA 1.8-7.8 Chaloin et al., 2005
46 Partidos et al., 2005
Gag DNA 1.1-166.5 Stephen et al., 2007
SARS-CoV
Nucleocapsid protein RNA 0.7-15.1 Chen et al., 2005a
11.9 Huang et al., 2009
4.6 Yang et al., 2008
2-1430 Spencer & Hiscox, 2006
DNA nd Huang et al., 2009
Hepatitis viruses
Proteinase 3C RNA pM-mM range Peters et al., 2005
Core protein DNA, RNA nd Tanaka et al., 2000
NS5B polymerase RNA nd Nyanguile et al., 2010
Poxviruses
E3L zo domain polymerase DNA 57-177 Quyen et al., 2007
7-25 Hamilton et al., 2007
Influenza viruses
Nucleoprotein RNA 23.1 Ng et al., 2008
14-47 Tarus et al., 2012
DNA 105
Adenoviruses
ss DNA binding protein DNA 6 Dekker et al., 1998
Rep40 protein DNA nd Dignam et al., 2007
HSV
Uracil-DNA glycosylase helicase-primase Uracil-DNA 4.6-1493 Panayotou et al., 1998
DNA helicase-primase DNA 38-88 Chen et al., 2012
HPV
E7 protein DNA 180 | Chinami et al., 1996

SPR was used to assess the kinetics of interaction between the indicated viral proteins and their target DNA/RNA. nd: not

determined.

those constrains that weight instead on envelope proteins,
whose mutation is limited by their structural function inside

the virion.

As apparent by Table 6, virokines often exploit heparin/
HSPGs as receptors. This, together with the fact that HSPGs act
as co-receptors for many viruses (Table 2), point to these
molecules as key actors in both early and late stages of the virus
life cycle, including virus infection and the maintaining of a
favorable environment for virus replication and spreading.

Concluding remarks

249

From the data summarized above, it emerges that SPR has

already brought a reasonable contribution to the knowledge in

RIGHTS

the field of virology. However, a lot more can be done,
provided a mandatory improvement of the reproducibility of
the kinetic and affinity data generated that, in turn, would
allow the scaling up of SPR from scattered analyses to a
systematic study functional to the characterization of the
virus/host interactome.
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Table 6. SPR analysis of the interaction of intact viruses or released viral proteins (i.e. virokines) with host cell surface receptors or extracellular

molecules.
Viral protein Binder Kp (nM) Reference
HIV-1
gpl20 Heparin (HSPGs analog) 220 Moulard et al., 2000
0.6 Bugatti et al., 2007
T-defensin retrocyclin-1 33 Gallo et al., 2006
354 Wang et al., 2003
a-defensin HDS 24.5 Lehrer et al., 2009
Tat Heparin (HSPGs analog) 20 Urbinati et al., 2004
64 Rusnati et al., 2001
VEGFR2/KDR 0.07 Bugatti et al., 2010
a,f; integrin 32 Urbinati et al., 2005
19.9-40.3 Chiodelli et al., 2012
pl7 Heparin (HSPGs analog) 190 Bugatti et al,, 2013
Interferon-y 27.8 Flamminio et al., 1995
CXCR1 1800 Giagulli et al., 2012
CXCR2 130 Caccuri et al., 2012
ap4l T-defensin retrocyclin-1 67.6 Gallo et al., 2006
Poxviruses
Interferon-o/B-binding protein Interferon o 0.1-0.6 Fernandez de Marco Mdel et al., 2009
Interferon f3 1.2-5.3
IL28A 14.9
1IL29 13.5
Heparin (HSPGs analog) 3.8 Montanuy et al., 2011
Chemokines-binding protein CCL2 0.4 Lateef et al., 2009
0.3-1.3 Seet et al., 2001b
0.3 Beck et al., 2001
CCL3 0.1 Lateef et al., 2009
CCL5 0.03
CXCL4 2058 Bahar et al., 2008
CCL25 7.95-24.7
CCL26 71-87.2
CCL28 35.5-59.5
CCL21 116
IL-18 3 Meng et al., 2007
Heparin (HSPGs analog) 446 Seet et al., 2001a
CCL4,7,8,11,16,17,18 nd Ng et al., 2001
VV complement control protein C3b uM range Bernet et al., 2004
C4b UM range
Heparin (HSPGs analog) 230.0 Smith et al., 2003
C3b, C4b nd Ahmad et al., 2010
IL18-binding protein IL18 5.1 Esteban & Buller, 2004
2.6 Esteban et al., 2004
0.4-9.2 Calderara et al., 2001
Heparin (HSPGs analog) 0.5 Xiang & Moss, 2003
Interferon-y-binding protein Interferon-y 0.09 Symons et al., 2002
Cytokine response modifier B Tumor necrosis factor 0.3 Alejo et al., 2006
Lymphotoxin-o 7.5
CCL28 0.3
CCL25 0.5
CXCLI12p 4.3
CXCLI13 59
CXCL14 6.3
CXCLI1 28.8
CXCL20 29.2
Variola virus complement inhibitor C3b, C4b nd Yadav et al., 2008

(continued )
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Viral protein Binder Kp (nM) Reference
HSY
Glycoprotein G1 CCLIS8 90.2 Viejo-Borbolla et al., 2012
CCL22 nd
CCL25 4.7
CCL26 55
CCL28 68
CXCL9 38
CXCLI10 457
CXCL11 10.9
CXCLI12x 31.5
CXCL12p 7.7
CXCLI13 13
CXCL14 420
Glycoprotein G2 CCL18 28
CCL22 5.2
CCL25 1.6
CCL26 1.7
CCL28 32
CXCL9 12.3
CXCL10 5.5
CXCLI11 6
CXCLI12x 6.5
CXCL12p 22
CXCLI13 43
CXCL14 43
Glycoprotein B A-defensins 30.3-2880 Yasin et al., 2004
T-defensin 13.3-295
Glycoprotein D1 v-defensin 235 Lehrer et al., 2009
Cytomegalovirus
Immunoevasin UL16 MHCI related molecule B 66-68 Muller et al., 2010
Viral Fc receptor gp68 Non-immune IgG (via Fc) 60-1600 Sprague et al., 2008
Kaposi’s sarcoma-associated herpesvirus (KSHV/HHV-8)
Complement control protein C3b 120 Mark et al., 2004
470-10000 Spiller et al., 2003
C4b 54.0 Mark et al., 2004
25-6000 Spiller et al., 2003
viral IL6 gpl30 2200 Aoki et al., 2001
Adenoviruses
Intact virion Coagulation factor X 1.83 Waddington et al., 2008
Hexon Coagulation factor IX 3.3-16.7 Johnson et al., 2011
Coagulation factor X 1.9-19.4 Waddington et al., 2008
2.7-54 Greig et al., 2009
Hepatitis viruses
Core protein Non-immune IgG (via Fc) nd Maillard et al., 2004
Apolipoprotein All nd Sabile et al., 1999
Influenza viruses
A hemagglutinin Human l-acid glycoprotein nd Mandenius et al., 2008
Rotavirus
Enterotoxin NSP4 o) integrin 1100 Seo et al., 2008
o, integrin 2700
EBY
EBV-restricted epitops T cell receptors 15000 Gras et al., 2009
8900
8100 Ely et al., 2006
puM range Miles et al., 2010
2200 Gras et al., 2010
EBV-encoded I1-10 IL-10 receptor 121-232 Yoon et al., 2012

HIV gpl20/heparin interaction has been here included due to the “*cytokine-like’” activity of the free monomeric gpl20. nd: not determined.
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Figure 6. Contribution given by SPR to virology: (A) SPR can be considered as a bridge ideally connecting computational predictions and biochemical
studies to in vitro and in vivo experimentation. (B) SPR can be ideally exploited in the process of identification of bioactive domains of viral proteins,
functional to the design of antiviral drugs and vaccines. (C) SPR can be used to rank the interactions occurring between viral and host structures with
the aim to identify the most druggable ones: in the representative plot shown here each numbered histogram corresponds to one of the available SPR-
generated Kp, values of HIV/host interactions grouped in the various categories already used above. A higher K, value (blue) means a lower affinity

interaction and thus a possible higher druggability.

What has been done

SPR has widely been exploited for the characterization of
many virus/host interactions and for the identification/devel-
opment of new antiviral drugs or vaccines (not discussed in
this review), providing a steadily increasing flow of data
otherwise hardly achievable with classical binding assays
based on protein labeling. Other free-label methodologies to
study macromolecular interaction are available among which
isothermal titration calorimetry (ITC) that, however, in
respect to SPR, still presents some disadvantages, including
high sample consumption and difficulties in performing
kinetic and multiplex analyses. Accordingly, ITC has been
exploited in no more than 170 papers dedicated to the
characterization of virus/host interactions.

Thus, SPR emerges as an ideal bridge between the
structural studies of viruses typically performed in silico, by
X-ray crystallography, NMR or circular dichroism spectros-
copy and the biological studies performed with cell cultures
or in vivo (Figure 6A). This bridging is well illustrated by the
studies aimed at the identification of critical amino acids
implicated in the interaction of viral proteins with host
receptors, that are almost mandatory to the design of antiviral
drugs/vaccines and that usually require the screening of large
library of peptides or of recombinant mutants (Figure 6B).
Remarkable are the SPR analyses of the interaction of
synthetic peptides representing fragments of the HCV p68
protein with the Fc portion of human IgG (Sprague et al.,
2008) and of synthetic peptides from the transcription factor
VP16 of HSV with the TATA-box binding protein (Nedialkov
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& Triezenberg, 2004). Also, a large array of recombinant
mutants of HIV integrase have been assayed by SPR for their
interaction with DNA (Ramcharan et al., 2006) and the same
has been performed for the interaction of HIV Nef mutants
with Hck-SH3 (Manninen et al., 1998). Regarding adeno-
viruses, worth to note is the paper by Alba et al. (2009) in
which the adenovirus 5 hexon was point mutated, expressed in
intact virions and then assayed for its binding to coagulation
factor X. Also, SPR has been instrumental in evaluating the
interaction of fiber knob protein mutants with CAR and in the
reverse approach, namely the screening of peptides repre-
senting the immunoglobulin domain of CAR for their
capacity to bind to the fiber knob protein (Kirby et al., 2000).

SPR turned out to be useful also in the study of natural
mutants of viral proteins, also burdened by the use of wide
arrays of molecules (Figure 6B). Exemplificative in this case
is the evaluation of the CDA4-binding capacity of gpl20
mutants from different HIV strains, that demonstrated how
these interactions can occur with variable affinities with
important implications in the design of vaccines targeting the
gpl20/CD4 interaction (Cocklin et al., 2007; Martin-Garcia
et al., 2005; Owen et al., 2004; Pashov et al., 2005).

SPR has been instrumental in the identification of highly
connected, central host structures that act as ‘‘nodal points’’
in the biology of certain viruses, as for HSPGs/heparin that
were demonstrated to bind simultaneously different HIV
proteins, being thus involved in different phase of the virus
life cycle. In effect, SPR helped in demonstrating that HSPGs
bind to gpl20 both when embedded in the virus envelope
(thus mediating virus attachment) and when released in the
extracellular environment (thus exerting a cytokine-like
activity) (Bugatti et al., 2007). Also, SPR was used to
demonstrate that HSPGs/heparin act as receptors for the free
form of Tat, mediating several pathological effects in different
HIV-non-permissive cells that contribute to AIDS progression
and related diseases (Rusnati & Presta, 2002). More recently,
SPR was used to characterize the binding of heparin to pl7
matrix protein that, once released by HIV-infected cells, binds
to HSPGs of different leukocytes inducing their functional
subversion (Bugatti et al., 2013). Thus, SPR has been
instrumental in the identification of HSPGs as an ideal
target to design novel anti-HIV drugs endowed with multi-
target activity. Accordingly, SPR contributed to the identifi-
cation of heparin-like compounds able to effectively inhibit
Tat, gp120 and p17 (Bugatti et al., 2007, 2013). A systematic
and standardized use of SPR may lead to the identification of
additional *‘nodal points’ for other viruses, with clear
benefits for the comprehension of virus biology and for the
therapy of viral diseases.

What must be improved

Looking at the tables, it is apparent that the Kp values
calculated by SPR for a given interaction can be very
different. Two sets of reasons contribute to this high
variability, the first of which is basically technical:

(i) The temperature (Boulter et al., 2007; Ely et al., 2006;
Gakamsky et al., 2007; Miles et al., 2010), the pH
(Khurana et al., 2010; Pan et al., 2010), the flow rate,
the composition of the binding medium (Lortat-Jacob

(ii)

(iii)

(iv)

v)
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et al., 2001) and the amount of ligand immobilized
onto the sensorchip (Dimmock & Hardy, 2004; Zhang
& Oglesbee, 2003).

The alternative use of the two binders as immobilized
ligand or as free analyte, that can generate contrasting
results: a few papers reported similar binding param-
eters independent of the binder chosen for immobil-
ization (Chaloin et al., 2005), while usually binding
parameters are reported that can be of magnitude of one
order different depending on the alternative immobil-
ization of one of the two binders (Bernet et al., 2004;
Waddington et al., 2008; Zhao et al., 2005).

The procedure of immobilization. Remarkable in this
case are the works by Khilko (Khilko et al., 1993) and
Vaisocherova (Vaisocherova et al., 2007) where pep-
tides from cytomegalovirus or EBV were purposefully
immobilized with different procedures and assayed for
their capacity to bind specific ligands. Protein immo-
bilization to the sensorchip is often achieved by
simple amine-coupling of one of the two binders to
the carboxymethyl dextran of the sensorchip.
However, this procedure yields a ‘‘random’ protein
immobilization, with undesired effects such as the
masking of binding sites or the loss of protein folding
(Figure 4A). As a consequence, the amount of ligand
effectively available for the binding may be quite
different from the total amount of RU of protein
immobilized onto the surface, hampering an accurate
calculation of the stoichiometry of the interaction. As
an example, it was demonstrated that only 40% of
randomly immobilized VV polymerase VP55 was
available for binding to the VP39 regulatory subunit
while up to 99.6% of the His-tagged VP55 retained its
binding capacity when immobilized by chelation
(Gershon & Khilko, 1995). The choice of a proper
immobilization is particularly important for host
receptors such as seven transmembrane-spanning
chemokine receptors (see above) and for viral proteins
such as HIV gp41 (Kim et al., 2007; Sun et al., 2008;
Veiga et al., 2009), whose stability in vivo is ensured
by the presence of lipid membranes.

The fitting model used. All SPR analyzers are provided
with software that calculate kinetic parameters on the
basis of a default 1:1 model but alternative models
fitting multivalent bindings are available that must be
taken in consideration when dealing with viral proteins
that exist as multimers (i.e. HIV gp120 or adenovirus 2
fiber protein) or with host structures that can accom-
modate more than one viral protein simultaneously (i.e.
proteoglycans) (Greig et al., 2009; Lewallen et al.,
2009; Nakajima et al., 2005; Sprague et al., 2008; Yu
et al., 20006).

The procedure of calculation of the Kp value. All SPR
analyzers are provided with software that directly
extrapolates Kp from the kyefk,, ratio. Alternatively,
Kp can be calculated by the Scatchard plot analysis of
equilibrium binding data. When in agreement, the two
calculations indicate the good quality of the SPR
analysis, but this kind of comparison is seldom used
(Liu et al., 2007; Zanier et al., 2005). It must be pointed
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out, however, that in some cases this comparison is not
possible. If a plateau cannot be reached for each analyte
injection, a proper Scatchard plot analysis of equilib-
rium binding data cannot be performed. Conversely, if
binding rates are too fast, only the analysis at the
equilibrium can be performed.

The second line of reasons that contribute to the variability
of SPR-generated data depends on intrinsic structural and
biological features of the viral proteins or of their ligands, and
thus it can be a source of knowledge instead that an artifact to
be avoided:

(vi) The use of proteins derived from different virus strains,
that can be very different at a structural level, thus
displaying different binding capacity for their ligands
(Chen et al., 2005b; Cocklin et al., 2007; Cupelli et al.,
2010; Fu et al., 2011; Greig et al., 2009; Meng et al.,
2010; Nyanguile et al., 2010; ter Meulen et al., 2006;
Zhou et al., 2008).

(vii) The use of proteins in their glycosilated or deglycosi-
lated forms (i.e. recombinant proteins produced in
mammalian cells or bacteria) (Bahar et al., 2008; Dey
et al., 2005). In this case, SPR can help in understand-
ing the contribution of sugar chains to interactions.

(viii) The use of viral proteins in monomeric or multimeric
forms. This is of importance for those proteins that
oligomerize, such as the HIV-1 proteins gpl120 (Frey
et al., 2008) or gp41 (Liu et al., 2009a), adenovirus 2
fiber protein (Lortat-Jacob et al., 2001), S glycoprotein
of coronaviruses (CoV) (Tripet et al., 2006) and the E6
protein of HPV (Zanier et al., 2009).

All the criticalities listed above call for a standardization of
the experimental conditions, of the calculation procedures and
(whenever possible) of the interactants used. Accordingly,
several SPR benchmark studies have been launched with the
aim to generate more comparable results (Navratilova et al.,
2007). This goal is mandatory for the scaling up of SPR from
scattered analyses of virus/host interactions to an ‘‘inter-
actomic’’ level, functional to system biology studies.

What can be done

The concept of druggability has been recently arrived to
limelight as a parameter to lead drug discovery in the field of
virology. Briefly, it consists in the prediction of a putative
inhibitor to bind a viral protein or its host ligand preventing
their interaction, hence interfering with the virus life cycle.
This is classically carried out by screening large library of
putative antiviral molecules identifying those endowed with
the maximal affinity for the target protein and then by
validating this value to predict the actual antiviral efficacy of
the drug (Cheng et al., 2007). However, a preliminary
screening can be carried out to identify those virus/host
interactions that occur with the lowest affinity, thus likely
corresponding to those more easily displaceable with specific
inhibitors (Seco et al., 2009). Actually, a possible limit of this
approach consists of the fact that a low affinity binding may
corresponds to a low specific interaction. This calls again for
a cautious judgment of SPR data that must be critically
pondered together with other parameters such as the abun-
dance, accessibility and biological importance of the viral or
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host proteins, leading to the identification of suitable
therapeutical targets. SPR may be functional to a systematic
ranking of the virus/host interactions on the basis of their
affinity (Kastritis & Bonvin, 2010) (Figure 6C).
Unfortunately, to date such prediction remains outside our
reach due to the large variability of the data generated by
SPR. However, some guidelines can be drawn from dedicated
benchmark studies to improve SPR analysis, making it
exploitable for a systematic approach in antiviral drug
research,

Another hot topic in antiviral drug discovery is that of
““multitarget’” drugs that, interfering with different viral
proteins simultaneously, may limit the rise of drug resistant
viral strains that represents to date the major burden of
common antiviral mono-therapies (Jenwitheesuk et al., 2008).
The development of multitarget drugs requires the identifi-
cation of hub-proteins playing multiple important roles in
virus life cycle, a research appropriately approached by
system biology studies. Briefly, system biology is an inter-
disciplinary experimental and computational field of study
that focuses on complex interactions within biological
systems with aim to identify novel key features of cell
signaling networks. In the last years, it has been widely used
in a variety of biomedical contexts, including the deciphering
of the network of virus/host interactions (the so call
““interactome’’) (Neveu et al., 2012; Sorathiya et al., 2010).
The rationale of system biology is that multiple regulatory
cascades can be converged into hub-proteins/interactions
whose inhibition can affect multiple signaling pathways,
commensurate with the administration of multiple drugs that
would hopefully cause an overall failure of the “‘disease
system’’. The expectation from such “‘connectivity maps’’ is
to provide better tools for drug discovery, avoiding the low
yield, elevated costs, and high risk of failures of traditional,
“‘monotarget’” drug screening. Although within the limit of
the variability of the binding data generated, from what
discussed here SPR clearly demonstrated to be a first-choice
technology to validate the identification of viral proteins or
host receptors that play nodal roles in virus life cycle as well
as in the identification of multitarget drugs. Consequently,
SPR emerges as a promising tool to efficiently connect system
biology studies of virus/host interactome to the discovery of
new multitarget antiviral drugs.
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