
Non-Hermitian Degeneracies and Unidirectional Reflectionless Atomic Lattices

Jin-Hui Wu,1 M. Artoni,2,3 and G. C. La Rocca4
1Center for Quantum Sciences, Northeast Normal University, Changchun 130117, China

2European Laboratory for Nonlinear Spectroscopy, 50019 Firenze, Italy
3Department of Engineering and Information Technology and INO-CNR Sensor Lab, Brescia University, 25133 Brescia, Italy

4Scuola Normale Superiore and CNISM, 56126 Pisa, Italy
(Received 8 April 2014; published 19 September 2014)

Light propagation in optical lattices of driven cold atoms exhibits non-Hermitian degeneracies when the
first-order modulation amplitudes of real and imaginary parts of the probe susceptibility are manipulated
to be balanced. At these degeneracies, one may observe complete unidirectional reflectionless light
propagation. This strictly occurs with no gain and can be easily tuned and fully reversed as supported by the
transfer-matrix calculations and explained via a coupled-mode analysis.
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Much attention has been devoted to the development of
artificial metamaterials for achieving optical functionalities
not available in nature. Photonic crystals [1] and left-
handed materials [2] are prominent instances tailored to
stretch the rules of light propagation and interaction.
Such metamaterials have seeded new paradigms in optical,
optoelectronic, and optomechanical devices [3–6].
Nevertheless, some tasks are more difficult than others
with unidirectional light transport being a most pronounced
example. Significant progress has been made in recent
years by developing optical materials with parity-time (PT)
symmetry to attain unidirectional light invisibility [7–16].
PT-symmetric metamaterials require a delicate balance of
gain and loss whereby the complex refraction index
satisfies nðzÞ ¼ n�ð−zÞ and are typically made of periodic
solid microstructures. Homogeneous atomic vapors driven
into three-level [17,18] or four-level [19] configurations
have also been proposed to realize PT-symmetric optical
potentials via rather complicated spatial modulations of two
driving fields. Such proposals have obvious advantages of
real-time all-optical reconfigurable capabilities and implicit
disadvantages of intractable field modulations and consid-
erable symmetry errors. Large optical nonreciprocities may
also be achieved by exploiting the asymmetric Doppler
shift in moving atomic Bragg mirrors [20], and proof-
of-principle experiments have been carried out [21].
The great interest in PT-symmetric complex media

stemmed, however, from the non-Hermitian extensions
of quantum mechanics and quantum field theories [22,23],
and it is perhaps worth going back to the essential non-
Hermitian behavior of light transport to get a broader
picture on reciprocity violations and unidirectional reflec-
tionlessness. Take, e.g., a typical one-dimensional (1D)
light scattering process as shown in Fig. 1(a) where the
outgoing field amplitudes fE−

L; E
þ
Rg are related to the

incoming field amplitudes fE−
R; E

þ
Lg by a scattering matrix

S [24], the eigenvectors of which are defined by

�
E−
L

Eþ
R

�
¼

�
t; rL
rR; t

��
E−
R

Eþ
L

�
¼ λs

�
E−
R

Eþ
L

�
: ð1Þ

The complex amplitudes t, rL, and rR of the (S) matrix in
Eq. (1) denote, as usual, the reciprocal transmission and
the reflection for incidence from the left and from the right.
In general, the matrix S is non-Hermitian, its eigenvalues
λ�s ¼ t� ffiffiffiffiffiffiffiffiffiffi

rLrR
p

are complex, and its eigenvectors

ð� ffiffiffiffiffiffiffiffiffiffiffiffi
rL=rR

p
; 1ÞT are not orthogonal. In particular, they

coalesce at a degeneracy, which is at variance with the
case of Hermitian degeneracies. This hinges on the fact that
for a non-Hermitian matrix, whether symmetric or not,
degeneracies are of codimension two. There are two
degenerate eigenstates in Eq. (1), representing scattering
states with full unidirectional reflectionless propagation
from the left (E−

L ¼ 0; Eþ
R ≠ 0) and from the right (Eþ

R ¼ 0;
E−
L ≠ 0). Photonic media exhibiting such non-Hermitian

degeneracies offer then a unique opportunity to control the
unidirectional reflection of light.
We study here a 1D Bragg grating where full unidirec-

tional reflectionlessness, associated with non-Hermitian
degeneracies of Eq. (1), can be achieved and made
completely reversible in two opposite directions. The
underlying physical mechanism is illustrated by consider-
ing a lattice of driven cold atoms [25–29] whose probe
susceptibility is such that χpðzÞ ¼ −χ�pð−zÞ with loss and
no gain, which is clearly not a PT-symmetric case [30,31].
We engineer a far-detuned dressing field so as to induce a
spatially modulated frequency shift along the lattice axis in
quadrature with respect to the atomic density (see Fig. 1).
Our analysis may also be adapted to defect centers in solids
[32]. Consequently, we may observe unidirectional reflec-
tionlessness at a non-Hermitian degeneracy of the scatter-
ing matrix. It is of special interest that the unidirectional
vanishing probe reflectivity can be reverted by changing
detuning signs of dressing field components.
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In particular, we consider cold 87Rb atoms loaded into
the dipole traps of an optical lattice formed by the retro-
reflecting red-detuned laser beams of wavelength λo [see
Fig. 1(a)]. The resultant atomic lattices have the perio-
dicity a ¼ 0.5λo= cos θo with θo being a small angle
between the dipole-trap laser beams (which are not shown
in Fig. 1) and the lattice axis along ~z [33]. The tightly
trapped 87Rb atoms typically exhibit a Gaussian density
distribution NjðzÞ ¼ N0 exp½−ðz − zjÞ2=d2� in each period
with d being the 1=e half width and zj the jth lattice
center. The Gaussian width d depends on the trapping
depth U0 of dipole potentials and the average temperature
T of trapped atoms via d ¼ ðλo

ffiffiffiffiffiffiffiffi
κBT

p Þ=ð2π ffiffiffiffiffiffiffiffiffi
2U0

p Þ [27].
Such periodically distributed atoms are driven into the
four-level N configuration by three coherent fields of
frequencies (amplitudes) ωp (Ep), ωc (Ec), and ωd (Ed)
[see Fig. 1(b)]. The weak probe field ωp, moderate
coupling field ωc, and strong dressing field ωd interact,
respectively, with transitions j1i ↔ j3i, j2i ↔ j3i, and
j2i ↔ j4i. The corresponding detunings (Rabi frequencies)
are defined as Δp ¼ ωp − ω31, Δc ¼ ωc − ω32, and Δd ¼
ωd − ω42 (Ωp ¼ Epd13=2ℏ, Ωc ¼ Ecd23=2ℏ, and
Ωd ¼ Edd24=2ℏ) with ωij being atomic transition frequen-
cies and dij being electric dipole moments.

Within the rotating-wave and electric-dipole approxima-
tions, the equations of motion for the density matrix
elements ρij are obtained as usual. By setting ρ11 ≃ 1 in
the weak probe limit and assuming γ12 ≪ γ13 ≃ γ14 ¼ γ for
the dephasing rates γij, we can obtain

ρ31 ¼
iΩp½γ12 − iðΔp − δd0Þ�

Ω2
c þ ðγ − iΔpÞ½γ12 − iðΔp − δd0Þ�

ð2Þ

with δd0 ¼ −Ω2
d=Δd being the dynamic frequency shift of

the j2i − j4i transition. In deriving Eq. (2), we have also set
Δc ¼ 0, Δp ≲ γ, Δd ≫ Ωd, and Δd ≫ γ. A probe suscep-
tibility χpðzÞ with its real (imaginary) part being an even
(odd) function of the lattice position z can be implemented
by spatially modulating at least two critical parameters of
atom-field interaction in distinct elaborate ways [17–19].
Since the atomic density distribution NjðzÞ is here an
even function of the lattice position z, we now try to
engineer the dynamic frequency shift as an odd function
of the lattice position. That is, we take the dressing field to
have three components with σþ polarization [see Fig. 1(c)]
described, respectively, by Ed exp½þikdx − iðω42 − ΔdÞt�,
ðEd=

ffiffiffi
2

p Þexp½þiðk0dz−π=4Þ− iðω42þΔdÞt�, and ðEd=
ffiffiffi
2

p Þ
exp½−iðk0dz − π=4Þ − iðω42 þ ΔdÞt� with kd ¼ 2π=λd,
k0d ¼ kd cos θd, and θd being a small angle between the
latter two components and the lattice axis ~z [34]. Then the
probe susceptibility in the jth period of our atomic lattices
reads

χpj
ðzÞ ¼ iαjðzÞfγ12 − i½Δp − δdsðzÞ�g

Ω2
c þ ðγ − iΔpÞfγ12 − i½Δp − δdsðzÞ�g

ð3Þ

with αjðzÞ ¼ NjðzÞd213=2ε0ℏ, δdsðzÞ ¼ δd0 sinðβzÞ, and
β ¼ 2k0d. We can attain β ¼ 2π=a by accurately modulating
the two angles θo and θd even if λd ≠ λo.
In Fig. 2, we calculate imaginary and real parts of the

probe susceptibility χpjðzÞ as a function of lattice position
and probe detuning in panels (a) and (b), of lattice position
at probe resonance in panels (c) and (d). For a given probe
detuning Δp, Im½χpjðzÞ� and Re½χpjðzÞ� are modulated in
distinct ways along the lattice axis. At Δp ¼ 0, in particu-
lar, our atomic lattices exhibit the antisymmetry described
by χpjðþzÞ ¼ −χ�pjð−zÞ. With the increasing of jΔpj,
however, this peculiar antisymmetry is gradually lifted as
shown in Figs. 2(a) and 2(b). Most importantly, it is
possible to control the ratio between maximum amplitudes
of Im½χpjðþzÞ� and Re½χpjðþzÞ� by changing Rabi fre-
quencyΩd (i.e., dynamic shift δd0) [see Figs. 2(c) and 2(d)].
This is crucial in achieving non-Hermitian degeneracies
[35] and the associated unidirectional reflectionless propa-
gation, as discussed below.
The probe susceptibility in Eq. (3) has a lot of compo-

nents oscillating at exp½�imβz� with m ∈ f0; 1; 2;…g, but
only its zero and first-order components are responsible for

FIG. 1 (color online). (a) An ensemble of cold 87Rb atoms is
loaded into a 1D optical lattice of dipole traps. (b) These atoms
interact with a near-resonant probe (Ωp) field, a near-resonant
coupling (Ωc) field, and a far-detuned dressing (Ωd) field.
(c) Probe and coupling fields travel along the lattice z axis with
σþ and σ− polarizations, respectively. The dressing field has
instead two components nearly counterpropagating at a very
small angular offset �θd, both with σþ polarization, to give a
spatial modulation of the light shift δdsðzÞ of transition j2i ↔ j4i,
and a third component propagating along the x direction and
linearly polarized along y to provide a light shift that is uniform in
space (see text).
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the dynamic propagation of a probe field. In the case of
γ12 → 0 and Δp ¼ 0, we can obtain

χpðzÞ ∼ iχp0 þ iχpa cos βz − χpb sin βz

¼ α0ð0Þx
γ

�
fpbðb0 − b2Þðix − sin βzÞ

þ ix
2
fpaðb1 − b3Þ cos βz

�
ð4Þ

with x ¼ γδd0=Ω2
c and bn ¼

ffiffiffi
π

p ðd=aÞ exp½−ðnπd=aÞ2�
while χp0 ¼ xχpb. In Fig. 3, we plot the numerically
calculated coefficients fpa and fpb (approximately equal
to each other), along with χpa and χpb, as a function of
dynamic shift. By varying δd0 we can balance the first-order
modulation amplitudes of real and imaginary parts of the
probe susceptibility, i.e., χpa ¼ χpb, which is crucial to
attain non-Hermitian degeneracies (see below). This occurs
at δd0=2π ≃ 2.58 MHz for d ¼ a=5 [see Fig. 3(b)] while at
δd0=2π ≃ 1.68 MHz for d ¼ a=10 [not shown].
The property of high-contrast asymmetric reflectivity

can be examined either by incorporating Eq. (3) into a
transfer-matrix calculation [39] or by incorporating Eq. (4)
into a coupled-mode analysis as shown below. The former
method allows exact full numerical solutions with arbitrary
probe detunings Δp ≠ 0, while the latter method is favor-
able for getting physical insights in the relevant case of
vanishing probe detuning Δp ¼ 0. We present in Fig. 4
calculations of both left and right probe reflectivities as a
function of dynamic shift and probe detuning [Figs. 4(a)
and 4(b)], of dynamic shift at probe resonance [Figs. 4(c)

and 4(d)] with two insets showing the corresponding
reciprocal transmissivity spectra T ¼ TL ¼ TR. It is clear
that we have RLðδd0Þ ¼ RRð−δd0Þ for a given value of
detuning Δp, and there is a remarkable difference between
RLðδd0Þ and RRðδd0Þ when jΔpj is not too large [see
Figs. 4(a) and 4(b)]. As an example, we show in Figs. 4(c)
and 4(d) that a vanishing probe reflectivity (RL or RR)
occurs at the exceptional point of δd0=2π≃�1.68MHz
(δd0=2π ≃�2.58 MHz) for a smaller (larger) Gaussian
width d ¼ a=10 (d ¼ a=5). The reflectivity contrast
CR ¼ jðRR − RLÞ=ðRR þ RLÞj, sensitive to Δp and δd0,
quickly decreases from 100% to 80%, e.g., at the excep-
tional point of δd0=2π ≃�1.68 MHz (a ¼ 10d) when
jΔp=2πj is increased from 0 to 0.15 MHz.
Within the framework of non-Hermitian physics it is

possible that a pair of eigenvalues become degenerate and
the corresponding eigenvectors coalesce into a single state
(non-Hermitian degeneracy). In Fig. 5, we plot eigenvalues
λ�s ¼ t� ffiffiffiffiffiffiffiffiffiffi

rLrR
p

of the matrix S, which exhibit the typical
topology of a non-Hermitian degeneracy and, in particular, a
transition from complex values to real values at δd0=2π ≃
1.68 MHz along the branch cut at Δp ¼ 0. At the transition
point, rL becomes exactly zero [See Fig. 4(c)] and the matrix

(c)

(a) (b)

(d)

FIG. 2 (color online). Plots of 103ImðχpjÞ and 103ReðχpjÞ
[(a), (b)] vs lattice position ðz − zjÞ=a and probe detuning Δp=2π
with γ12=2π ¼ 2.0 kHz (increasing γ12=2π up to 20 kHz is
immaterial, while for larger values the absorption at each
trap center starts to increase somewhat, without qualitatively
affecting our results), γ=2π ¼ 3.0 MHz, Ωc=2π ¼ 2.0 MHz,
Ωd=2π ¼ 16 MHz, Δc ¼ 0, Δd=2π ¼ 300 MHz, a ¼ 5d≃
400 nm, d13 ¼ 2.0 × 10−29 Cm, and N0 ¼ 0.5 × 1012 cm−3.
[(c), (d)] Same as [(a), (b)] plotted at Δp ¼ 0 for Ωd=2π ¼
16 MHz (black circles), 22 MHz (red triangles), 28 MHz (blue
squares).

(a) (b)

FIG. 3 (color online). Plots of fpa and fpb (a); χpa and χpb
(b) vs dynamic shift δd0=2π attained from Eq. (4) with the same
parameters as in Fig. 2 except Δp ¼ 0.

(a)

(c) (d)

(b)

FIG. 4 (color online). Plots of RL (a) and RR (b) vs dynamic
shift δd0=2π and probe detuning Δp=2π for atomic lattices of
length L ¼ 0.6 mm with the same parameters as in Fig. 2 except
d ¼ a=10. Plots of RL (c) and RR (d) vs dynamic shift δd0=2π
with the same parameters as in (a) and (b) except Δp ¼ 0 and
d ¼ a=10 for red curves with triangles; d ¼ a=5 for blue curves
with squares. The two insets show the corresponding reciprocal
transmissivity T ¼ TL ¼ TR.
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S (un-normalized) eigenvectors jφ�i ¼ ð� ffiffiffiffiffiffiffiffiffiffiffiffi
rL=rR

p
; 1ÞT

coalesce into the (only) state jφdi¼ ð0;1ÞT so that rL ¼ 0
represents a non-Hermitian degeneracy. Since the eigenvec-
tors fjφþi; jφ−ig are not orthogonal and coalesce into the
(only) state jφdi at degeneracy (rL ¼ 0), they no longer
form a complete basis. As commonly done with the
non-Hermitian matrices, one needs to introduce the left
eigenvectors h ~φ�j ¼ ð� ffiffiffiffiffiffiffiffiffiffiffiffi

rR=rL
p

; 1Þ [40]. Left and right
eigenvectors (for distinct eigenvalues λ�s ) are now orthogo-
nal h ~φ�jφ∓i ¼ 0, yet at degeneracy they are self-orthogonal,
i.e., h ~φdjφdi ¼ 0, which reflects the fact that the matrix S
can no longer be diagonalized. Despite the fact that self-
orthogonality is difficult to observe [41], we note that the
state jφdi corresponds, through Eq. (1), to a well defined
physical scattering state with E−

L ¼ E−
R ¼ 0, Eþ

R ¼ t, and
Eþ
L ¼ 1, i.e., a state with complete one-way reflectionless

propagation for light coming from the left. An analogous
discussion holds for the other non-Hermitian degeneracy
rR ¼ 0 [see Fig. 4(d)].
At Δp ¼ 0, analytical coupled-mode equations can be

derived for the probe field EpðzÞ ¼ EfðzÞ exp½þiβz=2� þ
EbðzÞ exp½−iβz=2� using the zero- and first-order compo-
nents of χpðzÞ from Eq. (4) in the Helmholtz equation;
proceeding as usual, we obtain

∂zEf ¼ −η1½xEf þ ð1þ xη2=2ÞEb�;
∂zEb ¼ þη1½xEb − ð1 − xη2=2ÞEf� ð5Þ

with η1 ¼ βχpb=8 and η2 ¼ ð2=xÞðχpa=χpbÞ. The forward
(Ef) and backward (Eb) components experience different
cross feedback if xη2 ≠ 0 (χpa ≠ 0). The non-Hermitian
degeneracy corresponds, in fact, to xη2 ¼ �2 whereby one
component suffers only self absorption, i.e., loses all
feedback from the other component.
Using boundary conditions Efð0Þ ¼ EL0 and EbðLÞ ¼ 0

as well as Efð0Þ ¼ 0 and EbðLÞ ¼ ER0, we can determine
from Eqs. (5) the nonreciprocal reflectivities

RR;L ¼
���� �η1ð1� xη2=2ÞðeþλL − e−λLÞ
ðλþ xη1ÞeþλL þ ðλ − xη1Þe−λL

����
2

ð6Þ

with propagation constant λ ¼ �η1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2ð1 − η22=4Þ þ 1

p
.

The reciprocal transmissivity T ¼ TR ¼ TL has a similar
expression in which the numerator is 2λ instead. Thus, RL
will be different from RR if we have xη2 ≠ 0. At the
exceptional point x ¼ 2=η2, in particular, λ ¼ �xη1,
T ¼ e−2xη1L, RL ¼ 0, and RR ¼ ½e−2xη1L − 1�2=x2. For
sufficiently long and dense atomic lattices, T → 0

and RR → 1=x2 ¼ ½fpaðb1 − b3Þ�2=½2fpbðb0 − b2Þ�2 ≃
½ðb1 − b3Þ=ðb0 − b2Þ�2=4 so that a smaller d=a is desired
for attaining a larger RR with RL ¼ 0 and T → 0.
Modulating the dressing field detuning from þΔd to
−Δd, we obtain instead T → 0, RR ¼ 0, and RL ≃
½ðb1 − b3Þ=ðb0 − b2Þ�2=4. These analytical predictions
based on the coupled-mode theory are in excellent agree-
ment with the numerical calculations based on the transfer-
matrix approach.
In summary, full unidirectional reflectionless behavior of

light transport in a 1D scattering medium occurs at non-
Hermitian degeneracies of the scattering matrix S. Cold
atomic lattices are shown to be a viable platform to explore
the intriguing structures of these degeneracies, intrinsic to
non-Hermitian optics even without gain.
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