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We exactly solve the initial-boundary value problem of interaction of three waves in the limit when one of these
waves is strongly damped. The solution is applied to the characterization of transient effects in Raman amplifiers,
with a special emphasis on the possibility of generating Stokes pulses with peak powers that are orders of magnitude
higher than the input power of the pump beam. © 2011 Optical Society of America
OCIS codes: 060.2310, 060.2320, 230.4320, 190.2640.

Fiber-optic Raman amplifiers are widely used in many
contemporary high-speed optical networks. Because of
their broad amplification bandwidth, Raman amplifiers
successfully compete with erbium-doped-fiber amplifiers
[1]. The counterpumped geometry is particularly advan-
tageous in smoothing the fluctuations of the signal beam
resulting from the transfer of the relative-intensity noise
from the pump beam. When a Raman amplifier is inte-
grated into an optical network, the power of the input
signal beam coupled to the Raman amplifier changes
due to channel add/drop modules or cable cuts. As a re-
sult of these changes transient effects at the output may
occur, see [2–4]. The analytical study of these transient
effects is the main objective of this Letter. Moreover, we
suggest exploiting transient effects in Raman amplifiers
for the generation of short optical pulses with high peak
powers.
As a most representative example, let us consider the

situation when initially (at t ¼ 0) only a CW pump beam
of peak power P, which enters the fiber at z ¼ 0, is pres-
ent across the entire fiber span of total length L. The
Stokes signal beam is absent in the fiber medium for
t < 0, and it enters the fiber from the opposite end at z ¼
L at time t ¼ 0. In the case when the input Stokes signal
has a step function time profile, the output signal ac-
quires the characteristic shape of a giant spike followed
by a low-intensity tail; see Fig. 1.
In optical communication networks, such spikes may

appear when for some reason the Stokes signal into the
amplifier is not present for a relatively long time. These
sudden bursts of radiation can be detrimental for subse-
quent optical components. However, the disadvantage
can be turned into an advantage, whenever the transient
amplification regime is used for the generation of ultra-
short pulses with peak powers at much higher levels than
would be possible in the steady-state amplification
regime.
For instance, consider a 30 dB linear gain Raman am-

plifier counterpumped by a 500mW pump beam. In the
steady-state regime, the power of the output signal can-
not exceed 500mW. However, it turns out that in the tran-
sient regime, the same Raman amplifier may deliver up to
1kW peak power in a short Stokes pulse, assuming that
the input power of the signal pulse is on the order of 1W.

The physical mechanism leading to such gigantic ampli-
fication lies in the observation that the front edge of the
signal pulse always propagates through an undepleted
amplifier: thus it continuously experiences exponential
linear gain. Potentially, the signal pulse can devour all
of the energy that is supplied by the pump beam. In a
loose sense, the energy of a long pump pulse (of duration
estimated as the time which is needed for the pump beam
to traverse the fiber of length L) is compressed into a sig-
nal pulse of much shorter temporal duration. A similar
method was used for the generation of multi-MJ multi-
exawatt-laser pulses in plasmas, reported in [5].

As is well-known for transient effects in fiber-optic
Raman amplifiers, the material wave may be considered
as strongly damped. This leads to two simple rate equa-
tions describing the unidirectional transfer of photons
from the pump beam into the Stokes beam [6]. To the
best of our knowledge, we solve the initial-boundary
value associated with these rate equations exactly for
the first time. Previously, only perturbative approaches
were reported: first in a classical paper on backward
Raman amplification [7], and later in [4]. In our minimal
model, we only consider the first-order Raman scattering
effect and disregard the presence of group-velocity dis-
persion, which can be of some relevance whenever
the Stokes signal consists of picosecond or shorter

Fig. 1. (Color online) Step-like excitation. Output signal calcu-
lated with the exact formula (21) (black solid curve) and ap-
proximate formula (4.6) from [7] (red dashed curve). (left)
Ain ¼ 10−4, (right) Ain ¼ 10−2, where Ain is the size of the initial
step. For both cases, P ¼ 0:5 and L ¼ 10. When expressed in
dimensional units, one dimensionless unit of power corre-
sponds to 1W, unit of time to 0:12ms, and unit of length to
0:4 km. All are related to the example of a dispersion-
compensating fiber considered in the body of the text.
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pulses. We also do not account for the linear losses of the
transmission fiber.
We adopt as an underlying model an ensemble of non-

interacting two-level molecules, where each molecule
with susceptibility α is described by the HamiltonianH ¼
H0 −

1
2 ð∂α=∂qÞqE2 [7]. Here q is the oscillator displace-

ment, E ¼ Es cosðωstþ kszÞ þ Ep cosðωpt − kpzÞ is the
applied electric field with real slowly varying Stokes (sig-
nal) and pump amplitudes Es and Ep centered at corre-
sponding frequencies ωs;p and wave vectors ks;p,H0 is the
total molecular Hamiltonian in the absence of the fields,
and the two levels are eigenstates of H0. In the rate equa-
tion approximation and under the assumption that the
molecular vibration ground state population is not signif-
icantly changed, while anti-Stokes and higher-order
Stokes generation are ignored, one obtains the system
of rate equations for the signal and pump powers Ps

and Pp

−∂XPs þ ðn=cÞ∂TPs ¼ gRPsPp; ð1Þ

∂XPp þ ðn=cÞ∂TPp ¼ −gRPsPp; ð2Þ

where n is the refractive index of the Raman-active medi-
um, c is the speed of light, Z is the propagation distance,
T is time, and gR is the Raman gain coefficient. After
introducing dimensionless variables x ¼ X=LR, t ¼
cT=nLR, A ¼ Ps=P0, and B ¼ Pp=P0 with L−1

R ¼ gRP0
and P0 ¼ 1W, we arrive at the equations

∂tA − ∂xA ¼ 2AB; ð3Þ

∂tBþ ∂xB ¼ −2AB; ð4Þ

which are the basis of our analysis. Initial and boundary
conditions for the pump beam read as

Bð0; tÞ ¼ P; 0 ≤ t < ∞; ð5Þ

Bðx; 0Þ ¼ P; 0 ≤ x ≤ L; ð6Þ

and the initial and boundary conditions for the signal
beam are

AðL; tÞ ¼ ALðtÞ; 0 < t < ∞; ð7Þ

Aðx; 0Þ ¼ 0; 0 ≤ x ≤ L: ð8Þ
The general solution to Eqs. (3) and (4) can be written

in terms of two unknown functions aðξÞ and bðηÞ, each
depending on a single variable:

Aðx; tÞ ¼ ∂ξaðξÞ
aðξÞ þ bðηÞ ; ð9Þ

Bðx; tÞ ¼ −
∂ηbðηÞ

aðξÞ þ bðηÞ : ð10Þ

Here η ¼ t − x and ξ ¼ tþ x. The exact form of these
functions depends on the initial and boundary condi-
tions, and our goal is to find out how.

Let us use the general solution for writing down the
temporal variations of the signal and pump beams at
x ¼ 0:

A0ðtÞ ¼
∂taðtÞ

aðtÞ þ bðtÞ ; ð11Þ

P ¼ −
∂tbðtÞ

aðtÞ þ bðtÞ : ð12Þ

The problem is solved when A0ðtÞ≡ Aðt; 0Þ is found as
function of ALðtÞ≡ Aðt; LÞ. By combining the previous
two expressions we can formulate the equation

d

dt
½aðtÞ þ bðtÞ� ¼ ½A0ðtÞ − P�½aðtÞ þ bðtÞ�: ð13Þ

In the interval 0 ≤ t ≤ L, A0ðtÞ is zero, since the signal
pulse did not have enough time to propagate from x ¼
L to x ¼ 0. Thus we can write the solution of Eq. (13) as

aðtÞ þ bðtÞ ¼ e−Pt; 0 ≤ t ≤ L; ð14Þ

and for t ≥ L, we get

aðtÞ þ bðtÞ ¼ eα0ðtÞ−Pt; ð15Þ

where α0ðtÞ≡
R
t
0 dt

0A0ðt0Þ. We are now ready to find aðtÞ
and bðtÞ separately, by using Eqs. (14) and (15). For
0 ≤ t ≤ L, we get aðtÞ ¼ 0 and bðtÞ ¼ expð−PtÞ, and

aðtÞ ¼ eα0ðtÞ−Pt − e−Pt ð16Þ
for L ≤ t ≤ 2L. Thus, we have found aðtÞ for t ≤ 2L and bðtÞ
for t ≤ L as a function of α0ðtÞ, which is the quantity to be
determined. In order to link this quantity to the known
function ALðtÞ, by using Eqs. (11) and (15) we can write

A0ðtþ LÞ ¼ ∂taðtþ LÞ
exp½α0ðtþ LÞ − Pðtþ LÞ� ; ð17Þ

and in parallel, by using Eq. (9), we get

ALðtÞ ¼
∂taðtþ LÞ

aðtþ LÞ þ exp½−Pðt − LÞ� : ð18Þ

By eliminating ∂taðtþ LÞ from these two equations, we
obtain

A0ðtþ LÞeα0ðtþLÞ ¼ ALðtÞ½ePðtþLÞaðtþ LÞ þ e2PL�: ð19Þ

The expression for aðtþ LÞ can be found by solving
Eq. (18)

aðtþ LÞ ¼ eαLðtÞ
Z

t

0
dt0ALðt0Þe−αLðt0Þ−Pðt0−LÞ; ð20Þ

with αLðtÞ ¼
R
t
0 dt

0ALðt0Þ. With Eq. (20) in Eq. (19), and
observing that A0 expðα0Þ ¼ ∂t expðα0Þ, upon integration
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of both sides of Eq. (19), we finally obtain the shape of
the output signal for L ≤ t ≤ 2L as

A0ðtÞ ¼
ALðt − LÞ expð2PLÞf ðt − LÞ

1þ expð2PLÞ R t−L
0 dt0ALðt0 − LÞf ðt0 − LÞ ; ð21Þ

where f ðtÞ≡ 1þ exp½gðtÞ� R t
0 dt

0 exp½−gðt0Þ�ALðt0Þ with
gðtÞ≡ αLðtÞ þ Pt. This expression, which links the output
Stokes temporal shape to its input shape, completes the
analytical part of our study.
Figure 1 illustrates the application of formula (21) to

the case of a steplike excitation. Also shown is the com-
parison with the perturbative formula derived in [7].
Since we are only interested in the characterization of the
spike, the behavior of the signal beam for t > 2L is unim-
portant. The most impressive feature of the output signal
shown on the right panel of Fig. 1 is that the peak power
is 44 times larger than the pump power. Pulses are am-
plified in a similar fashion; see Fig. 2. As in the example of
the steplike excitation, the signal is absent for t < 0. Then
a pulse sequence consisting of nine identical pulses, each
described by ALðtÞ ¼ exp½−ðt − t0Þ2=T2

p�, where t0 is initial
time shift and Tp the pulse duration, is applied at t ¼ 0
until t ¼ 0:5. The longer the pulse in the sequence, the
lower its output peak power, as illustrated in Fig. 3(a).
According to our normalization, the values P ¼ 0:5 and

L ¼ 10 correspond to a pump power of 500mW and a
4km length of dispersion compensating fiber with
gR ¼ 2:5 ðkmWÞ−1. The linear gain of this amplifier is
expð2PLÞ ¼ 43 dB. The green dotted curve in Fig. 3(b),
plotted for Tp ¼ 0:0005 (corresponding to 6 ns duration),
suggests that for pulses shorter than 1ns, the output
power reaches the 10 kW level for an input signal power
of 10W. In this case, the striking feature is the gigantic
amplification of 10W signal pulses by a pump beam with
a power as low as 500mW. In order to get such a high
level of amplification for each pulse in the sequence,
the pulses should be separated in distance at least by
L, which corresponds to the repetition rate of 800 kHz
in our example. Note that Maier et al. [7] reported signal
power that was 20 times the peak pump power after the
signal was amplified in CS2.
For high-power Stokes pulses, cascade second- and

higher-order Raman scattering may become impor-
tant. Interesting physics is expected for sub-100 fs
pulses, for which the intrapulse Raman conversion of

energy may lead to the effective generation of a super-
continuum. Note also that similar transient effects are ex-
pected in copumped Raman amplifiers, given a sizable
mismatch of group velocities of the pump and signal
beams. However, in fibers, the mismatch cannot be very
large, and therefore transients are not as pronounced as
in the counterpumped case (see [8]).

In conclusion, we exactly solved the initial-boundary
value problem of three-wave interaction, with one wave
strongly damped. We applied the solution of this problem
to the characterization of transient effects in counter-
pumped Raman amplifiers. This solution can be useful in
the analysis of telecom networks. We emphasized the
fact that the peak power of the output Stokes pulse
may significantly exceed the peak power of the CW pump
beam.
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Fig. 2. Illustration of the Raman amplification of a sequence of
short pulses. Parameters are P ¼ 0:5, L ¼ 10, the peak intensity
of each input pulse 0.01: (a) input, (b) output.

Fig. 3. (Color online) (a) Output intensity of the leading pulse
in the sequence as function of initial pulse duration Tp, (b) out-
put intensity versus input intensity for three values of the pulse
duration Tp: 0.002 (black solid curve), 0.001 (red dashed curve),
0.0005 (green dotted curve). Parameters are P ¼ 0:5, L ¼ 10.
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