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We present numerical simulations by means of the generalized nonlinear envelope equation of harmonic and
supercontinuum generation induced by femtosecond pump pulses in optical media with both quadratic and
third-order nonlinearities. Application examples to higher harmonic generation in periodically poled lithium
niobate and optical parametric generation of a mid-infrared continuum in gallium arsenide are discussed.
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1. INTRODUCTION

In recent years there has been a great deal of interest in
research on high-order harmonic generation (HHG) [1]
and supercontinuum (SC) [2] in nonlinear optical media
for the control of light fields on time scales of the order of
the optical carrier period. In particular, it has been shown
that the generalized nonlinear envelope equation (GNEE)
approach [3-5] is capable of modeling the sub-cycle dy-
namics in cubic nonlinear media with an accuracy which
is comparable to the direct solution of Maxwell’s equa-
tions [6]. In recent years efficient HHG has been pre-
dicted to occur in quadratic nonlinear media by means of
numerical simulations [7], whereas SC [8-10] has been
experimentally observed in both quadratic and cubic non-
linear media. However, theoretical modeling of these SC
experiments has not yet been performed. Therefore inter-
esting questions remain to be answered, for example, to
which extent the observed SC generation is due to the
quadratic or to the cubic (possibly through cascading ef-
fects) contributions to the nonlinear response of the ma-
terial.

In this work we perform such a modeling based on the
extension of the GNEE approach of Genty et al. [3] to the
case of a non-centrosymmetric nonlinear medium with
both second- and third-order contributions to the nonlin-
ear polarization. This approach enables us to carry out
numerical simulations that describe optical parametric
amplification [11] or quasi-phase-matched second har-
monic generation (SHG) in periodically poled crystals
[12,13] by means of a single equation for the total field en-
velope. Note that these well-known phenomena have been
previously described in terms of separate equations for
each of the interacting fields.

In Section 2 of this paper we present the theoretical
derivation from the scalar wave equation of the GNEE
equation for the field envelope (containing in principle ar-
bitrarily fast temporal variations) subject to the effects of
linear dispersion as well as both quadratic and cubic con-
tributions to the nonlinear polarization. In Section 3 we
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validate the GNEE approach in the presence of a qua-
dratic nonlinearity only and in the absence of linear dis-
persion, by comparing its solution with the direct solution
of Maxwell’s equations by means of the so-called pseu-
dospectral spatial domain (PSSD) method [5]. We have
considered here the rather extreme situation of a single
cycle pulse. Finally, in Section 4 we present different ex-
amples of practical applications of the GNEE approach to
describe frequency generation based on quasi-phase-
matching (QPM), whereby phase-matching between the
fundamental harmonic and the second harmonic (SH) is
obtained by periodically poling the second-order nonlin-
ear susceptibility [12,13]. First, we simulated higher har-
monic and SC generation in periodically poled lithium
niobate (PPLN) [9]. Next, we modeled the generation by
optical parametric mixing of a mid-infrared (MIR) con-
tinuum in orientation-patterned gallium arsenide [10].

2. EQUATIONS

Let us consider the propagation of linearly polarized ul-
trashort pulses in a nonlinear medium exhibiting both
quadratic and cubic nonlinearities, i.e., the total nonlin-
ear polarization can be written as PNL=Pg£+P(N3£
=go(YPE?+x®E3). In the frequency domain, the scalar
wave equation reads as

[+ k2(0)]E(z,0) = - poo?Py(z,0), (1)
where

P w) = e(w)0?/c?,

E@z,0) = f E(z,t)expliot)dt,

Pyi(z,0) = f Py (z,t)expliot)dt,
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e(w) = (n(w) + ic(w)c/2w)2,

n is the refractive index, and « is the linear loss coeffi-
cient. By using analytical methods such as the Green’s
function approach [14], one may transform Eq. (1) in the
two coupled (via nonlinearity) first-order equations,

2

~ (O
[(?z + lk(w)]Et(Zaw) == i#omPNL(Z,w)’ (2)

for the forward, E,(z,w), and backward, E_(z, w), propa-
gating components of the field E(z,w) EE’+(2, w)+E'_(z, w).

Whenever the nonlinear polarization represents a rela-
tively weak perturbation to the linear dielectric suscepti-
bility, it is possible to neglect the coupling between
counter-propagating waves [15-17]. This means that we
may separately consider the first of Egs. (2) that describes
the evolution of the forward field component alone. By ex-
pressing this field as E(z,t)=(A(z,t)exp(-iwgt)+c.c.)/2
(dropping for simplicity the plus index), where wy, and
A(z,t) are an arbitrary carrier frequency and an envelope
function, one obtains

> _
[az - lk(w)]g(z’ a)) = iﬂomﬁNL(Zy waA)y (3)

where

Az,0) = f Az, t)exp{i(w — wy)t}dt,

Pz, w) = f Pz, t)expli(w — wo)t}dt,

PNL(Z,t) = (pNL(z,t)eXp(— iwot) + c.c.)/2,

and py1,= pﬁi +p S’i Moreover,

P& (z,1) = e0x?(2|A2exp(iwgt) + A% exp(— iwgt))/2,

P& (2,t) = eox®(3|A2A + A® exp(- 2iwt))/4,

where |A|f only contains frequency components with o
=0. Therefore Eq. (3) can be written as

[(92 - if(w) + g}g(z,w) = ip(w)Pni(z, 0,A), (4)

where k(w)=n(w)o/c+a(w)/2=p(w)+a(w)/2 and p(w)
=w/2n(w)ceg, and we neglected the contribution of the
loss coefficient « with respect to the propagation constant
B in the denominator of the right-hand side of Eq. (4). By
performing a Taylor expansion of 8 and p around a carrier
frequency wj, one may transform Eq. (4) in the time do-
main and obtain the GNEE for the evolution of A(z,?),

[0Z-D + g}A(z,t) =Npi(z,t,A), (5)

where the dispersion operator D is formally written as
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im+1 amB I
p=S —<m) )

=0 Mm!:
m=0 w=aw;

and the nonlinearity operator N is

N E im+1 amp gn
2y m \owm) o™

where the series is typically truncated to the first-order
term so that

N=ipy(1+irydlit),
where pg= wg/2ncegy, ng=n(wy), and

7o = Hawo = {9[In(n(w)) VI 0} ooy, -

Equation (5) may be easily numerically solved by
means of the standard split-step Fourier method, where
the action of the dispersive step is computed as a phase
shift in the frequency domain, and the nonlinear step is
computed by a simple integration in the time domain. The
strengths of the second- and third-order nonlinearities
are typically measured in terms of deg=x?/2 and the
nonlinear refractive index ny=3y'3'/8n,, respectively.

3. MODEL VALIDATION

In order to verify the accuracy of the GNEE (5), we com-
pared its solution with the direct PSSD integration of
Maxwell’s equations [5]. For the sake of simplicity, we ne-
glect dispersion and set PEP%{:SO)((Q)E% with ¥2=0.02.
We consider the initial 1 cycle pulse E(z=0,¢)
=cos(wyt)sech(0.3w,t) (with, e.g., \,=2mc/ w,=830 nm).
Figure 1(a) compares the PSSD (solid curves) and
GNEE (empty dots) solutions for the electric field after
6 um, which indeed agrees with the prediction of Eq. (2)
of [7]: this point corresponds to a carrier wave shock
[6,18,19], i.e., a vertical trailing edge for the central car-
rier oscillation; whereas Fig. 1(b) compares the associated
spectral intensities showing HHG (of the carrier fre-
quency w,). As can be seen, there is a relatively good
agreement between the solution of the GNEE (5) and the
PSSD simulations. In all GNEE simulations, we only
used n=211 sampling points in the physical spectral win-
dow, compared with at least 214 data points for the PSSD
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Fig. 1. Carrier wave shock induced by x?: comparison of PSSD
(solid curves) and GNEE (empty dots) solutions for (a) the elec-
tric field and (b) the spectral amplitude of 1 cycle pulse at 830 nm
at the carrier wave shock point as predicted by Eq. (2) of [7].
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runs. For better numerical stability with a quadratic non-
linearity, we applied Oszag’s 2/3 rule by padding with n/3
zeros the upper and lower parts of the spectral range. The
GNEE simulation in Fig. 1 only took 100 s when running
MATLAB on a laptop personal computer. Clearly, a main
advantage of the GNEE approach is that it permits one to
include in a straightforward manner the frequency-
dependent linear propagation constant B(w) in the model-
ing of short pulse propagation.

4. APPLICATION EXAMPLES

As examples of practical application of the single-
equation description of wave propagation in quadratic
and cubic nonlinear materials which is provided by the
GNEE (5), let us consider in this section the two main
parametric mixing processes leading to either frequency
doubling or frequency-difference generation in quasi-
phase-matched crystals. Indeed, recent experiments by
Langrock et al. [9] demonstrated dramatic SHG and HHG
in PPLN. Figure 2(a) shows the wavelength dependence
of both the group delay and the group velocity dispersion
D for light propagating along the extraordinary axis in
LiNbOj [20]. In the solution of Eq. (5), we used a square-
wave spatial modulation of the second-order nonlinear co-
efficient from +d.g to —d g with a QPM period D, where
der=25.2 pm/V and n4=5.3x 1071% cm? W-1, and we com-
pared the propagation of a 32 fs 2 GW/cm?2 pump pulse at
either 2.4 um (Fig. 3) or 1.58 um (Figs. 4 and 5).

Figure 3 illustrates the spectrogram, the amplitude of
the field envelope, and the spectral intensity profile gen-
erated after 5.8 mm of PPLN from the input 4 cycle pulse
at 2.4 um, where the QPM period of D=34.5 um was ob-
tained from the dispersion curve in Fig. 2. The spectro-
gram in Fig. 3 reveals the details of the temporal struc-
ture of the HHG process: a few-cycle SH pulse is
generated with the same intensity and similar duration
as the pump, along with a time-compressed weaker third-
harmonic pulse, whereas the fourth harmonic presents a
continuous-wave radiation peak. The formation of a few-
cycle SH pulse is facilitated by the fact that the funda-
mental harmonic and the SH are located on opposite sides
of the zero dispersion wavelength of \ypw=1.98 um [see
Fig. 2(a)], which leads to the reduced group-velocity mis-
match (GVM)-induced delay of 60 fs/mm. We have propa-
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Fig. 2. Plot of dispersion and group delay versus wavelength for
propagation along (a) the extraordinary axis of LiNbO; or (b) in
GaAs.
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Fig. 3. (Color online) Display of the spectrogram (with a 25 fs
gate function), field envelope, and spectral amplitude profiles
showing QPM-SHG of a 32 fs 2 GW/cm? pump pulse at 2.4 um
after 5.8 mm of PPLN. The QPM period is 34.5 um.

gated the field up to 17.5 mm and observed a total 500 fs
temporal walk-off between the fundamental and the SH
pulses, which is half the value of that predicted from Fig.
2(a). The discrepancy results from the nonlinear trapping
of the pump and SH pulses over the first 8 mm of propa-
gation.

On the other hand, Figs. 4 and 5 show that for an input
pump pulse at 1.58 um the GVM is so large that no mu-
tual trapping with the SH is possible: as a result, the SH
(and third-harmonic) energy is uniformly distributed in
relatively long pulses. In the simulation in Fig. 4 the
pump pulse duration and intensity were the same as in
Fig. 3. Moreover, we kept the QPM period unchanged at
34.5 um as in Fig. 3 so that no phase-matching occurs be-
tween the pump and its SH. Still, it is quite remarkable to
note that broadband higher harmonic generation is ob-
served even for a strongly mismatched situation, albeit
with a largely reduced peak efficiency. Clearly (as shown
in Fig. 5) the SHG conversion efficiency is substantially
improved whenever the QPM period is reduced to

1 2 3 4 Intensity
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Fig. 4. (Color online) Same as Fig. 3, for pump pulse at 1.58 um.
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Fig. 5. (Color online) Same as Fig. 4, with the QPM period of
19.9 um that is adapted for SHG with a pump pulse at 1.58 um.
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Fig. 6. (Color online) Same as Fig. 3, showing QPM-induced SC
from the mixing of a 500 fs 1 GW/cm? pump at 3.31 um and a
100 fs 20 MW/cm? signal at 5.5 um in 4 mm of GaAs.

19.9 um so that the pump at 1.58 um and its SH wave-
length are now phase-matched.

Next we modeled by means of Eq. (5) the recently ob-
served optical parametric generation of a MIR continuum
in orientation-patterned GaAs [10], whose dispersion is il-
lustrated in Fig. 2(b) [20]. Figure 6 shows the MIR SC ex-
tending from 5 to 10 um that results from the mixing of a
500 fs 1 GW/cm? pump pulse centered at 3.31 um with a
100 fs 20 MW/cm? signal pulse at 5.5 um, after propaga-
tion through 4 mm of QPM-GaAs with d.4=69 pm/V, ny
=15%x10"1% cm® W1 [10], and the QPM period of
163 um. As shown in Fig. 2(b), in GaAs the signal at
5.5 um and the parametrically generated idler at 9.5 um
are on opposite sides of the zero dispersion wavelength
Azpw=6.84 um, and the resulting broadband GVM
matching leads to wideband SC generation.

5. CONCLUSIONS

In conclusion we derived, validated, and provided appli-
cation examples of an effective approach based on a single
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GNEE describing the evolution of the arbitrarily fast op-
tical field envelope. This method enables the efficient nu-
merical study of ultrashort pulse propagation and fre-
quency conversion in both quadratic and cubic nonlinear
optical media.
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