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Abstract. Motivated by the study of certain non linear free-boundary value problems for hyperbolic

systems of partial differential equations arising in Magneto-Hydrodynamics, in this paper we show that

an a priori estimate of the solution to certain boundary value problems, in the conormal Sobolev space
H1
tan, can be transformed into an L2 a priori estimate of the same problem.

1. Introduction and main results

The present paper is motivated by the study of certain non linear free boundary value problems for
hyperbolic systems of partial differential equations arising in Magneto-Hydrodynamics (MHD).

The well-posedness of initial boundary value problems for hyperbolic PDEs was studied by Kreiss [15]
for systems and Sakamoto [28, 29] for hyperbolic equations of higher order. The theory was extended to
free-boundary problems for a discontinuity by Majda [17, 18]. He related the discontinuity problem to
a half-space problem by adding a new variable that describes the displacement of the discontinuity, and
making a change of independent variables that “flattens”the discontinuity front. The result is a system
of hyperbolic PDEs that is coupled with an equation for the displacement of the discontinuity. Majda
formulated analogs of the Lopatinskĭı and uniform Lopatinskĭı conditions for discontinuity problems, and
proved a short-time, nonlinear existence and stability result for Lax shocks in solutions of hyperbolic
conservation laws that satisfy the uniform Lopatinskĭı condition (see [3, 19] for further discussion).

Interesting and challenging problems arise when the discontinuity is weakly but not strongly stable,
i.e. the Lopatinskĭı condition only holds in weak form, because surface waves propagate along the dis-
continuity, see [11, 14]. A general theory for the evolution of such weakly stable discontinuities is lacking.

A typical difficulty in the analysis of weakly stable problems is the loss of regularity in the a priori
estimates of solutions. Short-time existence results have been obtained for various weakly stable nonlinear
problems, typically by the use of a Nash-Moser scheme to compensate for the loss of derivatives in the
linearized energy estimates, see [2, 7, 12, 32, 34].

A fundamental part of the general approach described above is given by the proof of the well-posedness
of the linear boundary value problems (shortly written BVPs in the sequel) obtained from linearizing
the nonlinear problem (in the new independent variables with “flattened”boundary) around a suitable
basic state. This requires two things: the proof of a linearized energy estimate, and the existence of the
solution to the linearized problem.

In case of certain problems arising in MHD, a spectral analysis of the linearized equations, as required
by the Kreiss-Lopatinskĭı theory, seems very hard to be obtained because of big algebraic difficulties.
An alternative approach for the proof of the linearized a priori estimate is the energy method. This
method has been applied successfully to the linearized MHD problems by Trakhinin (see [33, 35] and
other references); typically the method gives an a priori estimate for the solution in the conormal Sobolev
space H1

tan (see Section 2 for the definition of this space) bounded by the norm of the source term in the
same function space (or a space of higher order in case of loss of regularity).

Date: March 6, 2014.

2000 Mathematics Subject Classification. 35L40, 35L50, 35L45.
Key words and phrases. Boundary value problem, characteristic boundary, pseudo-differential operators, anisotropic

and conormal Sobolev spaces, Magneto-Hydrodynamics.

1



2 A. MORANDO, P. SECCHI, AND P. TREBESCHI

Once given the a priori estimate, the next point requires the proof of the existence of the solution to
the linearized problem. Here one finds a new difficulty. The classical duality method for the existence
of a weak L2 solution requires an a priori estimate for the dual problem (usually similar to the given
linearized problem) of the form L2 − L2 (from the data in the interior to the solution, disregarding for
simplicity the boundary regularity). In case of loss of derivatives, when for the problem it is given an
estimate of the form H1 − L2, one would need an estimate of the form L2 −H−1 for the dual problem,
see [10].

The existence of a solution directly in H1
tan would require an a priori estimate for the dual problem

in the dual spaces (H1
tan)′ − (H1

tan)′ (possibly of the form (H1
tan)′ − (H2

tan)′ in case of loss of regularity),
but it is not clear how to get it.

This difficulty motivates the present paper. We show that an a priori estimate of the solution to certain
BVPs in the conormal Sobolev space H1

tan can be transformed into an L2 a priori estimate, with the
consequence that the existence of a weak L2 solution can be obtained by the classical duality argument.

The most of the paper is devoted to the proof of this result. In the Appendix we present some examples
of free-boundary problems in MHD that fit in the general formulation described below.

For a given integer n ≥ 2, let Rn+ denote the n−dimensional positive half-space

Rn+ := {x = (x1, . . . , xn) ∈ Rn : x1 > 0}.
We also use the notation x′ := (x2, . . . , xn). The boundary of Rn+ will be sistematically identified with

Rn−1
x′ .

We are interested in a boundary value problem of the following form

Lγu+ ρ]u = F , in Rn+ , (1a)

bγψ +Mγu+ b]ψ + `]u = g , on Rn−1 . (1b)

In (1a), Lγ is the first-order linear partial differential operator

Lγ = Lγ(x,D) := γIN +

n∑
j=1

Aj(x)∂j +B(x) , (2)

where the shortcut ∂j := ∂
∂xj

, for j = 1, . . . , n, is used hereafter and IN denotes the N × N identity

matrix. The coefficients Aj = Aj(x), B = B(x) (1 ≤ j ≤ n) are N ×N real matrix-valued functions in
C∞(0)(R

n
+), the space of restrictions to Rn+ of functions of C∞0 (Rn)1.

In (1b),

bγ = bγ(x′, D′) := γb0(x′) +
n∑
j=2

bj(x
′)∂j + β(x′) , (3a)

Mγ =Mγ(x′, D′) := γM0(x′) +

n∑
j=2

Mj(x
′)∂j +M(x′) (3b)

are first-order linear partial differential operators, acting on the tangential variables x′ ∈ Rn−1; for
a given integer 1 ≤ d ≤ N , the coefficients bj , β and Mj , M (for j = 0, 2, . . . , n) are functions in
C∞0 (Rn−1) taking values in the spaces Rd and Rd×N respectively. Finally, ρ] = ρ](x, Z, γ) in (1a) and
b] = b](x

′, D′, γ), `] = `](x
′, D′, γ) in (1b) stand for “lower order operators” of pseudo-differential type,

acting “tangentially” on (u, ψ), whose symbols belong to suitable symbol classes introduced in Section
3.1. The operators ρ] = ρ](x, Z, γ), b] = b](x

′, D′, γ), `] = `](x
′, D′, γ) must be understood as some

“lower order perturbations” of the leading operators Lγ , bγ andMγ in the equations (1); in the following
we assume that the problem (1), with given operators Lγ , bγ , Mγ , obeys a suitable a priori estimate
which has to be “stable” under the addition of arbitrary lower order terms ρ]u, b]ψ, `]u in the interior

1With a slight abuse, the same notations C∞
(0)

(Rn+), C∞0 (Rn) are used throughout the paper to mean the space of

functions taking either scalar or matrix values (possibly with different sizes). We adopt the same abuse for other function

spaces later on.
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equation (1a) and the boundary condition (1b) (see the assumptions (H)1, (H)2 below). The structure
of the operators (3) and ρ], b], `] in (1) will be better described later on.
The unknown u, as well as the source term F , are RN−valued functions of x, the unknown ψ is a
scalar function of x′ 2 and the boundary datum g is an Rd−valued function of x′. We may assume
that u and F are compactly supported in the unitary n−dimensional positive half-cylinder B+ := {x =
(x1, x

′) : 0 ≤ x1 < 1 , |x′| < 1}. Analogously, we assume that ψ and g are compactly supported in
the unitary (n − 1)−dimensional ball B(0; 1) := {|x′| < 1}. For an arbitrary 0 < δ0 < 1, we also set
B+
δ0

:= {x = (x1, x
′) : 0 ≤ x1 < δ0 , |x′| < δ0} and B(0; δ0) := {|x′| < δ0}.

The BVP (1) has characteristic boundary of constant multiplicity 1 ≤ r < N in the following sense: the
coefficient A1 of the normal derivative in Lγ displays the block-wise structure

A1(x) =

(
AI,I1 AI,II1

AII,I1 AII,II1

)
, (4)

where AI,I1 , AI,II1 , AII,I1 , AII,II1 are respectively r × r, r × (N − r), (N − r) × r, (N − r) × (N − r)
sub-matrices, such that

AI,II1 | x1=0 = 0 , AII,I1 | x1=0 = 0 , AII,II1 | x1=0 = 0 , (5)

and AI,I1 is invertible over B+. According to the representation above, we split the unknown u as
u = (uI , uII); uI := (u1, . . . , ur) ∈ Rr and uII := (ur+1, . . . , uN ) ∈ RN−r are said to be respectively the
noncharacteristic and the characteristic components of u.
Concerning the boundary condition (1b), we firstly assume that the number d of scalar boundary condi-
tions obeys the assumption d ≤ r+ 1. As regards to the structure of the boundary operatorMγ in (3b),
we require that actually it acts nontrivially only on the noncharacteristic component uI of u; moreover
we assume that the first-order leading partMs

γ ofMγ only applies to a subset of components of the non

characteristic vector uI , namely there exists an integer s, with 1 ≤ s ≤ r, such that the coefficients Mj ,
M of Mγ take the form

Mj =
(
Ms
j 0

)
, M =

(
M I 0

)
, j = 0, 2, . . . , n , (6)

where the matrices Ms
j = Ms

j (x′) (j = 0, 2, . . . , n) and M I = M I(x′) belong respectively to Rd×s and

Rd×r. If we set uI,s := (u1, . . . , us), then the operatorMγ in (3b) may be rewritten, according to (6), as

Mγu =Ms
γu

I,s +M IuI , (7)

where Ms
γ is the first-order leading operator

Ms
γ(x′, D′) := γMs

0 +

n∑
j=2

Ms
j ∂j . (8)

As we just said, the operator `] = `](x
′, D′, γ) must be understood as a lower order perturbation of the

leading part Ms
γ of the boundary operator Mγ in (7); hence, according to the form of Mγ , we assume

that `] only acts on the component uI,s of the unknown vector u, that is

`](x
′, D′, γ)u = `](x

′, D′, γ)uI,s . (9)

A BVP of the form (1), under the structural assumptions (4)-(7), comes from the study of certain
non linear free boundary value problems for hyperbolic systems of partial differential equations arising
in Magneto-hydrodynamics. Such problems model the motion of a compressible inviscid fluid, under
the action of a magnetic field, when the fluid may develop discontinuities along a moving unknown
characteristic hypersurface. As we already said, to show the local-in-time existence of such a kind
of piecewise discontinuous flows, the classical approach consists, firstly, of reducing the original free
boundary problem to a BVP set on a fixed domain, performing a nonlinear change of coordinates that
sends the front of the physical discontinuities into a fixed hyperplane of the space-time domain. Then,
one starts to consider the well posedness of the linear BVP obtained from linearizing the found nonlinear
BVP around a basic state provided by a particular solution. The resulting linear problem displays the

2In nonlinear free-boundary problems the scalar function ψ describes the displacement of the discontinuity.
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structure of the problem (1), where the unknown u represents the set of physical variables involved in
the model, while the unknown ψ encodes the moving discontinuity front. The solvability of the linear
BVP firstly requires that a suitable a priori estimate can be attached to the problem.
Let the operators Lγ , bγ ,Mγ be given, with structure described by formulas (2), (3a), (4)-(8) above. We
assume that the two alternative hypotheses are satisfied:

(H)1. A priori estimate with loss of regularity in the interior term. For all symbols ρ] =
ρ](x, ξ, γ) ∈ Γ0, b] = b](x

′, ξ′, γ) ∈ Γ0 and `] = `](x
′, ξ′, γ) ∈ Γ0, taking values respectively in

RN×N , Rd and Rd×s, there exist constants C0 > 0, γ0 ≥ 1, depending only on the matrices Aj ,
B, bj , β, Ms

j , M I in (2), (3), (7), (8) and a finite number of semi-norms of ρ], b], `], such that for

all functions u ∈ C∞(0)(R
n
+), compactly supported on B+, ψ ∈ C∞0 (Rn−1), compactly supported

on B(0; 1), and all γ ≥ γ0 the following a priori energy estimate is satisfied

γ
(
||u||2H1

tan ,γ(Rn+) + ||uI| x1=0||
2

H
1/2
γ (Rn−1)

)
+ γ2||ψ||2H1

γ(Rn−1)

≤ C0

(
1

γ3
||F ||2H2

tan,γ(Rn+) +
1

γ
||g||2

H
3/2
γ (Rn−1)

)
,

(10)

where F := Lγu+ρ](x, Z, γ)u, g := bγψ+Mγu+ b](x
′, D′, γ)ψ+ `](x

′, D′, γ)uI,s and ρ](x, Z, γ),
b](x

′, D′, γ), `](x
′, D′, γ) are respectively the pseudo-differential operators with symbols ρ], b],

`].
(H)2. A priori estimate without loss of regularity in the interior term. For all symbols

b] = b](x
′, ξ′, γ) ∈ Γ0 and `] = `](x

′, ξ′, γ) ∈ Γ0, taking values respectively in Rd and Rd×s, there
exist constants C0 > 0, γ0 ≥ 1, depending only on the matrices Aj , B, bj , β, Ms

j , M I in (2),
(3), (7), (8) and a finite number of semi-norms of b], `], such that for all functions u ∈ C∞(0)(R

n
+),

compactly supported on B+, ψ ∈ C∞0 (Rn−1), compactly supported on B(0; 1), and all γ ≥ γ0 the
following a priori energy estimate is satisfied

γ
(
||u||2H1

tan ,γ(Rn+) + ||uI| x1=0||
2

H
1/2
γ (Rn−1)

)
+ γ2||ψ||2H1

γ(Rn−1)

≤ C0

γ

(
||F ||2H1

tan,γ(Rn+) + ||g||2
H

3/2
γ (Rn−1)

)
,

(11)

where F := Lγu, g := bγψ+Mγu+ b](x
′, D′, γ)ψ+ `](x

′, D′, γ)uI,s and b](x
′, D′, γ), `](x

′, D′, γ)
are respectively the pseudo-differential operators with symbols b], `].

The symbol class Γ0 and the related pseudo-differential operators will be introduced in Section 3.1. The
function spaces and the norms involved in the estimates (10), (11) will be described in Section 2.
By the hypotheses (H)1 and (H)2, we require that an a priori estimate in the tangential Sobolev space
(see the next Section 2 and Definition 3 below) is enjoyed by the BVP (1). The structure of the estimate
is justified by the physical models that we plan to cover (see the Appendix B). The inserting of the zeroth
order terms ρ](x, Z, γ)u, b](x

′, D′, γ)ψ, `](x
′, D′, γ)uI,s in the interior source term F and the boundary

datum g is a property of stability of the estimates (10), (11), under lower order operators. We notice, in
particular, that the addition of `](x

′, D′, γ)uI,s in the boundary condition (1b) only modifies the zeroth
order term M IuI for the part that applies to the components uI,s of the noncharacteristic unknown
vector uI , see (7), (9). This behavior of the boundary condition, under lower order perturbations, is
inspired by the physical problems to which we address. It happens sometimes that the specific structure
of some coefficients involved in the zeroth order part of the original ”unperturbed” boundary operator
(7) is needed in order to derive an a priori estimate of the type (10) or (11) for the corresponding BVP
(1); hence these coefficients of the boundary operator must be kept unchanged by the addition of some
lower order perturbations.
Note also that the two a priori estimates in (10), (11) exhibit a different behavior with respect to the
interior data: in (10) a loss of one tangential derivative from the interior data F occurs, whereas in (11)
no loss of interior regularity is assumed. According to this different behavior, a stability assumption
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under lower order perturbations ρ] of the interior operator Lγ is only required in (H)1.
Both the estimates exhibit the same loss of regularity from the boundary data.

The aim of this paper is to prove the following result.

Theorem 1. Assume that the operators Lγ , bγ , Mγ have the structure described in (2), (3a), (4)-(8).
Let 0 < δ0 < 1.

1. If the assumption (H)1 holds true, then for all symbols ρ], b], `] ∈ Γ0 there exist constants C̆0 > 0,
γ̆0 ≥ 1, depending only on the matrices Aj, B, bj, β, Ms

j , M I in (2), (3), (7), (8), δ0 and a
finite number of semi-norms of ρ], b], `], such that for all functions u ∈ C∞(0)(R

n
+), compactly

supported on B+
δ0

, ψ ∈ C∞0 (Rn−1), compactly supported on B(0; δ0), and all γ ≥ γ̆0 the following
a priori energy estimate is satisfied

γ
(
||u||2L2(Rn+) + ||uI| x1=0||

2

H
−1/2
γ (Rn−1)

)
+ γ2||ψ||2L2(Rn−1) ≤ C̆0

(
1

γ3
||F ||2H1

tan,γ(Rn+) +
1

γ
||g||2

H
1/2
γ (Rn−1)

)
,

(12)
where F := Lγu+ ρ](x, Z, γ)u and g := bγψ +Mγu+ b](x

′, D′, γ)ψ + `](x
′, D′, γ)uI,s.

2. If the assumption (H)2 holds true, then for every pair of symbols b], `] ∈ Γ0 there exist constants

C̆0 > 0, γ̆0 ≥ 1, depending only on the matrices Aj, B, bj, β, Ms
j , M I in (2), (3), (7), (8), δ0

and a finite number of semi-norms of b], `], such that for all functions u ∈ C∞(0)(R
n
+), compactly

supported on B+
δ0

, ψ ∈ C∞0 (Rn−1), compactly supported on B(0; δ0), and all γ ≥ γ̆0 the following
a priori energy estimate is satisfied

γ
(
||u||2L2(Rn+) + ||uI| x1=0||

2

H
−1/2
γ (Rn−1)

)
+ γ2||ψ||2L2(Rn−1) ≤

C̆0

γ

(
||F ||2L2(Rn+) + ||g||2

H
1/2
γ (Rn−1)

)
, (13)

where F := Lγu and g := bγψ +Mγu+ b](x
′, D′, γ)ψ + `](x

′, D′, γ)uI,s.

The paper is organized as follows. In Section 2 we introduce the function spaces to be used in the
following and the main related notations. In Section 3 we collect some technical tools, and the basic
concerned results, that will be useful for the proof of Theorem 1, given in Section 4.
The Appendix A contains the proof of the most of the technical results used in Section 4. The Appendix
B is devoted to present some free boundary problems in MHD, that can be stated within the general
framework developed in the paper.

2. Function Spaces

The purpose of this Section is to introduce the main function spaces to be used in the following and
collect their basic properties. For γ ≥ 1 and s ∈ R, we set

λs,γ(ξ) := (γ2 + |ξ|2)s/2 (14)

and, in particular, λs := λs,1.
The Sobolev space of order s ∈ R in Rn is defined to be the set of all tempered distributions u ∈ S ′(Rn)
such that λsû ∈ L2(Rn), being û the Fourier transform of u. For s ∈ N, the Sobolev space of order s
reduces to the set of all functions u ∈ L2(Rn) such that ∂αu ∈ L2(Rn), for all multi-indices α ∈ Nn with
|α| ≤ s, where we have set

∂α := ∂α1
1 . . . ∂αnn , α = (α1, . . . , αn) ,

and |α| := α1 + · · ·+ αn, as it is usual.
Throughout the paper, for real γ ≥ 1, Hs

γ(Rn) will denote the Sobolev space of order s, equipped with
the γ−depending norm || · ||s,γ defined by

||u||2s,γ := (2π)−n
∫
Rn
λ2s,γ(ξ)|û(ξ)|2dξ , (15)

(ξ = (ξ1, . . . , ξn) are the dual Fourier variables of x = (x1, . . . , xn)). The norms defined by (15), with
different values of the parameter γ, are equivalent each other. For γ = 1 we set for brevity || · ||s := || · ||s,1
(and, accordingly, Hs(Rn) := Hs

1(Rn)).
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It is clear that, for s ∈ N, the norm in (15) turns out to be equivalent, uniformly with respect to γ, to the
norm || · ||Hsγ(Rn) defined by

||u||2Hsγ(Rn) :=
∑
|α|≤s

γ2(s−|α|)||∂αu||2L2(Rn) . (16)

Another useful remark about the parameter depending norms defined in (15) is provided by the following
counterpart of the usual Sobolev imbedding inequality

||u||s,γ ≤ γs−r||u||r,γ , (17)

for arbitrary s ≤ r and γ ≥ 1.

Remark 2. In Section 4, the ordinary Sobolev spaces, endowed with the weighted norms above, will
be considered in Rn−1 (interpreted as the boundary of the half-space Rn+) and used to measure the
smoothness of functions on the boundary; regardless of the different dimension, the same notations and
conventions as before will be used there.

The appropriate functional setting where one measures the internal smoothness of solutions to char-
acteristic problems is provided by the anisotropic Sobolev spaces introduced by Shuxing Chen [8] and
Yanagisawa, Matsumura [36], see also [30] . Indeed these spaces take account of the loss of normal regu-
larity with respect to the boundary that usually occurs for characteristic problems.
Let σ ∈ C∞([0,+∞[) be a monotone increasing function such that σ(x1) = x1 in a neighborhood of the
origin and σ(x1) = 1 for any x1 large enough.
For j = 1, 2, . . . , n, we set

Z1 := σ(x1)∂1 , Zj := ∂j , for j ≥ 2 .

Then, for every multi-index α = (α1, . . . , αn) ∈ Nn, the differential operator Zα in the tangential direction
(conormal derivative) of order |α| is defined by

Zα := Zα1
1 . . . Zαnn .

Given an integer m ≥ 1 the anisotropic Sobolev space Hm
∗ (Rn+) of order m is defined as the set of functions

u ∈ L2(Rn+) such that Zα∂k1u ∈ L2(Rn+), for all multi-indices α ∈ Nn and k ∈ N with |α| + 2k ≤ m, see
[22] and the references therein. Agreeing with the notations set for the usual Sobolev spaces, for γ ≥ 1,
Hm
∗,γ(Rn+) will denote the anisotropic space of order m equipped with the γ−depending norm

||u||2Hm∗,γ(Rn+) :=
∑

|α|+2k≤m

γ2(m−|α|−2k)||Zα∂k1u||2L2(Rn+) . (18)

Similarly, the conormal Sobolev space Hm
tan(Rn+) of order m is defined to be the set of functions u ∈ L2(Rn+)

such that Zαu ∈ L2(Rn+), for all multi-indices α with |α| ≤ m. For γ ≥ 1, Hm
tan,γ(Rn+) denotes the

conormal space of order m equipped with the γ−depending norm

||u||2Hmtan,γ(Rn+) :=
∑
|α|≤m

γ2(m−|α|)||Zαu||2L2(Rn+) . (19)

In the end, we remark that the following identity H1
∗ ,γ(Rn+) = H1

tan ,γ(Rn+) holds true. However, for
a Sobolev order m > 1 the continuous imbedding Hm

∗,γ(Rn+) ⊂ Hm
tan,γ(Rn+) is fulfilled with the strict

inclusion relation.
Since the functions we are dealing with, throughout the paper, vanish for large x1 (as they are compactly
supported on B+), without the loss of generality we assume the conormal derivative Z1 to coincide with
the differential operator x1∂1 from now on 3. This reduction will make easier to implement on conormal
spaces the technical machinery that will be introduced in the next Section.

3Notice however that, for functions arbitrarily supported on Rn+, the conormal derivative Z1 equals the singular operator

x1∂1 only locally near the boundary {x1 = 0}; indeed, Z1 behaves like the usual normal derivative ∂1 far from the boundary,

according to the properties of the weight σ = σ(x1).
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3. Preliminaries and technical tools

We start by recalling the definition of two operators ] and \, introduced by Nishitani and Takayama
in [26], with the main property of mapping isometrically square integrable (resp. essentially bounded)
functions over the half-space Rn+ onto square integrable (resp. essentially bounded) functions over the
full space Rn.
The mappings ] : L2(Rn+)→ L2(Rn) and \ : L∞(Rn+)→ L∞(Rn) are respectively defined by

w](x) := w(ex1 , x′)ex1/2, a\(x) = a(ex1 , x′) , ∀x = (x1, x
′) ∈ Rn . (20)

They are both norm preserving bijections.
It is also useful to notice that the above operators can be extended to the set D′(Rn+) of Schwartz
distributions in Rn+. It is easily seen that both ] and \ are topological isomorphisms of the space C∞0 (Rn+)
of test functions in Rn+ (resp. C∞(Rn+)) onto the space C∞0 (Rn) of test functions in Rn (resp. C∞(Rn)).
Therefore, a standard duality argument leads to define ] and \ onD′(Rn+), by setting for every ϕ ∈ C∞0 (Rn)

〈u], ϕ〉 := 〈u, ϕ]
−1

〉 , (21)

〈u\, ϕ〉 := 〈u, ϕ[〉 (22)

(〈·, ·〉 is used to denote the duality pairing between distributions and test functions either in the half-space
Rn+ or the full space Rn). In the right-hand sides of (21), (22), ]−1 is just the inverse operator of ], that
is

ϕ]
−1

(x) =
1
√
x1
ϕ(log x1, x

′) , ∀x1 > 0, x′ ∈ Rn−1 , (23)

while the operator [ is defined by

ϕ[(x) =
1

x1
ϕ(log x1, x

′) , ∀x1 > 0, x′ ∈ Rn−1 , (24)

for functions ϕ ∈ C∞0 (Rn). The operators ]−1 and [ arise by explicitly calculating the formal adjoints of
] and \ respectively.
Of course, one has that u], u\ ∈ D′(Rn); moreover the following relations can be easily verified (cf. [26])

(ψu)] = ψ\u] , (25)

∂j(u
\) = (Zju)\, j = 1, . . . , n , (26)

∂1(u]) = (Z1u)] +
1

2
u] , (27)

∂j(u
]) = (Zju)] , j = 2, . . . , n , (28)

whenever u ∈ D′(Rn+) and ψ ∈ C∞(Rn+) (in (25) u ∈ L2(Rn+) and ψ ∈ L∞(Rn+) are even allowed).
From formulas (27), (28) and the L2−boundedness of ], it also follows that

] : Hm
tan,γ(Rn+)→ Hm

γ (Rn) (29)

is a topological isomorphism, for each integer m ≥ 1 and real γ ≥ 1.
The previous remarks give a natural way to extend the definition of the conormal spaces on Rn+ to an
arbitrary real order s. More precisely we give the following

Definition 3. For s ∈ R and γ ≥ 1, the space Hs
tan,γ(Rn+) is defined as

Hs
tan,γ(Rn+) := {u ∈ D′(Rn+) : u] ∈ Hs

γ(Rn)}

and is provided with the norm

||u||2s,tan,Rn+,γ := ||u]||2s,γ = (2π)−n
∫
Rn
λ2s,γ(ξ)|û](ξ)|2 dξ . (30)



8 A. MORANDO, P. SECCHI, AND P. TREBESCHI

It is obvious that, like for the real order usual Sobolev spaces, Hs
tan,γ(Rn+) is a Banach space for every

real s; furthermore, the above definition reduces to the one given in Section 2 when s is a positive integer.
Finally, for all s ∈ R, the ] operator becomes a topological isomorphism of Hs

tan,γ(Rn+) onto Hs
γ(Rn).

In the end, we observe that the following

] : C∞(0)(R
n
+)→ S(Rn) , \ : C∞(0)(R

n
+)→ C∞b (Rn)

are linear continuous operators, where S(Rn) denotes the Schwartz space of rapidly decreasing functions
in Rn and C∞b (Rn) the space of infinitely smooth functions in Rn, with bounded derivatives of all orders;
notice also that the last maps are not onto. Finally, we remark that

]−1 : S(Rn)→ C∞(Rn+) (31)

is a bounded operator.

3.1. A class of conormal operators. The ] operator, defined at the beginning of Section 3, can be
used to allow pseudo-differential operators in Rn acting conormally on functions only defined over the
positive half-space Rn+. Then the standard machinery of pseudo-differential calculus (in the parameter
depending version introduced in [1], [6]) can be re-arranged into a functional calculus properly behaved
on conormal Sobolev spaces described in Section 2. In Section 4, this calculus will be usefully applied to
derive from the estimate (10) or (11) associated to the BVP (1) the corresponding estimate (12) or (13)
of Theorem 1.
Let us introduce the pseudo-differential symbols, with a parameter, to be used later; here we closely
follow the terminology and notations of [9].

Definition 4. A parameter-depending pseudo-differential symbol of order m ∈ R is a real (or complex)-
valued measurable function a(x, ξ, γ) on Rn × Rn × [1,+∞[, such that a is C∞ with respect to x and ξ
and for all multi-indices α, β ∈ Nn there exists a positive constant Cα,β satisfying:

|∂αξ ∂βxa(x, ξ, γ)| ≤ Cα,βλm−|α|,γ(ξ) , (32)

for all x, ξ ∈ Rn and γ ≥ 1.

The same definition as above extends to functions a(x, ξ, γ) taking values in the space RN×N (resp.
CN×N ) of N × N real (resp. complex)-valued matrices, for all integers N > 1 (where the module | · |
is replaced in (32) by any equivalent norm in RN×N (resp. CN×N )). We denote by Γm the set of
γ−depending symbols of order m ∈ R (the same notation being used for both scalar or matrix-valued
symbols). Γm is equipped with the obvious norms

|a|m,k := max
|α|+|β|≤k

sup
(x,ξ)∈Rn×Rn , γ≥1

λ−m+|α|,γ(ξ)|∂αξ ∂βxa(x, ξ, γ)| , ∀ k ∈ N , (33)

which turn it into a Fréchet space. For all m,m′ ∈ R, with m ≤ m′, the continuous imbedding Γm ⊂ Γm
′

can be easily proven.
For all m ∈ R, the function λm,γ is of course a (scalar-valued) symbol in Γm.
Any symbol a = a(x, ξ, γ) ∈ Γm defines a pseudo-differential operator Opγ(a) = a(x,D, γ) on the Schwartz
space S(Rn), by the standard formula

∀u ∈ S(Rn) ,∀x ∈ Rn , Opγ(a)u(x) = a(x,D, γ)u(x) := (2π)−n
∫
Rn
eix·ξa(x, ξ, γ)û(ξ)dξ , (34)

where, of course, we denote x · ξ :=
n∑
j=1

xjξj . a is called the symbol of the operator (34), and m is its

order. It comes from the classical theory that Opγ(a) defines a linear bounded operator

Opγ(a) : S(Rn)→ S(Rn) ;

moreover, the latter extends to a linear bounded operator on the space S ′(Rn) of tempered distributions
in Rn.
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Let us observe that, for a symbol a = a(ξ, γ) independent of x, the integral formula (34) defining the
operator Opγ(a) simply becomes

Opγ(a)u = F−1(a(·, γ)û) = F−1(a(·, γ)) ∗ u , u ∈ S ′(Rn) , (35)

where F−1 denotes hereafter the inverse Fourier transform and ∗ is the convolution operator.
An exhaustive account of the symbolic calculus for pseudo-differential operators with symbols in Γm can
be found in [6] (see also [9]). Here, we just recall the following result, concerning the composition and
the commutator of two pseudo-differential operators.

Proposition 5. Let a ∈ Γm and b ∈ Γl, for l,m ∈ R. Then the composed operator Opγ(a)Opγ(b) is
a pseudo-differential operator with symbol in Γm+l; moreover, if we let a#b denote the symbol of the
composition, one has for every integer N ≥ 1

a#b−
∑
|α|<N

(−i)|α|

α!
∂αξ a∂

α
x b ∈ Γm+l−N . (36)

Under the same assumptions, the commutator [Opγ(a),Opγ(b)] := Opγ(a)Opγ(b) − Opγ(b)Opγ(a) is
again a pseudo-differential operator with symbol c ∈ Γm+l. If we further assume that one of the two
symbols a or b is scalar-valued (so that a and b commute in the point-wise product), then the symbol c of
[Opγ(a),Opγ(b)] has order m+ l − 1.

We point out that when the symbol b ∈ Γl of the preceding statement does not depend on the x variables
(i.e. b = b(ξ, γ)) then the symbol a#b of Opγ(a)Opγ(b) reduces to the point-wise product of symbols a
and b, that is the asymptotic formula (36) is replaced by the exact formula

(a#b)(x, ξ, γ) = a(x, ξ, γ)b(ξ, γ) . (37)

Remark 6. In the next Section 4, in order to handle the boundary condition (1b), the algebra of pseudo-
differential operators presented above will be used in the framework of Rn−1

x′ , considered as the boundary
of the half-space Rn+. According to (34), for a boundary symbol a = a(x′, ξ′, γ), x′, ξ′ ∈ Rn−1, the
related pseudo-differential operator will be denoted by Opγ(a) or a(x′, D′, γ). In particular, we will write
λm,γ(D′) to mean the boundary operator with symbol λm,γ(ξ′) defined by (14) with ξ′ instead of ξ.

Starting from the symbolic classes Γm, m ∈ R, we introduce now the class of conormal operators in
Rn+, to be used in the sequel.
Let a(x, ξ, γ) be a γ−depending symbol in Γm, m ∈ R. The conormal operator with symbol a, denoted
by Opγ] (a) (or equivalently a(x, Z, γ)) is defined by setting

∀u ∈ C∞(0)(R
n
+) ,

(
Opγ] (a)u

)]
= (Opγ(a)) (u]) . (38)

In other words, the operator Opγ] (a) is the composition of mappings

Opγ] (a) = ]−1 ◦Opγ(a) ◦ ] . (39)

As we already noted, u] ∈ S(Rn) whenever u ∈ C∞(0)(R
n
+); hence formula (38) makes sense and gives that

Opγ] (a)u is a C∞−function in Rn+ (see also (31)). Also Opγ] (a) : C∞(0)(R
n
+)→ C∞(Rn+) is a linear bounded

operator that extends to a linear bounded operator from the space of distributions u ∈ D′(Rn+) satisfying

u] ∈ S ′(Rn) into D′(Rn+) itself4. Throughout the paper, we continue to denote this extension by Opγ] (a)

(or a(x, Z, γ) equivalently).
As an immediate consequence of (39), we have that for all symbols a ∈ Γm, b ∈ Γl, with m, l ∈ R, there
holds

∀u ∈ C∞(0)(R
n
+) , Opγ] (a)Opγ] (b)u =

(
Opγ(a)Opγ(b)(u])

)]−1

. (40)

4In principle, Opγ] (a) could be defined by (38) over all functions u ∈ C∞(Rn+), such that u] ∈ S(Rn). Then Opγ] (a)

defines a linear bounded operator on the latter function space, provided that it is equipped with the topology induced, via

], from the Fréchet topology of S(Rn).
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Then, it is clear that a functional calculus of conormal operators can be straightforwardly borrowed from
the corresponding pseudo-differential calculus in Rn; in particular we find that products and commutators
of conormal operators are still operators of the same type, and their symbols are computed according to
the rules collected in Proposition 5.
Below, let us consider the main examples of conormal operators that will be met in Section 4.
As a first example, we quote the multiplication by a matrix-valued function B ∈ C∞(0)(R

n
+). It is clear

that this makes an operator of order zero according to (38); indeed (25) gives for any vector-valued
u ∈ C∞(0)(R

n
+)

(Bu)](x) = B\(x)u](x) , (41)

and B\ is a C∞−function in Rn, with bounded derivatives of any order, hence a symbol in Γ0.
We remark that, when computed for B\, the norm of order k ∈ N, defined on symbols by (33), just
reduces to

|B\|0,k = max
|α|≤k

||∂αB\||L∞(Rn) = max
|α|≤k

||ZαB||L∞(Rn+) , (42)

where the second identity above exploits formulas (26) and that \ maps isometrically L∞(Rn+) onto
L∞(Rn).

Now, let L := γIN +
n∑
j=1

Aj(x)Zj be a first-order linear partial differential operator, with matrix-valued

coefficients Aj ∈ C∞(0)(R
n
+) for j = 1, . . . , n and γ ≥ 1. Since the leading part of L only involves conormal

derivatives, applying (25), (27), (28) then givesγu+

n∑
j=1

AjZju

]

=

(
γI − 1

2
A\1

)
u] +

n∑
j=1

A\j∂ju
] = Opγ(a)u] ,

where a = a(x, ξ, γ) :=
(
γIN − 1

2A
\
1(x)

)
+ i

n∑
j=1

A\j(x)ξj is a symbol in Γ1. Then L is a conormal operator

of order 1, according to (38).

3.2. Sobolev continuity of conormal operators. We recall the following classical Sobolev continuity
property for ordinary pseudo-differential operators on Rn.

Proposition 7. If s,m ∈ R then for all a ∈ Γm the pseudo-differential operator Opγ(a) extends as a
linear bounded operator from Hs+m

γ (Rn) into Hs
γ(Rn), and the operator norm of such an extension is

uniformly bounded with respect to γ.

We refer the reader to [6] for a detailed proof of Proposition 7. A thorough analysis shows that the norm
of Opγ(a), as a linear bounded operator from Hs+m

γ (Rn) to Hs
γ(Rn), actually depends only on a norm

of type (33) of the symbol a, besides the Sobolev order s and the symbolic order m (cf. [6] for detailed
calculations). From the Sobolev continuity of pseudo-differential operators quoted above, and using that
the operator ] maps isomorphically conormal Sobolev spaces in Rn+ onto ordinary Sobolev spaces in Rn
(see (29) and Definition 3), we easily derive the following result.

Proposition 8. If s,m ∈ R and a ∈ Γm, then the conormal operator Opγ] (a) extends to a linear bounded

operator from Hs+m
tan,γ(Rn+) to Hs

tan,γ(Rn+); moreover the operator norm of such an extension is uniformly
bounded with respect to γ.

In order to perform the subsequent analysis, our interest will be mainly focused on the conormal operators
of the type

λm,γ(Z) := Opγ] (λm,γ) , m ∈ R . (43)

Firstly, it is worth to remark that for each real m, the conormal operator λm,γ(Z) is invertible, its two-
sided inverse being provided by the operator λ−m,γ(Z). Hence, applying Proposition 8 to the operators
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λm,γ(Z), λ−m,γ(Z) gives that the following

λm,γ(Z) : Hm
tan,γ(Rn+)→ L2(Rn+) , λ−m,γ(Z) : L2(Rn+)→ Hm

tan,γ(Rn+) ,

are linear bounded operators. Notice also that, from Plancherel’s identity, the norm (30) (with m instead
of s) on Hm

tan(Rn+) can be restated in terms of the operator λm,γ(Z) as

||u||m,tan,Rn+,γ = ||λm,γ(Z)u||L2(Rn+) . (44)

The relation (44) will play an essential role in the proof of estimate (13).

4. Proof of Theorem 1

This Section is entirely devoted to the proof of Theorem 1.

4.1. The strategy of the proof. We closely follow the techniques developed in [21] (see also [20]).
In principle, for given smooth functions u, ψ under the assumptions of Theorem 1, we consider the
problem analogous to (1) solved by the functions λ−1,γ(Z)u and λ−1,γ(D′)ψ; 5 this problem is obtained
by acting on the original BVP solved by (u, ψ) by the operators λ−1,γ(Z), λ−1,γ(D′) and making use of
the rules of the symbolic calculus collected in Section 3.1. In the resulting equations, new terms appear,
including the commutator between the differential operator Lγ and the conormal operator λ−1,γ(Z),
in the interior equation, and similar commutators arising from the interaction of λ−1,γ(D′) with the
operators in the boundary condition. We apply the assumption (H)1 (or (H2)) to the problem for
(λ−1,γ(Z)u, λ−1,γ(D′)ψ), writing for it the estimate (10) (or (11)). The structure of the estimates (10),
(11) allows to treat the commutator terms involved in the equations either as a part of the source terms
or as lower order operators. The desired estimates (12), (13) come respectively from (10), (11) for
(λ−1,γ(Z)u, λ−1,γ(D′)ψ), in view of the equivalence of norms (44), (19) in Hm

tan(Rn+) and the similar
equivalence of norms (15), (16) for ordinary Sobolev spaces on the boundary.

4.2. A modified version of the conormal operator λ−1,γ(Z). As explained before, we are going to
act on the equation (1a), written for a given smooth function u, by the conormal operator λ−1,γ(Z). To
make possible the interaction between λ−1,γ(Z) and the term of Lγ involving the normal derivative ∂1,
we need to slightly modify the conormal operator λ−1,γ(Z). Here, we follow the ideas of [21].

To be definite, let us illustrate the strategy for the operator λm,γ(Z) with general order m ∈ R. The
first step is to decompose the symbol λm,γ as the sum of two contributions. To do so, we take an arbitrary
even function χ ∈ C∞(Rn) with the following properties

0 ≤ χ(x) ≤ 1 , ∀x ∈ Rn , χ(x) ≡ 1 , for |x| ≤ ε0

2
, χ(x) ≡ 0 , for |x| > ε0 , (45)

with a suitable 0 < ε0 < 1 that will be specified later on, see Lemma 10. Then, we set:

λm,γχ (ξ) := χ(D)(λm,γ)(ξ) = (F−1χ ∗ λm,γ)(ξ) ,

rm(ξ, γ) := λm,γ(ξ)− λm,γχ (ξ) = (I − χ(D))(λm,γ)(ξ) .
(46)

The following result (see [21, Lemma 4.1]) shows that the function λm,γχ behaves, as a symbol, like λm,γ .

Lemma 9. Let the function χ ∈ C∞(Rn) satisfy the assumptions in (45). Then λm,γχ is a symbol in Γm,
i.e. for all α ∈ Nn there exists a constant Cm,α > 0 such that:

|∂αξ λm,γχ (ξ)| ≤ Cm,αλm−|α|,γ(ξ) , ∀ ξ ∈ Rn . (47)

5Actually, instead of (λ−1,γ(Z)u, λ−1,γ(D′)ψ) we will consider similar functions obtained by applying to (u, ψ) a suitable
modified version of the operators λ−1,γ(Z), λ−1,γ(D′), that will be rigorously defined in Section 4.2. These new operators

will be constructed in such a way to differ from λ−1,γ(Z), λ−1,γ(D′) by suitable regularizing lower order reminders.
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An immediate consequence of Lemma 9 and (46) is that rm is also a γ−depending symbol in Γm.
Let us define, with the obvious meaning of the notations:

λm,γχ (D) := Opγ(λm,γχ ) , rm(D, γ) := Opγ(rm) ,

λm,γχ (Z) := Opγ] (λm,γχ ) , rm(Z, γ) := Opγ] (rm) .
(48)

A useful property of the modified operator λm,γχ (Z) is that it preserves the compact support of functions,
as shown by the following

Lemma 10. Let 0 < δ0 < 1 be fixed. There exists ε0 = ε0(δ0) > 0 such that, if χ ∈ C∞0 (Rn) satisfies the
assumption (45) with the previous choice of ε0, then for all u ∈ C∞(0)(R

n
+), with suppu ⊆ B+

δ0
, we have

suppλm,γχ (Z)u ⊆ B+ .

Remark 11. Note that the support of λm,γχ (Z)u is bigger than the support of u, depending on suppχ.

Hence, if one wants that suppλm,γχ (Z)u is contained in the fixed domain B+, one has to choose χ with
sufficiently small support.

The second important result is concerned with the conormal operator rm(Z, γ) = Opγ] (rm), and tells that
it essentally behaves as a regularizing operator on conormal Sobolev spaces.

Lemma 12. i. For every p ∈ N, the conormal operator rm(Z, γ) extends as a linear bounded operator,
still denoted by rm(Z, γ), from L2(Rn+) to Hp

tan,γ(Rn+).
ii. Moreover, for every h ∈ N there exists a positive constant Cp,h,n,χ, depending only on p, h, χ and the
dimension n, such that for all γ ≥ 1 and u ∈ L2(Rn+):

||rm(Z, γ)u||Hptan,γ(Rn+) ≤ Cp,h,n,χγ−h||u||L2(Rn+) . (49)

The proof of Lemmata 10, 12 is postponed to Appendix A.
In the following sections, the above analysis will be applied to the operator λ−1,γ(Z). According to (46),
we decompose

λ−1,γ(Z) = λ−1,γ
χ (Z) + r−1(Z, γ) . (50)

4.3. A boundary operator. As it was already explained in Section 4.1, we need to derive the problem
analogous to (1) satisfied by (λ−1,γ(Z)u, λ−1,γ(D′)ψ) for given smooth functions (u, ψ). Actually, as
we said, λ−1,γ(Z) must be replaced by its modification λ−1,γ

χ (Z) (see (50)). Analogously, we have to

introduce an appropriate modification of λ−1,γ(D′), to be used as a “boundary counterpart” of λ−1,γ
χ (Z):

this new operator comes from computing the value of λ−1,γ
χ (Z)u on the boundary {x1 = 0}. To this end,

it is worthwhile to make an additional hypothesis about the smooth function χ involved in the definition
of λ−1,γ

χ (Z). We assume that χ has the form:

∀x = (x1, x
′) ∈ Rn , χ(x) = χ1(x1)χ̃(x′) , (51)

where χ1 ∈ C∞(R) and χ̃ ∈ C∞(Rn−1) are given nonnegative even functions, to be chosen in such a way
that conditions (45) are made satisfied.
As we did in Section 4.2, the result we are going to present here are stated for the general conormal
operator λm,γ(Z) with an arbitrary order m ∈ R. All the proofs will be given in the Appendix A.
Following closely the arguments employed to prove [21, Proposition 4.10], we are able to get the following

Proposition 13. Assume that χ obeys the assumptions (45), (51). Then, for all γ ≥ 1 and m ∈ R the
function b′m(ξ′, γ) defined by

b′m(ξ′, γ) := (2π)−n
∫
Rn
λm,γ(η1, η

′ + ξ′)
(
e(·)1/2χ1

)∧1

(η1)̂̃χ(η′) dη , ∀ ξ′ ∈ Rn−1 , (52)

is a γ−depending symbol in Rn−1 belonging to Γm, where ∧1 is used to denote the one-dimensional Fourier
transformation with respect to x1, while ∧ denotes the (n− 1)−dimensional Fourier transformation with
respect to x′. Moreover, for all functions u ∈ C∞(0)(R

n
+) there holds

∀x′ ∈ Rn−1 , (λm,γχ (Z)u)| x1=0(x′) = b′m(D′, γ)(u| x1=0)(x′) . (53)
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The next Lemma shows that the boundary pseudo-differential operator b′m(D′, γ) differs from the operator
λm,γ(D′) by a lower order remainder.

Lemma 14. For m ∈ R, let b′m(ξ′, γ) be defined by (52). Then there exists a symbol βm(ξ′, γ) ∈ Γm−2

such that:

b′m(ξ′, γ) = λm,γ(ξ′) + βm(ξ′, γ) , ∀ ξ′ ∈ Rn−1 . (54)

As a consequence of Proposition 13 and Lemma 10, we see now that, like λm,γχ (Z), the boundary operator

b′m(D′, γ) preserves the compactness of the support of functions on Rn−1.

Corollary 15. For all m ∈ R and ψ ∈ C∞0 (Rn−1) with suppψ ⊂ B(0; δ0), then

supp b′m(D′, γ)ψ ⊂ B(0; 1) . (55)

In the following the results stated in Proposition 13, Lemma 14 and Corollary 15 will be applied to the
case of m = −1.

4.4. Regularized BVP. From now on, we will focus on the proof of the estimate (12) stated in the
first part of Theorem 1, under the assumption (H)1 about the BVP (1). The second part of Theorem 1
(estimate (13), under the assumption (H)2) follows by developing similar arguments to those explained
here below; we will write in details only those steps which make the difference between the proof of the
two statements 1 and 2 (see Section 4.7).
Let (u, ψ) be given smooth functions obeying the assumptions of Theorem 1. Given arbitrary symbols
ρ] = ρ](x, ξ, γ) ∈ Γ0, `] = `](x

′, ξ′, γ), b] = b](x
′, ξ′, γ) ∈ Γ0, let us set

F := Lγu+ ρ](x, Z, γ)u , (56)

g := bγψ +Ms
γu

I,s +M IuI + b](x
′, D′, γ)ψ + `](x

′, D′, γ)uI,s . (57)

We are going to derive a corresponding BVP for the pair of functions (λ−1,γ
χ (Z)u, b′−1(D′, γ)ψ), to which

the a priori estimate (10) will be applied. Notice that, in view of Lemma 10 and Corollary 15, the
functions λ−1,γ

χ (Z)u, b′−1(D′, γ)ψ are supported on B+ and B(0; 1), as required in the hypothesis (H)1,
provided the function χ satisfies the assumptions (45) with a sufficiently small 0 < ε0 < 1.

4.4.1. The interior equation. We follow the strategy already explained in Section 4.1, where now the
role of the operator λ−1,γ(Z) is replaced by λ−1,γ

χ (Z). Thus, for a given smooth function u ∈ C∞(0)(R
n
+),

supported on B+
δ0

, from (56), we find that

Lγ(λ−1,γ
χ (Z)u) + ρ](λ

−1,γ
χ (Z)u) + [λ−1,γ

χ (Z),Lγ + ρ]]u = λ−1,γ
χ (Z)F , in Rn+ , (58)

where here and in the rest of this section, it is written ρ] instead of ρ](x, Z, γ), in order to shorten
formulas.
We will see that the commutator term [λ−1,γ

χ (Z),Lγ + ρ]]u, involved in the left-hand side of the above
equation, can be restated as a lower order pseudo-differential operator of conormal type with respect to
λ−1,γ
χ (Z)u, up to some “smoothing reminder” to be treated as a part of the source term in the right-hand

side of the equation.
To this end, we proceed as follows. Firstly, we decompose the commutator term in the left-hand side of
(58) as the sum of two contributions corresponding respectively to the tangential and normal components
of Lγ .
In view of (4), (5), we may write the coefficient A1 of the normal derivative ∂1 in the expression (2) of
Lγ as

A1 = A1
1 +A2

1 , A1
1 :=

(
AI,I1 0

0 0

)
, A2

1 | x1=0 = 0 , (59)

hence

A2
1∂1 = H1Z1 ,
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where H1(x) = x−1
1 A2

1(x) ∈ C∞(0)(R
n
+). Accordingly, we split Lγ as

Lγ = A1
1∂1 + Ltan,γ , Ltan,γ := γIN +H1Z1 +

n∑
j=2

AjZj +B . (60)

Consequently, we have:

[λ−1,γ
χ (Z),Lγ + ρ]]u = [λ−1,γ

χ (Z), A1
1∂1]u+ [λ−1,γ

χ (Z),Ltan,γ + ρ]]u . (61)

Note that Ltan,γ + ρ] is just a conormal operator of order 1, according to the terminology introduced in
Section 3.1.

4.4.2. The tangential commutator. Concerning the tangential commutator term [λ−1,γ
χ (Z),Ltan,γ + ρ]]u,

we use the identity

λ1,γ(Z)λ−1,γ(Z) = Id , (62)

and formula (50) to rewrite it as follows

[λ−1,γ
χ (Z),Ltan,γ + ρ]]u = [λ−1,γ

χ (Z),Ltan,γ + ρ]]λ
1,γ(Z)λ−1,γ(Z)u

= [λ−1,γ
χ (Z),Ltan,γ + ρ]]λ

1,γ(Z)
(
λ−1,γ
χ (Z)u

)
+ [λ−1,γ

χ (Z),Ltan,γ + ρ]]λ
1,γ(Z)r−1(Z, γ)u .

(63)

Since λ−1,γ
χ is a scalar symbol, from the symbolic calculus (see Proposition 5) we know that

ρ0,tan(x, Z, γ) := [λ−1,γ
χ (Z),Ltan,γ + ρ]]λ

1,γ(Z) (64)

is a conormal pseudo-differential operator with symbol ρ0,tan(x, ξ, γ) ∈ Γ0. Hence, the first term in
the decomposition provided by (63) can be regarded as an additional lower order term with respect to
λ−1,γ
χ (Z)u, besides ρ](λ

−1,γ
χ (Z)u), in the equation (58) (see formula (103)). On the other hand, from

Lemma 12, the second term in the decomposition (63)

R−1(x, Z, γ)u := [λ−1,γ
χ (Z),Ltan,γ + ρ]]λ

1,γ(Z)r−1(Z, γ)u (65)

can be moved to the right-hand side of the equation (58) and treated as a part of the source term (see
Section 4.5.1).

4.4.3. The normal commutator. We consider now the normal commutator term [λ−1,γ
χ (Z), A1

1∂1]u in-
volved in (61). With respect to the tangential term studied in Section 4.4.2, here the analysis is little
more technical.
First of all, we notice that, due to the structure of the matrixA1

1 (see (59)), the commutator [λ−1,γ
χ (Z), A1

1∂1]
acts non trivially only on the noncharacteristic component of the vector function u; namely we have:

[λ−1,γ
χ (Z), A1

1∂1]u =

(
[λ−1,γ
χ (Z), AI,I1 ∂1]uI

0

)
. (66)

Therefore, we focus on the study of the first nontrivial component of the commutator term. Note that the

commutator [λ−1,γ
χ (Z), AI,I1 ∂1] cannot be merely treated by the tools of the conormal calculus developed

in Section 3.1, because of the presence of the effective normal derivative ∂1 (recall that AI,I1 is invertible).

This section is devoted to the study of the normal commutator [λ−1,γ
χ (Z), AI,I1 ∂1]uI . The following result

is of fundamental importance for the sequel. Here again, for the sake of generality, the result is given
with a general order m.

Proposition 16. For all m ∈ R, there exists a symbol qm(x, ξ, γ) ∈ Γm−1 such that

[λm,γχ (Z), AI,I1 ∂1]w = qm(x, Z, γ)(∂1w) , ∀w ∈ C∞(0)(R
n
+) , ∀ γ ≥ 1 . (67)
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Proof. The proof follows the same lines of that of [21, Proposition 4.8].

For given w ∈ C∞(0)(R
n
+), let us explicitly compute

(
[λm,γχ (Z), AI,I1 ∂1]w

)]
; using the identity (∂1w)] =

e−x1(Z1w)] and that λm,γχ (Z) and Z1 commute, we find for every x ∈ Rn:(
[λm,γχ (Z), AI,I1 ∂1]w

)]
(x)

=
(
λm,γχ (Z)

(
AI,I1 ∂1w

)
−AI,I1 ∂1

(
λm,γχ (Z)w

))]
(x)

= λm,γχ (D)
(
AI,I,\1 (∂1w)

]
)

(x)−AI,I,\1 (x)
(
∂1

(
λm,γχ (Z)w

))]
(x)

= λm,γχ (D)
(
AI,I,\1 e−(·)1(Z1w)]

)
(x)−AI,I,\1 (x)e−x1

(
Z1λ

m,γ
χ (Z)w

)]
(x)

= λm,γχ (D)
(
AI,I,\1 e−(·)1(Z1w)]

)
(x)−AI,I,\1 (x)e−x1

(
λm,γχ (Z)Z1w

)]
(x)

= λm,γχ (D)
(
AI,I,\1 e−(·)1(Z1w)]

)
(x)−AI,I,\1 (x)e−x1λm,γχ (D)(Z1w)](x) .

(68)

Observing that λm,γχ (D) acts on the space S(Rn) as the convolution by the inverse Fourier transform of
λm,γχ (see (35)), the preceding expression can be equivalently restated as follows:(

[λm,γχ (Z), AI,I1 ∂1]w
)]

(x)

= F−1
(
λm,γχ

)
∗AI,I,\1 e−(·)1(Z1w)](x)−AI,I,\1 (x)e−x1F−1

(
λm,γχ

)
∗ (Z1w)]

=
〈
F−1

(
λm,γχ

)
, AI,I,\1 (x− ·)e−(x1−(·)1)(Z1w)](x− ·)

〉
−AI,I,\1 (x)e−x1〈F−1

(
λm,γχ

)
, (Z1w)](x− ·)〉

=
〈
ηm,γ , χ(·)AI,I,\1 (x− ·)e−(x1−(·)1)(Z1w)](x− ·)

〉
−
〈
ηm,γ , χ(·)AI,I,\1 (x)e−x1(Z1w)](x− ·)

〉
=
〈
ηm,γ , χ(·)AI,I,\1 (x− ·)(∂1w)](x− ·)

〉
−
〈
ηm,γ , χ(·)AI,I,\1 (x)e−(·)1(∂1w)](x− ·)

〉
=
〈
ηm,γ , χ(·)

(
AI,I,\1 (x− ·)−AI,I,\1 (x)e−(·)1

)
(∂1w)](x− ·)

〉
,

(69)
where ηm,γ := F−1 (λm,γ), and the identity F−1

(
λm,γχ

)
= χηm,γ (following at once from (46)) has been

used. Just for brevity, let us further set

K(x, y) :=
(
AI,I,\1 (x− y)−AI,I,\1 (x)e−y1

)
χ(y) . (70)

Thus the identity above reads as(
[λm,γχ (Z), AI,I1 ∂1]w

)]
(x) =

〈
ηm,γ , K(x, ·)(∂1w)](x− ·)

〉
, (71)

where the “kernel” K(x, y) is a bounded function in C∞(Rn×Rn), with bounded derivatives of all orders.
This regularity of K is due to the presence of the function χ in formula (70); actually the vanishing of χ
at infinity prevents the blow-up of the exponential factor e−y1 , as y1 → −∞. We point out that this is
precisely the step of our analysis of the normal commutator, where this function χ is needed.
After (70), we also have that K(x, 0) = 0; then, by a Taylor expansion with respect to y, we can represent
the kernel K(x, y) as follows

K(x, y) =

n∑
k=1

bk(x, y)yk , (72)

where bk(x, y) are given bounded functions in C∞(Rn × Rn), with bounded derivatives; it comes from
(70) and (45) that bk can be defined in such a way that for all x ∈ Rn there holds

supp bk(x, ·) ⊆ {|y| ≤ 2ε0} .6 (73)

6This can be made by multiplying K(x, y) by a suitable cut off function ϕ = ϕ(y) ∈ C∞0 (Rn) such that ϕ(y) = 1 for
|y| ≤ 2ε0. This multiplication does not modify K, since K is supported on {|y| ≤ ε0} with respect to y. Thus the equality

(72) still holds, where the functions bk(x, y) are replaced by bk(x, y)ϕ(y) compactly supported with respect to y.
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Inserting (72) in (71) and using standard properties of the Fourier transform we get(
[λm,γχ (Z), AI,I1 ∂1]w

)]
(x) =

〈
ηm,γ ,

n∑
k=1

bk(x, ·)(·)k(∂1w)](x− ·)

〉
=

n∑
k=1

〈
(·)kF−1 (λm,γ) , bk(x, ·)(∂1w)](x− ·)

〉
= i

n∑
k=1

〈
F−1 (∂kλ

m,γ) , bk(x, ·)(∂1w)](x− ·)
〉

= i

n∑
k=1

〈
∂kλ

m,γ , F−1
(
bk(x, ·)(∂1w)](x− ·)

)〉
= i

n∑
k=1

∫
Rn
∂kλ

m,γ(ξ)F−1
(
bk(x, ·)(∂1w)](x− ·)

)
(ξ)dξ

= i

n∑
k=1

(2π)−n
∫
Rn
∂kλ

m,γ(ξ)

(∫
Rn
eiξ·ybk(x, y)(∂1w)](x− y)dy

)
dξ .

(74)

Note that for w ∈ C∞(0)(R
n
+) and any x ∈ Rn the function bk(x, ·)(∂1w)](x − ·) belongs to S(Rn); hence

the last expression in (74) makes sense. Henceforth, we replace (∂1w)] by any function v ∈ S(Rn). Our
next goal is writing the integral operator

(2π)−n
∫
Rn
∂kλ

m,γ(ξ)

(∫
Rn
eiξ·ybk(x, y)v(x− y)dy

)
dξ (75)

as a pseudo-differential operator.
Firstly, we make use of the inversion formula for the Fourier transformation and Fubini’s theorem to
recast (75) as follows:∫

Rn
eiξ·ybk(x, y)v(x− y)dy= (2π)−n

∫
Rn
eiξ·ybk(x, y)

(∫
Rn
ei(x−y)·η v̂(η)dη

)
dy

= (2π)−n
∫
Rn
eix·η

(∫
Rn
e−iy·(η−ξ)bk(x, y)dy

)
v̂(η)dη= (2π)−n

∫
Rn
eix·η b̂k(x, η − ξ)v̂(η)dη ;

(76)

for every index k, b̂k(x, ζ) denotes the partial Fourier transform of bk(x, y) with respect to y. Then,
inserting (76) into (75) we obtain

(2π)−n
∫
Rn
∂kλ

m,γ(ξ)

(∫
Rn
eiξ·ybk(x, y)v(x− y)dy

)
dξ

= (2π)−2n

∫
Rn
∂kλ

m,γ(ξ)

(∫
Rn
eix·η b̂k(x, η − ξ)v̂(η)dη

)
dξ .

(77)

Recall that for each x ∈ Rn, the function y 7→ bk(x, y) belongs to C∞0 (Rn) (and its compact support does

not depend on x, see (73)); thus, for each x ∈ Rn, b̂k(x, ζ) is rapidly decreasing in ζ.
Because λm,γ ∈ Γm and since v̂(η) is also rapidly decreasing, Fubini’s theorem can be used to change the
order of the integrations within (77). So we get

(2π)−2n

∫
Rn
∂kλ

m,γ(ξ)

(∫
Rn
eix·η b̂k(x, η − ξ)v̂(η)dη

)
dξ

= (2π)−2n

∫
Rn
eix·η

(∫
Rn
b̂k(x, η − ξ)∂kλm,γ(ξ)dξ

)
v̂(η)dη

= (2π)−n
∫
Rn
eix·ηqk,m(x, η, γ)v̂(η)dη ,

(78)

where we have set

qk,m(x, ξ, γ) := (2π)−n
∫
Rn
b̂k(x, η)∂kλ

m,γ(ξ − η)dη . (79)
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Notice that formula (79) defines qk,m as the convolution of the functions b̂k(x, ·) and ∂kλ
m,γ ; hence qk,m

is a well defined C∞−function in Rn × Rn.
The proof of Proposition 16 will be accomplished, once the following Lemma will be proved.

Lemma 17. For every m ∈ R, k = 1, . . . , n, qk,m ∈ Γm−1, i.e. for all α, β ∈ Nn there exists a positive
constant Ck,m,α,β, independent of γ, such that

|∂αξ ∂βx qk,m(x, ξ, γ)| ≤ Ck,m,α,βλm−1−|α|,γ(ξ) , ∀x, ξ ∈ Rn . (80)

The proof of Lemma 17 is postponed to Appendix A.
Now, we continue the proof of Proposition 16

End of the proof of Proposition 16. The last row of (78) provides the desired representation of (75) as a
pseudo-differential operator; actually it gives the identity

(2π)−n
∫
Rn
∂kλ

m,γ(ξ)

(∫
Rn
eiξ·ybk(x, y)v(x− y)dy

)
dξ = Opγ(qk,m)v(x) ,

for every v ∈ S(Rn).
Inserting the above formula (with v = (∂1w)]) into (74) finally gives(

[λm,γχ (Z), AI,I1 ∂1]w
)]

(x) = Opγ(qm)(∂1w)](x) , (81)

where qm = qm(x, ξ, γ) is the symbol in Γm−1 defined by

qm(x, ξ, γ) := i

n∑
k=1

qk,m(x, ξ, γ) . (82)

Of course, formula (67) is equivalent to (81), in view of (38). This ends the proof of Proposition 16. �

We come back to the analysis of the normal commutator term [λ−1,γ
χ (Z), AI,I1 ∂1]uI . To estimate it, we

apply the result of Proposition 16 for m = −1 and w = uI . Then we find the representation formula

[λ−1,γ
χ (Z), AI,I1 ∂1]uI = q−1(x, Z, γ)(∂1u

I) , (83)

where the symbol q−1 ∈ Γ−2 is defined by (82). Since AI,I1 is invertible, from (56), ∂1u
I can be represented

in terms of tangential derivatives of u and F , as follows

∂1u
I = (AI,I1 )−1F I + Tγu , (84)

where Tγ = Tγ(x, Z) denotes the tangential partial differential operator

Tγu := −(AI,I1 )−1

γuI +H1Z1u
II +

 n∑
j=2

AjZju+Bu+ ρ]u

I
 (85)

and we have set H1 := x−1
1 AI,II1 (recall that H1 ∈ C∞(0)(R

n
+) since AI,II1 | x1=0 = 0). Inserting (84) into (83)

leads to
[λ−1,γ
χ (Z), AI,I1 ∂1]uI = q−1(x, Z, γ)((AI,I1 )−1F I) + q−1(x, Z, γ)Tγu . (86)

The first term in the right-hand side of (86) is moved to the right-hand side of equation (58) and
incorporated into the source term. As for the second term q−1(x, Z, γ)Tγu, a similar analysis to the
one performed about the tangential commutator term in the right-hand side of (61) can be applied to
rewrite it as the sum of a lower order operator acting on λ−1,γ

χ (Z)u and some smoothing reminder. More
precisely, applying again the identities (62) and (50) we get

q−1(x, Z, γ)Tγu = q−1(x, Z, γ)Tγλ1,γ(Z)
(
λ−1,γ
χ (Z)u

)
+ q−1(x, Z, γ)Tγλ1,γ(Z)r−1(Z, γ)u . (87)

Combining (86), (87) and (66) we decompose the normal commutator term in (61) as the sum of the
following contributions

[λ−1,γ
χ (Z), A1

1∂1]u =

(
q−1(x, Z, γ)((AI,I1 )−1F I)

0

)
+ ρ0,nor(x, Z, γ)(λ−1,γ

χ (Z)u) + S−1(x, Z, γ)u . (88)
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In the representation provided by (88), the conormal operator

ρ0,nor(x, Z, γ) :=

(
q−1(x, Z, γ)Tγλ1,γ(Z)

0

)
(89)

has symbol in Γ0(in view of Proposition 5), and hence it must be treated as an additional lower order
operator, besides ρ] and ρ0,tan, within the equation (58) (see (103)); on the other hand

S−1(x, Z, γ)u :=

(
q−1(x, Z, γ)Tγλ1,γ(Z)r−1(Z, γ)u

0

)
(90)

can be regarded as a smoothing reminder and then moved to the right-hand side of the equation (58) to
be treated as a part of the source term, in view of Lemma 12 (see Section 4.5.1).

4.4.4. The boundary condition. We are going to write a boundary condition to be coupled to (58).
Firstly we notice that, by Proposition 13 for m = −1:

(λ−1,γ
χ (Z)u)| x1=0 = b′−1(D′, γ)(u| x1=0) , (91)

where the symbol b′−1 ∈ Γ−1 on Rn−1 is defined by (52). Then we apply the operator b′−1 = b′−1(D′, γ)
to (57) and we obtain

bγ(b′−1ψ) +Ms
γ

(
b′−1u

I,s
| x1=0

)
+M I

(
b′−1u

I
| x1=0

)
+ b](b

′
−1ψ) + `]

(
b′−1u

I,s
| x1=0

)
+[b′−1, bγ ]ψ + [b′−1, b]]ψ + [b′−1,Ms

γ ](uI,s| x1=0) + [b′−1, `]](u
I,s
| x1=0) + [b′−1,M

I ](uI| x1=0) = b′−1g , on Rn−1 ,

(92)
where, for simplicity, we have dropped the explicit dependence on x′, D′ and γ in the operators. We
observe that, in view of the symbolic calculus (see Proposition 5), the commutators appearing above are
all pseudo-differential operators on Rn−1; more precisely, since b′−1(ξ′, γ) is a scalar symbol we have that

[b′−1, b]] = [b′−1(D′, γ), b](x
′, D′, γ)]

[b′−1, `]] = [b′−1(D′, γ), `](x
′, D′, γ)]

[b′−1,M
I ] = [b′−1(D′, γ),M I ]

(93)

are operators with symbol in Γ−2, while

[b′−1, bγ ] = [b′−1(D′, γ), bγ(x′, D′)]

[b′−1,Ms
γ ] = [b′−1(D′, γ),Ms

γ(x′, D′)]
(94)

are operators with symbol in Γ−1.
Since the a priori estimate in assumption (H)1 displays a loss of regularity from the boundary data, the
above operators must be treated in two different ways. The commutators in (93) can be moved to the
right-hand side and treated as additional forcing terms. On the contrary, the commutators in (94) cannot
be regarded as a part of the source term in the equation (92) without loosing derivatives on the unknowns
u and ψ. These operators require a more careful analysis that essentially relies on similar arguments to
those used to study the commutator term appearing in the interior equation (58) (see Sections 4.4.2,
4.4.3).
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We use Lemma 14 and the identity λ1,γ(D′)λ−1,γ(D′) = Id to write

[b′−1(D′, γ), bγ ]ψ = [b′−1(D′, γ), bγ ]λ1,γ(D′)λ−1,γ(D′)ψ

= [b′−1(D′, γ), bγ ]λ1,γ(D′)(b′−1(D′, γ)− β−1(D′, γ))ψ

=

(
[b′−1(D′, γ), bγ ]λ1,γ(D′)

)
(b′−1(D′, γ)ψ)−

(
[b′−1(D′, γ), bγ ]λ1,γ(D′)

)
β−1(D′, γ)ψ

= d0(x′, D′, γ)(b′−1(D′, γ)ψ) + d−3(x′, D′, γ)ψ ,

(95)

where

d0(x′, D′, γ) := [b′−1(D′, γ), bγ ]λ1,γ(D′) (96)

has symbol in Γ0 and

d−3(x′, D′, γ) :== −[b′−1(D′, γ), bγ ]λ1,γ(D′)β−1(D′, γ) (97)

has symbol in Γ−3, since β−1(ξ′, γ) ∈ Γ−3.
Analogously, we can treat the term in u involving the commutator [b′−1,Ms

γ ], namely we find:

[b′−1(D′, γ),Ms
γ ]uI,s| x1=0= e0(x′, D′, γ)

(
b′−1(D′, γ)uI,s| x1=0

)
+ e−3(x′, D′, γ)uI,s| x1=0 , (98)

where

e0(x′, D′, γ) := [b′−1(D′, γ),Ms
γ ]λ1,γ(D′) (99)

has symbol in Γ0 and

e−3(x′, D′, γ) := −[b′−1(D′, γ),Ms
γ ]λ1,γ(D′)β−1(D′, γ) (100)

has symbol in Γ−3.
Thanks to the stability of the estimate (10) with respect to zero-th order terms in ψ and uI,s, the
operators d0(x′, D′, γ) and e0(x′, D′, γ) in the representations (95), (98) can be just regarded as addi-

tional lower order terms in b′−1(D′, γ)ψ and b′−1(D′, γ)uI,s| x1=0, together with b](x
′, D′, γ)(b′−1(D′, γ)ψ),

`](x
′, D′, γ)

(
b′−1(D′, γ)uI,s| x1=0

)
in the equation (92) (see formulas (104), (105) below). The terms involv-

ing d−3(x′, D′, γ), e−3(x′, D′, γ) can be just moved to the right-hand side of (92) and absorbed into the
boundary datum (see (107)).

Remark 18. Let us notice that in view of Proposition 13 (and using that the operator λ−1,γ
χ (Z) acts

component-wise on functions) the following identities hold

b′−1(D′, γ)
(
uI| x1=0

)
=
(
λ−1,γ
χ (Z)uI

)
| x1=0

=
(
λ−1,γ
χ (Z)u

)I
| x1=0

(101)

and similarly for uI,s.

4.4.5. Final form of the regularized BVP. Summarizing the calculations performed in the previous Section
4.4 and in view of Remark 18, the functions (λ−1,γ

χ (Z)u, b′−1(D′, γ)ψ) satisfy the system
Lγ(λ−1,γ

χ (Z)u) + ρ̃(x, Z, γ)(λ−1,γ
χ (Z)u) = F in Rn+

bγ(b′−1(D′, γ)ψ) +Ms
γ

(
λ−1,γ
χ (Z)u

)I,s
| x1=0

+M I
(
λ−1,γ
χ (Z)u

)I
| x1=0

+b̃(x′, D′, γ)(b′−1(D′, γ)ψ) + ˜̀(x′, D′, γ)
(
λ−1,γ
χ (Z)u

)I,s
| x1=0

= G on Rn−1 ,

(102)

where

ρ̃(x, Z, γ) := ρ](x, Z, γ) + ρ0,tan(x, Z, γ) + ρ0,nor(x, Z, γ) , (103)

b̃(x′, D′, γ) := b](x
′, D′, γ) + d0(x′, D′, γ) , (104)

˜̀(x′, D′, γ) := `](x
′, D′, γ) + e0(x′, D′, γ) , (105)
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F := λ−1,γ
χ (Z)F −

(
q−1(x, Z, γ)((AI,I1 )−1F I)

0

)
−R−1(x, Z, γ)u− S−1(x, Z, γ)u , (106)

G := b′−1(D′, γ)g − [b′−1(D′, γ), b](x
′, D′, γ)]ψ − d−3(x′, D′, γ)ψ

−[b′−1(D′, γ),M I ](uI| x1=0)− [b′−1(D′, γ), `](x
′, D′, γ)](uI,s| x1=0)− e−3(x′, D′, γ)uI,s| x1=0 ,

(107)

and the operators ρ0,tan, ρ0,nor, d0, e0, R−1, S−1, d−3, e−3 are defined in the preceding Sections 4.4.1-
4.4.4.

4.5. The estimate associated to the regularized BVP. From assumption (H)1, we know that there
exist constants C0 > 0, γ0 ≥ 1, depending only on the coefficients of the operator Lγ and a finite number

of semi-norms of ρ̃ = ρ̃(x, ξ, γ) ∈ Γ0, ˜̀ = ˜̀(x′, ξ′, γ), b̃ = b̃(x′, ξ′, γ) ∈ Γ0, such that for all γ ≥ γ0 the
following estimate holds for the functions (λ−1,γ

χ (Z)u, b′−1(D′, γ)ψ)

γ
(
||λ−1,γ

χ (Z)u||2H1
tan ,γ(Rn+) + ||(λ−1,γ

χ (Z)uI)| x1=0||2H1/2
γ (Rn−1)

)
+ γ2||b′−1(D′, γ)ψ||2H1

γ(Rn−1)

≤ C0

(
1

γ3
||F||2H2

tan,γ(Rn+) +
1

γ
||G||2

H
3/2
γ (Rn−1)

)
.

(108)

We start analyzing the terms appearing in the left-hand side of (108).
In view of (44), (50) we compute

||λ−1,γ
χ (Z)u||H1

tan ,γ(Rn+) = ||λ1,γ(Z)λ−1,γ
χ (Z)u||L2(Rn+) =

∣∣∣∣∣∣∣∣λ1,γ(Z)

(
λ−1,γ(Z)− r−1(Z, γ)

)
u

∣∣∣∣∣∣∣∣
L2(Rn+)

=
∣∣∣∣u− λ1,γ(Z) r−1(Z, γ)u

∣∣∣∣
L2(Rn+)

≥ ||u||L2(Rn+) − ||λ1,γ(Z) r−1(Z, γ)u||L2(Rn+)

= ||u||L2(Rn+) − ||r−1(Z, γ)u||H1
tan ,γ(Rn+).

Using Lemma 12 with h = 1, there exists a constant C1, independent on γ, such that

||r−1(Z, γ)u||H1
tan ,γ(Rn+) ≤

C1

γ
||u||L2(Rn+) , ∀γ ≥ 1.

Hence

||λ−1,γ
χ (Z)u||H1

tan ,γ(Rn+) ≥ ||u||L2(Rn+) −
C1

γ
||u||L2(Rn+) ≥

1

2
||u||L2(Rn+) , ∀γ ≥ γ1 (109)

with large enough γ1 ≥ 1.
Using Proposition 13 and Lemma 14 we get

(λ−1,γ
χ (Z)uI)| x1=0 = b′−1(D′, γ)(uI| x1=0) = λ−1,γ(D′)(uI| x1=0) + β−1(D′, γ)(uI| x1=0).

Again by Lemma 14 we derive that β−1(ξ′, γ) ∈ Γ−3, hence by Proposition 7 and (17), we get

||(λ−1,γ
χ (Z)uI)| x1=0||H1/2

γ (Rn−1)
= ||λ−1,γ(D′)(uI| x1=0) + β−1(D′, γ)(uI| x1=0)||

H
1/2
γ (Rn−1)

≥ ||λ1/2,γ(D′)λ−1,γ(D′)(uI| x1=0)||L2(Rn+) − ||β−1(D′, γ)(uI| x1=0)||
H

1/2
γ (Rn−1)

≥ ||uI| x1=0||H−1/2
γ (Rn−1)

− C||uI| x1=0||H−5/2
γ (Rn−1)

≥
(

1− C

γ2

)
||uI| x1=0||H−1/2

γ (Rn−1)
≥ 1

2
||uI| x1=0||H−1/2

γ (Rn−1)
, ∀γ ≥ γ1

(110)

with large enough γ1 ≥ 1, and C a positive constant independent of γ. As regards to the term
||b′−1(D′, γ)ψ||2H1

γ(Rn−1) in (108) we write again, by Lemma 14,

b′−1(D′, γ)ψ = λ−1,γ(D′)ψ + β−1(D′, γ)ψ .
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Arguing as above we obtain

||b′−1(D′, γ)ψ||H1
γ(Rn−1) ≥ ||λ−1,γ(D′)ψ||H1

γ(Rn−1) − ||β−1(D′, γ)ψ||H1
γ(Rn−1)

≥ ||ψ||L2(Rn−1) − C||ψ||H−2
γ (Rn−1) ≥

(
1− C

γ2

)
||ψ||L2(Rn−1) ≥

1

2
||ψ||L2(Rn−1), ∀γ ≥ γ1

(111)

with γ1 ≥ 1 large enough, and C a positive constant independent on γ.
To conclude the estimate, we need to analyze the different commutator terms involved in the data F ,G
in right-hand side of (108). The next two sections are devoted to the study of these commutator terms.

4.5.1. The estimate of the internal source term F . To provide an estimate of the H2
tan−norm of the

source term F in the internal equation of the BVP (102), we need to estimate in H2
tan(Rn+) the different

terms involving F and the function u in the right-hand side of (106).
Concerning the terms in the right-hand side of (106) containing the function u, from Lemma 12 and the
fact that the operators [λ−1,γ

χ (Z),Ltan,γ +ρ]]λ
1,γ(Z) and q−1(x, Z, γ)Tγλ1,γ(Z) involved in the definition

of R−1, S−1 are of order zero (see (65), (90)), we get

||R−1u||H2
tan,γ(Rn+) ≤ C||r−1(Z, γ)u||H2

tan,γ(Rn+) ≤ C1||u||L2(Rn+) ,

||S−1u||H2
tan,γ(Rn+) ≤ C||r−1(Z, γ)u||H2

tan,γ(Rn+) ≤ C1||u||L2(Rn+) ,
(112)

for suitable positive constants C,C1 independent of γ ≥ 1.
As regards to the terms in the right-hand side of (106) that contain the function F , since the operator
q−1(x, Z, γ) has symbol in Γ−2 (cf. Proposition 16), we immediately find that

||λ−1,γ
χ (Z)F ||H2

tan,γ(Rn+) ≤ C||F ||H1
tan,γ(Rn+) ,

||q−1(x, Z, γ)((AI,I1 )−1F I)||H2
tan,γ(Rn+) ≤ C||F I ||L2(Rn+) ≤

C

γ
||F I ||H1

tan,γ(Rn+) ,

(113)

for a suitable positive C, independent of γ.
Collecting estimates (112), (113) we obtain

||F||H2
tan,γ(Rn+) ≤ C

{
||F ||H1

tan,γ(Rn+) + ||u||L2(Rn+))

}
, (114)

where again C is some positive constant independent of γ.

4.5.2. The estimate of the boundary data G. In this section we provide an estimate of the H3/2−norm of
the boundary data G in the right-hand side of (102)2, as it is required by the estimate (108); in particular,
we need to consider the commutator terms involved in (107).
From Section 4.4.4 we know that the commutators in (93) are pseudo-differential operators with symbols
in Γ−2. Hence from Proposition 7, there exists a constant C > 0 such that, ∀ γ ≥ 1,

||[b′−1(D′, γ), b](x
′, D′, γ)]ψ||

H
3/2
γ (Rn−1)

≤ C||ψ||
H
−1/2
γ (Rn−1)

≤ C

γ1/2
||ψ||L2(Rn−1) ,

||[b′−1(D′, γ),M I ]uI| x1=0||H3/2
γ (Rn−1)

≤ C||uI| x1=0||H−1/2
γ (Rn−1)

,

||[b′−1(D′, γ), `](x
′, D′, γ)]uI,s| x1=0||H3/2

γ (Rn−1)
≤ C||uI,s| x1=0||H−1/2

γ (Rn−1)
.

(115)

Finally, since d−3(x′, D′, γ) and e−3(x′, D′, γ) have symbol in Γ−3 (see (97) and (100)) we obtain

||d−3(x′, D′, γ)ψ||
H

3/2
γ (Rn−1)

≤ C||ψ||
H
−3/2
γ (Rn−1)

≤ C

γ3/2
||ψ||L2(Rn−1) , ∀ γ ≥ 1 , (116)

||e−3(x′, D′, γ)uI,s| x1=0||H3/2
γ (Rn−1)

≤ C||uI,s| x1=0||H−3/2
γ (Rn−1)

≤ C

γ
||uI,s| x1=0||H−1/2(Rn−1) , ∀ γ ≥ 1 , (117)
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with γ−independent positive constant C. Collecting the preceding estimates (115), (117) and using (107)
we obtain

||G||
H

3/2
γ (Rn−1)

≤ C
(
||b′−1(D′, γ)g||

H
3/2
γ (Rn−1)

+ ||[b′−1(D′, γ), b](x
′, D′, γ)]ψ||

H
3/2
γ (Rn−1)

+||[b′−1(D′, γ), `](x
′, D′, γ)]uI,s| x1=0||H3/2

γ (Rn−1)
+ ||d−3(x′, D′, γ)ψ||

H
3/2
γ (Rn−1)

+||[b′−1(D′, γ),M I ]uI| x1=0||H3/2
γ (Rn−1)

+ ||e−3(x′, D′, γ)uI,s| x1=0||H3/2
γ (Rn−1)

)
≤ C

(
||g||

H
1/2
γ (Rn−1)

+
1

γ1/2
||ψ||L2(Rn−1) + ||uI| x1=0||H−1/2

γ (Rn−1)

)
, ∀ γ ≥ 1 ,

(118)

with γ−independent positive constant C.

4.6. Proof of estimate (12). We start from (108) and use (109), (110), (111), (114), (118) to get

γ
(
||u||2L2(Rn+) + ||uI| x1=0||

2

H
−1/2
γ (Rn−1)

)
+ γ2||ψ||2L2(Rn−1)

≤ C

γ3

(
||F ||2H1

tan,γ(Rn+) + ||u||2L2(Rn+)

)
+
C

γ

(
||g||2

H
1/2
γ (Rn−1)

+
1

γ
||ψ||2L2(Rn−1) + ||uI| x1=0||

2

H
−1/2
γ (Rn−1)

)
for all γ ≥ γ1, with γ1 ≥ 1 large enough, and C > 0 independent of γ.
Then estimate (12) follows by absorbing into the left-hand side the terms involving the functions u, ψ in
the right-hand side of the above inequality. This ends the proof of the statement 1 of Theorem 1.

4.7. Proof of estimate (13), statement 2 of Theorem 1. In the end, let us shortly discuss the proof
of the estimate (13) in Theorem 1, statement 2, under the assumption (H)2 about the BVP (1).
As it was done in Section 4.4, for given smooth functions (u, ψ) we firstly define the data

F := Lγu ,
g := bγψ +Ms

γu
I,s +M IuI + b](x

′, D′, γ)ψ + `](x
′, D′, γ)uI,s .

(119)

Notice that, differently from the case of statement 1 (see formulas (56), (57)), no lower order term in u
is involved in the definition of the interior source term F in (119); this agrees with the assumption (H)2,
about the BVP (1), where no stability assumption under lower order interior operators is required for
the estimate (11).
Then, following the strategy already explained in Section 4.1, we apply the operator λ−1,γ

χ (Z) to the first
equation in (119) and we find

Lγ(λ−1,γ
χ (Z)u) = λ−1,γ

χ (Z)F − [λ−1,γ
χ (Z),Lγ ]u , in Rn+ . (120)

Compared to the analogous equation (58), in the left-hand side of the above equation there is no lower
order operator ρ](x, Z, γ). Moreover, we notice that the term involving the commutator [λ−1,γ

χ (Z),Lγ ] has
been put in the right-hand side of the equation (120), which means that this term can be just regarded as
a part of the source term of such an equation. This is a consequence of the fact that the a priori estimate
(11), that is associated to the BVP (1) under the assumption (H)2, does not lose derivatives from the
interior source term F : the H1

tan−norm of the unknown u is measured by the H1
tan−norm of F .

Concerning the boundary condition, the same arguments developed in the Section 4.4.4 give that the
function (λ−1,γ

χ (Z)u, b′−1(D′, γ)ψ) satisfy the equation (102)2 on the boundary.

Applying the estimate (11) to the BVP (120), (102)2 we find again that (λ−1,γ
χ (Z)u, b′−1(D′, γ)ψ) obey

the estimate

γ
(
||λ−1,γ

χ (Z)u||2H1
tan ,γ(Rn+) + ||(λ−1,γ

χ (Z)uI)| x1=0||2H1/2
γ (Rn−1)

)
+ γ2||b′−1(D′, γ)ψ||2H1

γ(Rn−1)

≤ C0

γ

(
||F||2H1

tan,γ(Rn+) + ||G||2
H

3/2
γ (Rn−1)

)
,

(121)
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where the interior source term F is defined now as

F := λ−1,γ
χ (Z)F − [λ−1,γ

χ (Z),Lγ ]u , (122)

while the boundary datum G is given by (107).
To conclude the proof, it remains to provide an estimate of the Sobolev norms of F and G appearing in
the right-hand side of (121). The estimate of G is exactly the estimate (118) obtained in Section 4.5.2.
Concerning the estimate of F , from (122) we firstly get

||F||H1
tan,γ(Rn+) ≤

{
||λ−1,γ

χ (Z)F ||H1
tan,γ(Rn+) + ||[λ−1,γ

χ (Z),Lγ ]u||H1
tan,γ(Rn+)

}
≤ C

{
||F ||L2(Rn+) + ||[λ−1,γ

χ (Z),Lγ ]u||H1
tan,γ(Rn+)

}
,

(123)

for a positive constant C independent of γ ≥ 1. In order to estimate the norm of the commutator term
[λ−1,γ
χ (Z),Lγ ]u involved in the right-hand side of (123), the same analysis performed in Sections 4.4.2,

4.4.3 leads to the formula

[λ−1,γ
χ (Z),Lγ ]u = [λ−1,γ

χ (Z), A1
1∂1]u+ [λ−1,γ

χ (Z),Ltan,γ ]u

=

(
q−1(x, Z, γ)(∂1u

I)
0

)
+ [λ−1,γ

χ (Z),Ltan,γ ]u ,
(124)

where the result of Proposition 16 (see also (66)) has been used to get the second equality above and
Ltan,γ is the tangential differential operator defined in (60).
Since, in view of Proposition 5, [λ−1,γ

χ (Z),Ltan,γ ] is a conormal operator with symbol in Γ−1, Proposition
8 yields

||[λ−1,γ
χ (Z),Ltan,γ ]u||H1

tan,γ(Rn+) ≤ C||u||L2(Rn+) , (125)

with some positive γ−independent constant C.
As for q−1(x, Z, γ), it is a conormal operator with symbol in Γ−2. Writing again ∂1u

I is terms of conormal
derivatives of u and F as in (84) gives

q−1(x, Z, γ)(∂1u
I) = q−1(x, Z, γ)

(
(AI,I1 )−1F I + Tγu

)
,

where Tγ is the conormal operator of order 1 defined in (85) (with ρ] = 0). Hence in view of Proposition
8 we get

||[λ−1,γ
χ (Z), AI,I1 ∂1]uI ||H1

tan,γ(Rn+) =
∣∣∣∣∣∣λ1,γ(Z)

(
q−1(x, Z, γ)((AI,I1 )−1F I + Tγu)

)∣∣∣∣∣∣
L2(Rn+)

≤
∣∣∣∣∣∣λ1,γ(Z)

(
q−1(x, Z, γ)((AI,I1 )−1F I)

)∣∣∣∣∣∣
L2(Rn+)

+ ||λ1,γ(Z)q−1(x, Z, γ)Tγu||L2(Rn+)

≤ C0

(
||F I ||H−1

tan,γ(Rn+) + ||u||L2(Rn+)

)
≤ C0

(
1

γ
||F I ||L2(Rn+) + ||u||L2(Rn+)

)
.

(126)

Collecting estimates (123), (125), (126), we finally get

||F||H1
tan,γ(Rn+) ≤ C

(
||F ||L2(Rn+) + ||u||L2(Rn+)

)
, ∀ γ ≥ 1 , (127)

with γ−independent positive constant C.
The estimate (13) follows at once by combining (121) with (118) and (127).

Appendix A. Proof of some technical lemmata

A.1. Proof of Lemma 10. For a given smooth function u ∈ C∞(0)(R
n
+), an explicit calculation gives that

λm,γχ (Z)u(x) =
〈
F−1λm,γ(·), χ(·)e−

(·)1
2 u(x1e

−(·)1 , x′ − (·)′)
〉
, ∀x = (x1, x

′) ∈ Rn+ .
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We have to prove that, under a suitable choice of ε0, if x /∈ B+ then λm,γχ (Z)u(x) = 0. This is true if

y 7→ vx(y) := χ(y)e−
y1
2 u(x1e

−y1 , x′ − y′)
is identically zero as long as x /∈ B+.
Since Rn+ \B+ = {x = (x1, x

′) : x1 ≥ 1 , ∀x′ ∈ Rn−1}∪ {x = (x1, x
′) : |x′| ≥ 1 , ∀x1 ∈ [0,+∞[} we need

to analyze the following two cases.
1st case: x1 ≥ 1.
Let y ∈ Rn be arbitrarily fixed. If y /∈ suppχ, then χ(y) = 0, which implies vx(y) = 0. If y ∈ suppχ,
then we have −ε0 ≤ y1 ≤ ε0 and |y′| ≤ ε0. Hence, we derive that e−ε0 ≤ e−y1 ≤ eε0 and, since x1 ≥ 1,
x1e
−y1 ≥ e−y1 ≥ e−ε0 . Since u(x1, x

′) = 0 when x1 ≥ δ0, if we choose ε0 > 0 such that e−ε0 > δ0 (that
is equivalent to ε0 < log(1/δ0)), then we get that

∀ y ∈ suppχ , ∀x1 ≥ 1 : u(x1e
−y1 , x′ − y′) = 0 ,

which gives vx(y) = 0.
2nd case: |x′| ≥ 1.
Again, if y /∈ suppχ, then vx(y) = 0. If y ∈ suppχ then |x′ − y′| ≥ |x′| − |y′| ≥ 1 − |y′| ≥ 1 − ε0.
To conclude, in this case it is sufficient to choose ε0 > 0 such that 1 − ε0 > δ0 in order to have again
vx(y) = 0.
Finally, the result is proved if we choose 0 < ε0 ≤ min{log(1/δ0), 1− δ0}.

A.2. Proof of Lemma 12. For arbitrary u ∈ L2(Rn+), we observe that in view of (35), (38)

(rm(Z, γ)u)] = rm(D, γ)u] = F−1(rm(·, γ)) ∗ u] ; (128)

then, for arbitrary β ∈ Nn:

∂β(rm(Z, γ)u)] = (∂βF−1(rm(·, γ)) ∗ u] .
Since Hp

tan,γ(Rn+) is topologically isomorphic to Hp
γ (Rn) for all positive integers p, via the ] operator, and

u] ∈ L2(Rn), then rm(Z, γ)u ∈ Hp
tan,γ(Rn+) is proven provided that ∂βF−1(rm(·, γ)) belongs to L1(Rn)

for all β ∈ Nn with |β| ≤ p.
On the other hand, by the standard properties of the Fourier transform and by (46), we get

F−1(rm(·, γ)) = F−1((I − χ(D))λm,γ) = F−1(F−1((1− χ)λ̂m,γ))

= (2π)−n
˜

((1− χ)λ̂m,γ) = (1− χ)F−1(λm,γ),

(129)

where we have used the identity F−1g = (2π)−n˜̂g, with g̃(x) = g(−x), and that χ is an even function.
Let us firstly focus on F−1(λm,γ). For arbitrary positive integers N, k and β ∈ Nn one computes

|z|2(N+k)∂βzF−1(λm,γ)(z) = i|β|
∑

|α|=N+k

(N + k)!

α!
z2αF−1(ξβλm,γ)(z)

= i|β|(−1)N+k
∑

|α|=N+k

(N + k)!

α!
F−1

(
∂2α
ξ (ξβλm,γ)

)
(z) .

(130)

On the other hand, since λm,γ ∈ Γm, for |α| = N + k we get

|∂2α
ξ (ξβλm,γ(ξ))| ≤ Cα,βλm+|β|−2|α|,γ(ξ) = Cα,βλ

m+|β|−2(N+k),γ(ξ)

= Cα,βλ
−2k,γ(ξ)λm+|β|−2N,γ(ξ) ≤ Cα,βγ−2kλm+|β|−2N,γ(ξ) , ∀ ξ ∈ Rn , ∀ γ ≥ 1 .

For fixed β, we choose the integer Nβ = N such that 2N ≥ m+ |β|+ 1 + n; then

λm+|β|−2N,γ(ξ) ≤ λ−(1+n),γ(ξ) ≤ (1 + |ξ|2)−
n+1
2 , ∀ ξ ∈ Rn , ∀ γ ≥ 1

yields

|∂2α
ξ (ξβλm,γ(ξ))| ≤ Cα,βγ−2k(1 + |ξ|2)−

n+1
2 , ∀ ξ ∈ Rn , ∀ γ ≥ 1 ;
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hence ∂2α
ξ (ξβλm,γ(ξ)) ∈ L1(Rn) and, from Riemann-Lebesgue Theorem, F−1(∂2α

ξ (ξβλm,γ(ξ))) ∈ L∞(Rn)∩
C0(Rn) and we have

||F−1(∂2α
ξ (ξβλm,γ(ξ)))||L∞(Rn) ≤

∫
Rn
|∂2α
ξ (ξβλm,γ(ξ))| dξ

≤ Cα,βγ−2k

∫
Rn

(1 + |ξ|2)−
n+1
2 dξ ≤ Cα,β,nγ−2k , ∀ γ ≥ 1 .

Therefore, in view of (130),

|z|2(N+k)∂βzF−1(λm,γ)(z) ∈ L∞(Rn) ∩ C0(Rn)

and

|z|2(N+k)|∂βzF−1(λm,γ)(z)| ≤ Ck,N,β,nγ−2k , ∀ z ∈ Rn , γ ≥ 1 ,

where the constant Ck,N,β,n is independent of γ.
Summarizing, we have proved that:

∀β ∈ Nn ,∀ k,N ∈ N, with k ≥ 1 , N ≥ m+ |β|+ 1 + n

2
, ∃C = Ck,N,β,n > 0 :

i. |z|2(N+k)∂βzF−1(λm,γ)(z) ∈ L∞(Rn) ∩ C0(Rn)

ii. |z|2(N+k)|∂βzF−1(λm,γ)(z)| ≤ Ck,N,β,nγ−2k , ∀ z ∈ Rn , γ ≥ 1 .

For arbitrary β ∈ Nn, we consider ∂βF−1(rm(·, γ)). From (129) we compute, by Leibniz formula,

∂βF−1(rm(·, γ))(z) = −
∑
ν<β

(
β
ν

)
∂β−νz χ(z)∂νzF−1(λm,γ)(z) + (1− χ)(z)∂βzF−1(λm,γ)(z) . (131)

Note that ∂β−νχ, for all ν < β, and 1− χ are identically zero on a neighbourhood of z = 0. Then, from
i, ii above we derive that

∀β ∈ Nn ,∀ k,N ∈ N, with k ≥ 1 , N ≥ m+ |β|+ 1 + n

2
, ∃C = Ck,N,β,χ,n > 0 :

iii. ∂β−νz χ(z)∂νzF−1(λm,γ)(z), (1− χ)(z)∂βzF−1(λm,γ)(z) ∈ L∞(Rn) ∩ C0(Rn) , ∀ ν < β ;

iv. |∂β−νz χ(z)∂νzF−1(λm,γ)(z)| ≤ Ck,N,β,χ,nγ−2k(1 + |z|2)−N ,

|(1− χ)(z)∂βzF−1(λm,γ)(z)| ≤ Ck,N,β,χ,nγ−2k(1 + |z|2)−N , ∀ z ∈ Rn , ν < β , γ ≥ 1 .

Thus, applying iv for N ≥ max

{
n+ 1

2
,
m+ |β|+ n+ 1

2

}
, from (131) we obtain that ∂βF−1(rm(·, γ)) ∈

L1(Rn) and for all γ ≥ 1:

||∂βF−1(rm(·, γ))||L1(Rn) ≤ CN,k,n,β,χγ−2k

∫
Rn

(1 + |z|2)−Ndz ≤ Ck,n,β,χγ−2k ≤ Ck,n,β,χγ−k , (132)

where the constant Ck,n,β,χ is independent of γ.
For every positive integer p, applying the above result to all multi-indices β ∈ Nn with |β| ≤ p gives that
∂β(rm(Z, γ)u)] = ∂βF−1(rm(·, γ)) ∗ u] belongs to L2(Rn) with

||∂β(rm(Z, γ)u)]||L2(Rn) ≤ ||∂βF−1(rm(·, γ))||L1(Rn)||u]||L2(Rn) ≤ Ck,n,β,χγ−k||u||L2(Rn+) . (133)
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This gives that rm(Z, γ)u ∈ Hp
tan,γ(Rn+). Furthermore, for an arbitrary positive integer h we apply (133)

for each β ∈ Nn with |β| ≤ p for k = p− |β|+ h to get

||rm(Z, γ)u||2
Hptan,γ(Rn+)

≤ Cp||(rm(Z, γ)u)]||2
Hpγ (Rn)

=
∑
|β|≤p

γ2(p−|β|)||∂β(rm(Z, γ)u)]||2L2(Rn)

≤
∑
|β|≤p

γ2(p−|β|)Ch,p,n,β,χγ
−2(p−|β|+h)||u||2L2(Rn+) ≤ Ch,p,n,χγ

−2h||u||2L2(Rn+) ,
(134)

for a suitable γ−independent positive constant Ch,p,n,χ. This shows the estimate (49) and completes the
proof.

A.3. Proof of Proposition 13. Let u ∈ C∞(0)(R
n
+); to find a symbol b′m satisfying (53), from (46) we

firstly compute

(λm,γχ (Z)u)](x) = λm,γχ (D)(u])(x) = (F−1(λm,γχ ) ∗ u])(x) = 〈F−1(λm,γχ ), u](x− ·)〉

= 〈F−1(λm,γ), χ(·)e
x1−(·)1

2 u(ex1−(·)1 , x′ − (·)′)〉 , ∀ (x1, x
′) ∈ Rn ,

hence, by (31),

λm,γχ (Z)u(x) = 〈F−1(λm,γ), χ(·)e
x1−(·)1

2 u(ex1−(·)1 , x′ − (·)′)〉]
−1

=
1
√
x1

〈
〈F−1(λm,γ), χ(·)e

log x1−(·)1
2 u(elog x1−(·)1 , x′ − (·)′)

〉
=
〈
F−1(λm,γ), χ(·)e

−(·)1
2 u(x1e

−(·)1 , x′ − (·)′)
〉

=
〈
λm,γ ,F−1

(
χ(·)e

−(·)1
2 u(x1e

−(·)1 , x′ − (·)′)
)〉

= (2π)−n
∫
λm,γ(ξ)

(∫
eiξ·yχ(y)e−

y1
2 u(x1e

−y1 , x′ − y′)dy
)
dξ , ∀x1 > 0 , ∀x′ ∈ Rn−1 .

The regularity of u legitimates all the above calculations. Setting x1 = 0 in the last expression above, we
deduce the corresponding expression for the trace on the boundary of λm,γχ (Z)u

(λm,γχ (Z)u)| x1=0(x′) = (2π)−n
∫
λm,γ(ξ)

(∫
eiξ·yχ(y)e−

y1
2 (u| x1=0)(x′ − y′)dy

)
dξ . (135)

Now we substitute (51) into the y−integral appearing in the last expression above; then Fubini’s theorem
gives ∫

eiξ·yχ1(y1)χ̃(y′)e−
y1
2 (u| x1=0)(x′ − y′)dy

=

∫
eiξ
′·y′
(∫

eiξ1y1e−
y1
2 χ1(y1)dy1

)
χ̃(y′)(u| x1=0)(x′ − y′)dy′

=

∫
eiξ
′·y′
(∫

e−iξ1(−y1)e−
y1
2 χ1(y1)dy1

)
χ̃(y′)(u| x1=0)(x′ − y′)dy′

=

∫
eiξ
′·y′
(∫

e−iξ1(−y1)e−
y1
2 χ1(−y1)dy1

)
χ̃(y′)(u| x1=0)(x′ − y′)dy′

=
(
e

(·)1
2 χ1

)∧1

(ξ1)

∫
eiξ
′·y′ χ̃(y′)(u| x1=0)(x′ − y′)dy′ ,

(136)

where we have used that χ1 is even and ∧1 denotes the one-dimensional Fourier transformation with
respect to y1. Writing, by the inversion formula, (u| x1=0)(x′ − y′) = (2π)−n+1

∫
ei(x

′−y′)·η′ û| x1=0(η′)dη′
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and using once more Fubini’s theorem and that χ̃ is even, we further obtain∫
eiξ
′·y′ χ̃(y′)(u| x1=0)(x′ − y′)dy′ = (2π)−n+1

∫
eiξ
′·y′ χ̃(y′)

(∫
ei(x

′−y′)·η′ û| x1=0(η′)dη′
)
dy′

=

∫
eix
′·η′
(

(2π)−n+1

∫
ei(ξ

′−η′)·y′ χ̃(y′)dy′
)
û| x1=0(η′)dη′

=

∫
eix
′·η′
(

(2π)−n+1

∫
e−i(ξ

′−η′)·(−y′)χ̃(−y′)dy′
)
û| x1=0(η′)dη′

= (2π)−n+1

∫
eix
′·η′ ̂̃χ(ξ′ − η′)û| x1=0(η′)dη′ ;

(137)

here ∧ is used here to denote the (n−1)−dimensional Fourier transformation with respect to x′. Inserting
(136), (137) into (135) then leads to

(λm,γχ (Z)u)| x1=0(x′)

= (2π)−n
∫
λm,γ(ξ)

(
e

(·)1
2 χ1

)∧1

(ξ1)

(
(2π)−n+1

∫
eix
′·η′ ̂̃χ(ξ′ − η′)û| x1=0(η′)dη′

)
dξ .

(138)

Because
(
e

(·)1
2 χ1

)∧1

∈ S(R), ̂̃χ ∈ S(Rn−1) and û| x1=0 ∈ S(Rn−1), the double integral∫ ∫
eix
′·η′λm,γ(ξ)

(
e

(·)1
2 χ1

)∧1

(ξ1)̂̃χ(ξ′ − η′)û| x1=0(η′)dη′dξ

converges absolutely; hence Fubini’s theorem allows to exchange the order of the integrations in (138)
and find

(λm,γχ (Z)u)| x1=0(x′) = (2π)−n+1

∫
eix
′·η′b′m(η′, γ)û| x1=0(η′)dη′ , (139)

where b′m(η′, γ) is defined by (52). This shows the identity (53).

A.4. Proof of Lemma 14. We follow the same lines of the proof of [21, Lemma 4.11]. Setting for short

φ(x) := ex1/2χ1(x1)χ̃(x′) , (140)

the symbol (52) can be re-written as

b′m(ξ′, γ) = (2π)−n
∫
λm,γ(η1, η

′ + ξ′)φ̂(η) dη . (141)

Substituting in (141) the function η 7→ λm,γ(η1, η
′ + ξ′) by its Taylor expansion about η = 0

λm,γ(η1, η
′ + ξ′) =

∑
|α|<N

(∂αλm,γ)(0, ξ′)

α!
ηα +N

∑
|α|=N

ηα

α!

∫ 1

0

(∂αλm,γ)(tη1, ξ
′ + tη′)(1− t)N−1dt (142)

for N = 2, we get

b′m(ξ′, γ)

= (2π)−n
∫ λm,γ(ξ′) +

n∑
j=1

ηj(∂jλ
m,γ)(0, ξ′) + 2

∑
|α|=2

ηα

α!

∫ 1

0

(∂αλm,γ)(tη1, ξ
′ + tη′)(1− t)dt

 φ̂(η) dη

= (2π)−nλm,γ(ξ′)

∫
φ̂(η) dη − i(2π)−n

n∑
j=1

(∂jλ
m,γ)(0, ξ′)

∫
∂̂jφ(η)dη

−2(2π)−n
∑
|α|=2

1

α!

∫ (∫ 1

0

∂αλm,γ(tη1, tη
′ + ξ′)(1− t) dt

)
∂̂αφ(η) dη .

(143)
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From Plancherel’s identity and (140) (cf. also (45), (51)) we compute

(2π)−n
∫
φ̂(η) dη = φ(0) = 1 ,

(2π)−n
∫
∂̂1φ(η) dη = ∂1φ(0) = −1

2
,

(2π)−n
∫
∂̂jφ(η) dη = ∂jφ(0) = 0 , j ≥ 2 .

(144)

On the other hand, from (14) one trivially computes that (∂1λ
m,γ)(0, ξ′) = 0 for all ξ′ ∈ Rn−1. Inserting

the last relation and (144) into (143) then gives (54), where we set

βm,δ(ξ
′, γ) := −2(2π)−n

∑
|α|=2

1

α!

∫ (∫ 1

0

∂αλm,γ(tη1, tη
′ + ξ′)(1− t) dt

)
∂̂αφ(η) dη . (145)

To prove that βm belongs to Γm−2, differentiation under the integral sign of (145) gives, for an arbitrary
ν′ ∈ Nn−1,

∂ν
′

ξ′ βm,δ(ξ
′, γ) = −2(2π)−n

n∑
|α|=2

1

α!

∫ [
∂ν
′

ξ′

(∫ 1

0

(∂αλm,γ)(tη1, tη
′ + ξ′)(1− t) dt

)]
∂̂αφ(η) dη

= −2(2π)−n
n∑
|α|=2

1

α!

∫ [∫ 1

0

(∂α+(0,ν′)λm,γ)(tη1, tη
′ + ξ′)(1− t) dt

]
∂̂αφ(η) dη ;

(146)

hence from λm,γ ∈ Γm we obtain

|∂ν
′

ξ′ βm,δ(ξ
′, γ)| ≤ Cm,ν′

∑
|α|=2

∫ (∫ 1

0

λm−2−|ν′|,γ(tη1, tη
′ + ξ′) dt

)
|∂̂αφ(η)| dη , (147)

for a suitable γ−independent positive constant Cm,ν′ .
Recall that, for all s ∈ R, γ ≥ 1 and ξ, η ∈ Rn

λs,γ(ξ) ≤ 2|s|λs,γ(ξ − η)λ|s|(η) , (148)

see [6], [27, Lemma 1.18]. Then, we apply (148) (for s = m−2−|ν′|) to estimate λm−2−|ν′|,γ(tη1, tη
′+ξ′)

within the right-hand side of (147) by

λm−2−|ν′|,γ(tη1, tη
′ + ξ′) ≤ 2|m−2−|ν′||λm−2−|ν′|,γ(ξ′)λ|m−2−|ν′||(tη)

≤ 2|m−2−|ν′||λm−2−|ν′|,γ(ξ′)λ|m−2−|ν′||(η) , ∀ ξ′ ∈ Rn−1, η ∈ Rn , t ∈ [0, 1] ,

and combine with (147) to finally get

|∂ν
′

ξ′ βm(ξ′, γ)| ≤ C ′m,ν′λm−2−|ν′|,γ(ξ′)
∑
|α|=2

∫
λ|m−2−|ν′||(η)|∂̂αφ(η)|dη ≤ C ′′m,ν′λm−2−|ν′|,γ(ξ′) , (149)

for C ′m,ν′ , C
′′
m,ν′ suitable positive constants independent of γ (notice in particular that the integrals in

the sum involved in the right-hand side of the first inequality in (149) are absolutely convergent, because

∂̂αφ ∈ S(Rn) for all |α| = 2).

A.5. Proof of Corollary 15. For all ψ ∈ C∞0 (Rn−1) under the above assumptions, let Ψ ∈ C∞(0)(R
n
+)

be chosen in such a way that

supp Ψ ⊆ B+
δ0
, Ψ| x1=0 = ψ . (150)

Such a function Ψ could be for instance obtained as

Ψ(x1, x
′) := η(x1)ψ(x′) , ∀x1 ≥ 0 , x′ ∈ Rn−1 ,

with η = η(x1) ∈ C∞(0)([0,+∞[) such that

η(x1) = 1 , 0 ≤ x1 <
δ0
2
, η(x1) = 0 , x1 > δ0 .
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Then, in view of Proposition 13 one has

b′m(D′, γ)ψ = b′m(D′, γ)(Ψ| x1=0) = (λm,γχ (Z)Ψ)| x1=0 .

Then, from (150) and Lemma 10,

supp b′m(D′, γ)ψ ⊂ B+ ∩ {x1 = 0} = B(0; 1) .

A.6. Proof of Lemma 17. Recall that we have defined for each k = 1, . . . , n

qk,m(x, ξ, γ) := (2π)−n
∫
Rn
b̂k(x, η)∂kλ

m,γ(ξ − η) dη , (151)

where the functions bk = bk(x, y) (cf. (72)) are given in C∞(Rn × Rn), have bounded derivatives in
Rn × Rn, and satisfy for all x ∈ Rn

supp bk(x, ·) ⊆ {|y| ≤ 2ε0} .

Recall also that b̂k(x, ζ) denotes the partial Fourier transform of bk(x, y) with respect to y.

The following lemma is concerned with the behavior at infinity of b̂k(x, ζ).

Lemma 19. Let the function bk = bk(x, y) ∈ C∞(Rn×Rn) obey all of the preceding assumptions. Then,
for every positive integer N and all multi-indices α ∈ Nn there exists a positive constant CN,α such that

(1 + |ζ|2)N |∂αx b̂k(x, ζ)| ≤ CN,α , ∀x , ζ ∈ Rn . (152)

Proof. Since for each x ∈ Rn, the function bk(x, ·) has compact support (independent of x), integrating
by parts we get for an arbitrary integer N > 0

(1 + |ζ|2)N b̂k(x, ζ) =
∑
|α|≤N

N !

α!(N − |α|)!

∫
{|y|≤2ε0}

ζ2αe−iζ·ybk(x, y) dy

=
∑
|α|≤N

N !

α!(N − |α|)!
(−1)|α|

∫
{|y|≤2ε0}

∂2α
y (e−iζ·y)bk(x, y) dy

=
∑
|α|≤N

N !

α!(N − |α|)!
(−1)|α|

∫
{|y|≤2ε0}

e−iζ·y∂2α
y bk(x, y) dy ,

(153)

from which (152) trivially follows, using that y−derivatives of bk(x, y) are bounded in Rn × Rn by a
positive constant independent of x. �

We are going now to analyze the behavior at infinity of the derivatives of qk,m(x, ξ, γ) defined as in (151).
For all multi-indices α, β ∈ Nn, differentiation under the integral sign in (151) gives

∂αξ ∂
β
x qk,m(x, ξ, γ) = (2π)−n

∫
∂βx b̂k(x, η)∂α+ekλm,γ(ξ − η) dη , (154)

where ek := (0, . . . , 1︸︷︷︸
k

, . . . , 0). Then using that λm,γ is a symbol of order m together with (152) and

combining with (148), for s = m− 1− |α|, we obtain

|∂αξ ∂βx qk,m(x, ξ, γ)| ≤ CN,βCm,α
∫
λ−2N (η)λm−1−|α|,γ(ξ − η) dη

≤ CN,m,α,βλm−1−|α|,γ(ξ)

∫
λ|m−1−|α||−2N (η) dη ,

(155)

where the integral in the last line is finite, provided that the integer N is taken to be sufficiently large.
This provides the estimate (80), with constant CN,m,α,β

∫
λ|m−1−|α||−2N (η) dη independent of γ.
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Appendix B. Some examples from MHD

B.1. Current-vortex sheets. Consider the equations of ideal compressible MHD:
∂tρ+ div (ρv) = 0,

∂t(ρv) + div (ρv ⊗ v −H ⊗H) +∇q = 0,

∂tH −∇× (v×H) = 0,

∂t
(
ρe+ 1

2 |H|
2
)

+ div
(
(ρe+ p)v +H×(v×H)

)
= 0,

(156)

where ρ denotes density, v ∈ R3 plasma velocity, H ∈ R3 magnetic field, p = p(ρ, S) pressure, q =
p+ 1

2 |H|
2 total pressure, S entropy, e = E+ 1

2 |v|
2 total energy, and E = E(ρ, S) internal energy. With a

state equation of gas, ρ = ρ(p, S), and the first principle of thermodynamics, (156) is a closed system. The
system is symmetric hyperbolic provided ρ > 0, ρp > 0. System (156) is supplemented by the divergence
constraint

divH = 0 (157)

on the initial data.
Current-vortex sheets are weak solutions of (156) that are smooth on either side of a smooth hyper-

surface Γ(t) = {x1 = ψ(t, x′)} in [0, T ] × Ω, where Ω ⊂ R3, x′ = (x2, x3) and that satisfy suitable jump
conditions at each point of the front Γ(t).

Let us denote Ω±(t) = {x1 ≷ ψ(t, x′)}, where Ω = Ω+(t) ∪ Ω−(t) ∪ Γ(t); given any function g we
denote g± = g in Ω±(t) and [g] = g+

|Γ − g
−
|Γ the jump across Γ(t).

One looks for smooth solutions (v±, H±, p±, S±) of (156) in Ω±(t) such that Γ(t) is a tangential
discontinuity, namely the plasma does not flow through the discontinuity front and the magnetic field is
tangent to Γ(t), see e.g. [16], so that the boundary conditions take the form

∂tψ = v± ·N , H± ·N = 0 , [q] = 0 on Γ(t) , (158)

with N := (1,−∂x2
ψ,−∂x3

ψ). Because of the possible jump in the tangential velocity and magnetic
fields, there is a concentration of vorticity and current along the discontinuity Γ(t). Notice that the
function ψ describing the discontinuity front is part of the unknown of the problem, i.e. this is a free
boundary problem. The well-posedness of the nonlinear problem (156)–(158) is shown in [7, 34] under
the assumption of the structural stability condition |H+ ×H−| > 0 on Γ(t).

After a change of independent variables that “flattens”the boundary, a linearization around a suitable
basic state and some reductions, Trakhinin [33, 34] (see also [7]) gets a linearized problem for u =
(v±, H±, p±, S±) of the form (1) with Lγ as in (2), bγ as in (3a), Mγ as in (3b) but with M2 = M3 = 0,
that is the boundary operator has order zero in u. Moreover, because of the special reductions, the
boundary data are zero, i.e. g = 0 in (1b), and F in (1a) is such that the solution satisfies some
additional constraints.

It is proved that the solution of the linearized problem satisfies an a priori estimate similar to (11)
(with g = 0). Instead, the linearized problem with general data F and g 6= 0 admits an a priori estimate
with a loss of two derivatives, see [34] for details.
Analogous results for incompressible current-vortex sheets are obtained in [4] and [23].

B.2. Plasma-vacuum 1. Using the previous notations, let Ω+(t) and Ω−(t) be space-time domains
occupied by the plasma and the vacuum respectively. That is, in the domain Ω+(t) we consider system
(156), (157) governing the motion of an ideal plasma and in the domain Ω−(t) we consider the so-called
pre-Maxwell dynamics

∇×H = 0, divH = 0, (159)

describing the vacuum magnetic field H ∈ R3, see [13].
The plasma variable (v,H, p, S) is connected with the vacuum magnetic field H through the relations

[13]

∂tψ = v ·N, H ·N = 0, H ·N = 0 , [q] = 0, on Γ(t), (160)
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where the jump of the total pressure across the interface is [q] = q|Γ − 1
2 |H|

2
|Γ. The well-posedness of the

nonlinear problem (156), (157), (159), (160) is shown in [31, 32] under the assumption of the structural
stability condition |H ×H| > 0 on Γ(t).

As in the case of current-vortex sheets, after a change of independent variables that “flattens”the
boundary, a linearization around a suitable basic state and some reductions, the authors obtain a lin-
earized problem for u = (v,H, p, S,H) of the form (1) with Lγ as in (2), bγ as in (3a), Mγ as in (3b)
with M2 = M3 = 0, that is the boundary operator has order zero in u. Moreover, because of the special
reductions, the boundary data are zero, i.e. g = 0 in (1b), and F in (1a) is such that the solution satisfies
some additional constraints.

In [31] it is proved that the solution of the linearized problem satisfies an a priori estimate similar to
(11) (with g = 0). The vacuum magnetic field H is estimated in the standard Sobolev space H1 with full
regularity. Instead, the linearized problem with general data F and g 6= 0 admits an a priori estimate
similar to (10), with loss of one derivative in F and g, see [32].
For similar results in the case of the incompressible plasma - vacuum problem, see [25].

B.3. Plasma-vacuum 2. In the domain Ω+(t) we consider system (156), (157) governing the motion of
an ideal plasma and in the domain Ω−(t) we consider the Maxwell equations

∂tH+∇× E = 0 ,

∂tE −∇×H = 0 ,

divH = div E = 0 ,

(161)

describing the vacuum magnetic and electric fields H, E ∈ R3, see [13].
The plasma variable (v,H, p, S) is connected with the vacuum variable (H, E) through the relations

[13]

∂tψ = v ·N, H ·N = 0, H ·N = 0 , [q] = 0, N × E = (N · v)H, on Γ(t), (162)

where the jump of the total pressure across the interface is [q] = q|Γ − 1
2 |H|

2
|Γ + 1

2 |E|
2
|Γ.

The stability of the linearized problem obtained from (156), (157), (161), (162) is shown in [5] under
suitable stability conditions on Γ(t). The authors obtain a linearized problem for u = (v,H, p, S,H, E) of
the form (1) with Lγ as in (2), bγ as in (3a), Mγ as in (3b) with M2 = M3 = 0, that is the boundary
operator has order zero in u. Moreover, because of the special reductions, the boundary data are zero, i.e.
g = 0 in (1b), and F in (1a) is such that the solution satisfies some additional constraints. It is proved
that the solution of the linearized problem satisfies an a priori estimate similar to (11) (with g = 0). The
vacuum variable (H, E) is estimated in the standard Sobolev space H1 with full regularity.

B.4. Contact discontinuities. We consider the equations of ideal compressible MHD (156) for two-
dimensional planar flows with respect to the unknown vector U = (p, v,H, S), with v(t, x) = (v1, v2) ∈ R2,
H(t, x) = (H1, H2) ∈ R2, x = (x1, x2). For simplicity, let us assume that the plasma obeys the state
equation of a polytropic gas

ρ(p, S) = Ap1/γe−S/γ , A > 0 , γ > 1 . (163)

Following the notations already introduced in Section B.1, contact discontinuities are weak solutions of
(156), that are smooth on either side of a smooth hypersurface Γ(t) = {x1 = ψ(t, x2)} in [0, T ] × R2,
satisfying at each point of the front Γ(t) suitable jump conditions. More precisely, one looks for smooth
solutions U± of (156) in Ω±(t) := {x1 ≷ ψ(t, x2)}, satisfying on Γ(t) the following conditions

v+
N − ∂tψ = 0 , [v] = 0 , [H] = 0 , H±N 6= 0 , [p] = 0 , (164)

where N := (1,−∂2ψ) is the space normal to the front Γ(t), HN = H1 − ∂2ψH2.
After a change of independent variables that “flattens” the boundary, in [24] the authors perform a
linearization of the free-boundary problem (156), (164) for contact discontinuities, around a suitable

sufficiently smooth basic state (p̂, v̂, Ĥ, Ŝ, ϕ̂), obeying the “stability” condition

[∂1p̂] ≥ c0 > 0 , on {x1 = ϕ̂(t, x2)} . (165)
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Under the preceding assumptions, the linearized problem can be recast in the form of (1) with Lγ as
in (2), bγ = 0 and Mγ of order one in U as in (3b). Moreover, because of the special reductions, the
boundary data are zero, i.e. g = 0 in (1b), whereas the only nonzero components of F in (1a) are the
ones corresponding to the equation for v.
In [24] it is proved that the solution of the above linearized problem satisfies an a priori estimate in the
Sobolev space H1

tan similar to (11).
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