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HE FGF/FGF RECEPTOR SYSTEM IN ANGIOGENESIS

Angiogenesis is the process of new blood vessel formation from
&xisting ones. Neovascularization is involved in embryonic
elopment, wound repair, and inflammation [1]. Also, the local,
trolled release of angiogenic growth factors contributes to
vascularization that takes place during angiogenesis-dependent
ases, including cancer [2].
The 1980s saw the purification of the pro-angiogenic proteins
roblast growth factor-1 (FGF1) and FGI2 [31. Since then, 22
cturatly-related members of the FGF family have been
entified [4]. Among them, FGF I, FGF2, FGF4, FGF5, and FGF8
ave been demonstrated to be endowed with angiogenic potential
FGFs are pleiotropic factors that act on different cell types,
ciuding endothelial cells (ECs), by interacting with tyrosine
inase (TK) FGF receptors (TK-FGFRs), heparan-sulfate proteo-
fycans (HSPGs), integrins, and gangliosides. Several experimental
idences point to a role for FGFs in tumor angiogenesis, infla-
nation, and angio-proliferative discases {discussed in [5}). Thus,
he FGF/FGF receptor system may represent a target for anti-
angiogenic therapies.
© F(GFs induce a complex “pro-angiogenic phenotype™ in cultured
Cs (Fig. (1)) that recapitulates the angiogenesis process in vivo,
ncluding expression of proteases, integrins, and cadherins and the
stimulation of EC proliferation and migration (summarized in )8

Exiracellular matrix (ECM) degradation, mainly by the plas-
min-plasminogen activator (PA) system and matrix metalloprotei-
iases (MMPs), represents an important step of the angiogenic
rocess [7]. FGFs upregulate urokinasc-type PA (uPA) and MMPs
sroduction in ECs [8, 9]. uPA converts plasminogen into piasmin
hat degrades different matrix proteins and activate MMPs [10].

FGF2 stimulates chemotaxis/chemokinesis in ECs [11]. When
-cultured on permissive three-dimensional matrix, ECs invade the
ubstratum and organize capillary-like structures with a hollow
umen {12]. FGF2 enhances this response in collagen I [13] and
“fibrin [14] gels in a CD44- [15] and integrin- [16] dependent
manner. Also, FGF2 promotes EC reorganization on Matrigel [17]
hat requircs MMPs [18] and uPA [19] activity as well asogf,
integrin engagement [20], thus -underlying the thigh cross-talk
“among FGFs and the integrin recepior system (see below).
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Abstract: Angiogenesis, the process of new blood vessel formation from pre
wound repair, inflammation, and tumor growth. The 1980s saw for the first

wa prototypic heparin-binding angiogenic fibroblast growth factors (FGP) 1
GF family and differenent classes of FGF recepiors have been identified.
Several cxperimental evidences point fo a role for various FGFs in t
angioproliferative diseases, and tumor growth. Thus, the FGF/FGF receptor system reprosents a target for the development of anti-
angiogenic therapies. Purpose of this review is to summarize the different modalities that have been appro
angiogenic activity of the FGF/FGF receptor system and discuss their possible therapeutic implications.
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-exisling ones, plays a key role in various physiological and

he neavascularization process that takes place in inflammation,

ached te impair the pro-

EC migration and proliferation are limited by lateral cell-cell
adhesion and ECM interactions [21] mediated by cadherin and
integrin engagement. Interestingly, FGI2 regulates the expression
of different cadherins [21] and integrins {22 and the production of
various ECM components in ECs [23], contributing to the
maturation of the new blood vessels (Fig. (1)).

The angiogenic activity of various members of the FGF family
has heen demonstrated in vive in different experimental models,
including the chick embryo chorion-allantoic membrane assay [24],
the avascular rabbit [25] or mouse [26] cornea assays, and the
subcutaneous Matrigel implantation assay [27]. In these experi-
mental models a potent angiogenic response can be obtained by the
delivery of FGFs as recombinant proteins, via retroviral, adenoviral,
lentiviral, and adeno-associated viral vector transduction, or via
implantation of FGF-overexpressing celt transfectants. The latter
approach allows the continuous delivery of FGF produced by a
limited number of cells, thus mimicking more closely the in vivo
situation [28]. For instance, the release of 1.0 pg FGF2 per day
from viable cells triggers an angiopenic response in the chick
embryo chorion-allantoid membrane assay quantitatively similar to
that elicited by 1.0 pg of the recombinant molecule [29]. These
considerations may impact the design of FGF-dntagonist strategies.

FGFs establish a complex interaction with EC surface [5]. As
stated above, FGFs interact with TK-FGFRs and HSPGs [5]. Also,
FGFs may require the enpagement of the integrin receptor o fi; [30]
and of cell surface-associated gangliosides [31] (Fig. (2)}.

The four members of the TK-FGFR family [TK-FGFR1 {/ig),
TK-FGFRZ (bek), TK-FGFR3, and TK-FGFR4] are encoded by
distinct genes and their structural variability is increased by
alternative splicing [32]. TK-FGFR! is expressed by ECs in vive
[33] and in vitro [6]. Less frequently, cultured ECs can express TK-
FGFR2 {34], whereas the expression of TK-FGFR3 or T K-FGFR4
has never been reported in endothelium. The interactions of FGFs
with TK-FGFRs occur with high affinity [dissociation constant (Ky)
= 10-550 pM] and cayses receplor dimerization and autophos-
phorylation of specific tyrosine residues located in the TK-FGFR
intra-cytoplasmic tail. This in turn lcads to the recruitment of
intracellular messengers/adaptors that bind to phosphoryiated
tyrosine residues on the activated receptor [for further details see
{35] and (Fig. (2)}.

HSPGs arc associated with the surface of ECs at densitics
ranging between 10°-10° molecules/cell. They consist of a core
protein and of glycosaminoglycan {GAG) chains represented by

© 2007 Bentham Science Publishers Ltd.
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Fig, (2). Signal transduction pathways tripgered by the interaction of
FGF2 with EC integrins, TK-FGFRs, and HSPCs. Only second
Mmessengers converging to the RafMEK/MAPK pathway are shown. For

unbranched heparin-like  anionic polysaccharides {36]. The
interaction of HSPGs with FGFs oceurs with low affinity (K, = 2-
200 nM) and is mediated by the negatively charged sulfated groups
of the GAG chain {37} that bind to basic aming acid motifs present

in the growth factor molecule [38]. FGF/ISPG interaction

Rusnati qpg Pregy,

modulate angiogenesis in vitro and in vive by direct activation of
phosphatidylinositol 4.5-bisphosphate (PIP2) and protein kinase ¢
(PKC)-0[39] that eventually lead to the activation of mitogen
activated protein kinases {MAPKs) [40]. Also, HSPGs promote
FGFs internalization [41] and present FGFs to TK-FGFRs in a
proper conformation, thus facilitating the formation of productive
HSPG/FGF/TK-FGFR ternary complexes [42]. Finally, HSPGs act
as a rescrvoir for exiracellular FGFs that are protected from
degradation {43] and accumulate in the microenvironment to
sustain a long-term stimulation of ECs [44]. Interestingly, FGF2
regulates the synthesis and release of proteases and glycosidases

. that. digest HSPGs and induce the mobilization of free HSPG/HS

chains [45]. Also, ECM degradation leads to the mobilization of
entrapped FGF2 (Fig, (3)) with consequent activation of an
angjogenic response [46]. The capacity of FGFs to complex HSPGs
(as well as other ECM or serum components [51) may modify their
accessi-bility to neutralizing antibodies or antagenist compounds.

Integrins are transmembrane receptor heterodimers comprised
of o and B subunits that mediate cell adhesion to a variety of
adhesive proteins of the ECM [47]. Integrins regulate also the
response of ECs to growth factors, including FGF2 [48]. In parti-
cular, o,f; integrin is expressed on ECs where it plays a central
role in neovascularization. For this reason, o,f; is considered as 2
farget for the development of anti-angiogenic therapies {49]
Similar to classical adhesive proteins, FGI2 binds o3 [30] with a
Kq equal to 20 nM (M. Rusnati, unpublished observations). Conse-
quently, immobilized FGF2 promotes EC adhesion and spreading,
leading to uPA upregulation, cell migration, proliferation, and
morphogenesis [50]. o, By/FGF2 interaction and EC adhesion 1o
immobilized FGF2 lead to the assembly of focal adhesion plaques
containing o,B; and TK-FGFR]| [50]. Consistently, a direct
o.By/TK-FGFRT interaction is required for a full response to FGF2
[51). Unlike TK-FGFRs, integrins lack intrinsic TK activity. Yet,
an early event during ttegrin signaling is the tyrosine phosphory-
lation of the non-receptor TK focal adhesion kinase (FAK) [52]
that, in tum, leads to the activation of the RhoA GTPase and/or
PPEG™™ [53-55]. In ECs, this signal transduction pathway can be
activated upon integrin engagement by adhesive proteins and leads
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(3). Different mechanisms of action of FGFs, FGFs released by
producing cells o mobilized from ECM activate ECs via a paracring mode
“of action, Alternatively, cytokines can stimulate ECs to produce FGFs that,
n turn, will act at the intracellular level (intracrine stimulation) or in an

< autocrine manner vig an extraceliular loop of stimulation,

“t0 nuclear translocation of NF-xB [56] and MAPK activation [50]
(Fig. (2)). Accordingly, FGF? induces FAK phosphorylation in ECs
(M. Rusnati, unpublished observations).

EC adhesion and activation by immobilized FGF2 may have
- relevance in vive since FGF2 accumulates as an immobilized
protein in the ECM, mainly by binding to HSPGs. Accordingly,
 heparin-bound FGF2 retains it cell-adhesive capacity {57]. Thus,
HSPGs may facilitate the interaction of ECM with FGF2 that, in
. turn, promotes EC adhesion and activation.

Gangliosides are neuraminic acid-containing glycosphingo-
lipids mainly found associated to the EC membrane, where they
modulate cell growth, adbesion, and cell-cell interaction [58].
Gangliosides bind FGFI, FGF2, and FGF4 via pegatively charged
neuraminic acid residues {31, 59). Consistently, the gangiioside
GM, expressed on the EC surface binds FGF2 with a K4 equal to 3
nM, acting as a functional FGF2 co-receptar [31]. Even though no
data are available about the involvement of gangtiosides in T'GF
. signaling, ganglioside-rich lipid rafts have been implicated in the
modulation of signal transduction and biclogical activity of
different growth factors [60]. Indeed, the specific GM, ligand
cholera toxin B subunit acts as FGF2 antagonists in ECs [31].

The complex signal transduction pathways activated by the
engagement of EC receplors by FGFs (see Fig. (2)) is mirrored by
the complexity of the elicited angiogenic phenotype, raising the
possibilify that different intracellular signals are responsible for the
various steps of the angiogenic process. However, the inhibition of
the activation of a single second messenger may be sufficient to
hamper the whole angiogenic program (sec Table 4 and §).

FGFs can act on ECs via a paracrine mode consequent to their
release by inflammatory, tamor and stromal cells andfor by their
mobilization from the ECM. On the other hand, ¥GFs play
autocrinefintracrine roles in ECs (see [61] and references therein).
Relevant to this point, the single-copy human Jf2f2 gene encodes
multiple FGF2 isolorms (from 18 to 24 kDa) that play different
functions possibly related to differences in their release and/or
subcellslar localization [62]. Indecd, high molecular weight FGTF2
isoforms contain a nuclear localization sequence, are mostly
recovered in the nucleus, and lead to celi immortalization when
overexpressed in ECs. 1n contrast, 18 kDa FGF2 is mostly cytosolic
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{63] and induces a transformed phenotype in EC transfectants [64].
Taken together, the data sugpest that endogenous FGFs produced
by cells of the cndothelial lineage may play. important autocrine,
intracrine, or paracrine roles in angiogenesis and in the
pathogenesis of vascular lesions (Fig. (3))-

2. INBIBITING THE FGF/FGF RECEPTOR SYSTEM

Theoretically, the angiogenic activity of FGFs can be
neutralized at different levels (Fig. () i) by inhibiting FGFs
production/release; ii) by sequestering FGFs in an inactive form in
the extraceltular environment; iii) by inhibiting the expression of
the different FGF receptors in ECs; iv) by masking FGF receptors,
thus preventing their engagement by FGFs; v} by interrupting the
signal transduction pathway(s) triggered by FGFs in ECs; vi) by
neutralizing FGF-induced cffoctors/biological responses whose
function is essential in mediating the angiogenic potential of FGFs.
All these approaches have been challenged experimentally and will

be described below.

2.1. Inhibiting FGF Production

As already mentioned, various cell types, including leukocytes,
tumor, and stromal cells, produce FGFs {leading to paracrine EC
activation) and/or cytokines that stimulate FGF synthesis in ECs
(leading to autocrine/intracrine EC activation) (see Fig. (3)). In both
cases, the inhibition of FGF production will fead to inhibition of
neovascularization, This has been achieved with different
approaches {Table 1}, including chemotherapeutics, that inhibit
FGY¥ production by killing FGF-producing tumor cells, and by
transfection with FGF antisense ¢DNAs or with dominant negative
cDNAs encoding for second messengers involved in the regulation

of FGF synthesis (Table 1).

2.2. Inhibiting FGY Receptor(s) Expression

The blockage of FGF activity can be achieved by hampering the
expression of the various FGF receptors on EC surface, including
TK-FGFRs, HSPGs, integrins, and gangliosides.

FGF2-dependent profiferation and migration of ECs are
abolished by transfection of ECs with a TK-FGFR1 antisense
cDNA {40]. Accordingly, lipesome-mediated gene transfer of the
TK-FGFRI antisense cDNA' blocks intraiumoral -angiogenesis in
human melanemas grafted in nude mice [65]. Also, the synthetic
retinoid fenretinide inhibits FGF2-induced angiogenesis in vivo and
EC proliferation in vitro by reducing the expression of TK-FGFR2
on the EC surface [66]. Finally, EC suiface expression of TK-
FGFR1 and TK-FGFR2 can be inhibited by antibodies directed
against o, f; and o5, integrins or by exposure to fibrin {671.

Lead exposure causcs HSPG down-regulation, leading to
inhibition of EC responsiveness fo FGF2 [68]. Also, anti-angio-
genic antithrombin inhibits EC proliferation by down-regulating the
surface expression of the HSPG perlecan [69]. Accordingly,
overexpression of perlecan antisense  cDNA  suppresses the
autocrine and paracrine functions of FGF2 in fibroblasts [70].
Heparinase removes HSPGs from ECs, abolishing their capacity to
migrate in response to FGF2 [40]. Similarly, the GAG 6-0-
endosulfatase inhibits neovascularization induced in vivo by FGF2
[71).

£EC motphogenesis on three-dimensional fibrin gel or Marigel
is suppressed by down-regulation of o, fi; expression obtained by
specific DNAzymes {72], raising the possibility that a similar
inhibifory effect might be observed also for FGF2-dependent
activities.

Finally, specific irhibitors of the synthesis of complex gang-
liosides, including fumenisin By, D-threo-1-phenyl-2-decano-y!-
amino-3-morpholino-1-propanol, and D-1-threo-1-phenyl-2-hexa-
decanoylamino-3—pyrrolidino—]—propanol, affect EC proliferation
triggered by FGF2 [31].
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Table 1. Inhibition of FGI Production in Tumor and ECs

Rusnati and Presgy

Celt Type Experimental Approach Inhibitor Reference
FGF2 antisense cDNA fransfection {65}
STATI knockout [175]
modulation of gene expression
dominant negative STAT3 transfection 73]
dominant negative Akt transfection [73]
taxane IDN 5109 (BAYS59-8862) [¥76]
docetaxel [171
epidermal growth factor receptor TK inhibitor ZD 1839 (Iressa) [178)
chemotherapeutics
doxycycline [179]
thalidomide {180]
tumeor cells zoledronic acid [181]
JAK inhibitor AG490 [73]
second messenger inhibitors PI3K inhibitor LY294002 [73]
PKA inhibitor 8-chloro-cyclic AMP [182}
genistein [183]
* fiumagillin and its analog TNP-470 {184]
natural products
curcumin f13zi
green tea (epigallocatechin-3-gallatc) [134]
dipeptidyl peptidase [V [185}
endogenous molecules
INF-c {186]
c-jun antisense cDNA transfection [187]
dominant negative ERK 5 transfection [188]
modulafion of gene expression dominant negative JNK transfection [188]}
anti-early growth response-1 (Egr-1} DNA~cleaving deoxyribozymes [189]
ECs
anti-FGF2 antisense oligonucleotides [190]
PI3K inhibitor LY294002 [191]
second messenger inhibitors
PKC inhibitor calphostin C [192]
natural products green tea (epigallocatechin-3-gallatc) [134]

2.3. Inhibiting FGF Interaction with EC Receptors

In the presence of FGFs and their EC receptors, it is still
possible to block neovascularization by sequestering FGFs in the
extracellular environment or by concealing the receptors to their
ligands,

2.3.1. Sequestering FGFs in the Extracellular Environment

Classically, the interaction with target cells can be prevented by
means of specific antibodies raised against the growth factor. This
is the case also for FGF2, whose functions can be inhibited by
neutralizing antibodies in different experimental conditions [73,
741.

Once releascd in the extracellular environment, FGFs interact
with several partners that modulate their bioavailability, stability,
local concentration, interaction with EC receptors, and intracellular
fate [5]. The identification of these molecules and the biochemical
characterization of their FGF-binding/antagonist capacity may
allow the design of selective inhibitors. Since the bulk of data refer
to FGF2, we will focus on this member of the FGF family, even
though many of the interactions described below may apply to
various FGFs.

Several BCM components or their degradation products affect
FGF-driven angiogenesis (Table 2). Thrombospondin-1 (TSP-1), a
modular glycoprotcin secreted by different cell types, including



7/FGF Receptor Inhibitors it Angiogenesis Current Pharmacentical Design, 2007, Vol. 13, No. 20 2029

inhibition of the FGF/FGF
receptor system

FGF synthesis/
release/ FGF FGF
mobilization stability/ receptor
@1 hioavailability expression
@2.3) a
second
FGF/EGF receptor messenger
o um o TOF interaction activation
l*;(._ hY| 2.3) 24 effectors

[ tumor cells

stronal cells
inflasmmator
cells

ANGIOGENESIS

endothelial cell

Fig. (4). Anti-FGT strajegies for the development of anti-angiogenic therapies. Intraceflular and extracellutar FGF inhibitors can act on ditferent targets. The
numbers in brackets refer o the paragraphs in the text where the different classes of inhibitors are doscribed in more details.

ECs, is composed of muitiple domains that bind to soluble factors, functions relay, at least in part, onl the capacity of PTX3 to bind
receptors, and ECM components including HSPGs and integrins different structures [83]. In particular, PTX3 binds FGF2 with high
[75). TSP-1 is a potent endogenous inhibitor of angiogenesis and affinity [83], preventing its binding to cell surface TK-FGFRs and
this effect is due, at least in part, t© its capacity to bind FGF2 [76]. HSPGs with a consequent inhibition of cell proliferation and
The interaction is mediated by the COOH-terminal, anti-angiogenic migration. Also, PTX3 inhibits FGF2-dependent neovascularization
140 kDa fragment of TSpP-1. TSP-1 prevents the interaction of and tumorigenesis in vive [83]. PTX3 exists both as a free or ECM-
FGF2 with HSPGs and TK-FGFRs. Accordingly, TSP-1 inhibits jmmobilized molecule {84]. Relevant to this point, FGF2 and PTX3

the mitogenic and chemotactic activity of FGF?2 in ECs, TSP-1 also retain their binding capacity independently of their free or
prevents the accumulation of FGF2 in the ECM and favors the immobilized status {83]. Thus, as described for TSP-1, free PTX3
mobilization of matrix-bound  FGF2, generating  inactive TSP- may have access 1o ECM-bound FGF2 by acting as 2 scavenger for
1/FGF2 complexes [77]. Thus, free TSP-1 acts as a scavenger for the stored growth factor, whereas ECM-associated PTX3 may act
matrix-associated FGF2, affecting its location, bioavailability, and as a “FGF decoy”, sequestering the growth factor in an inactive
function, whereas ECM-associated TSP-1 acts as a “FGF2 decoy”, form,
sequestering the growth factor in an inactive form. Platelet factor 4 (PF4} is a well known inhibitor of angiogenesis
Fibstatin is a fibronectin fragment that binds FGF2, thus ([85] and refercnces therein) that binds FGF1 (86} and FGI2 [85].
inhibiting its capacity 1o trigger cell proliferation, migration, and thus inhibiting iheir interaction with HSPGs, cell internalization,
tuhulogenesis in cultured ECs and angiogenesis and tumot growth and mitogenic activity [85]. The ohservation that PF4-derived
in vivo [78). peptides can be modified to obtain a significant increase in their

FGF2-binding and antagonist activity underlies the possibility that

A variely of serum components affect FGF activity in ECs : : e e ] X
peptides from F(iF-binding proteins represent a potential class of

(Tab. 2). a,-Macroglobulin (0,M) is a 718 kDa homotetrameric ’ ) . . . .
protein present in human plasma where it acts as a broad-specific anti-angiogenic agents with defined mode(s) of action [87]. Like
proteinase inhibitor. To exert is activity, oM undergoes major PF4, _plgte'!et derived growth factor (PDGF') BB binds FGF2 188]
conformational changes that lead to the activated form oM*. Both and inhibits F GFZ-df:pendent neovascularization [89]. Similarly,
@M and oM* hind a variety of cytokines and growth factors, the chc'mokme ICX(,LB (fqrmerly known as B cell-atiracting
including FGF1, FGF2, F(;F4, and FGF6 [79}. The binding of oM f:hem‘()klnﬂ 1) binds FGF2, dt:splaces }he growth factor from ECs,
10 FGF2 occurs with high affinity and leads to sequestration of the impairs the formation of functional FGF2 homodimers, e!nd inhibits
prowth factor in the extracellular environment, thus: inhibiting FGF2-dependent survival of ECs [90). Also the chemokine BRAK/

EGF2/EC interaction, protease-inducing activity [80], and miloge- CXCLI4 inhibits FGF2-dependent _migration of ECs in vitro and
nic capacity [79]- ) angiogenesis in vivo, even though its mechanism of action is still

Long-pentraxin 3 (PTX3) is a 45 kDa glycosylated protein unknown [91].

predominantly assembied in 10-20 mer multimers {81}. Its COOH- A soluble form of the extracellular portion of TK-FGFR1
i {xcFGFR1} was identified in body fluids [92] and in endothelial

terminal domain shares homelogy with the classic short-pentraxin .
Creactive protein whereas its NI,-terminal portion does not show ECM [93]. xcFGFRI binds FGI2 and prevents FGF2/TK-FGFRI

significant homology with any other known protein [82]. PTX3 is in'tcraclion {94]; Acct)r‘ciingly, xcFGFR1 inhibi_ts signal trgnsductiqn
synthesized and released Dy activated mononuclear phagocytes and triggered by FGFL FGF2, and FGF3 by forming heterodimers with
ECs [82] and acts as 2 soluble patiern recognition receptor with cettular TK-FGFRI [95] and inhibits FGF2-dependent proliferation

unique functions in various physio-pathological conditions. These in ECs (8].
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Table2. Endogenous Inhibitors of FGFs in ECs
Localization Molecule Mechanism of Action
homeobox gene GAX inhibition of NF-kB activation [193]
intracellufar | sprouty proteins ¥_'El'1_ib—itiml of TK-FGFR signaling [194]
- heat shock proteins (Hsp) 70 and 90 T pAkt, c»RafEnd ERK, down modulation 195}
o collagen I I - unknown [196}
R TSP-1 —ﬁ—ulgl;qu:traﬁon [76];&36 engagement [[55], integrin occupancy (7),
HSPG occupancy (7)
ECM - alphastatin (fibrinogen fragment) unknown [197]
i endostatin o cytoskeleton organization [198], Shb activation [199]
- fibstatin (ﬁb;ectin fragment) T FGF2 sequestration [78)
| CXCLI3 T o FGF2 sequestration [90]
- CXCL14 ] ‘ unknown [91]
e l%GF - FGF2 sequestration [88]
oM ] ___.%FGM sequesiration [79]
- PTX3 ] FGF2 sequestration [83]
heparin o *_Fé I"2 sequestration [42]
B gangliosides ] T FGF2 sequestration [59)
- PF4 - FGFZ—se—q;s?at‘lb—nm[Séj, HSPG occupancy [109], unknewn [153]
B xcFGFR1 T FGF2 sequestration [94], formation of heterodimers with TK-FGFR| [95]
- histidine-rich glycoprotein HS Péo—a;;;ncy {109], troponiyosin engagement [200)
- an_ti-thu_r;mbin ] —%%QPG down-regulation [69]
S thromboxane T inhibitiong:l"K-FGFRi internalization {201] |
- angiostatin (fragment of plasminogen) -] inh |:biti0n of ERK cascade [202]
blood prolactin (16 kDa fragment) o o unknown {203]
B vitamin D3-binding protein ] ¢ D36 engagement [204]
- ghrelin T —i:-ﬂTib?ion of TK/MAPK cascades [205])
e lysophosphatidyicholine T T inhibité('m of ras/ERK,,, cas_cades [206]
cleaved HT\-/!—W kininogen - - tropomyosin cngagem;“[w?]
- 1I.-4 T —‘ml"ation of cell cycl‘fE(NJS]
- [L-12 ' - unkeown [209]
- IP-10 - unknown f2190]
[ pigment cpE:.lium-derivcd fact.(:-——‘;m __inhibirion of Fyn [21]]
—vasclnlézi;in {fragment of brain angiogenesis inhibi.!o_r-i)— _.ﬁm [212)
h vasostatin o T unknown [213]
B kininostatin {fragment of kininogen) I inhibition of cyclin D1 expression [214]
kallistetin N HSPaccupancy,-inhibition of FGF-induced proteases [1127
i TGF-Bi ] '

unknown [14]
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(Table 2) Contd....
Leocalizafion Molecule Mechanism of Action
TIMP-2, 4 inhibition of FGF-induced proteases [215]
IFN-y TK-FGFR down-regulation {216]
IL-1 TK-FGFR down-regufation {216]
TNF-a, 8 unknown [217]

somafostatin

unknown [218]

retinoids

unknown [66]

apolipoprotein(a)

unknown [219]

heparan sulfate 6-0-endosulfatase
extraceftular

HSPG desulfation [71]

micro- heparinase

HSPG degradation {40]

" environment

semaphorin-3F

inhibition of ERK; cascade [220]

FGFs bind free heparin, a negatively charged GAG released in
the blood stream during inflammation. At variance with HSPGs,
that act as FGF co-receptors (see above), free heparin sequesters
FGFs in the extracellular environment exerting an antagonist effect,
However, due to its anticoagulant activity and its capacity to bind a
wide array of growth factors, cytokines, enzymes, and proteases,
unmodified heparin can not be used as an anfi-angiogenic drug.
This prompted a series of studies aimed at identifying heparin
derivatives and/or heparin-like molecules endowed with a more
specific FGF antagonist activity and a more favorable therapeutic
window (reviewed in [96]). A list of polyanionic compounds able to
bind FGFs and to inhibit their biological activity in ECs is shown in
Table 3.

: It must be pointed out that polyanionic compounds may cxert

also co-stimulatory effects on FGF activity depending on various
experimental conditions, including: i) the member of the FGF
family under investipation and/or the utilized biological assay; ii)
the molar ratio of the FGF:polyanion interaction and medium
composition [97]; iii) the EC type under study ([42] and references
therein); iv) the structural properties of the polyanion under test
[98]. Taken together, these considerations call for an extreme
caution in the design of this class of anti-angiogenic compounds
and in the evaluation of their biclogical activity.

Given the structural similarity among the various members of
the FGF family and the heparin-binding capacify shared by a
variety of angiogenic growth factors and cytokines, it may be
difficult to envisage the design of selective polyanionic antagonists.
Nevertheless, recent observations have shown the possibility to
achieve 2 cerfain degree of specificity by selective structural
modifications of the E. coli K5 polysaccharide [99, 100]. It must be
pointed out, however, that the “multitarget” activity of certain
polyanionic compounds may increase their cfficacy in vivo, Indeed,
tmor angiogenesis and growth are often the result of the
synergistic action of more than one angiogenic growth factor (}5]
and references therein)., Relevant to this point, pentosan polysulfate
(PPS) efficiently inhibits the biological activity of the angiogenic
FIIV-1 transactivating factor (Tat) [101] as well as of FGF2 [102].
Intevestingly. phase [ and II clinical trials have shown that PPS
leads to stabilization of Kaposi’s sarcoma [103], a lesion in which
HIV-1 Tat and FGF2 act synergistically [104].

A peculiar class of polyanionic compounds is represented by
sialo-gangliosides that act as functional FGF2 co-receptors when
associated to the EC surface [31]. During tumor growth, sialo-
gangliosides are shed in the microcnvironment, where they bind
and sequester FGF2, inhibiting its EC interaction and mitogenic

activity [59]. Sialo-gangliosides may therefore represent the basis
for the design of novel anti-angiogenic FGF-antagonists.
2.3.2. Masking FGF Receptors

Neutralizing anti-TK-FGFR antibodies have been shown to
block FGF2-mediated angiogenesis in vive [105]. Also, TK-FGFRs
can be bound by synthetic peptides and masked to their ligands. For
instance, the interaction of FGF2 with TK-FGFR1 can be inhibited
by peptides derived from the amino acid sequence 112-155 of the
growth factor [8]. Also, a structural analysis carried out on FGF2
identified a region encompassing residues 48-58 as involved in
FGF? dimerization. Accordingly, the derived peptide FREG-(48-
58) prevents dimerization of the growth factor and its interaction’
with TK-FGFR1, thus inhibiting TK-FGFR1 phosphorylation,
FGF2-dependent EC preliferation and migration in vitro and
angiogenesis in vivo [106]. Furthermore, a polyclonal antibody
directed against FREG-(48-58) blocks FGF2 action in vitro {106].
In contrast, a FGIF2 peptide derived from the amino-terminal
extension of the high molecular weight 24 kDa FGF2 isoform plus
the first 31 amino acids from the canonic 18 kDa isoform, inhibits
FGF2-dependent migration of ECs without affecting FGF2/TK-
FGFRI interaction nor extracellular regulated kinase ., (ERK,p)
activation [107]. Finally, FGF/TK-FGFR interaction can be
disrupted by protamine, an arginine-rich polypeptide that inhibits
FGF2-dependent proliferation of ECs [8] possibly by binding and
masking TK-FGFRs [108].

Besides masking TK-FGFRs, protamine interacts with and
masks HSPGs [108]. Similarly, the histidine-rich glycoprotein and
PF4 bind and mask cell surface HSPGs, hindering these receptors to
FGF2 and FGF1 [109]. Also, the anti-angiogenic collagen XVIII
frapment endostatin prevents FGF2/HSPG interaction [110]. In
keeping with these observations, a liposome-based peptide vaccine
targeting the heparin-binding domain of FGF2 genérates a specific
anti-FGF2 antibody that inhibits FGF2 binding to HSPGs and
FGF2-dependent angiogenesis in vivo [111]. Finally, kallistatin, a
serpin  originally identified as a specific inhibitor of tissue
kallikrein, inhibits FGF2-induced proliferation, migration, and
adhesion of cultured ECs and neovascularization in vive possibly by
hindering HSPGs to FGF2 binding [112].

Besides TK-FGFRs and HSPGs, integrins may represent a
target for anti-angiogenic compounds. For instance, synthetic
peptides representing two regions of the FGF2 molecule [FGF2(61-
73) and FGF2(82-101)] inhibit FGF2-dependent proliferation of
ECs [113]. These regions contain an Asp-Gly-Arg (DGR) sequence
that is the inverse of the integrin-recognition sequence RGD present
in many adhesive proteins. Actually, the two FGF2-derived peptides
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Table 3.  Heparin-Like Polyanionic Compounds that Inhibit

FGF2 Activity in ECs

Polyanionie Compound Inhibited EC Response

sulfated malfo-oligesaccharides proliferation, morphogenesis

{221
.
angiogenesis [222)

sulfated beta-(1 ->4)-palacto-

oligosaccharides
e

RG-13577 (non sulfated aromatic proliferation, morphogenesis
compound) [223]

proliferation [97], angiogenesis,
wmor growth [224]
_— )

heparin-derived oligosaccharides

fucaidan

proliferation, migration {2251,
morphogenesis, integrin
expression [226]
suramin motogenesis [105]

suramin derivatives angiogenesis, protiferation {227],
migration, uPA expression [228],
tumorigenesis [229]

PPS prolifcration, migration [102]
TMPP (porphyrin analogue)

morphogenests {2307

K5 derivatives (chemically sulfated
pelysaccharides from £ colff)

proltferation, FGF2-dependent
cetl-cell interaction,
morphogenesis, angiogenesis

[991, cell adhesion [57]
| R Rsn D/

suleparoide (heparan sulfate analog)

angiogenesis [23 1

proliferation, FGF2-dependent
cell-cell interaction, angfopenesis
[232]

_— - -]
FGF2-dependent cell-cell
Interaction [233], proliferation,
angiogenesis, merphogenesis
i234]

B-cyclodextrin polysulfate angiogenesis {235}

ATA (aurintricarboxylic acid) angiogenesis [236]

undersulfated glycol-split keparins

synthetic sulfonic acid polymers

PS-ODN (phosphorothioate morphogenesis, angiogenesis
oligodeoxynucleotides) {237
gangliosides proliferation, angiogenesis [238]
protiferation {143]

.

inositol hexaphosphate angiogenesis [239]

inhibit o, f;-mediated EC adhesion to immobiiized FGF2 without
affecting FGF2/TK-FGFR interaction [30]. Accordingly, RGD-
containing fetra or eptapeptides, and monoclonal  anti-o,B,
antibodies inhibit FGF2-dependent EC adhesion, proliferation, and
uPA production [30, L13]. Following these observations, we have
demonstrated that RGD-pepti-domimetics inhibit FGF2-dependent
nieovascularization and tumori-genesis i vive (114, 115]. A similar
mechanism of action may be shared by disintegrins, a class of
naturally oceurring integrin antagonists that inhibit different aspects
of FGF2 biology [116].

Rusnael andg Presty

Finally, the cholera toxin B subunit inhibits FGF2-dependent
proliferation of ECs by binding the ccll surface GM; ganglioside
{31].

2.4. Inhibiting FGF Receptor Signal Transduction

Intraceliular signals activated by FGFs in ECs (Fig. (2)) might
be considered as a target for angiogenesis inhibitors {35]. Actually,
FGF activity can be inhibited i vitro and in vivo by synthegic
compounds (Table 4) and selective dominant negative mutants or
anlisense ¢DNAs (Table 3) targeling various signal transductiop
pathways triggered by FGFs. Also, different endogenous inhibitors
of angiogenesis have been shown to affect FGF signaling (Table 2),
Ameng them, several cytokines modulate EC activation and/or
neovascularization induced by FGF2. It is possible to hypothesize
that these eytokines, by interacting with their cognate receptors on
ECs, may interfere with the signal transduction pathway(s)
activated by the angiogenic growth facter. However, the therapeutic
exploitation of this approach is greatly limited by the fact that
several among the second messengers activated by FGFs during
pathological neovascularization are implicated in various physio-
logical processes. Their inhibition may {hus cause undesired side
effects.

2.5. Inhibiting FGF-Activated EC  Responses/Effeciors of
Angiogenesis

FGFs induce a complex “pre-angiogenic phenotype” in ECg
characterized by an increase in ECM degradation and in EC
motilily, proliferation, and morphogenesis (seg Fig. (1)). These
processes arc mediated by distinct effectors induced/activated by
FGFs, and their blockage may result in the inhibition of FGF-
dependent angiogenesis,

For instance, in order to degrade ECM, FGFs upregulate the
production of several proteascs in ECs (see above). Tissue
inhibitors of MMPs (TTMPs) and synthetic MMP inbitors [117]
inhibit FGF2 neovascularization {118}, Interestingly, a MMp-
independent mechanism of inhibition of FGF-dependent angio-
genesis has been proposed for TIMP-2 [118]. Also, MMP
production and FGF2-dependent angiogenesis can be inhibited by
endogenous mediators, like interferons {IFNs) [119]. Similarly,
PA/plasmin inhibitors affect FGF2-dependent angiogenesis in vitro

- and. iz vivo [120]. Finally, inhibition of proteases has been proposed

lo confribute to the FGF2-inhibitory effect exerted by kallistatin
{112}

The epidermal growth factor-like domain of murine uPA alone
or fused to the Fe portion of human IgG acts as high-affinity uro-
kinase receptor antagonist and inhibits FGF2-indyced angiogenesis
in vivo [121]. Accordingly, medroxyprogesterone acetate exerts an
angiostatic effect by increasing the expression of PA inhibitor-1,
thus counteracting the uPA-inducing activity of FGF?2 {122].

The properties of ncovasculature differ from those of quiescent
endothelium. Vaseylar largeting agents exploit differences in cell
proliferation, pertncability, maturation, and reliance on tubulin
cytoskeleton to induce selective blood vessel occlusion and
destruction [123]. In particuiar, microtubulc—destabiiizing agents,
including combretastatin-derived prodrugs and analogues, disrupt
rapidty proliferating and immature tumor endothelium, leading to
reduced blood flow and hypoxia [124], Interestingly, microtubule-
destabilizing agents, ¢.g. combretastatin A-4 and vinblastine, may
also show a distinct anti-angiogenic activity [125]. Accordingly, the
Irans-resveratrol  derivative 3,5,4’~trimcthoxystiibcne acts as a

microtubu]e-dcstabilizing agent endowed with both anti-angiogenic 1

FGF2-antagonist activily and vascufar targeting capacity [126]. _
Similarly, microtubule-stabilizing agents, including paclitaxel and i
taxane derivatives [127, 128, affect FGF2-triggered angiogenesis
in vitro and in vivo. Also, by prevenling the formation of stress
fibers, the antitungal polyether macrolide goniodomin-A inhibits
FGF2-induced migration and morphogenesis in ECs, leaving
unaffected their proliferation [129]). These findings are of importance
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able 4. Chemical Inhibitors of FGF2-Mediated Intraccliular Signaling

. Second Ay .
Inkibitor Inhibited EC Response
Messenger
SuU5416 FGFR-TK survival [240], angiogenesis [241], EC monolayer wound repairﬂ
SU5402 FGFR-TK proliferation {240
724 FGFR-TK angiogensis [241]
PDI73074 FGFR-TK morphogenesis, angicgenesis {242]
CP-547,632 FGFR-TK proliferation, angiogenesis {243)
PD (98059 ERK,n proliferation {50, survival [244], uPA expression [245], MMP3 expression [246], migration [247], CD13
expression [248], morphogenesis [248], angiogenesis {248], survival, integrin activation {249, Egr-1
expression [250], KDR expression [251]
morphogenesis [245], survival [2523, MMP3 expression [246], motogenesisa
L0126 ERK PRoE o] :
apigenin ERK praodiferation [253]
SB203580 P38 morphogenesis [254]
LY294002 PI3K survival [252], CD13 expression, morphoegenesis [248], migration [162], proliferation {253}, cytoskeleton
organization {2551, motogenesis”, FGF2 production [191]
neutralizing antibodies PI3K proliferation [256]
apigenin PI3K proliferation [253]
BisI PKC survival [252]
GO6983 PKC survival {252]
GFX PKC KDR expression [251]
cheterythrine PKC proliferation {257]
H7 PRC proliferation [258], survival {259]
NSC 639366 PKC migration, uPA cxpression, angiogenesis [260]
calphestin C PKC angiogenesis [261], FGF2 production [§92]
manumycin A Ras CD13 expression [248], morphogenesis [248], proliferation {262]
FTS Ras proliferation [262]
FPT inhibitor 1[1 Ras profiferation [253]
tyrphostin 23 Pan-TK protiferation [50], EC monolayer wound rcpaira
penistein Pan-TK proliferation [263}
herbimycin A Pan-TK proliferation [263]
PP[ c-Src migration [264], morphogenesis {262]
PP2 c-Sre angiogenesis, morphogenesis, cytoskeleton organization [265]
neutralizing antibodies PLC-y proliferation [266]
aristolochic acid PLC-02 migration [267]
ONG-RS-082 PLC-:2 migration [267}
rapamycin PO proliferation [253]
C3 RhoA ICAM-1 cxpression {268]
Grb2-Src homology 2 Grb2

domain binding antagonist

proliferation, migration, angiogenesis [269]
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{Table 4) Contq.,,,

Inbibitor Mf:::l:‘s“ Inhibited EC Response
forskolin CAMP proliferation [270]
8-bromo AMPc cAMP proliferation [270}
Eé—im AKT o —an_g:'(;genesis [271]
%_El_iq Ca" iﬁj_ proliferation, ad h.;t;;l,_l\/[}\/ﬂ’-z expression [272]
portussis to;izi— G-proteins I %_mligration {267]

" it refers to the capacity of an EC monolayer to repair a mechanical wound in response to FGF2 (Urbinati C., personat comm unication).

when considering that combining vascular targeting agents with
angiogenests inhibitors may result in additive or synergistic effects
on the inhibition of vascularization and tumor growth [130].

Finally, apoptosis-inducing agents can inhibit the action of
FGF2, possibly counteracting its mitogenic activity. This is the case
of betulinic acid, a pro-apoptotic mitochondria-damaging pentacyc-
lic triterpenoid. that inhibits FGF2-induced EC invasion and tube
formation [131].

2.6. Inhibiting FGF/FGF Receptor Activity with Nutraceuticals
and Other Drugs

Numerous bioactive plant compounds (often referred to as
nutraceuticals) and natural marine products have been tested for
their potential clinical applications. Some of these compounds are
currently under study for their anti-FGF and anti-angiogenic
potential, including curcumin from Cureuma longa (132, 133] and
cpigallocatechin-3-gallate from green tea [134]. The Gleditsia
sinensis fruit extracl inhibits the angiogenic activity of FGF2 in
vivo [135]. Citrus pectin inhibits the formation of the productive
heparin/FGF2/TK-FGFR | ternary complex, probably by interacting
directly with the growth factor and competing for heparin binding
[136]. The !,2,3,4,6-penta—0—galloyl~beta—D-glucose from Gallg
Rhois inhibits proliferation and tube formation induced in vifro by
FGF2 as well as its angiogenic activity in vivo [137]. Resveratrol,
found in grapes and wine, inhibits FGF-driven angiogenesis in vitro
and in vivo [138]. Finally, 4-O-methylgallic acid isolated from the
dietary legume Canavalia gladiata  inhibits FGFZ-stimulated
invasion and tube formation by ECs [139]. The antineoplastic
compound aplidine, a2 new marine-derived depsipeptide, inhibits
angiogenesis elicited by FGF2 in vivo and FGF2-dependent EC
proliferation in vitro [140]. Philinopside-A, a novel sulfated
saponin isolated from the sea cucumber Pentacta quadrangulari,
and the Chinesc folk medicine-derived phytochemical 11.11'-
dideoxyverticillin from fungus Shiraia bambusicola are potent
inhibitors of TK-FGFR1 activity [141, 142]. Psammaplin-A is a
phenolic natural product isolated from a marine sponge that
suppresses the invasion and tube formation of ECs stimulated by
FGF2. Carrageenan-1 is a natural polysulphated carbohydrate that
inhibits FGF2 mitogenic activity in ECs [143]. Also, a naturally
ocecurring agent isolated from cartilage, referred to as Neovastat
{(AE-941), inhibits FGF2-dependent angiogenesis in vive [144].

Interestingly, several drugs developed for the treatment of
umor-unrelated diseases have been shown to be endowed with
FGF-antagonist  activity. Spironolactone, a mineralcorticoid
receptor antagonist mainly used in the treatment of heart failure,
inhibits neovascularization triggered by FGF2 in wivo [145].
Transilast, an anti-allergic drug, inhibits FGF2-dependent EC

proliferation {146]. Bisphosphonate drugs inhibit osteoclastic bone
resorption and are widely used to treat skeletal complications,
Zoledronic acid, 2 new generation bisphosphonate, inhibits FGF2-
induced EC proliferation and neovascularization in vive [147].

Cidofovir, approved for the treatment of cytomegalovirus retinitis
in AIDS patients, inhibits FGF2-dependent tumorigenesis [23).
Indomethacin, a nonsteroidal anti-inflammatory drug, inhibits
angiogenesis in viva by affecting FGF2-induced EC proliferation
[148]. Cerivastatin, an HMG-CoA reductase inhibitor used for the
treatment of hypercholesterolemia-related diseases, inhibits EC
locomotion in vitro and angiogenesis in vive [149]. SR 25989, an
esterified derivative of ticlopidine, inhibits FGF} -dependent healing
of a mechanical wound in confluent endothelium [150], Triamci-
nolone acetonide, a corticosteroid mainly used in the treatment of
intraocular disorders, inhibits FC sprouting triggered in vitro by
FGF2 and its angiogenic activity in vivo [151]. Finally, a secretory
phospholipase-A2 inhibitor prevents FGF2-dependent EC proli-
feration, migration, and morphogenesis in vitro [152].

3. THE MULTITARGET OPTION

Different FGF inhibitors act with a multitarget mechanism of
action {Fig. (5)). PF4 binds FGFs [85, 86], masks HSPGs [109],
and acts intracellularly [153]. Similarly, TSP-1 sequesters FGF?2 in
an inactive form [76, 77], binds o.f; [75] and HSPGs [154]
(possibly preventing FGF2 interaction), and inhibits FGF2 activity
by a CD36-dependent mechanism of action {155]. Like TSP-1,
fibstatin binds heparin and integrins, suggesting that multiple
interactions may be responsible for its anti-angiogenic activity [78].

RGD-containing  peptides antagonize  FGF2 mainly by
competing for o, B; interaction [30]. However, their direct binding
to integrins leads to a caspase-dependent apoptotic signal that
contributes to EC inhibition [156]. The histidine-rich glycoprotein,
besides masking HSPGs to FGFI and FGF2, binds and transduces
anti-angiogenic signals through cell surface tropomyosin on ECs
[109]). Curcuminoids inhibit FGF production by tumor celis [132]
and prevent FGF2-dependent protease production in ECs [133).
Kallistatin has been proposed to inhibit FGF? activity by binding
and masking HSPGs and by inhibiting protease aclivity [112]. The
blockage of ERK,, activation by chemical inhibitors leads to
inhibition of FGF2 production and of FGF2-mediated response in
ECs(Table 2 and Table 5).

In tumors, FGF inhibitors with a multitargel mechanism of
action, as well as the combination of FGF antagonists and classic
chemotherapeutic agents, should prevent the development of drug-
resistance and decrease the dosage and related toxicity of cach
single drug, as shown for cisplatinum used in combination with
Neovastat {144],

Several anti-tumor agents are endowed with an intrinsic anti-
angiogenic, FGF-antagonist activity [157). For instance, the
quinazoline-derived ol -adrenoreceptor antagonist doxazosin, used
for the treatment of prostate cancer, inhibits FGF2-induced mompho-
genesis in ECs [158]. Thalidomide, used for the treatment of
relapsing malignant gliomas, inhibits FGF2-induced EC prolife-
ration {159]. The same effcct is exerted by the anti-estrogen
tamoxifen, used as adjuvant in the treatment of breast cancer [160],
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and by the functionally related medroxyprogesterone-acetate that
inhibits the release of uPA induced by FGF2 in ECs [1611. The
topoisomerase-1 inhibitor topotecan possesses an indirect anti-
tumor effect in vivo mediated by angiosuppression due, at least in
parl, to inhibition of FGTF2-induced EC migration {162]. Aplidine,
that exerts a cytotoxic effect in fumor cells and is currently fested in
early phase clinical trials, possesses FGE2-antagonist activity [140].
The same dual effect has been demonstrated for Neovastat [144].
The chemotherapic 6-methylmercaptopurinc-riboside
FGF2-dependent angiogenesis in vitro and in vivo
Combination of tegafur and uraci
of a variety of malignant fumaors, in
by FGF2 [164]. The antimetabolite 6
management of acute myelogenous
proliferation and angiogenesis triggered
Atiprimod, an azaspiranc ca

1163}

leukemia,

inhibits

1 (UET), utilized for the treatment
hibits EC proliferation induced
-thioguanine, utilized in the
inhibits EC
by FGF2 [163] Finally,
tionic amphiphilic drug, activaies
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tosis in various tumor cell lines and,

duces apop
on and migration

caspases and in
inhibits FGF2-induced proliferati

simultaneously,
of ECs [1e5].
|t must be pointed out that, due to their pleiotropic nature, FGFs
may coniribute fo cancer progression not only as pro-angiogenic
growth factors but also by acting directly on fumor cells (Fig. (6)).
For instance, the co-expression of FGF7/KGF and its receptor TK-
FGFR2 Ub/KGFR correlates with the high proliferative activity
and poor prognosis in lung adenocarcinoma [166]. Also, high levels
of EGFg [167] or FGF17 {168] are associated with less favorable
prognosis in human prostate cancer. Thus, targeting the FGF/FGF
receptor system in cancer may provide benefits not only in terms of
angiosuppression but also by a direct inhibition of tumor cell
proliferation (Fig. (6)). For instance, inhibition of the FGF/EGF
receptor system in glioma cells by dominant negative TK-FGFR
transfection [169] or in prostate cancer cells by fzf2 gene knockout
1170] results in inhibition of tumot growth by both angiogenesis-
dependent and angiogenesis—independem mechanisms.

Fable 5. “Modulation of Gene Expression” Approeach for the

inhibition of FGF2-Mediated Intracellular Signaling”
Target Inhibited EC Response
FGE2" cell proliferation [273], an giogenesis [65, 274)
|
FGFR-TK proliferation [50], cytoskeleton organization

[275]. migration, angiogenesis [276],
uPA expression [8}

Syndecan docking sites | proliferation, migration, morphogenesis 391

angiogenesis [277]

FAK
B ¢-Sre chemotaxis {2641, angiogenesis {265]
Rac proliferation [278}
Ras CID)13 expression [248]. angiogenesis {277]
Raf | D13 expression [248], suryival [244],
angiogenesis [277]
MEK - CD13 expression [248], proliferation,

migration {206]

. .

CD13 expression {248]

ERK 1
SH2 B cytoskeletan orpanization [255],
| proliferation [279]

PKC proliferation, morphogenesis [280]
c-FES chemotaxis [281]

PI3K survival [282]

PAK - angiogenesis {2771

AKT survival [283], morphogenesis [284]
Fgr-1° proliferation [189]

¢c-Fyn | morphogenesis [285]

Ets-1 angiogenesis [286}
NF-kB* angiogenesis [287]

[nhibition was obtained by
cated target with the cxception for ™= wher

sinple-stranded DNA, and [kB-2A overexpression Were used, respectively.

overexpression of dominant negative forms of the indi-
¢ antisense oligonucleotides, newtralizing
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decreased
FGF production

decreased blood
supply

angiogenesis

Fig. (6). Multiple effects of FGF artagonists and antineoplastic drugs on tumer growth and ncovascularization, FGF antagonists can affect fwmaor
growih indirecily by decreasing blood supply and directly by blocking FGF-dependent tusar cell profiferation. On the other hand, eytotoxic drugs can inhibit
EC proliferation and decrease the amount of FGF available to ECs by killing FGF-producing tumor cells,

4. CONCLUDING REMARKS

The bulk of experimental data summarized in {this review
clearly indicate that the FGE/FGF receptor System may represent a
target for anti-angiogenic Strategies in  different pathelogical
settings, including cancer. At present, cancer clinical trials are in

rationale for testing these compounds was independent of their
putative FGF/FGF receptor  antagonist activity. For instance,
heparin derivatives have been tested in cancer patients because of
their anti-thrombotic effect rather than for their capacity to bind
angiogenic FGFs. Simitarly, the humanized anti-o,f; monoclonal
antthody vitaxin {173, 174] has been investigated for ity ability to
affect the cell-adhesive function of this integrin receptor rather than
for its potential role in angiogenesis and FGF activity, Also, as
staied above, numerous cytotoxic drugs can affect the FGF/FGF
receptor system and angiogenesis, Novel strategies dimed at
inhibiting muitiple targets, including the FGF/FGF receptor system,
may represent an efficacious approach for the treatment of
angiogenesis-dependent diseases, including cancer.
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ABBREVIATIONS
Ole nz
ECs =

o-Macroglobulin
Endothelial cells

ECM = Extracellular matrix

ERK = Extracellular regulated kinasc
FGF = FPibroblast growth factor
TK-FGFR = Tyrosine kinase FGF receptor
FAK = Focal adhesion kinase

GAG = Glycosaminoglycan

HS = Heparan sulfate

HSPGs = HS Proteoglycans

IFN = Interferon

Ky = Dissociation constant

MAPK = Mitogen activated protein kinase
MMP = Metalloproteinase

PF4 == Platelct factor-4

PDGF = Platelet derived growth factor
PiP2 = Phosphatidylinositol 4,5-bisphosphate
PPS = Pentosan polysulfate

PTX3 = Long-pentraxin 3

PKC = Protein kinase C

Tat = HIV-1 Transactivating factor
TIMP = Tissue inhibitors of MMP

TK = Tyrosine kinase

TSP-1 = Thrombospondin-1

uPA = Urokinase-type plasminogen activator
xcFGFR1 = Extraceliular portion of FGFR |
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