
JOURNAL OF CHEMICAL PHYSICS VOLUME 117, NUMBER 16 22 OCTOBER 2002
Dipole and rotational strengths for overtone transitions of a C2-symmetry
HCCH molecular fragment using Van Vleck perturbation theory

Sergio Abbate, Roberto Gangemi, and Giovanna Longhi
Dipartimento di Scienze Biomediche e Biotecnologie, Universita` di Brescia, via Valsabbina 19,
25123 Brescia, Italy and INFM, Udr Brescia, via Valotti 9, 25133 Brescia, Italy

~Received 23 May 2002; accepted 15 July 2002!

Contact transformation theory up to second order is employed to treat CH-stretching overtone
transitions and to calculate dipole and rotational strengths. A general Hamiltonian describing two
interacting CH-stretching oscillators is considered, and the Darling–Dennison resonance is
appropriately taken into account. The two CH bonds are supposed to be dissymmetrically disposed,
so as to represent a chiral HCCH fragment, endowed withC2 symmetry. Analytical expressions of
transition moments and dipole and rotational strengths are given in the hypothesis of general electric
and magnetic dipole moments with quadratic dependence on coordinates and momenta. Dipole and
rotational strengths are then calculated together with frequencies for the fundamental and first three
overtone regions in the simplifying hypothesis of the valence optical approach on the
coupled-oscillator framework. Simplified analytical expressions thereof in the relevant parameters
are presented. ©2002 American Institute of Physics.@DOI: 10.1063/1.1504705#
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I. INTRODUCTION

A renewed interest in measuring vibrational circular
chroism ~VCD! spectra in the CH stretching overton
region1–3 has raised the necessity of calculating overton
rotational strengths.4 For this reason we have undertaken t
study of a simplified model consisting of two coupled osc
lators described by a two-degrees-of-freedom Hamilton
including Darling–Dennison~DD! terms.5 This kind of dy-
namical model has been demonstrated to be quite approp
to study both fundamental and overtone transitions, and
been extensively studied in the literature by means
second-order perturbation theory,6 by integration of classica
equations of motion, and semiclassical quantization
trajectories.4,7–9We adopt here the method of Van Vleck co
tact transformations, for the main reason that these trans
mations can be easily applied to operators, permitting on
examine the analytical expressions of the electric and m
netic dipole moments treated at any desired order.

The contact transformation formalism was originally d
veloped for accurately calculating frequencies and for in
preting high-resolution spectra of molecules in the g
phase.10–13Afterwards, it was also adapted and used for c
culating dipole and rotational strengths in the infrar
range.14–16 Expressions for dipole and rotational strengt
for overtone transitions have been obtained by Baket al.17

and Polavarapu18 for a single chiral oscillator and by
ourselves4 for a system of two oscillators with strong simpl
fying assumptions that will be abandoned in this paper. M
recently, the same perturbative method has been applie
study vibrational manifolds, which are important for ove
tone spectroscopy, with quite high orders of perturbat
terms and increasing number of degrees of freedom.19

We have limited ourselves here to a simple tw
oscillator model and to low perturbative orders to han
simple analytical results. We have studied the system of
7570021-9606/2002/117(16)/7575/12/$19.00
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interacting CH stretches in a dissymmetric HCCH molecu
fragment~Fig. 1!, with the additional requirement that it pos
sess aC2-symmetry axis bisecting the CC bond; this requis
does not prevent it from exhibiting optical activity. Ou
choice is motivated by the fact that it is the simplest coupl
oscillator model and is still extensively applied for the inte
pretation of spectra of CH stretching vibrations in many c
ral molecules.20–23 The model is adequate when the C
stretchings can be regarded as dynamically and poss
electrically ~as we will discuss later! isolated from other vi-
brational modes. If the valence angles and the dihedral a
in this fragment are fixed, two normal modes are present,
being symmetric and the other antisymmetric with respec
the C2-symmetry axis: let the corresponding normal-mo
dimensionless coordinates and conjugated momenta be
noted byqs , ps and qa , pa , respectively. Let the corre
sponding frequencies in wave number units bevs and va ,
respectively. Following the notation of Ref. 4, the gene
Hamiltonian possessingC2 symmetry at fourth order is

H5H01«H11«2H2 , ~1!

where

H05~hc/2!$vs@~ps /\!21qs
2#1va@~pa /\!21qa

2#%,
~18!

«H15hc@Ksssqs
31Ksaaqsqa

2#, ~19!

«2H25hc@Kssssqs
41Kaaaaqa

41Kssaaqs
2qa

2#. ~1-!

In Ref. 4 drastic assumptions regarding anharmonic fo
constants were made; i.e., only diagonal cubic and qua
termsKiii andKiiii were assumed to be different from ze
~the indexi denotes a generic normal mode!; this simplifica-
tion allows one to avoid the problem of resonances and
similates the many-oscillator problem to the one of a sin
oscillator. We stated, however, that the inclusion of the int
5 © 2002 American Institute of Physics
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action termKii j j ( iÞ j ) is necessary, as had been pointed
by many authors,24–27 in order to account for the transitio
from the normal-mode regime to the local-mode regime28

The inclusion of theKii j j term is essential to demonstrate t
equivalence of a normal-mode Hamiltonian with anharmo
interactions, like the one we use here, to the Hamiltonian
harmonically coupled anharmonic oscillators~for a review,
see Ref. 6!.

Hamiltonian ~1! coincides with the one that Mills an
Robiette used for water in normal coordinates.26 The equiva-
lence between the normal-mode scheme and the local-m
scheme, proved by way of a variational perturbative tre
ment, implies the existence of appropriate relations betw
the parametersv0 , x of the bond Morse potential in loca
coordinates and the anharmonic coefficientsKi jk , Ki jkl

@these relations are reported for completeness in Appendi
Eq. ~4!#. Appendix A comprises the general expressions
the frequenciesvs andva and of the anharmonic cubic an
quartic force constants for two interacting Morse oscillato
In the present work, the contact transformation approach
to be carried out at least to second order~two contact trans-
formations! and in resonance form, since the resonance
pears at second order. In fact, we shall show that these
tact transformations at second order give the same ma
elements for the Hamiltonian and, accordingly, the same
ergy levels as obtained in the perturbative treatment by M
and Robiette.26

II. DETERMINATION OF CONTACT
TRANSFORMATIONS

Let us briefly recall the contact transformation proced
to illustrate the notation that we are going to use and
introduce all the elements needed to obtain the transfor
operators.

The first contact transformation is generated by an
eratorT15exp(i«S1)511i«S11¯ that acts on a generic op
erator f̂ analogously to the Lie transformations29–31 in clas-
sical mechanics; formally, one can express the transform
operatorf̂ 8 as

f̂ 85T1• f̂ •T1
215(

S

~ i«!S

s!
@S1 , f̂ #S, ~2!

with @S1 , f̂ #S5@S1 ,@S1 ,...,@S1 , f̂ ###; that is to say, the com
mutation@S1 ,...# is applieds times on f̂ . When this trans-
formation is applied toH, it gives

FIG. 1. Definition of the HICICIIHII dissymmetric system and of dihedra
anglew between planes HICICII and HIICIICI: front view ~Newman projec-
tion! and side view.
Downloaded 16 Jul 2004 to 159.149.71.60. Redistribution subject to AIP
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H85T1•H•T1
215H081«H181«2H281¯ . ~3!

The requirement that one imposes in order to determine
generating functionS1 is that the off-diagonal elements o
«H18 , evaluated on the product harmonic oscillator eige
function basis, vanish at first order. We denote byuns ,na&n

the normal-mode basis~uncoupled harmonic oscillators!.
This is exactly equivalent to saying that the eigenfunctions
the complete HamitonianH are obtained at first order in« by
T1

21uns ,na&n . SinceH1 contains odd powers of the coord
nates, the requirementn^ns8 ,na8uH18uns ,na&n50, if ns8 ,na8
Þns ,na , corresponds to imposing thati @S1 ,H0#52H1 and
to reducing Eq.~2! to the following conditions:

H085H0 , ~4!

H0850, ~48!

H285H21
i

2
@S1 ,H1#. ~49!

The transformationS1 obtained in this way contains new
terms with respect to those of Ref. 4, due to the presenc
cubic ‘‘nondiagonal’’ perturbative terms, andS1 turns out to
be10

S15Ssssps
31~1/2!Sss

s ~psqs
21qs

2ps!1Ssaapspa
2

1~1/2!Ssa
a qs~paqa1qapa!1Saa

s psqa
2. ~5!

The five coefficients depend on the cubic force consta
Ksss andKsaa as reported in Appendix A.

With the aim of treating contact transformations at su
cessive orders and of calculating transition moments for e
tric and magnetic dipole moments, we used the algeb
manipulatorMAPLE.32 This package gives one the opport
nity to work with noncommutative algebras and has allow
us to easily evaluate complicated matrix elements
harmonic-oscillator eigenfunctions.

As indicated before, it is essential to consider at leas
second contact transformation, thus diagonalizing the Ham
tonian at second order. There are many reasons to g
second order. The first reason is that the anharmonic be
ior of bond-type oscillators is well described by cubic a
quartic force constants; stopping at first order permits one
deal with just cubic force constants and does not allow on
obtain energy levels in correspondence with those spec
scopically observed for the isolated oscillator and to give
description equivalent to the well-accepted models presen
the literature.33 Second, in the case of more than one osc
lator, the importance of the DD~Refs. 5, 25, and 26! inter-
action terms has been recognized to cause a 2:2 reson
and thus one must go to second order. Last but not le
mechanical and electrical anharmonicities beyond first or
are essential for an acceptable description of overtone
sorption intensities.34–36

The implementation of procedures based onMAPLE leads
first to determine the transformationT25exp(i«2S2)51
1i«2S21¯ that diagonalizes the Hamiltonian terms at ne
order. In analogy to Eq.~2! one obtains, for a genericf̂ 8,
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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f̂ 15T2• f̂ 8•T2
215(

S

~ i«2!S

s!
@S2 , f̂ 8#S. ~6!

Being H15H0
11«•H1

11«2
•H2

1 , we obtain

H0
15H08 , ~7!

H1
15H18 , ~78!

H2
15H281 i @S2 ,H0#. ~79!

As well described in Ref. 11,S2 must be determined by
the requirement that off-diagonal terms be eliminated fr
H2

1 . Beside that, one has to choose anS2 of the form given
in Eq. ~8! below to guarantee thatH2

1-diagonal terms remain
unchanged:

S25Ss
sss~1/2!~qsps

31ps
3qs!1Ssss

s ~1/2!~psqs
31qs

3ps!

1Sa
aaa~1/2!~qapa

31pa
3qa!1Saaa

a ~1/2!~paqa
3

1qa
3pa!1Ss

aas~1/2!pa
2~psqs1qsps!

1Sa
ass~1/2!ps

2~paqa1qapa!1Saas
s ~1/2!qa

2~psqs

1qsps!1Sass
a ~1/2!qs

2~paqa1qapa!. ~8!

The eight coefficientsSs
sss–Sass

a can be determined by
the conditionn^ns ,nauH2

1uns8 ,na8&n50, if ns8 ,na8Þns ,na , in
the nonresonant case. This condition can be written explic
in the following way:

n^ns ,nauH28uns8 ,na8&n52 i n^ns ,nau@S2 ,H0#uns8 ,na8&n

52 ihc~nsvs2nava!n

3^ns ,nauS2uns8 ,na8&n . ~9!

In our model, this relation cannot be applied whenns85ns

62 and na85na6(22) without incurring the problem o
small denominators. The additional requireme
^ns ,nau@S2 ,H0#uns8 ,na8&n50 for the statesns85ns62na8
5na6(22) allows one to determineS2 . This gives rise to a
noncompletely diagonalH2

1 . We report in Appendix A the
coefficients ofS2 , and we give all the relations necessary
express all of the coefficients inH1 andS2 in terms of just
three useful parameters widely used in the literature:24 v0

and x which characterize the Morse-oscillator Hamiltoni
of Eq. ~A1! @see also Eq.~A2!# equivalent to the quartic
potential used here through relations~A3!, andl such that
va5v01l and vs5v02l. We do not report the expres
sion for the matrixH01H2

1 , since it is too unwieldy without
simplifying approximations. We just say that we have ve
fied that its Taylor expansion inx andl, when truncated to
first order inx/v0 andl/v0 , is exactly the matrix obtained
by the usual perturbative treatment reported by Mills a
Robiette,26 apart from ax/4 additive term in the diagona
introduced later by Lehman.25 These matrices are reporte
for the first five manifolds also by Halonen,6 apart from the
zero-point energy. The first-order expansion inx/v0 and
l/v0 is equivalent to the usual simplifiedx-K relations. The
complete matrixH1, instead, corresponds to maintaining t
more generalx-K relations as reported by Halonen~of
course, apart from bending and Coriolis couplings which
reported in Ref. 6!. The exact algebraic diagonalization
Downloaded 16 Jul 2004 to 159.149.71.60. Redistribution subject to AIP
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n^ns ,nauH01H2
1uns8 ,na8&n , which we carried out algebra

ically, gives the resonance-corrected energies and the ei
vectors, which we make to constitute the rows of a unita
matrix U. One may proceed to build the right combination
the transformed eigenvectorsT1

21
•T2

21uns ,na&n and obtain
the wave functions of the whole HamiltonianH, at second
order. The wave functionsC5T1

21
•T2

21U21uns ,na&n are es-
sential to calculate the transition moments of the electric
magnetic dipole moment operators and consequently
evaluate the dipole and rotational strengths, as will be d
in the next two sections.

We report in Table I, in algebraic form, the eigenvalu
and eigenvectors for the matrixn^ns ,nauH01H2

1uns8 ,na8&n

truncated at first order inx and l for ns1na5ns81na8
50,1,2,3. The dynamical problem has been examined
many authors,24–27 with the aim of proving the equivalenc
of the normal-mode description versus the local-mode
scription. The expressions reported in the Table satisfy
relationsuE1a2E1bu.uE2a2E2cu.uE3c2E3du for any value
x.0 andlÞ0. It is well known24 that whenl,x, the two
lowest eigenvalues within each manifold (E2a , E2c andE3c ,
E3d here! become nearly degenerate with increasing to
quantum number, in systems consisting of two identical
cillators.

Consideration of the eigenvectors of Table I at zero
order inl andx gives also the right combinations respecti
the symmetry of the two identical CH oscillators. Using t
appropriate expressions of the harmonic-oscillator wa
functions37 f i(qi) substituted inuns ,na&n5fs(qs)fa(qa),
and considering the coordinate transformation, at zeroth
der in «, from normal coordinates (qs ,qa) to local coordi-
nates (D l I ,D l II) we obtain the following correspondence
zero order:

c2a5~2!21/2~ u0,2&n1u2,0&n)5~2!21/2~ u0,2&,1u2,0&,),

c2b5u1,1&n5~2!21/2~ u0,2&,2u2,0&,),

c3c5~1/2!u0,3&n1~31/2/2!u2,1&n

5~2!21/2~ u0,3&,2u3,0&,),

c3d5~1/2!u3,0&n1~31/2/2!u1,2&n

5~2!21/2~ u0,3&,1u3,0&,),

uv1 ,v2&,5f1(D l I)f2(D l II) being local-mode harmonic
wave functions. This means that the two lowest-energy st
in each (ns1na) manifold are local modes, the involveme
of both coordinates l I and l II being required by
symmetry.25–27 The above relations, providing the loca
quantum-number–normal-quantum-number corresponde
are correct only at zeroth order in« since the transformation
T1 and T2 applied on the Hamiltonian imply coordinate
transformations too.

III. DETERMINATION OF DIPOLE TRANSITION
MOMENTS

We have modeled the operators of electric dipole m
mentm̂ and magnetic dipole momentm̂ in a valence-optical
approach; accordingly, they are determined only
individual-bond electric dipole moments, which have be
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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TABLE I. Analytical expressions of eigenvalues and unnormalized eigenvectors of the matrix^ns ,nauH0

1H2
1uns8 ,na8& for ns1na5ns81na850, 1, 2, 3. The matrix was first truncated to first order inl andx, and then

it was diagonalized. For the notation, see text; the first quantum number refers to the symmetric modes; the
second one refers to the antisymmetric modea.

E05v02
1

2
x C05u0,0&

E1a52v02
5

2
x2l C1a5u0,1&

E1b52v02
5

2
x1l C1b5u1,0&

E2a53v02
11

2
x2Ax214l2 C2a5u0,2&1

Ax214l222l

x
u2,0&

E2c53v02
13

2
x C2c5u1,1&

E2b53v02
11

2
x1Ax214l2 C2b5u0,2&2

Ax214l212l

x
u2,0&

E3c54v02
21

2
x2l22Ax21l22xl C3c5u0,3&2

A3~2l2x22Ax21l22xl!

3x
u2,1&

E3d54v02
21

2
x1l22Ax21l21xl C3d5u3,0&2

A3~22l2x22Ax21l21xl!

3x
u1,2&

E3a54v02
21

2
x2l12Ax21l22xl C3a5u0,3&2

A3~2l2x12Ax21l22xl!

3x
u2,1&

E3b54v02
21

2
x1l12Ax21l21xl C3b5u3,0&2

A3~22l2x12Ax21l21xl!

3x
u1,2&
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considered to depend on coordinates and momenta at se
order.38–41The electric dipole momentm̂, in this approxima-
tion, is given bym¢ 5( im¢ i(D, i), and for each bondi we
assume

m¢ i~D, !5m¢ i
01«

]m¢ i

], i
U

0

D, i1«2
]2m¢ i

], i
2 U

0

D, i
2, ~10!

with no contributions from cross-terms]m¢ i /], j u0 with
iÞ j . This simplifying assumption easily allows one to u
electro-optical parameters derived from absorption overt
spectroscopy,34,35 but may be eventually dropped if on
wants to use the parameters of more advanced calculat
As is usual in overtone spectroscopy, in our HCCH fragm
we consider just the CH bond dipole moments and we ign
the CC bond contribution: then, the indexi runs from I to II
~we use Roman numbers for bonds and Arabic numbers
orders of approximation!. In order to apply the perturbativ
approach illustrated above we need to work in normal co
dinates, the dipole moment being

m¢ 5m¢ 01«(
a

m¢ aqa1«2
1

2 (
a,b

m¢ abqa•qb

5m¢ 01«m¢ 11«2m¢ 2 . ~11!

Considering the general relation between normal and lo
coordinates, one obtains37,38
l 2004 to 159.149.71.60. Redistribution subject to AIP
nd

e

ns.
t

re

or

r-

al

m¢ a5
]m¢

]qa
U

0

5(
i

]m¢ i

], i
S (

A
s¢iA•t¢AaD , ~12!

s¢iA being the Wilson37 vector relating internal coordinates t
Cartesian displacements andt¢Aa being given in Appendix A.

Referring to the molecular fragment of Fig. 1, the tran
formations relating CH-stretching internal coordinates to
mensionless normal ones are simply

qa5aaAm/2~D, I2D, II !, qs5asAm/2~D, I1D, II !,

where a i are the coefficients allowing one to go from th
usual normal coordinates to mass-weighted ones, reporte
Eq. ~A4! of Appendix A, andm is the reduced mass of th
CH bond. Since]m¢ i /], i u0 are identical in magnitude for the
two CH bonds, due to theC2 symmetry, and since they ar
assumed to be directed along the bonds, i.e.,]m¢ i /], i u0

5]m/],u0ûi (ûi being the unit vector of bondi, i 5I,II), the
coefficients of Eq.~11! as functions of valence optical pa
rameters]m/],u0 and]2m/],2u0 are

m¢ a5
]m¢

]qa
U

0

5
]m

],
U

0

ûI6ûII

A2maa

~1 if a5s,2 if a5a!

~13!

and
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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m¢ aa5
]2m¢

]qa
2U

0

5
]2m

],2U
0

ûI1ûII

2maa
2 ~a5s,a!, ~14!

m¢ ab5
]2m¢

]qa]qb
U

0

5
]2m

],2U
0

ûI2ûII

2maaab
, a different from b. ~15!

For the total magnetic dipole momentm¢ , we adopt the bond
dipole valence optical approach, as described in Refs. 39
40:

m¢ 5
1

2c (
i

~r¢Ai3m¢̇ i1m¢ i3r¢̇Bi!, ~16!

whereAi andBi are the two atoms defining bondi. Referring
to the chiral fragment of Fig. 1, let us take the coordin
origin in CI ; in the hypothesis thatr CII is fixed and thatu¢ i

andm¢̇ i are always parallel to the fixed directionûi given by
the equilibrium orientation of bondi, one obtains

m¢ 5
1

2c
r¢CII3m¢̇ II . ~168!

Analogously to the electric dipole moment, we need an
pression ofm¢ as a function of normal coordinates and/
conjugated momenta:

m¢ 5m¢ 01«(
a

j¢apa1«2(
a,b

j¢a
bS qa•pb1pb•qa

2 D
5m¢ 01«•m¢ 11«2m¢ 2 . ~17!

Sinceq̇a5aa
2
•pa ~see Appendix A!,

j¢a5
1

2c
r¢CII3

]m¢ II

], II
S (

A
s¢2A•t¢AaD •aa

2

56
1

2c
r¢CII3S ]m

], D
0

aa

A2m
ûII , 1 if a5s, 2 if a5a,

~18!

j¢a
b56

1

2c
r¢CII3S ]2m

],2 D
0

ab

2maa
ûII , 1 if a5b, 2 if aÞb.

~19!

The rotational strength

R5Im~n^C0um¢ uC f&n•n^C f um¢ uC0&n! ~20!

has been demonstrated to be origin independent for the
damental transition 0→1.39 The same invariance needs to
proved for the overtone and combination transitions. Dip
strengths and rotational strengths are obtained from the t
sition moments evaluated on the perturbed wave functi
C5T1

21T2
22U21uns ,na&n . Alternatively, one may apply Van

Vleck contact transformations directly on operators; we c
easily constructm1 andm1 from Eqs.~2! and ~6!, with the
help of the algebraic manipulator code:
Downloaded 16 Jul 2004 to 159.149.71.60. Redistribution subject to AIP
nd

e
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e
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m̂15T2•T1•m̂•T1
21

•T2
21

5m̂0
11«m̂1

11«2m̂2
11«3m̂3

11«4m̂4
1 ,

m̂15T2•T1•m̂•T1
21

•T2
21

5m̂0
11«m̂1

11«2m̂2
11«3m̂3

11«4m̂4
1 .

Considering homologous terms in« and being the initial op-
eratorsm and m in Eqs. ~11! and ~17! of the form f̂ 5 f̂ 0

1«• f̂ 11«2
• f̂ 2 , with f 0 independent ofp and q, the trans-

formations~2! and ~6! can be written

f̂ 0
15 f̂ 0 ,

f̂ 1
15 f̂ 1 ,

f̂ 2
15 f̂ 21 i bS1 , f̂ 1c,

~21!

f̂ 3
15 i @S1 , f̂ 2#2

1

2
@S1 ,@S1 , f̂ 1##1 i @S2 , f̂ 1#,

f̂ 4
152

1

2
@S1 ,@S1 , f̂ 2##2

i

6
@S1 ,@S1 ,@S1 , f̂ 1###

1 i @S2 , f̂ 2#2@S2 ,@S1 , f̂ 1##.

In the calculations presented in the next paragraph we k
terms up to fourth order. The expressions of the transform
operators, as functions of the electric and magnetic dip
moment coefficientsm¢ a , m¢ ab , j¢a, j¢a

b and of the transforma-
tion coefficientsSi jk andSi jkl , are very long. We report them
in Appendix B, Eqs.~B1!–~B6!, truncated at third order. In
Appendix C we report the proof of the origin independen
of the rotational strengths obtained with the transformed
eratorsm̂1 and m̂1, for the first two overtone transitions
With the aid of the algebraic manipulator used to buildm̂1

and m̂1, one can easily substitute numerical values
]m/],u0 and]2m/],2u0 andv0 , x, andl, and one can cal-
culate numerically dipole and rotational strengths for HCC
fragments with different dynamical and electrical charact
istics. Before considering the specific numerical exam
treated in the following paragraph, a few comments on
analytical findings are worthwhile.

The transition moments based on harmonic uncoup
oscillator wave functionsuns ,na&n depend on the electroop
tical parametersma , mab , ja , ja

b and on theSi jk andSi jkl

coefficients. Of course, first-order terms in« contribute only
to 0→1 transitions by linear electrical coefficients~with mi-
nor corrections from all successive odd-order terms!, «2

terms contribute only to 0→2 transitions by linear electrica
terms multiplied bySi jk , and quadratic electrical terms~and
minor corrections from successive even-order terms!. The
0→3 transitions have contributions from«3 terms, linear
electrical terms are multiplied bySi jkl or by Si jk•Si 8 j 8k8 , and
quadratic terms are multiplied bySi jk . The 0→4 transitions
derive from«4 terms. From Appendix A we know that in th
approximationvs.va.v0 the coefficients of the genera
ing functions are of the following orders of magnitude:

Si jk>Ax/v0, Si jkl >x/v0 .
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TABLE II. Final statesc f at zero order inx andl, approximate transition frequenciesv f2v i in the hypothesisl!x, and principal terms inAx/v of dipole
strengthsD and rotational strengthsR from the ground stateu0,0& towards the final statesc f for ns1na51, 2, 3. For the definition of symbols used, see te

c f v f-v i D R

u0,1& v022x2l
m¢ a

2

2
1¯

\

2
m¢ a•j¢a1¯

u1,0& v022x1l
m¢ s

2

2
1¯

\

2
m¢ s•j¢s1¯

1

A2
~ u0,2&1u2,0&) 2v026x2

2l2

x

1

16 S m¢ aa1m¢ ss22Ax

v
m¢ sD 2

1¯

\

8 S m¢ aa1m¢ ss22Ax

v
m¢ sD •S j¢aa1j¢ss22Ax

v
j¢sD 1¯

u1,1& 2v026x
1

4 Sm¢ sa2Ax

v
m¢ aD 2

1¯

\

4 S m¢ sa2Ax

v
m¢ aD •S j¢s

a1j¢a
s22Ax

v
j¢aD 1¯

1

A2
~ u0,2&2u2,0&) 2v024x1

2l2

x

1

16
~m¢ aa2m¢ ss!

21¯

\

8
~m¢ aa2m¢ ss!•~j¢aa2j¢ss!1¯

1

2
u0,3&1

A3

2
u2,1& 3v0212x2

3l2

4x

3

4

x

v S m¢ sa2
2

3
Ax

v
m¢ aD 2

1¯ \
3

4

x

v S m¢ sa2
2

3
Ax

v
m¢ aD •S 3

2
~j¢s

a1j¢a
s!22Ax

v
j¢aD 1¯

1

2
u3,0&1

A3

2
u1,2& 3v0212x2

3l2

4x

3

4

x

v F1

2
~m¢ ss1m¢ aa!2

2

3
Ax

v
m¢ sG2

1¯ \
3

4

x

v S 1

2
~m¢ ss1m¢ aa!2

2

3
Ax

v
m¢ sD •S 3

2
j¢aa22Ax

v
j¢sD 1¯

A3

2
u0,3&2

1

2
u2,1& 3v028x22l1

3l2

4x
0 0

A3

2
u3,0&2

1

2
u1,2& 3v028x12l1

3l2

4x

1

16

x

v
~m¢ aa2m¢ ss!

21¯
\

3

16

x

v
~m¢ aa2m¢ ss!•~j¢aa22j¢ss!1¯
e
f

p
ad
a

rg
e
n
r-

o

ti
rv
iv
b
is
o
a
e
qu
ea
e
ob
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ined

ted,

in
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In Table II we report the leading term inAx/v for dipole
and rotational strengths. These approximate analytical
pressions give an estimate of absorption and VCD spectra
the fundamental transitions (n5ns1na51), as well as for
the first two overtone regions (n52,3). The limitations of
these approximations will be tested in the numerical exam
given in the next section. A few observations can be m
based on the results of Table II. As long as electrical anh
monicity can be ignored, as, e.g., in the fixed partial cha
approximation,38 the dipole strengths for the first overton
region (ns1na52) are smaller than those for the fundame
tal region by a factor ofx/v and those for the second ove
tone region (ns1na53) by a factor of (x/v)2. As a conse-
quence, a decrease in intensity of nearly two orders
magnitude at each overtone order~with reasonable CH
stretching parameter values as those used in the next sec!
is to be expected. This rapid decrease is indeed obse
only from fundamentals to first overtones; for success
overtones, there is a less marked decrease and this has
attributed to the fact that electrical anharmonicity
important.34–36 A further consequence of the hypothesis
zero electrical anharmonicity is that the two transitions
lowest frequency within each manifold are the only on
predicted to be observable: moreover, they have nearly e
absorption intensity and opposite rotational strengths. D
ing with the Dn53 region, one sees from Table II that th
two lowest-lying transitions are so close as to make any
servation of rotational strength impossible.
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In conclusion, the presence of electrical anharmonicity
necessary to ensure the right decrease of intensities am
different manifolds and confirms the predominance of
two low-frequency transitions within the same manifold.

Rough estimates of the intensity parameters are obta
introducing the quantityg5(1/2p)AhNA/2cv0 ~g>0.075 Å
whenv053000 cm21). We have

ma'g
]m

], U
0

, ja'\21pr CCg
]m

], U
0

v0 ,

mba'g2
]2m

],2U
0

, ja
b'\21pr CCg2

]2m

],2U
0

v0 .

Regardless of the electro-optical parameters adop
]m/],u0 and ]2m/],2u0 , and taking r CC51.54 Å, v0

53000 cm21, one hasR0→v51.431024
•D0→v . This gives

a dissymmetry factorG54R/D54pr CCv0>631024 in-
dependently ofv, as experimentally observed thus far
most cases.3,42

Let us make a final comment regarding the number
transformations needed in the Van Vleck procedure. T
Hamiltonian of Eq.~1! has been diagonalized to second o
der in «, and the use of zeroth order eigenfunctions is jus
fied since the corrections are taken into account on the
erators. In general the transformed Hamiltonian

H15H0
11«•H1

11«2
•H2

11«3
•H3

11«4
•H4

11¯
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Downloaded 16 Ju
TABLE III. Values for the mechanical CH bond parametersv0 ,x,l and for the electric bond dipole momen
parameters]m/],u0 , ]2m/],2u0 employed in the numerical example of Table IV~for the latter parameters se
Ref. 31!. We also report the corresponding normal-mode parameters derived as described in Appendix

v053000 cm21

x560 cm21 ]m/],u0520.143e
l520 cm21 ]2m/],2u0520.485e/Å
Parameters derived from the preceding ones

vs 3020 cm21

va 2980 cm21 umsu50.872310219 esu cm \ujsu50.706310223 esu cm
Ksss 2210.1 cm21 umau50.620310219 esu cm \ujau50.702310223 esu cm
Ksaa 2638.7 cm21 umssu50.110310221 esu cm \uja

su50.865310226 esu cm
Kssss 17.3 cm21 umaau50.112310221 esu cm \ujs

au50.854310226 esu cm
Kaaaa 17.7 cm21 umsau50.785310222 esu cm \ujaau50.859310226 esu cm
Kssaa 105 cm21 \ujssu50.859310226 esu cm
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le III
contains terms in«3,«4,... which are not diagonal and ca
be diagonalized by introducing further contact transform
tions generated byS3 ,S4 ,... . These generating function
give rise to further corrections on the operatorsm̂ andm̂. Our
treatment has been coherently developed up to third orde
« for m̂ and m̂. Indeed, from Eq.~21! one observes thatS1

gives origin to corrections in«2 andS2 to corrections in«3.
If one imagines to carry on the perturbative treatment wit
function S3 , the third-order term will not be corrected an
more (m3

115m3
1), while the fourth-order term will become

m4
115m4

11 i @S3 ,m1#. This is the reason why our treatme
can be considered satisfactory for theDv51,2,3 transitions
and needs to be improved forDv>4. Since the contribution
of electrical anharmonicity (m2 term! is greater than them1

term,35 we expect our results to be quite acceptable also
Dv54 in the numerical case we examined, even with
making the transformationS3 ; of course, this would not be
the case with]2m¢ /],2u0'0. The analytical expressions fo
Dv54 do not allow any further insight into the descriptio
of the normal-mode to local-mode transition, and we do
report them here.
l 2004 to 159.149.71.60. Redistribution subject to AIP
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IV. NUMERICAL EXAMPLE

In this section we present a numerical example where
have used the complete expressions of operatorsm̂ andm̂ to
fourth order in order to calculate intensities and rotatio
strengths for a case representing aliphatic CH’s. The op
tors, due to all the relations given in Appendix A, ultimate
depend only on the mechanical parametersv0 , x, andl and
on the electrical parameters]m/],u0 and ]2m/],2u0 . The
values for those parameters used in the calculation are g
in Table III. Herev0 andx values refer to no specific mol
ecule but are well representive of aliphatic CH’s. Als
]m/],u0 and ]2m/],2u0 have been taken from a previou
work by our group on overtone absorption intensities35

where overtone experimental absorption intensity data w
used to parametrize the bond electric dipole moment,
pressed through a linear plus a quadratic dependence o
bond stretching coordinate. In that work, as in many ot
well-known papers34–36 in the literature, the importance o
electrical anharmonicity had been pointed out, and differ
functional dependences have also been proposed. In Tab
the

of Table I
TABLE IV. Final states, transition frequenciesv, dipole strengthsD, and rotational strengthsR calculated for the fundamental and first three overtones in
numerical case defined by the parameters reported in Table III on the basis of the perturbative treatment, with no further approximation~columns 1–4!. In
columns 5 and 6 the corresponding approximated values for the fundamental and first two overtones have been obtained according to the resultsI.

Final stateU21uns,na& v ~cm21! D ~esu2 cm2! R ~esu2 cm2! D ~esu2 cm2! R ~esu2 cm2!

~0,1! 2862 0.233 10238 20.193 10242 0.193 10238 20.163 10242

~1,0! 2903 0.463 10238 0.193 10242 0.383 10238 0.163 10242

0.88~0,2!10.47~2,0! 5632 0.293 10240 0.183 10244 0.373 10240 0.313 10244

~1,1! 5644 0.163 10240 20.213 10244 0.193 10240 20.313 10244

0.47~0,2!20.88~2,0! 5780 0.293 10241 0.203 10245 0.143 10248 0
0.64~0,3!10.77~2,1! 8280 0.163 10241 20.413 10245 0.503 10242 20.123 10245

0.39~3,0!10.92~1,2! 8281 0.333 10241 0.413 10245 0.993 10242 0.123 10245

0.64~2,1!20.77~0,3! 8497 0.373 10243 20.963 10247 0 0
0.92~3,0!20.39~1,2! 8579 0.423 10243 0.553 10247 0.273 10250 20.263 10252

0.44~0,4!10.28~4,0!10.85~2,2! 10802 0.253 10242 20.523 10246

0.62~3,1!10.78~1,3! 10802 0.143 10242 0.553 10246

0.41~4,0!20.86~0,4!10.31~2,2! 11149 0.213 10244 20.463 10248

0.62~1,3!20.78~3,1! 11182 0.183 10244 0.583 10248

0.26~0,4!10.87~4,0!20.42~2,2! 11336 0.203 10245 20.443 10249
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we also give the corresponding values of the normal-m
anharmonic force constantsKi jl , Ki jkl and of the normal-
mode electric and magnetic dipole moment coefficientsma ,
mab , ja , ja

b , according to the relations in Appendix A an
to Eqs.~13!–~15! and ~18!, ~19!. In Table IV we report the
results for frequencies, dipole strengths, and rotatio
strengths of the transitions from the ground state to eig
states of the fourth-order HamiltonianH1 up to the third
overtone, with inclusion of the DD resonance, that is to s
the statesU21uns ,na&n ~with ns1na54). In Table IV we
also compare the numerical results obtained by running
perturbative treatment to the best of the present approxi
tion with the results obtained with the approximate analyti
derivations of Table II: the approximate formulas give t
correct orders of magnitude only for the two most inten
transitions at each overtone order. This is due to the appr
mationvs>va , which is not acceptable for the other tra
sitions.

The results presented in Table IV are quite satisfact
First of all, the decrease of overtone absorption intensities
two orders of magnitude in going from fundamentals to fi
overtones and by one order of magnitude at each succe
overtone has been observed also in CD for some terp
and cyclic ketones.3 These observations are matched by o
numerical results of Table IV forDn51,2,3,4. The electrica
parameters are such that]2m/],2u0 starts to contribute a
Dn52, and at this overtone order its contribution is in p
canceled by the contribution of the linear term, thus expla
ing the more rapid decrease of the first overtone with resp
to the others.

Furthermore, we observe that the highest absorption
tensities within each manifold are due to two nearly deg
erate vibrations at very low frequency~not yet degenerate a
Dn52). As can also be seen from Tables I and II forDn
52, Dn53, both these two states are linear symmetric co
binations of statesuns ,na&n coupled via DD interactions. All
other vibrational states correspond to dipole strengths at l
one order of magnitude lower. From our calculations we
that the same happens for rotational strengths, but at e
overtone order the two degenerate states have opposite
and so they tend to cancel one another.

The results obtained here for dipole strengths are exa
as expected in the local mode picture: considering the
CH bonds as ‘‘local’’ anharmonic oscillators of quantu
statesuv I ,v II&, ,28,34both from classical and quantum studie
one obtains that overtonesuv,0&, ~with v5v I1v II) have
lower frequencies and higher intensities than combina
states, so that the bands usually observed in near-infr
~NIR! spectroscopy~in absence of Fermi resonances! are due
to nearly degenerate statesuv,0&,6u0,v&, . If one considers
these states in Eq.~20! as defining rotational strengths, in th
valence bond approach of Eqs.~10! and ~16!, one has

R5Im~,^0,0um¢ Iu~v,0!6~0,v !&,•,^~v,0!6~0,v !um¢ IIu0,0&,!

56ImS ,^0,0um¢ Iuv,0&,•
r CC

2c
3,^v,0um¢̇ IIu0,0&,D ,

thus giving origin to rotational strengths of opposite sign
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V. CONCLUSIONS

In this work we have presented the analytical expr
sions of frequencies, dipole strengths, and rotatio
strengths for the fundamental CH-stretching region and
first two overtone regions in a HCCH chiral fragment wi
C2 symmetry. This work has been made possible by the
of the Van Vleck contact transformation scheme perform
by means of an algebraically based computer code. The
pressions obtained for the transformed operators in Appen
B and for approximate dipole and rotational strengths
Table II are valid for the most general dipole with quadra
dependence@see Eqs.~11! and ~17!#; they do not require a
valence bond optical model. It is only the evaluation of t
coefficients of Eqs.~11! and ~17! that is based on the
coupled-oscillator valence optical hypothesis. Our final n
merical calculations rely on the assumption of bon
localized mechanical and electrical properties. Despite
approximations made, the analytical dependences on the
rameters allow one to gain a deep insight into the norm
mode to local-mode transition and the spectroscopic sig
ture of it. The role of each parameter is well evidenced
the present treatment. As already well known, it is the D
coupling that is essential in generating the eigenstates
reproduce the usually observed local modes at highDv ’s.
From the expressions obtained for dipole strengths the
of the electrical anharmonicity and the prevalence of lo
frequency modes in absorption are well documented. T
novelty of this work, however, mostly regards rotation
strengths of overtone transitions. The numerical results gi
in Table IV can be considered to represent well both fun
mental and overtone data for a transition from a norm
mode regime to a local-mode one. For this reason a treatm
like the one undertaken here is beyond the two crude sim
fying starting schemes—that is to say, the normal-mode
proach and the local-mode approach. If the two bonds
mechanically identical as imposed here, they give origin
degenerate local modes with rotational strengths of oppo
signs. Of course, the prediction that no VCD beyondDv
52 can be observed for an HCCH fragment of the sort
amined here, with two identical oscillators, is in some ca
against experimental evidence.3 At this point the following
assumptions need to be revised in the model:~i! the two CH
bonds are equivalent,~ii ! coupling to other modes such a
torsion4 is negligible, and~iii ! molecular electric and mag
netic dipole moments are generated by bond electric dip
moments. Anyway, the procedure of Van Vleck transform
tions adopted here is quite promising also in view of ov
coming these limitations: it can be extended to a higher nu
ber of oscillators19 and, what is more important for CD, i
can be applied to operatorsm andm with the general form of
Eqs. ~11! and ~17! without the too severe hypothesis of v
lence bond optical approach. In fact, our experimental fi
ings propose both conservative bisignate spectra compa
with coupled bond dipoles, as described here, and nonc
servative monosignate spectra,3 which require a different
model for the magnetic moment operator, as already rec
nized and amply done to interpret VCD spectra in t
infrared.17,43
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APPENDIX A: DEPENDENCE OF S1 AND S2
COEFFICIENTS ON ANHARMONIC FORCE
CONSTANTS

We wish to recall here the dependences of the an
monic force constantsKsss, Ksaa, Kssss, Kaaaa, andKssaa

of Hamiltonian~1! in the text, considering it as the fourth
order approximation of two harmonically coupled symmet
equivalent Morse oscillators representing two equival
bonds and transformed from bond~local! coordinates to nor-
mal coordinates, i.e.,

H5~pI
2/2m!1~pII

2/2m!1D@12exp$2a~ l I2 l 0!%#2

1D@12exp$2a~ l II2 l 0!%#21K I,II~ l I2 l 0!~ l II2 l 0!.

~A1!

We recall the relations between Morse parametersD anda to
the mechanical frequencyv0 and anharmonicityx:4,24

D5v0
2/4x, a5A8p2mcx/h. ~A2!

The third and fourth derivatives of the Morse potential eva
ated at equilibrium are

Klll 5~]3V/] l 3!526a3D, Kllll 5~]4V/] l 4!514a4D.
~A3!

The Hamiltonian used in the perturbative treatment is
tained by diagonalizing the zeroth-order term, i.e., consid
ing normal modes. The frequencies of the two normal os
lators are

vs5v01l, va5v02l,

wherel5 1
2K I,II /4p2c2mv0 , with m the reduced mass of th

CH bond. Dimensionless normal coordinatesqa are related
to the usual onesQa by qa5aaQa , where

aa5@2pcva /\#1/2 ~a5s,a!. ~A4!

The Hamiltonian used in the perturbative treatment is tha
Eq. ~1! with coefficients given by

Ksss5~6A2m3/2hc!21as
23Klll , ~A5a!

Ksaa5~2A2m3/2hc!21as
21aa

22Klll , ~A5b!

Kssss5~48m2hc!21as
24Kllll , ~A5c!

Kaaaa5~48m2hc!21aa
24Kllll , ~A5d!

Kssaa5~8m2hc!21as
22aa

22Kllll . ~A5e!

Inserting Eqs.~A3! into Eqs. ~A5! and making use of Eq
~A2!, one obtains
Downloaded 16 Jul 2004 to 159.149.71.60. Redistribution subject to AIP
-

r-

-
t

-

-
r-
l-

f

Ksss52
Axv0

2

2vs
3/2 , Ksaa52

3Axv0
2

2vs
1/2va

, ~A6a!

Kssss5
7xv0

2

24vs
2 , Kaaaa5

7xv0
2

24va
2 , Kssaa5

7xv0
2

4vsva
.

~A6b!

The coefficients relating normal coordinates to Cartesian
ordinates are

t¢Is5
1

A2m
ûI , t¢IIs5

1

A2m
ûII ,

t¢Ia5
1

A2m
ûI , t¢IIa52

1

A2m
ûII ,

where uI and uII are the unit vectors of bonds CIHI and
CIIHII, respectively.

We report here, for sake of completeness, the coe
cients of the generating functionsS1 andS2 :

Ssss52~2/3!@Ksss/vs\
3#,

Sss
s 52@Ksss/vs\#,

Ssaa52~2/\3!@Ksaa/~4va
22vs

2!#~va
2/vs!,

Ssa
a 52~2/\!@Ksaa/~4va

22vs
2!#va ,

Saa
s 52~1/\!@Ksaa/~4va

22vs
2!#~2va

22vs
2!/vs ,

Ss
sss52

3

16

2Kssssvs25Ksss
2

\3vs
2 ,

Sa
aaa52

1

16

6Kaaaa~vs
324vsva

2!1Ksaa
2 ~8va

223vs
2!

\3~24va
21vs

2!vavs
,

Ssss
s 52

1

16

10Kssssvs29Ksss
2

\vs
2 ,
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Saaa
a 52

1

16

10Kaaaa~vs
324vsva

2!1Ksaa
2 ~8va

225vs
2!

\~24va
21vs

2!vavs
,

Ss
saa52

1

8

Kssaa~vs
424vs

2va
228vsva

312vavs
3!1Ksaa

2 ~8vsva
212vavs

2!1KsaaKsss~10vsva
22vs

318va
322vavs

2!

~24va
21vs

2!~va1vs!\
3vs

2 ,

Ssaa
s 52

1

8

Kssaa~3vs
4212vs

2va
228vsva

312vavs
3!1Ksaa

2 6vavs
21KsaaKsss~6vsva

223vs
318va

322vavs
2!

\vs
2~24va

21vs
2!~va1vs!

,

Sssa
a 52

1

8

3
Kssaa~2vs

428vs
2va

2212vsva
313vavs

3!1Ksaa
2 ~6vsva

214vavs
224va

3!1KsaaKsss~12vsva
226vs

3110va
327vavs

2!

\vavs~24va
21vs

2!~va1vs!
,

Sa
ssa52

1

8

3
Kssaa~2vs

428vs
2va

224vsva
31vavs

3!1Ksaa
2 ~2vsva

214vavs
214va

3!1KsaaKsss~12vsva
226vs

3114va
325vavs

2!

~24va
21vs

2!~va1vs!\
3vs

2 .

APPENDIX B: TRANSFORMED ELECTRIC DIPOLE MOMENT AND MAGNETIC DIPOLE MOMENT OPERATORS
UP TO 2ND ORDER

We report here the terms in«, «2, and «3 of the transformed electric dipole moment and magnetic dipole mom
operators@see Eqs.~11! and ff. and~16! and ff. in the text#:

m¢̂ 1
15m¢ sqs1m¢ aqa ,

m¢̂ 2
15

1

2
m¢ ssqs

21m¢ saqsqa1
1

2
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213Ssssps
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a qsqa12Ssaapspa!,
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m¢̂ 1
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APPENDIX C: ORIGIN INDEPENDENCE OF
ROTATIONAL STRENGTHS FOR THE FIRST TWO
OVERTONE TRANSITIONS

We have algebraically proved that rotational streng
are origin-independent for the transitions 0→2 and 0→3, un-
der the assumption thatm¢ is a series expansion truncated
the second order, as in Eq.~11! in the text, andm¢ , with
respect to a generic origin pointO, is given by Eq.~16! in the
text, i.e.,

m¢ 5
1

2c (
i

~r¢Ai3m¢̇ i1m¢ i3r¢̇Bi!, i 5I,II. ~C1!

If the origin is shifted to another pointO8, m¢ changes by the
amount~in the case of two bonds,i 5I,II):

Dm¢ 5
1

2c
~Y¢ 3m¢̇ I1Y¢ 3m¢̇ II !, ~C2!

where Y¢ 5O8O. One has then to prove that the rotation
strength arising out of this term is zero, i.e.,

DR5Im~^0,0um¢ 1uns ,na&•^ns ,nauDm¢ 1u0,0&!50, ~C3!

whereDm¢ 1 is the transformed operator of Eq.~C2!: we first
have explicitly written an operatorDm¢ in Eq. ~C2! in terms
of bond parameters]m¢ i /], i u0 and]2m¢ i /], i

2u0 @see Eqs.~16!
and ~17! and ff. in the text#. Then we have derivedm¢ 1 and
Dm¢ 1 according to Eq.~21! in the text considering terms u
to m¢ 3

1 andDm¢ 3
1.

The proof was carried out with the algebraic manipula
MAPLE for the two manifoldsns1na52 andns1na53. It
turns out that every couple of values forns ,na within the
second and third manifold yieldsDR50 identically. We may
remark that theU matrix need not be applied, since it do
not affect the result, being a linear operator.
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