ON THE INTERSECTION OF HERMITIAN SURFACES

L. GIUZZI

Abstract. We provide a description of the configuration arising from intersection of two Hermitian surfaces in PG(3,q), provided that the linear system they generate contains at least a degenerate variety.

1. Introduction

In [2], the seven point-line configurations arising from the intersection of two Hermitian curves are described and a classification of Hermitian pencils yielding a given configuration is provided. In [3] it has been shown that these configurations are projectively unique and their full collineation group has been determined. Given two Hermitian varieties \mathcal{H}_1 and \mathcal{H}_2 , their intersection \mathcal{E} is just the base locus of the $GF(\sqrt{q})$ -linear system they generate, namely

$$\Gamma(\mathcal{H}_1, \mathcal{H}_2) = \{\mathcal{H}_1 + \lambda \mathcal{H}_2 : \lambda \in \mathrm{GF}(\sqrt{q})\}.$$

In this paper we determine the size of such an intersection depending on the number of degenerate varieties in Γ and describe the actual point–line configurations arising in the 3–dimensional case, provided that Γ contains at least a degenerate surface.

2. Intersection numbers

The set of all singular points of a Hermitian variety \mathcal{H} is a subspace rad \mathcal{H} , the radical of \mathcal{H} . We recall that the rank of a Hermitian variety in PG(n,q) is the number $r=n+1-\dim \operatorname{rad} \mathcal{H}$.

Let now \mathcal{H}_1 and \mathcal{H}_2 be two Hermitian hypersurfaces of PG(n,q) and denote by r_i the number of varieties of rank i in the $GF(\sqrt{q})$ -pencil Γ they generate. We shall call the list (r_1,\ldots,r_n) the rank sequence of Γ .

It has been observed in [2] that the cardinality of the base locus \mathcal{E} of Γ depends only on its rank sequence. In fact the considerations provided in [2] about the 2-dimensional case may be generalised to arbitrary dimension n, as it has been done in [4].

Proposition 1. The rank sequence (r_1, \ldots, r_n) of a pencil Γ of Hermitian varieties in PG(n, q) satisfies the inequality

$$\sum_{i=1}^{n} (n-i+1)r_i \le n+1.$$

Since, see [1], the total number of points of the non-degenerate Hermitian hypersurface \mathcal{H} of PG(n,q) is,

$$\mu(n,q) = [q^{(n+1)/2} + (-1)^n][q^{n/2} - (-1)^n]/(q-1)],$$

it is possible to formulate the following proposition.

1

²⁰⁰⁰ Mathematics Subject Classification. Primary: 11E39, 51E20, Secondary: 05B25, 05B30.

Key words and phrases. Hermitian surfaces, intersection numbers, finite projective spaces, point-line configurations.

The present research was performed within the activity of G.N.S.A.G.A. of the Italian INDAM with the financial support of the Italian Ministry M.I.U.R., project "Strutture geometriche, combinatorica e loro applicazioni", 2003–04.

2 L. GIUZZI

Proposition 2. Let \mathcal{H}_1 , \mathcal{H}_2 be two non-degenerate Hermitian varieties in PG(n,q), and let (r_1,\ldots,r_n) be the rank sequence of the pencil $\Gamma(\mathcal{H}_1,\mathcal{H}_2)$. Then,

$$|\mathcal{H}_1 \cap \mathcal{H}_2| = \eta_n(\Gamma, q) = \frac{1}{\sqrt{q}(q-1)} \{ (1-q^{n+1}) + \sum_{i=1}^n r_i [(q\sqrt{q}\mu(i-1,q)+1)(q^{n+1-i}-1) - (q-1)\mu(n,q)] \} + (1+\frac{1}{\sqrt{q}})\mu(n,q).$$

Table 1 outlines the possible intersection sizes for any two non-degenerate Hermitian surfaces in PG(3,q). All cases are possible.

_	r_1	r_2	r_3	$\eta_3(\Gamma,q)$
	0	0	0	$(q+1)^2$
	0	0	1	$(q+\sqrt{q}+1)(q-\sqrt{q}+1)$
	0	0	2	$(q^2 + 1)$
	0	0	3	$q^2 - q + 1$
	0	0	4	$(q-1)^2$
	0	1	0	$q^2 + q\sqrt{q} + q + 1$
	0	1	1	$q^2 + q\sqrt{q} + 1$
	0	1	2	$(\sqrt{q}+1)(q\sqrt{q}-q+1)$
	0	2	0	$(\sqrt{q}+1)(q\sqrt{q}+q-\sqrt{q}+1)$
	1	0	0	$q\sqrt{q}+q+1$
	1	0	1	$q\sqrt{q}+1$

Table 1. Possible intersection numbers for Hermitian surfaces: non-degenerate pencil.

In the rest of this paper we shall usually write just Γ for $\Gamma(\mathcal{H}_1, \mathcal{H}_2)$ when no ambiguity might arise and we shall denote by \mathcal{E} the intersection $\mathcal{H}_1 \cap \mathcal{H}_2$.

3. Description of the configurations

3.1. Pencils with a degenerate surface of rank 1. The simplest case to consider is when the linear system Γ contains a degenerate surface \mathcal{C} of rank 1, that is a plane repeated q+1 times.

In this case, the intersection is either a degenerate or non-degenerate Hermitian, according as C is secant or tangent to all the other surfaces in the pencil. It follows directly from Table 1 that the former case occurs when Γ contains also a surface of rank 3, a *Hermitian cone*, whereas the latter is possible only if all the surfaces in $\Gamma \setminus \{C\}$ are non-degenerate.

3.2. Pencils whose degenerate surfaces have all rank 2. A Hermitian surface \mathcal{P} of rank 2 is a set of $\sqrt{q} + 1$ planes through a line, the radical of \mathcal{P} . In the following propositions we distinguish several cases.

Proposition 3. Suppose that Γ contains exactly one degenerate surface \mathcal{P} of rank 2. Then, either 1, 2 or $(\sqrt{q}+1)$ components of \mathcal{P} are degenerate Hermitian curves.

Proof. The radical of \mathcal{P} meets \mathcal{E} in either 1, $\sqrt{q}+1$ or q+1 points. Let $n=|\mathrm{rad}\mathcal{P}\cap\mathcal{E}|$ and denote by v_2 the number of components of \mathcal{P} which meet \mathcal{E} in a degenerate Hermitian curve.

(1) n = 1. Then,

$$q^{2} + q\sqrt{q} + q + 1 = v_{2}(q\sqrt{q} + q) + (\sqrt{q} + 1 - v_{2})q\sqrt{q} + 1;$$

hence, $v_2 = 1$.

(2) $n = \sqrt{q} + 1$. Then,

$$q^{2} + q\sqrt{q} + q + 1 = v_{2}(q\sqrt{q} + q - \sqrt{q}) + \sqrt{q}(\sqrt{q} + 1 - v_{2})(q - 1) + \sqrt{q} + 1;$$

hence, $v_2 = 2$.

(3) n = q + 1. Then,

$$q^{2} + q\sqrt{q} + q + 1 = v_{2}(q\sqrt{q}) + q(\sqrt{q} + 1 - v_{2})(\sqrt{q} - 1) + q + 1;$$

hence, $v_2 = \sqrt{q} + 1$.

Observe that in general, if \mathcal{P} and \mathcal{P}' are any two degenerate surfaces in Γ , then $\mathcal{R}=\operatorname{rad}\mathcal{P}\cap\operatorname{rad}\mathcal{P}'=\emptyset$ since, otherwise, any point $V\in\mathcal{R}$ would be singular for all the surfaces of Γ . Suppose now that there are two distinct Hermitian surfaces \mathcal{P} and \mathcal{P}' both of rank 2 in Γ ; the previous observation proves that $\operatorname{rad}\mathcal{P}$ and $\operatorname{rad}\mathcal{P}'$ have to be mutually skew. Furthermore, both $\operatorname{rad}\mathcal{P}$ and $\operatorname{rad}\mathcal{P}'$ meet any non-degenerate surface in Γ in $(\sqrt{q}+1)$ points. Thus, we obtain the following proposition.

Proposition 4. The intersection of two non degenerate Hermitian surfaces \mathcal{H}_1 , \mathcal{H}_2 spawning a pencil with $r_2 = 2$ is the union of all generators of \mathcal{H}_1 which pass through two skew $(\sqrt{q} + 1)$ -secants.

3.3. Pencils whose degenerate surfaces have rank 2 and 3. Given a Hermitian cone \mathcal{C} of vertex V and a non-degenerate Hermitian variety \mathcal{H} , we denote by $\Gamma'(\mathcal{C},\mathcal{H})$ the $\mathrm{GF}(\sqrt{q})$ -linear system of Hermitian curves generated by $\mathcal{C}' = \mathcal{C} \cap \pi$ and $\mathcal{H}' = \mathcal{H} \cap \pi$, where π is the polar plane of V with respect to \mathcal{H} .

Lemma 5. Let C_1 and C_2 be two distinct Hermitian cones of vertices respectively V_1 and V_2 . Assume that the pencil $\Gamma(C_1, C_2)$ contains at least a non-singular surface and that $V_1 \notin \mathcal{E}$. Then, V_2 belongs to the polar plane of V_1 with respect to any non-degenerate Hermitian surface in Γ .

Proof. Fix a non-degenerate Hermitian surface $\mathcal{H} \in \Gamma$ and let π be the polar plane of V_1 with respect to \mathcal{H} . Since $V_1 \notin \mathcal{H}$, the plane π cuts a non-singular Hermitian curve on \mathcal{H} . Suppose $V_2 \notin \pi$; then the line V_1V_2 would meet \mathcal{H} in $\sqrt{q}+1$ points. On the other hand, V_1V_2 meets \mathcal{C}_1 and \mathcal{C}_2 in either 1 or q+1 points — a contradiction. It follows that $V_2 \in \pi$ and $|V_1V_2 \cap \mathcal{E}| \leq 1$. \square

Lemma 6. Take C to be a Hermitian cone of vertex V and H to be a non-degenerate Hermitian surface; let also π be the polar plane of V with respect to H and let $\Gamma = \Gamma(C, H)$. Then,

(1) if $V \notin \mathcal{H}$,

$$\eta_3(\Gamma, q) = q^2 + q\sqrt{q} + \sqrt{q} + 1 - \eta_2(\Gamma', q)\sqrt{q};$$

(2) if $V \in \mathcal{H}$,

$$\eta_3(\Gamma, q) = q^2 - q + |\pi \cap \mathcal{E}|.$$

Proof. Let $\mathcal{H}' = \mathcal{H} \cap \pi$ and $\mathcal{C}' = \mathcal{C} \cap \pi$. Take $h = \eta_2(\Gamma', q)$. Observe that any line through V tangent to \mathcal{H} is of the form PV with $P \in \mathcal{H}'$. If $V \notin \mathcal{H}$, every line through V meets \mathcal{H} in either 1 or $\sqrt{q} + 1$ points; on the other hand, exactly h generators of \mathcal{C} are tangent to \mathcal{H} , whence it follows

$$\eta_3(\Gamma, q) = h + (q\sqrt{q} + 1 - h)(\sqrt{q} + 1).$$

Assume $V \in \mathcal{H}$. Hence, π is the tangent plane to \mathcal{H} at V and \mathcal{H}' consists of $\sqrt{q} + 1$ lines through V. However, \mathcal{C}' consists of either 1 line or a degenerate Hermitian curve. In the former case we

4 L. GIUZZI

would have $\eta_3(\Gamma, q) = q^2 + q + 1$, which is not possible. Hence, C' is the union of $\sqrt{q} + 1$ lines through V and

$$\eta_3(\Gamma, q) = \sqrt{q}(q\sqrt{q} - \sqrt{q}) + |\pi \cap \mathcal{E}|.$$

Observe that in this case, all the curves in the linear system Γ are degenerate.

Using the cardinality formula of Proposition 2, together with Lemma 6, it is possible to reconstruct the rank sequence of $\Gamma(\mathcal{C}, \mathcal{H})$ from the rank sequence of Γ' .

Lemma 7. Assume Γ to contain at least one cone \mathcal{C} of vertex $V \notin \mathcal{E}$, and let the rank sequence of Γ' be (r'_1, r'_2) . Then, the rank sequence of Γ is $(0, r'_1, r'_2 + 1)$.

In fact, it is possible to describe in an accurate way the actual configuration $\mathcal{E} \cap \pi$ in terms of the seven classes of [2]. We shall denote such classes as in [3].

Proposition 8. Let Γ be a $GF(\sqrt{q})$ -pencil of Hermitian surfaces with rank sequence $(0, r'_1, r'_2+1)$. Then, the base configuration $\mathcal{E}' = \mathcal{E} \cap \pi$ is uniquely determined.

Proof. The cardinality of \mathcal{E}' is determined by Lemma 7. Observe that 5 of the 7 classes of [2] are uniquely determined by their rank sequence. However, both class III and IV correspond to the same rank sequence $(r'_1, r'_2) = (0, 1)$. By Lemma 7, Γ has necessarily rank sequence (0, 0, 2) and $|\mathcal{E}| = q^2 + 1$. Denote then by \mathcal{C}_1 and \mathcal{C}_2 the two distinct Hermitian cones of Γ and assume they have respectively vertices V_1 and V_2 . There are two possibilities for $\mathcal{E}' = \mathcal{E} \cap \pi$:

- (1) \mathcal{E}' belongs to class III, that is \mathcal{E}' consists of $\sqrt{q}-1$ sublines, all disjoint, and 2 more points;
- (2) \mathcal{E}' belongs to class IV, that is \mathcal{E}' consists of \sqrt{q} sublines, which meet all in a point P.

The former case occurs if $V_2 \notin \mathcal{E}$. If \mathcal{E}' belongs to class IV, then $V_2 = P \in \mathcal{E}$.

Proposition 9. Let Γ be a non-degenerate linear system of Hermitian surfaces with $r_2(\Gamma) = r_3(\Gamma) = 1$. Then, \mathcal{E} is either the union of $\sqrt{q}+1$ non-degenerate Hermitian curves all with a point in common, or the union of \sqrt{q} non-degenerate Hermitian curves and a degenerate Hermitian curve, all sharing a $(\sqrt{q}+1)$ -secant.

Proof. Let \mathcal{P} and \mathcal{C} be respectively the only surface of rank 2 and the only Hermitian cone in Γ . Let also $L = \operatorname{rad} \mathcal{P}$ and V be the vertex of \mathcal{C} . Observe that $l = |L \cap \mathcal{E}| \in \{1, \sqrt{q} + 1\}$.

- (1) l=1. Let M be the point of intersection of $\mathcal C$ and L; clearly $M\neq V$. If $V\in \mathcal E$, then there is a component π of $\mathcal P$ such that $V\in \pi$. However, in this case $\mathcal C\cap \pi=PM$. However, this cannot be a plane section of a non-degenerate Hermitian surface; hence, it follows that $V\not\in \mathcal E$. This being the case, all the $\sqrt q+1$ sections cut on $\mathcal C$ by $\mathcal P$ are non-degenerate Hermitian curves having the point M in common.
- (2) $l = \sqrt{q} + 1$: Let v_1 be the number of the components of \mathcal{P} which meet \mathcal{C} in a degenerate Hermitian curve. Observe that $v_1 \leq 1$ and equality occurs if and only if $V \in \mathcal{E}$. Since,

$$(q^2 + q\sqrt{q} + 1) = (\sqrt{q} + 1) + (\sqrt{q} + 1 - v_1)(q\sqrt{q} - \sqrt{q}) + v_1(q\sqrt{q} + q^2 - \sqrt{q}),$$

we get $v_1 = 1$ and $V \in \mathcal{E}$.

Proposition 10. Let Γ be a non-degenerate linear system of Hermitian surfaces with $r_2(\Gamma) = 1$ and $r_3(\Gamma) = 2$. Then, \mathcal{E} is the union of $\sqrt{q} + 1$ non degenerate Hermitian curves, all sharing a chord.

Proof. Let \mathcal{P} be the only Hermitian surface or rank 2 in Γ and denote by \mathcal{C}_1 , \mathcal{C}_2 be the two Hermitian cones. As before, denote by V_1 and V_2 the vertices of respectively \mathcal{C}_1 and \mathcal{C}_2 and define $L = \operatorname{rad} \mathcal{P}$ and $l = |L \cap \mathcal{E}|$. Either l = 1 or $l = \sqrt{q} + 1$. If it were l = 1, then we would obtain that \mathcal{E} is the union of $\sqrt{q} + 1$ non-degenerate Hermitian curves, all with a point

in common. However, this is a contradiction because of Proposition 2. Assume then $l = \sqrt{q} + 1$ and denote by v_1 the number of components of \mathcal{P} meeting \mathcal{E} in a degenerate Hermitian curve. Then,

$$(\sqrt{q}+1)(q\sqrt{q}-q+1) = (\sqrt{q}+1) + (\sqrt{q}+1-v_1)(q\sqrt{q}-\sqrt{q}) + v_1(q\sqrt{q}+q^2-\sqrt{q}).$$

This is possible only if $v_1 = 0$, that is, \mathcal{E} is the union of $\sqrt{q} + 1$ non-degenerate Hermitian curves, all sharing a chord.

3.4. Pencils whose degenerate surfaces have all rank 3. All the pencils considered in this section contains at least a cone \mathcal{C} . We shall denote by s_1 , s_2 and s_3 the number of generators of \mathcal{C} meeting \mathcal{E} in respectively q+1, $\sqrt{q}+1$ or 1 points.

Lemma 11. Let Γ contain at least 3 distinct cones $C_1 \dots C_3$ of vertices $V_1 \dots V_3$. Then, either the vertices of all the cones in Γ are collinear or at most one of them is in \mathcal{E} .

Proof. Suppose $V_1, V_2 \in \mathcal{E}$; then, $V_1V_2 \subseteq \mathcal{E}$. However, for V_1V_2 to be a subset of \mathcal{E} , it is necessary for it to be a generator of \mathcal{C}_3 also. It follows $V_3 \in V_1V_2$.

Observe that when Γ contains at least two Hermitian cones, the number of lines in \mathcal{E} is at most 1.

Proposition 12. If Γ contains 4 Hermitian cones, then none of the vertices of such cones belongs to \mathcal{E} and exactly $\sqrt{q}(q-\sqrt{q}-2)$ generators of any cone meet \mathcal{E} in $(\sqrt{q}+1)$ points, the remaining $(\sqrt{q}+1)^2$ being tangent lines.

Proof. By Proposition 2, $|\mathcal{E}| = (q-1)^2$. Suppose $V_1, V_2, V_3, V_4 \in \mathcal{E}$. Then,

$$(q-1)^2 = (q+1) + s_2\sqrt{q} + (q\sqrt{q} - s_2),$$

that is $q(q^2 - \sqrt{q} - 3) = s_2(\sqrt{q} - 1)$, a contradiction since $(\sqrt{q} - 1)$ does not divide $q^2 - \sqrt{q} - 3$. If $V_1 \in \mathcal{E}$ while $V_2, V_3, V_4 \notin \mathcal{E}$. Observe that a generator of \mathcal{C}_1 either meets a non-degenerate surface \mathcal{H} is 1 or in $\sqrt{q} + 1$ points. Then,

$$(q-1)^2 = s_2 \sqrt{q} + 1,$$

which gives $s_2 = q\sqrt{q} - 2\sqrt{q}$, that is $2\sqrt{q} + 1$ generators of \mathcal{C} meet \mathcal{H} in V only and all these generators lie in the tangent plane to \mathcal{H} at V. However, the number of generators of \mathcal{C} on any plane is at most $\sqrt{q} + 1$, which gives a contradiction. It follows that \mathcal{E} does not contain the vertex of any cone in Γ and

$$(q-1)^2 = s_2(\sqrt{q}+1) + (q\sqrt{q}+1-s_2),$$

that is, $s_2 = \sqrt{q(q - \sqrt{q} - 2)}$, which gives the result.

Proposition 13. Suppose Γ to contain exactly 3 cones C_1, C_2, C_3 . Then, there are two possibilities:

- (1) $V_1, V_2, V_3 \notin \mathcal{E}$: then $\sqrt{q}(q \sqrt{q} 1)$ components of each cone are $(\sqrt{q} + 1)$ -secants to any non-degenerate Hermitian surface in Γ ;
- (2) $V_1 \in \mathcal{E}$ but $V_2, V_3 \notin \mathcal{E}$: then $\sqrt{q}(q-1)$ generators of the cone \mathcal{C}_1 meet \mathcal{E} in $(\sqrt{q}+1)$ points, the remaining intersecting \mathcal{E} in V_1 only; the number of generators of the cones \mathcal{C}_2 and \mathcal{C}_3 meeting \mathcal{E} in $(\sqrt{q}+1)$ points is $q\sqrt{q}-q-\sqrt{q}$, the others meeting \mathcal{E} in distinct points;

Proof. The cardinality of \mathcal{E} is $q^2 - q + 1$.

(1) Since $V_1 \notin \mathcal{E}$,

$$q^{2} - q + 1 = s_{2}(\sqrt{q} + 1) + (q\sqrt{q} - s_{2} + 1).$$

Hence, there are $\sqrt{q}(q-\sqrt{q}-1)$ components of \mathcal{C}_1 are meeting \mathcal{E} in $(\sqrt{q}+1)$ points, the remaining $q+\sqrt{q}+1$ being tangent to any surface.

6 L. GIUZZI

(2) Since $V_1 \in \mathcal{E}$, each generator of \mathcal{C}_1 meets \mathcal{E} in either 1 or $\sqrt{q} + 1$ points. We get

$$q^2 - q + 1 = 1 + t\sqrt{q}$$
.

It follows that $\sqrt{q}(q-1)$ generators through V meet \mathcal{E} in $\sqrt{q}+1$ points. Consider now another cone $\mathcal{C}_2 \in \Gamma$. Since $V_2 \notin \mathcal{E}$, we get

$$q^{2} - q + 1 = s_{2}(\sqrt{q} + 1) + (q\sqrt{q} + 1 - s_{2});$$

hence $s_2 = q\sqrt{q} - q - \sqrt{q}$.

Suppose now $V_1, V_2 \in \mathcal{E}$. Then, the line V_1V_2 is a generator of any surface $\mathcal{H} \in \Gamma$ and we have

$$q^2 - q + 1 = q + 1 + s_2\sqrt{q}.$$

It follows that $s_2 = q\sqrt{q} - 2\sqrt{q}$. This gives that there should be $2\sqrt{q} + 1 > \sqrt{q} + 1$ generators through V_1 meeting \mathcal{H} in V_1 only — a contradiction.

Proposition 14. Assume that the pencil Γ contains exactly two cones C_1 , C_2 of respectively vertices V_1 and V_2 . Then, one of the following possibilities holds:

- (1) both $V_1, V_2 \in \mathcal{E}$; then, \mathcal{E} contains the line V_1V_2 ; $q(\sqrt{q}-1)$ components of each cone meet \mathcal{E} in $\sqrt{q}+1$ points.
- (2) $V_1 \in \mathcal{E}$, while $V_2 \notin \mathcal{E}$; \mathcal{E} does not contain any line; $q\sqrt{q}$ components of \mathcal{C}_1 and $q(\sqrt{q}-1)$ components of \mathcal{C}_2 meet \mathcal{E} in $\sqrt{q}+1$ points.
- (3) $V_1, V_2 \notin \mathcal{E}$ belong to \mathcal{E} ; $q(\sqrt{q}-1)$ components of each cone meet \mathcal{E} in (q+1) points.

Proof. Let V be the vertex of any cone C in Γ . Observe that for $V \notin \mathcal{E}$,

$$q^2 + 1 = s_2(\sqrt{q} + 1) + (q\sqrt{q} + 1 - s_2);$$

hence, $s_2 = q\sqrt{q} - q$. On the other hand, if $V \in \mathcal{E}$

$$q^2 + 1 = s_1 q + s_2 \sqrt{q} + 1;$$

hence, $s_2 = \sqrt{q}(q - s_1)$. The result now follows from $s_1 \le 1$.

Proposition 15. Assume that the only degenerate surface in the pencil Γ is a cone \mathcal{C} . Then, either

- (1) $V \not\in \mathcal{E}$ and $\sqrt{q}(q-\sqrt{q}+1)$ components of \mathcal{C} are meet \mathcal{E} in $\sqrt{q}+1$ points, or
- (2) $V \in \mathcal{E}$ and \mathcal{E} contains at least a line.

Proof.

(1) If $V \notin \mathcal{E}$, then $s_1 = 0$ and

$$q^2 + q + 1 = s_2(\sqrt{q} + 1) + (q\sqrt{q} + 1 - s_2);$$

hence, $s_2 = \sqrt{q}(q - \sqrt{q} + 1)$.

(2) If $V \in \mathcal{E}$,

$$q^2 + q + 1 = s_1 q + s_2 \sqrt{q} + 1;$$

hence, $s_2 = \sqrt{q}(q+1-s_1)$. Since the total number of components of \mathcal{C} is $q\sqrt{q}+1$, it follows that $s_2 \leq q\sqrt{q}+1$ and $s_1 \geq 1$.

Suppose that Γ contains exactly one Hermitian cone whose vertex belongs to \mathcal{E} , and let π be the tangent plane at P to a non-degenerate Hermitian surface in Γ . Clearly, all generators in \mathcal{E} lie in π ; furthermore $s_1 \in \{1, 2, \sqrt{q} + 1\}$. Consequently, $s_2 \in \{q\sqrt{q}, q\sqrt{q} - \sqrt{q}, q\sqrt{q} - q\}$. We observe also that if $s_1 > 1$, then all non-degenerate Hermitian surfaces in Γ share the same tangent plane at P.

REFERENCES

- $[1] \ \ \text{J.W.P. Hirschfeld}, \ \textit{Projective geometries over finite fields}, \ \text{Oxford University Press}, \ 1998$
- [2] B.C. Kestenband, Unital intersections in finite projective planes, Geom. Dedicata 11 (1981), no. 1, 107-117.
- [3] L. Giuzzi, Collineation groups of the intersection of two classical unitals, J. Combin Designs 9 (2001); 445–459.
- $[4] \ \text{L. Giuzzi, } \textit{Hermitian varieties over finite fields}, \ \text{DPHIL Thesis, } \textit{University of Sussex}.$

Dipartimento di Matematica, Facoltà di Ingegneria, Università degli studi di Brescia, via Valotti 9, 25133 Brescia, Italy.