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Fresnel Light Drag in a Coherently Driven Moving Medium
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We theoretically study how the phase of a light plane wave propagating in a resonant medium under
electromagnetically induced transparency (EIT) is affected by the uniform motion of the medium. For
cuprous oxide �Cu2O�, where EIT can be implemented through a typical pump-probe configuration, the
resonant probe beam experiences a phase shift (Fresnel-Fizeau effect) that may vary over a wide range of
values, positive or negative, and even vanishing, due to the combined effects of the strong frequency dis-
persion and anisotropy both induced by the pump. The use of such a coherently driven dragging medium
may improve by at least 1 order of magnitude the sensitivity at low velocity in optical drag experiments.
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The phase velocity of light depends on whether light
propagates in a moving or in a stationary medium. This
effect, which gives rise to the familiar Fresnel light drag
[1,2], has been observed for the first time in Fizeau’s flow-
ing water experiment [3] and had a profound influence on
the change of our perception [4] of the nature of space and
time at the turn of the century.

We here anticipate that light drags can be made to vary
over a rather wide range of values when a slab of coherently
driven cuprous oxide �Cu2O� is used as a dragging medium.
This originates from the steep electromagnetically induced
transparency (EIT) dispersion [5,6] occurring at the 2P-
exciton resonance in a typical pump and probe L-
configuration [7]. Furthermore, in a sample rendered
anisotropic by a suitable choice of the pump and probe
polarizations, one can also make the light drag vanish over
a broad range of probe frequencies depending on the pump
parameters. This means that in a typical interferometric
experiment no fringe shift would be observed for light
propagating through a moving medium with respect to
light propagating through the same medium at rest. Such
a somewhat surprising conclusion holds for all velocities
of experimental interest and has been found so far to
hold only in the very different context of matter waves
where a null drag has been observed for thermal neutrons
traversing a nonresonant moving medium contained inside
stationary boundaries [8].

Since Fizeau’s experiment various other observations of
light drags have followed in which different dragging me-
dia and diverse interferometric measurement techniques
have been employed, but there still remains a formidable
challenge to perform high-precision measurements of light
drags; these, in fact, have not yet reached the level of accu-
racy of other tests of special relativity [9]. In order to per-
form a high-precision measurement of the Fresnel-Fizeau
effect one needs high sensitivity to velocity induced phase
shifts, which in turn sets a lower bound for the usable
sample speeds. At the same time, in order to preserve high
contrast of the interference fringe pattern, mechanical vi-
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brations from the sample movement have to be minimized.
Owing to the high dispersion at the 2P-exciton resonance,
where absorption is also largely quenched by quantum
interference, this goal can be achieved by using a slab
of coherently driven cuprous oxide �Cu2O� as a dragging
medium: interferometric sensitivity at low drag velocities
can be increased by at least 1 order of magnitude.

The dragging medium, in the form of a parallel-sided
slab, induces an optical phase shift which we here cal-
culate from first principles including the effects of fre-
quency and angular dispersion. We take a slab moving in
one arm of the interferometer with constant velocity y with
respect to an observer in the laboratory frame S. The rele-
vant geometry is illustrated in Fig. 1. Phase shifts depend
crucially on boundary conditions and our configuration,
unlike in the historic work of Fizeau [3] where the phase
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FIG. 1. Probe-beam path across a Cu2O slab moving with ve-
locity y in the laboratory frame S. The probe wave vector kp , the
slab velocity, and its surface normal are all in the same direction x̂.
The pump wave vector is along ẑ � ẑ0 and its polarization is par-
allel to the optical c axis x̂0 which makes a fixed angle x with x̂.
© 2001 The American Physical Society 2549



VOLUME 86, NUMBER 12 P H Y S I C A L R E V I E W L E T T E R S 19 MARCH 2001
shifts were produced by water flowing inside stationary
tubes, realizes a situation in which the medium boundaries
are in motion [10]. Note that we do not account here for
small tilt angles between the surface normal and the inter-
ferometer x̂ axis commonly employed to minimize back-
reflections and to avoid multiple internal reflections [9].
Such a geometry is in fact sufficient to illustrate [11] the
effects of frequency and angular dispersion associated with
EIT on the light drag and we then proceed to derive the
phase shift for a beam single-pass even if this occurs at nor-
mal incidence. The phase shift is in general associated with
a space-time contour, i.e., Df �

H
�v dt 2 k ? dr�, which

accounts for the temporal and spatial variations exhibited
by a plane wave of wave vector k and angular frequency
v propagating in the medium. In our approach, we set
all times to be identical in the laboratory frame S and we
evaluate

H
kp ? dr along the probe optical path in the

interferometric arrangement required for a typical high-
precision measurement of the drag [9,12].

Because the phase shift is relativistically invariant, we
find it convenient to derive its expression in the slab rest
frame S0. The space-time coordinates as well as the fre-
quency (vp) and wave vector �kp� of the probe light wave
in S and S0 are connected through a Lorentz transformation
[13] which comprises a boost along x and a rotation about
the z axis. To the lowest order in b � y�c, the single pass
phase shift is

Df � Df0 � v0
pDt0 2 k0

p ? Dr0 � 2b
v

0
RL0

c
2 k0

RL0

� 2
v

0
RL0

c
�Re�n�v0

R , x�� 1 b� , (1)

where primed and unprimed variables refer, respectively,
to the slab rest frame S0 and the laboratory frame S and
where we have replaced v0

p by v
0
R and k0

p by k0
R for the

frequency and wave vector of the refracted probe beam
propagating inside the slab. Here n�v0

R , x� denotes the
complex index of refraction of the uniaxial medium in its
rest frame S0, while L0 is the actual slab thickness.

Since the slab surfaces are stationary in S0, there is no
frequency change at the sample boundaries and the fre-
quency of the refracted wave is equal to that of the incident
one, i.e., v

0
R � v

0
I , while the incident probe frequency in

S and S0 are related, to the lowest order in b, by

v0
I � vI 2 bvI . (2)

Such a Doppler shift is quite small and the refractive index
can then be expanded as

n�v0
R , x� � n�vI , x� 2 bvI

≠n�v0
I , x�

≠v
0
I

, (3)

where the derivative is to be evaluated at v
0
I � vI . Sub-

stituting (2) and (3) back into (1) yields
2550
Df � 2
vIL0

c
Re�n�vI , x�� 2 b

vIL0

c

3

∑
1 2 Re�n�vI , x�� 2 vI

≠ Re�n�vI , x��
≠vI

∏

	 Dfo 2 b
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c
ae . (4)

This gives the relative phase of the incident and emerging
beams as viewed in the laboratory frame to first order in
b. Here Dfo is the shift induced by a stationary sample,
while the additional term on the right hand side of (4) arises
from the sample motion and defines in turn the effective
drag coefficient ae [9]. This is a measurable quantity
as the nonreciprocal phase shift between the light beams
propagating parallel and antiparallel to the velocity of the
sample, that is proportional to ae, can easily be measured
through standard high-precision interferometric techniques
[9,12]. The usual definition [2] of the drag coefficient
for the phase velocity of light can easily be related to the
measurable quantity ae [9].

We specifically evaluate the effective drag coefficient
ae experienced by a weak probe beam crossing a slab of
Cu2O under EIT [7] used as a dragging medium; this is
realized by tuning the probe about the 2P yellow exciton
line of resonant frequency v2P and by further driving the
sample with a strong pump beam of Rabi frequency Vc and
frequency vc tuned to the 1S-2P exciton transition. The
quadrupole allowed threefold degenerate 1S exciton state
(G1

5 ) has a small linewidth �h̄g1S � 0.1 meV� compared
to that (h̄g2P � 1 meV� of the second class dipole allowed
threefold degenerate 2P-exciton state �G2

4 �. For a pump
Rabi frequency Vc 
 p

g2Pg1S EIT takes place whereby
a narrow transparency window associated with a rather
steep dispersion appears about the 2P-exciton line [7]. The
effective dielectric tensor describing the optical response
of the medium to the weak probe in the presence of the
pump can be derived from a L-type model Hamiltonian as
developed in [7] and, in general, will be anisotropic. The
specific form of the effective dielectric tensor depends on
the detailed structure of the exciton levels involved and
on the pump polarization. For the sake of simplicity, we
here assume that the G

2
4 states are well separated from all

other 2P states and we take the pump polarization along the
cubic axis x̂0 (see Fig. 1). The resulting dielectric tensor
is uniaxial with the optical c axis along x̂0, i.e., ex0x0 � ek,
ey0y0 � ez0z0 � e�, and ej0fik0 � 0, where

e��v0
R� � eEIT�v0

R�

� e` 1
Ag2P�D 2 ig1S�

�dp 2 ig2P� �D 2 ig1S� 2 V2
c�4

, (5)

while ek�v0
R� is obtained by setting Vc ! 0 in the above

equation. Here A � 0.02 is a numerical constant propor-
tional to the 2P exciton oscillator strength [7], e` � 6.5 1

i 2 3 1023 is the background dielectric constant, while D
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is the relative detuning �dp 2 dc� with dp � v2P 2 v
0
R

and dc � v2P 2 v1S 2 v0
c. Under EIT the dispersion

equation for a probe (linearly) polarized in the x0y0 plane is
that of an extraordinary ray [14] whose complex refractive
index is given by

n2�v0
R , x� �

ek�v0
R�

1 1 er �v0
R� cos2x

;

er�v0
R� 	

ek�v0
R�

e��v0
R�

2 1 .

(6)

Unlike in the absence of EIT for which er � 0, not all
variables involving the reduced dielectric function er van-
ish, some variables acquiring smaller values than others for
probe frequencies within the transparency bandwidth [7].
With the pump exactly resonant (dc � 0), Re�er� and the
frequency derivatives of Im�ek� and Im�er � take on vanish-
ingly small values for a nearly resonant probe up to probe
detunings of several tenths of g2P and a more compact
form of the drag is obtained after setting these variables to
zero in (4). The resulting form of ae can be further sim-
plified observing that in the same detuning range the re-
maining variables are nearly constant, acquire fairly larger
values but still less than unit �1023 4 1022�, and increase
according to jIm�er �j , g2Pj≠v Re�er �j # Im�ek� &

g2Pj≠v Re�ek�j. It is then possible to carry out a suc-
cessive series expansion of ae with respect to Im�er �,
g2P≠v Re�er� and Im�ek� to obtain, to the lowest order,

ae � 1 2

q
Re�ek� 2

vI

2
p

Re�ek�

3

µ
≠ Re�ek�

≠vI
2 Re�ek� cos2x

≠ Re�er �
≠vI

∂
. (7)

Higher order contributions containing terms proportional
to the product of Im�er�, Im�ek�, g2P≠v Re�ek� and of
Im�er �, g2P≠v Re�er �, Im�ek� have been neglected and the
frequency dependencies of all dielectric functions are not
explicitly indicated.

The magnitude of ae may be controlled directly by vary-
ing the intensity of the pump beam �Vc� and the cleavage
angle (x) so that the drag may acquire positive and nega-
tive values or it may even drop to zero. The first two terms
on the right hand side of (7) are in fact of the same order
of magnitude and much smaller than the last two in the
bracket which are the dominant contributions to the drag.
For appropriate choices of Vc’s and x’s these two terms
may also become comparable in magnitude so as to make
the overall drag to vanish at probe frequencies which are
determined by the specific selection of pump and cleavage
parameters. For each probe detuning and set cleavage,
there exists a pump intensity at which jaej is maximum and
one for which ae vanishes. Note, in particular, that the
second of those terms does not appear in the absence of
the pump beam, i.e., when ek � e� and er � 0; the fre-
quencies at which jaej is largest can no longer be tuned in
this case but are fixed by the material parameters.
We report in Figs. 2 and 3 numerical results obtained
from (7) for a resonant and a detuned pump. Because
of the high dispersion at the 2P-exciton EIT resonance,
where the absorption is quenched by quantum inter-
ference, large drags are associated with an appreciable
degree of transparency in the region jdp 2 dcj , 0.5g2P ,
where the observation of either large or vanishing drags
should be favored. At exact resonance, amax

e � 18 occurs
with over 20% transparency whereas ae vanishes for
slightly detuned probes with a little smaller transparency.
These figures exceed those in the absence of the pump
where, e.g., jamax

e j � 10 occurs with only a few percent
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FIG. 2. Coefficient ae vs Vc in units of g2P for a resonant
probe (a). Coefficient ae vs dp in units of g2P for a Rabi fre-
quency of Vc�g2P � 0 (grey line), 0.22 (solid line), and 0.7
(dashed line) for a resonant (b) and detuned (c) pump with dc�
g2P � 1. Here the cleavage angle is x � 5± and g2P � 1 meV.
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FIG. 3. Transmission coefficient for a resonant (a) and detuned
(b) pump. The slab has a thickness L0 � 25 mm, while the other
parameters are the same as in Fig. 2.

transparency. The situation improves further with the
pump detuning: where amax

e � 12 with a 30% trans-
parency, while zeros of ae occur with a 20% transparency.

A large ae improves the accuracy of drag measurements
since interferometric techniques measure (Df 2 Dfo)
that is proportional to the product b 3 ae [9,12].
The present values of ae exceed by at least 1 order
of magnitude those for glass media [9]. At the 2P-
exciton resonance ≠lp Re�ek, er � varies in the range
10 4 40 mm21 that is just about 1 to 2 orders of mag-
nitude larger than typical dispersions for glass media
[9]. Note that the dephasing g1S plays an important role.
Reducing it to half its value would produce a further 35%
increase in the magnitude of ae with a concomitant 50%
increase in the transparency window whose width would
then narrow down to nearly a third of g2P .

Our situation resembles much the one of neutron
de Broglie waves in matter [15] where the dispersive con-
tribution to the drag can compare with or exceed that deter-
mined by the refractive index of the medium. Matter waves
and light waves in moving media share another and peculiar
feature, i.e., the fact that the drag may vanish. In our case,
in particular, the drag can vanish over a wide range of opti-
cal frequencies and such a remarkable behavior originates
from the fact that around the 2P-exciton EIT resonance
2552
the two terms in the bracket of (7) may cancel with one
another. To the best of our knowledge, null drags have so
far been observed only for thermal neutrons traversing a
moving medium contained inside stationary boundaries
and exhibiting no nuclear resonance [8]. While it follows
as a general result [16] that no neutron Fizeau effect
occurs for an off resonance neutron probe and boundaries
at rest, it is here worthwhile to note that in our case a
null effect is instead exhibited for a light probe either
on or off resonance and moving boundaries. The null
result depends in one case on the specific form of the
dispersion relation for neutrons in material media while
on the other it depends both on the EIT dispersion and on
the associated anisotropy of light waves in cuprous oxide.

In summary, we have theoretically investigated how elec-
tromagnetically induced transparency affects the Fresnel
light drag, considering the yellow exciton line of cuprous
oxide for specific numerical estimates. We have shown
that the effective drag coefficient near resonance can be
controlled with the pump intensity and detuning: it can
acquire a wide range of values, positive or negative, and
even vanishing.

We thank F. Cataliotti and S. Harris for enlightening
discussions.
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