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An analytical method based on a two-mode approximation is here developed to study the optical response of a
periodically modulated medium of ultracold atoms driven into a regime of standing-wave electromagnetically
induced transparency. A systematic comparison with the usual approach based on the coupled Maxwell—
Liouville equations shows that our method is very accurate in the frequency region of interest. Our method, in
particular, explains in a straightforward manner the formation of a well-developed photonic bandgap in the
optical Bloch wave vector dispersion. For ultracold 8’Rb atoms nearly perfect reflectivity may be attained and
a light pulse whose frequency components are contained within the gap is seen to be reflected with little loss

and deformation. © 2008 Optical Society of America

OCIS codes: 270.1670, 160.5298, 190.4223.

1. INTRODUCTION

Laser induced quantum coherence schemes lie at the
heart of quantum physics, especially for their applications
to light propagation control, enhancement of resonant op-
tical nonlinearity, and state transfer between light and
atoms, just to mention a few. The main impetus for such
an intense activity comes, however, from potential appli-
cations to optical memories, optical computing, and quan-
tum information storage and processing. One of these
schemes relies on electromagnetically induced transpar-
ency (EIT) [1,2], which refers to the absorption suppres-
sion of a probe laser due to the quantum coherence estab-
lished through a strong monochromatic coupling laser.
With a static cw coupling field, one can easily achieve ul-
traslow light accompanied by little absorption in atomic
gases or solid materials [3,4]. By a dynamic modulation of
the cw coupling field in time one can instead transfer the
quantum state of a probe pulse to the dressed media and
retrieve it after storage [5—7]. Storage times in this case
are of the order of milliseconds and typically limited by
spin coherence dephasing processes. By slightly disturb-
ing the conditions for EIT through an auxiliary level
greatly enhanced nonlinear interaction [8-10] may also
be achieved, which has been exploited to devise efficient
quantum phase gates [11,12] and all-optical switching
[13].

An important step toward light storage was taken by
employing coupling fields in a standing-wave (SW) con-
figuration to periodically modulate the dispersive [14]
properties of a medium and induce a photonic bandgap in
the medium. The absorptive properties may also be peri-
odically modulated and this has been exploited to trap
[15] a probe pulse in hot atomic vapors of 8’Rb. Such sta-
tionary light pulses may be used, e.g., to devise interest-
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ing schemes to enhance the Kerr-like interaction between
a probe and another signal pulse stored in the spin coher-
ence [16] or to achieve quantum transport of single pho-
tons or quantum states [17]. Light storage in dynamically
controlled optical lattices have been thoroughly studied
and detailed theoretical treatments have been given in
terms of coupled Maxwell-Liouville equations [18-21] or
using the dark-state polariton picture associated with
EIT [5].

The generation of stationary light pulses in all-optical
controlled bandgap media makes it clearly unnecessary to
design photonic crystals [22] with predetermined band-
gap structures, and thus may be very useful for control-
ling the light flow and interactions. Unfortunately, there
exists remarkable diffusion and loss due to the imperfect
reflectivity and residual absorption [18]. One possible way
to reduce diffusion and loss consists in improving the re-
flectivity of the dynamically induced photonic bandgap
[23,24]. Recent work based on the transfer-matrix method
shows that well-developed photonic bandgaps may open
up in ultracold atomic gases and impurity doped solids
[25—-27] due to the periodically modulated refractive index
accompanied by negligible absorption when a specific EIT
configuration is adopted. Other optical methods, e.g.,
through the ac Stark effect and the coherently enhanced
refractive index, have also been proposed to attain con-
trollable photonic bandgaps in semiconductor quantum
wells [28,29].

In this paper, we investigate the optical response of ul-
tracold 8Rb atoms driven by a stationary SW coupling
field both to a static (cw) and to a time-dependent (pulse)
probe field. Starting from the atomic steady-state suscep-
tibility experienced by the probe, we first derive in Sec-
tion 2 the Bloch eigenstates of the electromagnetic field
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within a two-mode approximation, from which analytical
expressions for the bandgap structure and reflectivity and
transmissivity can be obtained. For appropriate param-
eters we observe rather well-developed bandgaps and
nearly perfect reflection of an incident cw probe, in agree-
ment with the results obtained using the same dressed
susceptibility within a ¢ransfer-matrix approach not rely-
ing on the two-mode approximation. The response to a
light pulse is also examined by resorting to a set of
coupled Maxwell-Liouville equations, which is a powerful
tool [18-21] for describing the nonlinear interaction of
light fields in such a dressed medium and are here used to
test the validity of the two-mode approximation in the ap-
propriate limit. This is done in Section 3 where we study
the time evolution of the reflection and transmission pro-
cesses of a long square probe pulse. In the long time limit
we recover the results for the reflectivity and transmissiv-
ity spectra found in Section 2. Numerical calculations
show that the steady-state reflectivity and transmissivity
can only be observed after a sufficiently long oscillating
transient time. We also find that a probe pulse of narrow
bandwidth can be either perfectly reflected with a shorter
time delay or partially transmitted with a longer time de-
lay depending on whether its central frequency falls in
the middle of the bandgap or not. We finally investigate
significant effects of penetration even in a regime of per-
fect reflection in which case the time-dependent intensity
distribution of the probe pulse may be quite complicated
due to the interference among the forward (FD) and back-
ward (BD) probe components.

2. CASE OF A CONTINUOUS WAVE PROBE
FIELD

We here consider an ensemble of A-type three-level atoms
with an excited state level |3) and two lower levels |1) and
|2). As shown in Fig. 1 a probe of frequency w, and wave
vector k, and a coupling field of frequency w, and wave
vector k. couple the two lower states to the common ex-
cited state. In the interaction picture, the atomic dynami-
cal evolution can be described by the following Hamil-
tonian:

H = thwgy|3)(3| + fiwy|2)(2] + Hiyg, (1)
where
Hipy = — Qe ! 3)(1] - hQe™*/[3)(2| + Hee.  (2)

describes the interaction of the atoms with the probe and
coupling fields. Here A,=w,—w3; and A.=w.—- w3y denote
detunings of the probe and coupling fields from the corre-
sponding transition frequencies, whereas ,=E,d3;/2%
and Q.=E d3./2h denote the two fields’s Rabi frequencies.
Also, E,, and d3; are the probe electric field amplitude and
the probe electric dipole moment with a similar notation
for E, and dsq. If I'3q, I'39, and I'y; denote the population
decay rates and 7y;9=091/2, y13=(T'31+1'39)/2, and 1yo3
=(I'3;+T39+1'91)/2 the coherence decay rates, solutions of
the Liouville’s equation,
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Fig. 1. (Color online) Schematic of a probe w, impinging on a
three-level atom driven by an external coupling beam w,, which
is here retroreflected upon impinging on a mirror to form a SW
pattern within the atomic sample. By slightly reducing the mir-
ror reflectivity the FD and BD components of the SW intensity no
longer vanishes at the nodes that are replaced by quasi-nodes.
Furthermore, a misalignment 6 between the FD and BD beam
components, measured with respect to the direction z where the
two coupling beams are perfectly aligned, modifies the lattice pe-
riodicity as \./2—\./2 cos(6/2).

7 =TI'31p33 + I'a1p22 + iQ;P31 - iQ,p13,
7 =T39p33 = 'o1poa + iQ:P32 = i1Qps,

e [y +i(A, = A)]p1a + iQ;Psz - iQp13,

Ip13 . . .

7 =-[rnz+id,lp13~ i pio+ lQp(Pss -p11);

Ipa3 . o L

P (o3 +iBclpas — 182 por + €Y (p33 = p22), (3)

yield the macroscopic polarization P=Nd3p3; and, in the
limit of a weak probe, the susceptibility y according to the
relation P=ggx,E,=Nd;3p3; with N being the atomic den-
sity. For a resonant coupling (A,=0), the steady-state
probe susceptibility obtained from Eqgs. (3) can be written
as

Nld s
2heq (y12- iAp)()ﬁs - iAp) + |Qc|2.

Ap + i’ylz

Xp= (4)

This is a dressed susceptibility yielding a steep dispersion
with a concomitant small absorption around A,=0, a
characteristic feature of the EIT regime [1,2].

However, when the coupling field is in the form of a SW
along the z direction [30], the coupling Rabi frequency (),
in Eq. (4) becomes space-dependent and should be re-
placed by Q.(2)=Q.e?**+Q, _e* with Q. and Q.
taken to be real, representing the Rabi frequency ampli-
tudes of the constituent FD and BD plane-wave compo-
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nents. The probe susceptibility, which depends now on z
through |Q,[?(z), becomes a periodically modulated func-
tion of the form

Nidys? A
Xp(2) = , (5)
2hey 1+ Bcos(2k.z)
with
_ Ap + l"}/lg
Q%+ 02 - Af, —i(y12+ Y1900, + Y12Y13

20,.,Q,._

(6)

Q2 +07 - AIZ, —i(y12+ 7138, + V12713

This is an even function of z with period a=u/k.=\./2,
where )\, is the coupling field’s wavelength in the medium
[31] and can be expanded as a cosine Fourier series [32],
ie.,

Xp(2) = X0 + 2, X, cos(2nk2), (7)

n=1

with

kCNA|d132J‘”/kc cos(2nk.z)dz

= ohe, 1+ B cos(2kz2)

0

NAld)? 1 J1-8%2-1\"
3 . (8)

2ﬁ60 V”l — 82 B

In a material that exhibits a periodically modulated sus-
ceptibility as in Eq. (5), on the other hand, the eigenfunc-
tions of the electromagnetic field in the medium can be
cast [33,34] in the form

E(z) = ez)e’™ = { > eneiznkleei"z, (9)

n=-°

where €(z) represents the complex amplitude of the probe
electric field polarized along x and propagating along z
with the Bloch wave-vector k. Because €(z) has the same
periodicity of x,(z), it has been rewritten on the right-
hand side of Eq. (9) as a complex Fourier series of period
7/ k..

Eigenstates of the electromagnetic field satisfy Max-
well’s wave equation so that for a monochromatic probe of
frequency w,=ck, in a medium with the susceptibility
Xp(2) one has

PE(2)

6‘22

+E2[1+ x,(2)E(2) = 0. (10)

Note that %, is here the vacuum probe wave vector at
variance with « in Eq. (9) denoting instead the probe
Bloch wave vector by which the steady-state optical re-
sponse can be assessed in terms of the photonic band
structure [22,25]. For the wave-vector x around k., the
electric field in Eq. (9) is essentially determined by the
two amplitudes ¢, and e_;, which characterize the main
Bragg components of the field in the periodically modu-
lated medium. When Eq. (7) is inserted into Eq. (10) along
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with this two-component electric field (fwo-mode approxi-
mation), Eq. (10) reduces to a system of two coupled equa-
tions involving only the two susceptibility components
and y;. In matrix form this reads as

(kg(l + Xo) — K2 k2 x1 )( € ) 0
k2x1 R2(1+ xo) = (k= 2k)%)\eq)
(11)

It is convenient to set k=k.+q, where q explores a small
region around the Brillouin zone boundary k.. To the low-
est order in q one has

1
9. = iE\/[kﬁ(Hx&—kf]Lk;X%E g, (12)

which is obtained from the determinant of Eq. (11) under
the realistic assumption that |y;|<|1+ xo| and when half
of the probe wavelength inside the medium matches the
periodicity a. This yields two degenerate Bloch eigen-
states of the electromagnetic field with electric field eigen-
functions E*(z) in the form (two-mode approximation)

E*(z) = €)™+ + e£1e77,

E(2) = e + €671, (13)

corresponding to the two Bloch wave vectors k,=k.+q
with eigenvectors E?o,—l .

The electric field in Eq. (13) is seen to combine both FW
and BW plane waves weighted by the corresponding
eigenvectors. In fact, the off-diagonal term in Eq. (11) pro-
portional to y; mixes into the Bloch eigenstates, respec-
tively, the plane-wave e+ with e *%, and the plane-wave
e*? with e ¥+ Furthermore, with the help of B,/ oz
=—(1/c)(éB,/ dt), one has for the corresponding magnetic
field eigenfunctions

B*(2) = (€ ke - eflk_e’i"-z)/kp,

B (2) = (gx_e'"* - € 1x,e7 ")k, (14)
while the total electromagnetic field may be written as

E,(2) = aE*(2) + BE™(2),

B,(2) = aB™(2) + BB (2), (15)

with « and B to be determined, and holding for a mono-
chromatic probe in a periodically modulated medium.

For a sample of finite length L, typically containing a
very large number of periods a, the reflection and trans-
mission complex amplitudes r and ¢ may be connected to
the electric and magnetic fields at the inner (z=0) and
outer (z=L) boundaries of the sample through the rela-
tions

Ep(O) = (1 + r)Ein(O)’
B,(0)=(1-r)B;,(0),

E,(L)=1tE;(0),
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Bp(L) =tBln(0)’ (16)

so that for an incident probe with amplitudes E,,(0)
=B;,(0), taken here for simplicity to be unity, one obtains
from Eq. (16)

r=a(ey+e)+Pg+e,) -1,

K€y — K_€ ]  K_€5—K.€

k k ’

P

r=1-a
P

t=aleh+ €)e'l + B(ey + €1)e79E,

+ + ~ -
K, €y — K_€_; il K_€y — K €_; ioL
t=«a P et + /3 & e . (17)

P P

where the appropriate expressions for the boundary val-
ues of the fields £, and B, as obtained from Eq. (15) have
been used. The introduction of the ratios

SN

- X1
X, =—

= , 18
&1 (Lt xo) - ik, + 2K (18)

and the elimination from Eq. (17) of the two unknowns «
and B finally enables one to arrive at the two-mode ap-
proximation reflection and transmission coefficients

2A_(1+X,)e'? - 2B_(1 +X_)e el
r= -1,

A_B,e"l —A B e idL

2A_(1+X,)-2B_(1+X.)
t= : — 19
A B9~ A B etk (19)

where A=t r,/ ky) X, + (15 k_/ky) and B,
=(1xx_/kp)X_+ (15 K, /kyp).

We now proceed to examine characteristic photonic
structures that may be induced in a sample of ultracold
87Rb atoms. Levels |1) and [2) shown in Fig. 1 are here
taken to be the hyperfine components |F=1) and |F=2) of
the ground state Sy, while |3) is the hyperfine component
|[F=1) of the excited state Ps, with the relevant param-
eters given in the caption of Fig. 2. We further assume all
atoms are equally populated into the three magnetic sub-
levels of |5S1/5,F=1) and the probe and coupling fields are
both linearly polarized with high purities. In this case,
the three noninteracting lambda systems associated with
specific magnetic quantum numbers act as a single one
because no atoms are pumped into |5Ps,F=1) and thus
no population is transferred between these lambda sys-
tems. For this atomic structure, we start by examining
the Bloch wave-vector modes «, near the Brillouin zone
band edge and show in Fig. 2 Im(x.a/7) and Re(x.a/w
—1) as obtained from Eq. (12). A photonic stop-band of
~0.5 MHz is seen to open up when x—k,=m/a, due to the
off-diagonal term in Eq. (11) proportional to y; [35]. Color
changing of the two curves in Fig. 2(a) means that the two
modes «, exchange the values of their imaginary parts,
which is, however, immaterial.

We then study the reflectivity R=|r|?> and the transmi-
tivity T'=|¢|? profiles as obtained from Egs. (19) when Eq.
(12) is used. These are plotted for different sample widths
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Fig. 2. (Color online) Photonic bandgap structures in a sample
of ultracold 8’Rb atoms as obtained from Eq. (12). The black-solid
and red-dashed curves correspond to «, and «_. The atomic pa-
rameters are I's;=1'3,=6.0 MHz, I'y;=2.0 kHz, and N=10'3 cm™3,
while the FD and BD coupling beam components have Rabi fre-
quencies ,.,=30.0 MHz and Q,_=25.0 MHz and are slightly mis-
aligned (#=45.0 mrad). The probe transition wavelength is \g3;
=780.792 nm while for the coupling beam we have \g,
=780.778 nm.

in Fig. 3 where over 95% bandgap reflectivity is attained
for the wider atomic sample (2.0 mm) yet it gradually de-
grades as the sample width decreases. Comparison of
Figs. 3(a) and 3(b) yields, in addition, very low values of
the residual absorption (A=1-R-T<5%) in the bandgap
region. This ultimately hinges on the fact that EIT is
pretty well-established within the whole sample owing to
a coupling field that is sufficiently strong even at the SW
quasinodes (Q, min=5.0 MHz). Moreover, the stop-band
width where the reflectivity is homogeneously over 95%
may be increased from ~0.5 to ~3.5 MHz if one uses a
twice stronger coupling field misaligned at a larger angle
(see Fig. 4).

The two-mode approximation described in this section
and based on the use of the dressed susceptibility of Eq.
(4) gives a very simple and transparent description of
both photonic band structure and linear optical spectra in
the case of a time-independent pump field. It is here ap-
propriate to check the validity of the two-mode approxi-
mation by comparison with an exact treatment using the
same dressed susceptibility as developed in [25,34]. Ex-
ploiting the system periodicity as in Eqs. (5) and (9) with-
out any approximation, both the photonic bands of the in-
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Fig. 3. (Color online) Probe reflectivity (R) and transmissivity
(T) as obtained from Eq. (19) within the two-mode approximation
for an ultracold 8’Rb sample of width L=2.0 mm (black-solid
curve), L=1.0 mm (red-dashed curve) and L=0.5 mm (blue-
dotted curve). Other parameters are the same as in Fig. 2.
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Fig. 4. (Color online) Probe reflectivity (R) and transmissivity
(T) as obtained from Eq. (19) in an ultracold 8’Rb sample of
width L=2.0 mm (black-solid curve), L=1.0 mm (red-dashed
curve) and L=0.5 mm (blue-dotted curve). ().,=60.0 MHz, ()
=50.0 MHz, and 6=55.0 mrad, while other parameters are the
same as in Fig. 2.
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Fig. 5. Difference between the photonic energy bands obtained
within the two-mode approximation (Fig. 2) and the exact ones
obtained from the transfer-matrix approach [25,36]. All param-
eters are the same as in Fig. 2.

finite periodic medium and the reflectivity and
transmittivity spectra of a finite sample can be obtained
from the numerical calculation of the single period trans-
fer matrix [36] for the probe electric field. The difference
from such exact numerical calculations and the results
presented in Figs. 2 and 3 are shown, respectively, in
Figs. 5 and 6. We can see a difference ranging between
0.1% and 1%, which amounts to a 1% discrepancy at most
between the approximate and exact results. Such a check

0.8 0.08
@ (®)
0.04+
/9.4—
4 E
< <10.00
o o
S g
0.0
0.04

-04 T T T -0.08 T T T
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Fig. 6. Difference between the probe reflectivity (R) and trans-
missivity (7)) obtained within the two-mode approximation (Fig.
3) and the exact ones obtained from the transfer-matrix approach
for a L=2.0 mm long sample [25,36]. Other parameters are the
same as in Fig. 2.
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proves that the two-mode approximation yields, at least
in the vicinity of the photonic bandgap, very accurate re-
sults. In Section 3 a similar two-mode approximation will
be implemented to directly solve the coupled Maxwell—
Liouville equations.

3. CASE OF A PULSED PROBE FIELD

When dealing with a time-dependent coupling field, it is
necessary to resort to the density matrix equations
coupled with the Maxwell’s wave equations (Maxwell-
Liouville equations). This fairly well-known approach
[18-21] is here adopted to verify the validity of the two-
mode approximation discussed in Section 2. If on one
hand indeed Maxwell-Liouville equations in the limit of a
constant coupling field can be employed to evaluate the
susceptibility components y, that are then to be com-
pared with those given in Eq. (8), steady-state solutions of
the Maxwell-Liouville equations may on the other hand
be used to derive the reflectivity and transmissivity to be
in turn compared with those found instead from Eq. (19).

In the limit of a weak probe one can set p;;=1 and pgg
=p33=p9o3=0 in Eq. (3) and just retain the equations for
the two coherences p;y and pqs, i.e.,

Ip12 . .

7 =—[yg+ i(A, - AJ)lp1z = 1ep1s,

Ip13 . . .

o [y13+iA,]p13—iQ p1a - i, (20)

with Rabi frequencies Q.=0,,e*?+Q, e and Q,
=0,,e**+Q, e7*= and associated probe and coupling
electric fields

Ep(Z,t) — (Ep+eikcz +Ep_e—ikcz)e—impt’

E.(z,t) = (E, e + E,_e *Z)eioct, (21)

Here E,, and E . are the space- and time-dependent
slowly varying envelopes. To make comparisons with the
results of Section 2 we here take E,,— constant and A,
—0. It is to be stressed that the expression for the probe
field in terms of the envelopes E,.(z,t) is not of the form
given in Eq. (15) for a monochromatic probe.

By writing the spin (p12) and optical (p;3) coherence, re-
spectively, as

©

i2nk,
P12 = E P(fé)el e,

n=-—o

©

P13= 2 Pgré)ei@nﬂ)kcz, (22)

n=-9"

one arrives at an infinite set of mutually coupled equa-
tions for their Fourier components, i.e.,

()
P12
. . -1
o == 7i2p(1ré) - ch—p(lré) - ch+p(1r§ );
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(9 (n)
E__ ’ (n)_~Q* (n)_»Q* (n+1)_-Q* S
P Y13P13 — 134, _P12 — 3L, P12 122, 0n0

~ 05,1, (23)

where yj,=v19+iA, and yj3=7y3+i4,. Sufficiently accu-
rate solutions may be obtained upon truncating Eqgs. (23)
as, for instance, evaluating the first two components of
the steady-state probe susceptibility through the equa-
tions

Nld,? -
Qpixo+Qp_x1= 2o P31

Nidisl
Qp-xo+ Qpix1= 2eoh P31 (24)

which are as usual deduced from the relation [37] P,
=Nd3p31. Figures 7 and 8 show, in fact, that the approxi-
mate curves obtained from truncating Egs. (23) at |n|
=15 deviate a little from the exact ones directly obtained
from Eq. (8). Upon truncating Egs. (23) at |n|=30 the
curves obtained by using the two approaches completely
overlap suggesting that higher Fourier components have
in general little influence on the optical response of the
periodic EIT medium. It can be seen that Im(x,) [Re(xo)]
and Im(y;) [Re(x7)] approximately have the same abso-
lute values yet with opposite signs around A,=0. This fact
implies that the FW and BW plane-wave components in
the probe field have the strongest mutual coupling, pro-
moting the formation of a photonic bandgap.

As anticipated at the beginning of the section the re-
flectivity and transmissivity spectra may be inferred from
the Maxwell-Liouville equations. When coupled to Egs.
(23), the Maxwell’s wave equation

#E, 1&E,  &#P

G = ho g (25)
22 % or? at?
06 06
(a) (b)
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~03 ~
53 N>
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Fig. 7. (Color online) Zero- and first-order components of the
probe susceptibility of a sample of ultracold 8"Rb atoms for the
same parameters as in Fig. 2. The black-solid and red-dashed
curves are, respectively, derived from Egs. (23) truncated at |n|
=15 and 30, while the blue-dotted curves are from Eq. (8).
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Fig. 8. (Color online) Central region blow-up of the probe sus-
ceptibility profiles of Fig. 7.

and its slowly varying envelope form

)eﬂ_kcz . (aEp_ k, JE,_

(aEp+ k, JE,, i(k.-k2)
- E,,

L2
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when k,~k.~(k,+k,)/2 and Ak=Fk,—k.. Boundary condi-
tions on Egs. (27) are chosen so that E,,(2=0,t)=E;(t)
and E,_(z=L,t)=0, with E;(¢) being the electric field am-
plitude of the incident probe pulse. Although only pgol) and
pg_ll) seem to contribute to the dynamics, one cannot ne-
glect the other Fourier components of p;5 and p;3 in Eqgs.
(23) owing to their mutual coupling.

Maxwell-Liouville equations (27), along with Eq. (23),
when truncated at |n|=30, enable one to assess with very
high precision the propagation dynamics of a probe pulse
incident upon the periodic EIT medium induced by a sta-
tionary SW coupling field. This is done in Fig. 9 where we
calculate the time-dependent reflectivity and transmissiv-
ity at four typical probe detunings near the photonic
bandgap for a long square probe pulse turned on at =0
(see the insets). Both quantities experience a long-term
oscillation and may exceed 100% before reaching
the steady state. After sufficiently long times of ¢
~150-200 us, the reflectivity and transmissivity reaches
the steady state (see Fig. 10), showing very good agree-
ment with those obtained from Eq. (19). This once again
verifies the validity of the truncation at |n|=30 for Egs.
(23). It is here worth noting that likewise well-developed
stop bands could be obtained at lower densities and
shorter (longer) samples.

Then we begin to examine the reflected and transmit-
ted parts of an incident Gaussian pulse as well as its FD
and BD components in the periodic EIT medium. In
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Fig. 9. (Color online) Reflected probe pulses seen at z=0.0 and
transmitted probe pulses seen at z=L for a long square pulse in a
L=2.0mm long sample of ultracold %'Rb atoms with A,
=0.0 MHz (black-solid curve), —-0.4 MHz (red-dashed curve),
—-0.8 MHz (blue-dotted curve), and —-1.2 MHz (green-dash-dotted
curve), respectively. Other parameters are the same as in Fig. 2.

the following, we will assume that E(¢)
=E, exp[-(¢t—Ty)?/ (475T?)] with the central probe detun-
ing denoted by A,. Figure 11 shows that the reflected
pulse at z=0 and the transmitted pulse at z=L are quite
sensitive to the central frequency A,, of the incident
probe. When A, is in the middle of the bandgap the re-
flected pulse has little attenuation and distortion com-
pared with the incident probe except a short time delay
(At=2.0 us). Conversely, it will experience more and more
attenuation and distortion due to the increased transmis-
sion and/or absorption if A,y moves outward the bandgap.

In Fig. 12, we plot the field distributions at different
times for the FD and BD probe components with Apg
=-0.4 MHz, and find that the FD and BD components
penetrate deeply into the periodic EIT medium even if the
reflectivity is nearly perfect. The typical scale of the field
penetration is set by the imaginary part of the optical
Bloch wave vector within the photonic bandgap. If the
penetration length is defined as L,=1/[2 Im(x)], one ob-
tains L,=0.176 mm for A,=-0.4 MHz from Fig. 2(a),
which is consistent with Fig. 12 where I,.(z
=0.185 mm)/I,,,(2=0.0 mm)=1/e at T=25 us. In Fig. 13,
with another central frequency A,,=0.0 MHz, we plot
again the field distributions for the FD and BD probe
components. We can see that, due to the imperfect reflec-

1.0/ 1.0{(b)
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Fig. 10. (Color online) Steady-state reflectivity and transmissiv-
ity spectra in a L=2.0 mm long sample of ultracold ’Rb atoms.
The black-solid curves are derived from the Maxwell-Liouville
equations, i.e., from Eqs. (23) truncated at |n| =30 and Egs. (27),
while the red-dashed curves are from Egs. (19) within the
two-mode approximation. Other parameters are the same as in
Fig. 2.
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Fig. 11. (Color online) Transmitted components at z=L (upper)
and reflected components at z=0 (lower) of a weak probe pulse
incident upon a L=2.0 mm long sample of ultracold ®’Rb atoms
with Ty=25.0 us and 67'=4.0 us. Other parameters are the same
as in Fig. 2.
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Fig. 12. (Color online) Scaled intensity distributions of the FD
(upper) and BD (lower) probe pulses inside a sample of ultracold
87Rb atoms with A,0=-0.4 MHz. Other parameters are the same
as in Fig. 11.
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Fig. 13. (Color online) Scaled intensity distributions of the FD
(upper) and BD (lower) probe pulses inside a sample of ultracold
8TRb atoms with A,0=0.0 MHz. Other parameters are the same
as in Fig. 11.

tivity, both FD and BD components can reach the end of
the atomic sample, and their distributions change dra-
matically with time due to the interference resulting from
the multiple feedback at the boundaries.

As long as the coupling field is time independent, the
propagation dynamics of a probe pulse can also be de-
scribed on the basis of the frequency dependent dressed
susceptibility of Eq. (4). Using the Fourier-tansform tech-
nique, one first obtains the incident probe spectrum
EiAA,)=[E;(t)e " “»~20¢d¢. Then, the reflected and trans-
mitted spectra can be examined by E,{A,)=E;{A,)-r(A,)
and E,{Ap)=E;{A,)-£(A,) with 7(A,) and ¢(A,) derived us-
ing the dressed susceptibility either within a two-mode
approximation as described in Section 2 or from the exact
numerical transfer-matrix method. Using the Fourier
transform again, one finally has

E, ()= f E, () T0%d(A,),

Ett(t) = f Etf(Ap)ei(t_TO)Apd(Ap) ’ (28)

which just yields the amplitudes of the reflected and
transmitted pulses. In Fig. 14, we show the incident and
reflected pulses for two different central probe detunings
inside or near the photonic bandgap. We can see that the
Maxwell-Liouville equations and the dressed susceptibil-
ity approach once again generate the same results with
very high precision. In a similar way, the two methods
lead to the same results also for the examples shown in
Figs. 9 and 11-13.
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Fig. 14. (Color online) Reflected probe pulses seen at z=0 as ob-
tained by using the dressed susceptibility (red-dashed curve) and
the Maxwell-Liouville (blue-dotted curve) approach. The inci-
dent probe pulse (black-solid curve), which is here scaled to
unity, has a carrier frequency A,o=(a) -0.4 and (b) 0.0 MHz
while other parameters are the same as in Fig. 11. The insets
show the relative difference between the reflection spectra ob-
tained with the two approaches.

It is worth noting here that the reflection and transmis-
sion properties so far examined rely on atomic samples
with a uniform density. In most cases the gaseous
samples of ultracold atoms are nonuniform and possibly
smooth. The Bloch wave-vector dispersion and the photo-
nic bandgap structure depend not only on the standing-
wave (SW) pump field but also on the local atomic density.
For a nonuniform sample, if it is simply composed of sev-
eral uniform slabs having different atomic densities,
these slabs will possess different bandgaps so that one
cannot draw a single plot of the bandgap structure. Con-
sequently, the probe spectra of reflection and transmis-
sion will change when a uniform sample is replaced by a
nonuniform one. In practice, how significant will be the
modification of the results for reflection and transmission
depends a lot on the profile of the atomic density along
the propagation direction. In case the sample has rather
thin entrance and exit boundary layers (where the den-
sity changes rapidly) and a thick interior layer (where the
density changes only a little and very slowly), we expect
that the average density of the interior layer determines
the bandgap structure and the boundary layers modify
only slightly the spectra by suppressing the rapid oscilla-
tions at the edges of the stop band. More generally, if two
or more thick layers with a nearly constant density can be
identified, within each of them a distinct band structure
can develop and the spectra would depend on how the re-
spective stop bands are aligned. If the probe pulse is en-
tirely contained in at least one of these stop bands (and
the corresponding layer is thick enough) it will be re-
flected entirely although maybe partly distorted. In the
complete general case of arbitrary variations of density,
we still expect to have high reflectivity in a certain fre-
quency region of quasi-stop-band, and to flexibly control
the flow of the probe pulse by modifying the SW coupling
field.
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4. SUMMARY

We here address the issue of the optical response of an en-
semble of ultracold 8Rb atoms driven by a static laser
field in a SW configuration. This has been successfully
modeled through a dressed atomic susceptibility based
two-mode approximation whose validity has been verified
by direct comparison with the Maxwell-Liouville equa-
tions in the limit of a time-independent coupling field. A
fairly straightforward Fourier decomposition of the sus-
ceptibility enables us to obtain analytical expressions for
the optical Bloch wave-vector dispersion as well as for the
reflectivity and transmissivity spectra of the atomic en-
semble. This in turn provides a sound explanation for
nearly perfect reflection exhibited by cw probe fields of
frequencies falling within the optically induced photonic
bandgap. We further investigate the optical response of
the atomic sample both to a long square and to a Gauss-
ian pulse. We find that pulse propagation through the cold
atomic ensemble can be fully and all-optically controlled
so that for Gaussian pulses falling within the the band-
gap, for instance, reflection occurs with little loss and de-
formation, yet with a time delay and appreciable penetra-
tion into the medium. Outside the bandgap region both
reflected and transmitted Gaussian pulses suffer instead
significant loss and deformation. We expect that upon a
suitable extension to solid materials, such as impurity
doped crystals and semiconductor compounds, the all-
optical control mechanism examined here may be valu-
able in improving light storage efficiencies in solid quan-
tum memory devices or more generally to further
quantum information solid state solutions.
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