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Abstract. A thermodynamically consistent phase-field model
with memory, based on the linearized version of the Gurtin-
-Pipkin heat conduction law, is considered. The formulation of
an initial and boundary value problem for the phase-field evo-
lution system is framed in a history space setting. Namely, the
summed past history of the temperature is regarded itself as a
variable along with the temperature and the phase-field. Well
posedness results are discussed, as well as longtime behavior of
solutions. Under suitable conditions, the existence of an absorb-
ing set can be achieved.

1. Introduction

We consider a phase-field model of some temperature-dependent transition in a rigid
heat conductor occupying a given bounded domain Ω ⊂ IR3. We assume that, at each
point x ∈ Ω and any time t ∈ IR, the state of the material is described by the triplet
(ϑ(t), ϑt, χ(t)), where ϑ(x, t) is the temperature variation field from a reference value,
ϑt(x, s) = ϑ(x, t−s), s ≥ 0, is the past history of ϑ up to time t, and χ(x, t) is the phase
variable, which accounts for the kinetics of the solid-liquid transition.

The evolution of the temperature-dependent phase change phenomenon is governed
by the energy balance equation

∂te+ div q = f in Ω× IR

where f is the external heat source.
If we consider only small variations of ϑ and ∇ϑ, we may suppose that the heat

flux vector q : Ω × IR → IR3 and the internal energy e : Ω × IR → IR are described by
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the following constitutive equations (cf. (A.17)-(A.18) in Appendix)

e(x, t) = ec + cvθcϑ(x, t) +
∫ ∞

0

a(σ)ϑ(x, t− σ) dσ + θcλ(χ(x, t))

q(x, t) = −
∫ ∞

0

k(σ)∇ϑ(x, t− σ) dσ

for (x, t) ∈ Ω× IR, where cv, θc, and ec are positive constants denoting the specific heat,
the critical value of temperature (corresponding to phase transition), and the internal
energy at the critical temperature, respectively. We assume that the memory kernel k is
smooth enough, non-increasing and summable along with its first derivative on [0,∞).
As far as the (smooth) kernel a is concerned, we always suppose that its first and second
derivatives are summable on [0,∞) and a(0) > 0. Then we have two possible choices
which are both thermodynamically consistent (see Appendix). We either suppose that

a is bounded, non-decreasing, and concave (1.1)

or
a is summable, non-increasing, and convex. (1.2)

We shall discuss the importance of these assumptions below.
Going back to the constitutive laws and making suitable assumptions on the be-

havior of ϑ(t) as t→ −∞, the energy balance yields

cvθc∂tϑ+ a(0)ϑ+
∫ ∞

0

a′(σ)ϑ(t− σ) dσ + θcλ
′(χ)∂tχ−

∫ ∞

0

k(σ)∆ϑ(t− σ) dσ = f

in Ω× IR.
The variable χ, which appears in the internal energy, can be regarded as an internal

state variable. Consequently, a constitutive equation for χ is in order. As shown in
Appendix (cf. (A.22)), we assume

m∂tχ−m0∆χ+ β(χ) 3 γ(χ) + ϑλ′(χ)

where β is a maximal monotone graph, γ is a Lipschitz function, and m, m0 are positive
parameters.

Consider now a given initial time τ ∈ IR. To specify the initial conditions, besides
the values of ϑ and χ at τ , the whole past history of ϑ up to τ must be given, namely

ϑ(τ) = ϑ0 in Ω
χ(τ) = χ0 in Ω
ϑ(τ − s) = ϑ0(s) in Ω, ∀ s > 0

where ϑ0(s) is the initial past history of ϑ.
Concerning boundary conditions, a quite natural one for χ is given by

∂nχ = 0 on ∂Ω× (τ,+∞)
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where ∂n denotes the outward normal derivative. As far as ϑ is concerned, we suppose
that the adiabatic boundary condition is satisfied on ΓN ⊆ ∂Ω∫ ∞

0

k(σ)∂nϑ(t− σ) dσ = 0 on ΓN × (τ,+∞)

while the Dirichlet homogeneous boundary condition on ΓD = ∂Ω \ ΓN holds for any
time

ϑ = 0 on ΓD × IR.

We are now dealing with an initial and boundary value problem for the phase-field
system under consideration. To formulate it in a history space setting, we follow [21]
(see also [17]) and we introduce a new variable, namely, the summed past history of ϑ
which is defined by

ηt(x, s) =
∫ s

0

ϑt(x, y) dy =
∫ t

t−s

ϑ(x, y) dy x ∈ Ω, s ≥ 0.

One can easily check that η satisfies the first-order linear evolution equation

∂tη
t(s) + ∂sη

t(s) = ϑ(t) inΩ, (t, s) ∈ (τ,+∞)× (0,+∞)

along with the initial condition

ητ = η0 in Ω× (0,+∞)

where
η0(s) =

∫ s

0

ϑ0(y) dy in Ω, s ≥ 0

is the initial summed past history of ϑ.
Then, we observe that a formal integration by parts yields (see [21])∫ ∞

0

k(σ)∇ϑ(t− σ) dσ = −
∫ ∞

0

k′(σ)∇ηt(σ) dσ in Ω, t > τ

and ∫ ∞

0

a′(σ)ϑ(t− σ) dσ = −
∫ ∞

0

a′′(σ)ηt(σ) dσ in Ω, t ≥ τ.

Thus, on account of (1.1) and (1.2), we set

µ(s) = −k
′(s)
a(0)

and ν0ν(s) = −a
′′(s)
a(0)

for any s > 0, where ν0 = 1 or ν0 = −1 whenever (1.1) or (1.2) holds, respectively.
Taking for simplicity all the constants equal to 1, our previous considerations and

the above choice of variables lead us to formulate the following initial and boundary
value problem
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Problem P. Find (ϑ, χ, η) solution to the system

∂t

(
ϑ(t) + λ(χ(t))

)
+ ϑ(t) +

∫ ∞

0

ν0ν(σ)ηt(σ) dσ −
∫ ∞

0

µ(σ)∆ηt(σ) dσ = f(t)

∂tχ(t)−∆χ(t) + β(χ(t)) 3 γ(χ(t)) + λ′(χ(t))ϑ(t)
∂tη

t(s) + ∂sη
t(s) = ϑ(t)

in Ω, for any t > τ and any s > 0, which satisfies the initial and boundary conditions∫ ∞

0

µ(σ)∂nηt(σ) dσ = 0 on ΓN × (τ,+∞)

ηt(s) = 0 on ΓD × (τ,+∞)× (0,+∞)
∂nχ = 0 on ∂Ω× (τ,+∞)
ϑ(τ) = ϑ0 in Ω
χ(τ) = χ0 in Ω
ητ = η0 in Ω× (0,+∞).

Problems like P have been studied firstly in [1] when a ≡ 0, β(r) = r3 and γ, λ are
both linear. Using a semigroup approach, existence, uniqueness, and longtime results
have there been proved. Quite general well-posedness results have then been obtained in
[14,15] via energy methods (see also [16]). Recently, in [11,12] a thorough investigation
along the lines of [1] has been carried out. In particular, existence and uniqueness when
λ is a quadratic nonlinearity as well as a detailed characterization of the ω-limit set have
been shown. In this framework, it is also worth quoting [5,6] which are devoted to study
a phase-field model with memory based on a constitutive law for the heat flux, proposed
by Coleman and Gurtin, where q depends both on the present value of the temperature
gradient and on its past history. Regarding the longtime behavior and existence of a
maximal attractor for other phase transition models without memory effects, the reader
is referred, e.g., to [28,32] and references therein.

In all the mentioned papers about phase-field models with memory, the summed
past history of ϑ (and, possibly, of χ) is simply incorporated in the source term f
and, sometimes, in the boundary data. However, this approach seems not suitable for
studying the longtime behavior of solutions from a more general point of view, namely,
the stability of sets of trajectories. Instead, a formulation in the history space setting
which regards η as a variable of the evolution phenomenon has been proved effective in
analyzing such issue (cf. [20–22], see also [4]). This fact has led us to formulate P.

Here we prove some well-posedness theorems for P. In these results the role of a
is marginal and we could also take a ≡ 0. On the contrary, our result about the long
term behavior is based on the fact that a(0) > 0, that is on the presence of a memory
term in the internal energy as well. To be more precise, in this case the assumptions on
the memory kernels (in particular, (1.1)-(1.2)) as well as the boundary conditions play
a crucial role. Going a bit into the details, we are able to obtain some uniform in time
estimates which imply the existence of an absorbing set, provided that β fulfills suitable
growth conditions. Nevertheless, this result strongly depends on the sign of ν0, that is
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on the assumptions (1.1)-(1.2). Indeed, the case ν0 = 1 turns out to be quite nice since
the related memory term has a dissipative behavior which is similar to the heat flux
term, provided that ν and µ decay exponentially. However, in literature (see, e.g., [19]
and references therein) it is often assumed ν0 = −1, that is (1.2). This is a much more
delicate case, since the related memory term has an antidissipative behavior which has
to be counterbalanced by the dissipation associated with the heat flux (see Section 6
below). We are able to do that when the homogeneous Dirichlet boundary condition
holds on a portion ΓD of positive measure, provided that ν is dominated by µ. These
restrictions allow us to take advantage of Poincaré inequality.

A strictly related model is analyzed in [20], the only difference being that the heat
flux law also contains an instantaneous temperature gradient. This helps of course.
There, under the assumption (1.1), we also prove the existence of a uniform attractor
of finite fractal dimension. It is worth noting that the argument used here to deal with
assumption (1.2) can also be adapted to the setting of [20].

The plan of the paper goes as follows. In the next section we introduce the func-
tional setting and some technical lemmas. In Section 3 we state our main results whose
proofs are carried out in Sections 4-9. The Appendix is devoted to present the construc-
tion of the model starting from a general nonlinear setting. Using the Clausius-Duhem
inequality and linearizing with respect to ϑ, we deduce that our evolution system is
thermodynamically consistent.

2. Notation and Basic Tools

Let Ω ⊂ IR3 be a bounded domain with smooth boundary ∂Ω. We set

H = L2(Ω), V = H1(Ω), V0 = {v ∈ V : v|∂Ω = 0 a.e. on ΓD}

where v|∂Ω stands for the trace of v, and

W =
{
w ∈ H2(Ω) : ∂nw = 0 a.e. on ∂Ω

}
W0 =

{
w ∈ V0 : ∆w ∈ H, ∂nw = 0 in (H1/2

00 (ΓN ))∗
}

being (H1/2
00 (ΓN ))∗ the dual space of (cf., for instance, [29])

H
1/2
00 (ΓN ) =

{
w ∈ L2(ΓN ) : ∃ w̃ ∈ V0 : w̃ = w on ΓN

}
.

Clearly, when ΓD = ∅, then V0 ≡ V and W0 ≡ W . Then, denote by V ∗, V ∗0 , W ∗, and
W ∗

0 the dual spaces of V , V0, W , and W0, respectively. As usual, we identify H with
its dual space H∗. We recall the continuous and dense embeddings

W0 ↪→ V0 ↪→ H ≡ H∗ ↪→ V ∗0 ↪→W ∗
0

V0 ↪→ V ↪→ H ≡ H∗ ↪→ V ∗ ↪→ V ∗0

and, in particular, the inequalities

||v||H ≤ ||v||V ∀ v ∈ V, and ||u||V ∗ ≤ ||u||H ∀ u ∈ H. (2.1)
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We also need the Poincaré inequality

||v||H ≤ CP ||∇v||H3 ∀ v ∈ V0 (2.2)

which holds whenever the Lebesgue measure |ΓD| is positive (see, e.g., [33, Ch. II, 1.4]).
To avoid confusion, we will always denote the norm and the inner product on a

Hilbert space X by 〈·, ·〉X and || · ||X , respectively. In particular, due to the Poincaré
inequality, if |ΓD| > 0, then we can take ||v||V0

= ||∇v||H3 . Besides, the symbol 〈〈·, ·〉〉X
will stand for the duality pairing between X and its dual space X∗, whenever X is a
real Banach space.

Given a positive function α defined on IR+ = (0,+∞), and a real Hilbert space X,
let L2

α(IR+, X) be the Hilbert space of X-valued functions on IR+, endowed with the
inner product

〈ϕ,ψ〉L2
α(IR+,X) =

∫ ∞

0

α(σ)〈ϕ(σ), ψ(σ)〉X dσ.

It is worth recalling that, given two Hilbert spaces X and Y , the space X ∩Y turns out
to be a Hilbert space endowed with the inner product

〈·, ·〉X∩Y = 〈·, ·〉X + 〈·, ·〉Y .

In addition, given a (possibly unbounded) interval I ⊂ IR and a Hilbert space X, we
indicate by D(I,X) the space of infinitely differentiableX-valued function with compact
support in I.

In order to describe the longtime behavior of the solutions of our system we also
need to introduce the Banach space T of L1

loc-translation bounded functions with values
in H, namely

T =
{
f ∈ L1

loc(IR,H) : ||f ||T = sup
r∈IR

(∫ r+1

r

||f(y)||H dy

)
<∞

}
.

Finally, for the reader’s convenience, we report here below some technical results
which will be useful in the course of the investigation.

Lemma 2.1. [Generalized Young inequality]. Let a, b ≥ 0 be given. Then for
every κ > 0, and 1 < p, q <∞ such that 1

p + 1
q = 1, there holds

ab ≤ κap +
1

q (κp)q/p
bq. (2.3)

Lemma 2.2. [Gagliardo-Nirenberg]. Let 2 < p ≤ 6. Then there exists k > 0 such
that the inequality

||v||Lp(Ω) ≤ k||v||ρH ||v||
1−ρ
V (2.4)

holds for all v ∈ V , with ρ = 6−p
2p .

The following Gronwall-type lemmas subsume Lemma A.5 in [7] and some results
in [30].
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Lemma 2.3. Let Φ be an absolutely continuous function on an interval [τ, T ] ⊂ IR, and
let r1 and r2 be positive summable functions on [τ, T ]. Then the differential inequality

d

dt
Φ2(t) ≤ cΦ2(t) + r1(t) + r2(t)Φ(t) for a.e. t ∈ [τ, T ]

for some c ≥ 0, implies

Φ2(t) ≤ 2ec(t−τ)Φ2(τ) + 2ec(t−τ)

∫ t

τ

r1(y) dy + e2c(t−τ)

(∫ t

τ

r2(y) dy
)2

for any t ∈ [τ, T ].

Lemma 2.4. Let Φ be a non-negative, absolutely continuous function on [τ,+∞), which
satisfies for some ε > 0 the differential inequality

d

dt
Φ2(t) + εΦ2(t) ≤ Λ + ||f(t)||H Φ(t) + r3(t) for a.e. t ∈ [τ,+∞)

where Λ ≥ 0, r3 is a non-negative locally summable function, and f ∈ T . Then

Φ2(t) ≤ 2Φ2(τ) e−ε(t−τ) +
2Λ
ε

+
eε

(1− e−ε/2)2
||f ||2T +

∫ t

τ

r3(y) e−ε(t−y) dy

for any t ∈ [τ,+∞).

3. Main Results

Before stating the main results, we have to introduce a rigorous formulation of problem
P. First of all, some assumptions on the memory kernels and on the data are in order.
As far as ν and µ are concerned, we suppose

ν, µ ∈ C1(IR+) ∩ L1(IR+) (K1)
ν(s) ≥ 0, µ(s) ≥ 0 ∀ s ∈ IR+ (K2)
ν′(s) ≤ 0, µ′(s) ≤ 0 ∀ s ∈ IR+ (K3)
ν′(s) + δν(s) ≤ 0, µ′(s) + δµ(s) ≤ 0 for some δ > 0, ∀ s ∈ IR+. (K4)

We recall that assumption (K4), which basically implies the exponential decay of the
memory kernel (see, e.g., [17]), is used only to prove the existence of an absorbing set.

Then, we set

k0 =
∫ ∞

0

µ(σ) dσ ≥ 0 and a0 =
∫ ∞

0

ν(σ) dσ ≥ 0 (K5)

and, in view of (K1)-(K2), we introduce the Hilbert spaces

M = L2
ν(IR+,H) ∩ L2

µ(IR+, V0), M̃ = L2
µ(IR+, V0).
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Furthermore, we assume

φ : IR → [0,+∞] proper convex and lower semicontinuous with φ(0) = 0 (H1)
β = ∂φ ⊂ IR× IR such that β(0) 3 0 (H2)
∃ Γ > 0 such that |γ(r1)− γ(r2)| ≤ Γ|r1 − r2| (H3)
λ ∈ C2(IR) (H4)
λ′, λ′′ ∈ L∞(IR) (H5)
f ∈ L1

loc(IR,H) (H6)
ϑ0 ∈ H (H7)
χ0 ∈ V (H8)
η0 ∈M (H9)
φ(χ0) ∈ L1(Ω). (H10)

We now introduce our definition of solution to P.

Definition 3.1. Let τ, T ∈ IR, T > τ , and set I = [τ, T ]. A quadruplet (ϑ, χ, ξ, η)
which fulfills

ϑ ∈ C0(I,H) (3.1)
∂tϑ ∈ L∞(I, V ∗0 ) + L1(I,H) (3.2)
χ ∈ C0(I, V ) ∩H1(I,H) ∩ L2(I,W ) (3.3)
ξ ∈ L2(I,H) (3.4)
η ∈ C0(I,M) (3.5)
∂tη + ∂sη ∈ C0(I, L2

ν(IR+,H) ∩ L2
µ(IR+,W ∗

0 )) (3.6)
ξ ∈ β(χ) a.e. in Ω× I (3.7)

is a solution to problem P in the time interval I provided that

〈〈∂t(ϑ+ λ(χ)), v〉〉V0 + 〈ϑ, v〉H +
∫ ∞

0

ν0ν(σ)〈η(σ), v〉H dσ

+
∫ ∞

0

µ(σ)〈∇η(σ),∇v〉H3 dσ = 〈f, v〉H ∀ v ∈ V0, a.e. in I (3.8)

∂tχ−∆χ+ ξ = γ(χ) + λ′(χ)ϑ a.e. in Ω× I (3.9)∫ ∞

0

ν(σ)〈∂tη(σ) + ∂sη(σ), ζ(σ)〉H dσ +
∫ ∞

0

µ(σ)〈∂tη(σ) + ∂sη(σ), ζ(σ)〉H dσ

−
∫ ∞

0

µ(σ)〈∂tη(σ) + ∂sη(σ),∆ζ(σ)〉H dσ

=
∫ ∞

0

ν(σ)〈ϑ, ζ(σ)〉H dσ +
∫ ∞

0

µ(σ)〈ϑ, ζ(σ)〉H dσ −
∫ ∞

0

µ(σ)〈ϑ,∆ζ(σ)〉H dσ

∀ ζ ∈ L2
ν(IR+,H) ∩ L2

µ(IR+,W0), a.e. in I (3.10)
ϑ(τ) = ϑ0 a.e. in Ω (3.11)
χ(τ) = χ0 a.e. in Ω (3.12)
ητ = η0 a.e. in Ω× IR+. (3.13)
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Problem P is well posed according to Definition 3.1. Indeed, we can prove the
following results.

Theorem 3.2. Assume that (K1)-(K3) and (H1)-(H5) hold. Let {fi, ϑ0i, χ0i, η0i}, i =
1, 2, be two sets of data satisfying (H6)-(H10), denote by {ϑi, χi, ξi, ηi} two corresponding
solutions to problem P, and fix C0 > 0 so that

max
i=1,2

{
||ϑi||L∞(I,H), ||χi||L∞(I,H), ||χi||L2(I,W )

}
≤ C0. (3.14)

Then there exists a positive constant C = C(C0, T ) such that

||ϑ1(t)− ϑ2(t)||2H + ||χ1(t)− χ2(t)||2H +
∫ t

τ

||χ1(y)− χ2(y)||2V dy + ||ηt
1 − ηt

2||
2
M

≤ C
(
||ϑ01 − ϑ02||2H + ||χ01 − χ02||2H + ||η01 − η02||2M + ||f1 − f2||2L1(I,H)

)
(3.15)

for any t ∈ I. In particular, problem P has a unique solution.

Theorem 3.3. Let (K1)-(K3) and (H1)-(H10) hold. Then, given any τ ∈ IR and any
T > τ , problem P has a unique solution (ϑ, χ, ξ, η) in the time interval I = [τ, T ], with
initial data (ϑ0, χ0, η0). Moreover φ(χ) ∈W 1,1(I, L1(Ω)).

Set now
H = H × V ×M

and consider the space

Hφ =
{
z = (ϑ, χ, η) ∈ H : φ(χ) ∈ L1(Ω)

}
.

It is readily seen that Hφ is a convex subset of H which can be endowed with the metric

distφ(z1, z2) = ||z1 − z2||H + ||φ(χ1)− φ(χ2)||L1(Ω).

In addition, Bφ(0, R) stands for the ball of Hφ centered in zero of radius R.
We agree to denote by Uf (t, τ)z0 the solution (ϑ, χ, η) to problem P at time t with

source term f and initial data z0 given at time τ . Note that ξ is an auxiliary variable
which is automatically determined by (ϑ, χ, η).

Remark 3.4. For any fixed f ∈ L1
loc(IR,H), the two-parameter family Uf (t, τ), with

t ≥ τ, τ ∈ IR, satisfies the following properties:

Uf (t, τ) : Hφ → Hφ for any t ≥ τ, τ ∈ IR;(i)
Uf (τ, τ) is the identity map on Hφ for any τ ∈ IR;(ii)
Uf (t, s)Uf (s, τ) = Uf (t, τ) for any t ≥ s ≥ τ, τ ∈ IR;(iii)
Uf (t, τ)z → z as t ↓ τ for any z ∈ Hφ, τ ∈ IR;(iv)
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which are consequences of Theorems 3.2 and 3.3.

As we pointed out in the Introduction, the asymptotic behavior of solutions strongly
depends on the choice of parameter ν0. Let us consider first the case ν0 = 1, which
corresponds to the suppose that a satisfies (1.1). Besides the decay properties (K4), we
need to require that the dissipation given by β be prevailing on the contribution given
by the term γ. More precisely, we set

γ̂(r) =
∫ r

0

γ(y) dy

and we assume that there exists ε0 ∈ (0, 1) such that

− ξ r + γ(r) r ≤ −ε
(
φ(r)− γ̂(r)

)
−m1r

2 +m2

for any ε ∈ (0, ε0] and m1, m2 > 0 (H11)
φ(r)− γ̂(r) + L ≥ 0 for some L > 0 (H12)

for every r ∈ D(β) and every ξ ∈ β(r), where D(β) denotes the effective domain of β.
The constant m2 is allowed to depend on ε.

It is easily seen that (H11)-(H12) are satisfied if D(β) is bounded. In the case when
β : IR → IR, a sufficient condition which ensures (H11)-(H12) to hold is

lim inf
|r|→∞

β(r)
r

> Γ.

Indeed, in this case there exist 0 < ε1 < 1 and ρ > 0 such that

lim inf
|r|→∞

(1− ε)β(r)
r

≥ Γ + 2ρ ∀ ε ≤ ε1. (3.16)

It is also clear from (H3) and (2.3) that

|γ̂(r)| ≤ Γr2 +
|γ(0)|2

2Γ
. (3.17)

Hence (H1)-(H2) and (3.17) entail

ε
(
φ(r)− γ̂(r)

)
≤ β(r)r − γ(r)r −

[
(1− ε)β(r)r − γ(r)r − εΓr2 − ρr2

]
− ρr2 +

ε|γ(0)|2

2Γ
.

Setting ε0 < min{ε1, ρ/Γ}, it is straightforward to see that (H3) and (3.16) yield, for
any ε ∈ (0, ε0],

sup
r∈IR

−
[
(1− ε)β(r)r − γ(r)r − εΓr2 − ρr2

]
< +∞



PHASE-FIELD MODEL WITH MEMORY 11

and (H11) follows at once. The proof of (H12) is straightforward. Notice that (H11)-
(H12) allow, for instance, the significant case β(r)− γ(r) = r3 − r examined in [1] (cf.
also [8]).

To deal with the more common assumption (1.2) which corresponds to the case
ν0 = −1, we require |ΓD| > 0 in order to take advantage of the Poincaré inequality.
Also, we need that ν is suitably dominated by µ, while we still need that µ satisfies
(K4). Of course, even in this case, the above assumptions (H11) and (H12) are essential.

Thanks to Theorems 3.4 and 3.5, we can state our result about the longtime be-
havior of the solutions to P.

Theorem 3.5. Let (K1)-(K3), (H1)-(H5) and (H11)-(H12) hold, and let F ⊂ T be a
bounded set. If, in addition, ν0 = 1 and (K4) holds, then there exists R0 > 0, depending
only on supf∈F ||f ||T , such that, given any R > 0 and any τ ∈ IR, there exists t∗ = t∗(R)
such that

sup
z0∈Bφ(0,R)

sup
f∈F

||Uf (t, τ)z0||H ≤ R0 ∀ t ≥ τ + t∗. (3.18)

Moreover, if F is a bounded subset of L1(IR,H), for any τ ∈ IR,

sup
z0∈Bφ(0,R)

sup
f∈F

∫ ∞

τ

||∂tχ(y)||2H dy ≤ C (3.19)

where χ(y) is the second component of Uf (y, τ)z0, and the constant C depends on R.
Suppose now that ν0 = −1. If |ΓD| > 0, µ enjoys (K4) and ν fulfills the following
condition

a0ν(s) ≤
2
C2

P

δ0µ(s) for some δ0 ∈ (0, δ), ∀ s ∈ IR+ (K6)

then estimates (3.18)-(3.19) still hold.

Remark 3.6. If (K6) holds, then note that M and M̃ coincide, and have equivalent
norms. Moreover, recalling the positions made in the Introduction, it is not difficult to
realize that condition (K6) can be rewritten in terms of the original kernels a and k as
follows

−a
′(0)
a(0)

a′′(s) ≤ − 2
C2

P

δ0k
′(s) for some δ0 ∈ (0, δ), ∀ s ∈ IR+.

In this form, it can be compared with [4, (2.4)].

Remark 3.7. Due to the continuous embedding V ↪→ L6(Ω), if there is a positive
constant c such that

|ξ| ≤ c(1 + |r|q) ∀ r ∈ D(β), ∀ ξ ∈ β(r) (H13)

for some q ∈ [0, 5], it is apparent that Hφ ≡ H. Then inequality (3.18) may be replaced
by

sup
||z0||H≤R

sup
f∈F

||Uf (t, τ)z0||H ≤ R0 ∀ t ≥ τ + t∗. (3.20)

In this case, the ball of radius R0 in H is called a uniform absorbing set (uniform with
respect to τ ∈ IR and f ∈ F) associated with problem P.
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In the particular, but significant, case β(r) = r3 and λ linear, we can also prove
that

(v) Uf (t, τ) ∈ C0(H,H) for any τ ∈ IR, t ≥ τ.

Therefore, Uf (t, τ) is a process with symbol f according to the usual definition (see,
e.g., [25], Chapter 6]). This fact is ensured by (3.15) and

Proposition 3.8. Let (K1)-(K3), (H3), (H6)-(H10) hold. Assume moreover that

β(r) = r3 ∀ r ∈ IR (H14)
λ(r) = λ0r ∀ r ∈ IR, λ0 ∈ IR. (H15)

Then, if we consider two sets of data {fi, ϑ0i, χ0i, η0i}, i = 1, 2, fulfilling (H6)-(H10)
and we denote by {ϑi, χi, ξi, ηi} two corresponding solutions to problem P, we can find
a positive constant C such that, for any t ∈ I,

||χ1(t)− χ2(t)||2V +
∫ t

τ

||χ1(y)− χ2(y)||2W dy

≤ C
(
||ϑ01 − ϑ02||2H + ||χ01 − χ02||2V + ||η01 − η02||2M + ||f1 − f2||2L1(I,H)

)
. (3.21)

In a slightly different functional setting, an existence and uniqueness result can
be proved when λ is a quadratic nonlinearity (cf. [11,12]). In this case, it is worth
noting that our model may describe not only solid-liquid phase transitions, but also
ferromagnetic transformations (see, e.g., [24]).

Theorem 3.9. Let (K1)-(K3), (H1)-(H4), and (H6)-(H10) hold. Moreover, suppose
that

λ′′ ∈ L∞(IR). (H16)

Then, given any τ ∈ IR and any T > τ , there exists (ϑ, χ, ξ, η) in the time interval
I = [τ, T ], satisfying (3.2), (3.7)-(3.12), and

ϑ ∈ L∞(I,H) ∩ C0(I, V ∗0 ) (3.22)
χ ∈ L∞(I, V ) ∩H1(I,H) ∩ L2(I,W 2,3/2(Ω)) (3.23)
∂nχ = 0 a.e. on ∂Ω× I (3.24)
η ∈ L∞(I,M) ∩ C0(I, L2

ν(IR+, V ∗0 ) ∩ L2
µ(IR+, V ∗0 )) (3.25)

ξ ∈ L2(I, L3/2(Ω)) (3.26)
φ(χ) ∈ L∞(I, L1(Ω)). (3.27)

Moreover, the initial condition (3.13) holds in V ∗0 , almost everywhere in IR+. If, in
addition, χ0 ∈ L∞(Ω), then the above solution is unique and it fulfills (3.1), (3.4)-(3.5),
(3.13), and

χ ∈ L∞(Ω× I) ∩ L2(I,H2(Ω)). (3.28)
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We can still prove the existence of a solution to problem P when χ0 is only in H.
In this case, the equation for χ has to be understood in V ∗. Uniqueness also holds
provided that λ is linear.

Theorem 3.10. Let (K1)-(K3), (H1)-(H7), (H9)-(H10) hold. Moreover, assume

χ0 ∈ H. (H17)

Then, given any τ ∈ IR and any T > τ , there exists a quadruplet (ϑ, χ, ξ, η) which
fulfills, in the time interval I = [τ, T ], (3.4), (3.7), (3.10), (3.12), (3.27) and

ϑ ∈ L∞(I,H) ∩ C0(I, V ∗0 ) (3.29)
∂t(ϑ+ λ(χ)) ∈ L2(I, V ∗0 ) + L1(I,H) (3.30)
χ ∈ C0(I,H) ∩ L2(I, V ) (3.31)
∂tχ ∈ L2(I, V ∗) (3.32)
η ∈ L∞(I,M) ∩ C0(I, L2

ν(IR+, V ∗0 ) ∩ L2
µ(IR+, V ∗0 )) (3.33)

〈〈∂t(ϑ+ λ(χ)), v〉〉V0 + 〈ϑ, v〉H +
∫ ∞

0

ν0ν(σ)〈η(σ), v〉H dσ

+
∫ ∞

0

µ(σ)〈∇η(σ),∇v〉H3 dσ = 〈f, v〉H ∀ v ∈ V0, a.e. in I (3.34)

〈〈∂tχ, v〉〉V + 〈∇χ,∇v〉H3 + 〈〈ξ, v〉〉V = 〈γ(χ), v〉H + 〈λ′(χ)ϑ, v〉H
∀ v ∈ V, a.e. in I (3.35)

ϑ(τ) = ϑ0 in V ∗0 (3.36)
ητ = η0 in V ∗0 , a.e. in IR+. (3.37)

If λ satisfies (H15), then the continuous dependence estimate (3.15) holds with a constant
C independent of C0. Thus the solution is unique and (3.1), (3.5)-(3.6), (3.11) and (3.13)
are fulfilled.

4. Proof of Theorem 3.2

For the sake of simplicity, we suppose ΓD ≡ ∅ so that V0 ≡ V and W0 ≡ W . However,
the arguments can be easily adapted to the other cases.

Let {ϑi, χi, ξi, ηi}, i = 1, 2, be two solutions to problem P corresponding to the
source terms and initial data {fi, ϑ0i, χ0i, η0i}, and denote their differences by {ϑ, χ, ξ, η}
and {f, ϑ0, χ0, η0}, respectively. Introduce the new variables ωi = ϑi + λ(χi), i = 1, 2,
and set ω = ω1 − ω2 and λ̃ = λ(χ1) − λ(χ2). Then, according to Definition 3.1, the
quadruplet (ϑ, χ, ξ, η) fulfills the system

〈〈∂tω, v〉〉V + 〈ω, v〉H = −
∫ ∞

0

ν0ν(σ)〈η(σ), v〉H dσ
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−
∫ ∞

0

µ(σ)〈∇η(σ),∇v〉H3 dσ + 〈λ̃, v〉H + 〈f, v〉H ∀ v ∈ V, a.e. in I (4.1)

∂tχ−∆χ+ ξ = γ(χ1)− γ(χ2)
+ λ′(χ1)

(
ω1 − λ(χ1)

)
− λ′(χ2)

(
ω2 − λ(χ2)

)
a.e. in Ω× I (4.2)∫ ∞

0

ν(σ)〈∂tη(σ) + ∂sη(σ), ζ(σ)〉H dσ +
∫ ∞

0

µ(σ)〈∂tη(σ) + ∂sη(σ), ζ(σ)〉H dσ

−
∫ ∞

0

µ(σ)〈∂tη(σ) + ∂sη(σ),∆ζ(σ)〉H dσ

=
∫ ∞

0

ν(σ)〈ϑ, ζ(σ)〉H dσ +
∫ ∞

0

µ(σ)〈ϑ, ζ(σ)〉H dσ −
∫ ∞

0

µ(σ)〈ϑ,∆ζ(σ)〉H dσ

∀ ζ ∈ L2
ν(IR+,H) ∩ L2

µ(IR+,W ), a.e. in I (4.3)

with initial conditions (3.11)-(3.13).
Multiplying (4.2) by χ and integrating over Ω, we deduce

1
2
d

dt
||χ||2H =− ||∇χ||2H3 − 〈ξ, χ〉H + 〈γ(χ1)− γ(χ2), χ〉H + 〈λ′(χ2)ω, χ〉H

− 〈λ′(χ2)λ̃, χ〉H + 〈
(
λ′(χ1)− λ′(χ2)

)(
ω1 − λ(χ1)

)
, χ〉H . (4.4)

Using (H2)-(H3) we get at once that

−〈ξ, χ〉H ≤ 0 (4.5)

and
〈γ(χ1)− γ(χ2), χ〉H ≤ Γ||χ||2H (4.6)

whereas (H4)-(H5) and (2.3) imply

〈λ′(χ2)ω, χ〉H − 〈λ′(χ2)λ̃, χ〉H ≤ Λ0

2
||ω||2H +

(Λ0

2
+ Λ2

0

)
||χ||2H . (4.7)

To handle the last term in (4.4) notice that for every κ > 0 there exists K(κ) > 0 such
that

||v||2L4(Ω) ≤ κ||v||2V +K(κ)||v||2H ∀ v ∈ V.

Indeed, the above relation follows quite directly from the Gagliardo-Nirenberg inequality
(2.4) with ρ = 1/4, and the generalized Young inequality (2.3) with p = 4/3, q = 4, and
K(κ) = κ+ 27k8

256
1
κ3 . Thus, using (H5), Hölder inequality, and the fact that

sup
t∈I

(
||ω1(t)||H + ||λ(χ1(t))||H

)
= C1 = C1(C0) <∞

in force of (3.14), we obtain

〈
(
λ′(χ1)− λ′(χ2)

)(
ω1 − λ(χ1)

)
, χ〉H ≤ Λ1

(
||ω1||H + ||λ(χ1)||H

)
||χ||2L4(Ω)

≤ κΛ1C1 ||χ||2V +K(κ) Λ1C1||χ||2H

=
1
2
||∇χ||2H3 + (1 + 2K(κ0)Λ1C1)||χ||2H (4.8)
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upon choosing κ0 = (2Λ1C1)−1 with Λ1 = ||λ′′||L∞(IR). Therefore, in view of (4.5)-(4.8),
equality (4.4) leads to

d

dt
||χ||2H + ||∇χ||2H3 ≤ Λ2

0||ω||
2
H + 2

(
1 + Γ + Λ0 + 2Λ2

0 + 2K(κ0)Λ1C1

)
||χ||2H . (4.9)

Hence, picking C2 = C2(C0) > 0 large enough, and integrating in time (4.9) from τ to
t ≤ T , we end up with

||χ(t)||2H +
∫ t

τ

||χ(y)||2V dy ≤ ||χ(τ)||2H + C2

∫ t

τ

||ω(y)||2H dy + C2

∫ t

τ

||χ(y)||2H dy. (4.10)

We now turn the attention on the other two equations. For the moment, let us
assume that ω has more space regularity, precisely, ω ∈ L∞(I, V ). Set then v = ω in
(4.1) to get

1
2
d

dt
||ω||2H + ||ω||2H =

∫ ∞

0

µ(σ)〈η(σ), ω〉H dσ −
∫ ∞

0

ν0ν(σ)〈η(σ), ω〉H dσ

−
∫ ∞

0

µ(σ)〈η(σ), ω〉V dσ + 〈λ̃, ω〉H + 〈f, ω〉H .

Recalling (K5) and using repeatedly (2.1), (2.3) and (H4)-(H5), the above relation
entails

d

dt
||ω||2H ≤(k0 + a0 − 1)||ω||2H + Λ2

0||χ||
2
H + ||η||2M

− 2
∫ ∞

0

µ(σ)〈η(σ), ω〉V dσ + 2||f ||H ||ω||H (4.11)

where Λ0 = ||λ′||L∞(IR). From (4.3) and the assumed regularity of ω, we read that
∂tη + ∂sη ∈ L∞(I,M). Let then ρε ∈ D((0, ε), IR+) of L1-norm equal to one, and
introduce the mollified approximation of η

ηt
ε(s) =

(
ηt ∗ ρε

)
(s) =

∫ s

0

ηt(y)ρε(s− y) dy.

Notice that ∂sηε ∈M and ηε(0) = 0. Furthermore,

||ηt
ε − ηt||M = hε(t) → 0 as ε→ 0

for every fixed t ∈ I. Moreover, being η ∈ L∞(I,M), hε turns out to be uniformly
bounded. Integration by parts and (K3) yield (see [21] for the details)

〈∂tηε + ∂sηε, ηε〉M =
1
2
d

dt
||ηε||2M − 1

2

∫ ∞

0

µ′(σ)||ηε(σ)||2V dσ −
1
2

∫ ∞

0

ν′(σ)||ηε(σ)||2H dσ

≥ 1
2
d

dt
||ηε||2M.
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Hence, the regularized version of (4.3) reads

〈∂tηε + ∂sηε, ζ〉M = 〈(ω − λ̃) ∗ ρε, ζ〉M ∀ ζ ∈M, a.e. in I

and taking ζ = ηε, we are led to

d

dt
||ηε||2M ≤ 2〈(ω − λ̃) ∗ ρε, ηε〉M

=2〈(ω − λ̃), ηε〉M

≤ 2
∫ ∞

0

µ(σ)〈η(σ), ω〉V dσ − 2
∫ ∞

0

µ(σ)〈ηε(σ), λ̃〉V dσ

+ 2
∫ ∞

0

ν(σ)〈ηε(σ), ω〉H dσ − 2
∫ ∞

0

ν(σ)〈ηε(σ), λ̃〉H dσ + kε(t) (4.12)

where
kε(t) = 2hε(t) sup

t∈I
||ω(t)||M.

By (2.1), (2.3), (K5), and (H4)-(H5), we see at once that

2
∫ ∞

0

ν(σ)〈ηε(σ), ω〉H dσ − 2
∫ ∞

0

ν(σ)〈ηε(σ), λ̃〉H dσ

≤ 4
∫ ∞

0

ν(σ)||ηε(σ)||2H dσ + 2a0||ω||2H + 2a0Λ2
0||χ||

2
H . (4.13)

Concerning the second integral of the right-hand side of (4.12), since

∇λ̃ = (λ′(χ1)− λ′(χ2)
)
∇χ1 − λ′(χ2)∇χ

exploiting again (H4)-(H5) we have

||∇
(
λ(χ1)− λ(χ2)

)
||2H3 ≤ 2Λ2

1

(
||χ∇χ1||2H3 + ||∇χ||2H3

)
≤ 2Λ2

1

(
||χ||2L4(Ω)||∇χ1||2(L4(Ω))3 + ||∇χ||2H3

)
.

Thus, in virtue of (2.3) and the continuous embedding L4(Ω) ↪→ V , we conclude that

−2
∫ ∞

0

ν(σ)〈ηε(σ), λ̃〉V dσ ≤ C3

(
1 + ||χ1||W )||χ||V ||ηε||M (4.14)

for some C3 > 0. Introduce now, for any t ∈ I,

Φ2
ε(t) = ||ω(t)||2H + ||ηt

ε||
2
M

Φ2(t) = ||ω(t)||2H + ||ηt||2M.
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Clearly, Φ2
ε(t) → Φ2(t) as ε→ 0 for every t ∈ I. Adding (4.11) and (4.12), with (4.13)-

(4.14) in mind, and picking C4 = C4(C0) > 0 large enough, we obtain the inequality

d

dt
Φ2

ε(t) ≤ C4Φ2
ε(t) + C4||χ(t)||2H + kε(t) + ρ(t)||χ(t)||V Φε(t) + 2||f(t)||HΦε(t)

for a.e. t ∈ I, where we set

ρ(t) = C4

(
1 + ||χ1(t)||W ).

Notice that by (3.14)
||ρ||2L2(I) = C5 = C5(C0) <∞.

Lemma 2.3, (2.1), and Hölder inequality then lead to

Φ2
ε(t) ≤ 2eC4(T−τ)Φ2

ε(τ) + 2
(
C4e

C4(T−τ) + C5e
2C4(T−τ)

) ∫ t

τ

||χ(y)||2V dy

+ 2eC4(T−τ)

∫ T

τ

kε(y) dy + 8e2C4(T−τ)||f ||2L1(I,H) ∀ t ∈ I. (4.15)

Letting ε→ 0, and applying the dominated convergence theorem, we conclude that

Φ2(t) ≤ C6Φ2(τ) + C6

∫ t

τ

||χ(y)||2V dy + C6||f ||2L1(I,H) ∀ t ∈ I (4.16)

for some C6 = C6(C0, T ) > 0. If ω does not have the required space regularity, we
can overcome the obstacle introducing a regularization. Following [15, Appendix], let
J = −∆ + 1I denote the Riesz map from V onto V ∗. For every α > 0 consider the
positive operator Aα =

(
1I + α2J

)−1. The relations

||Aαu||H ≤ ||u||H and ||Aαu− u||H → 0 as α→ 0 (4.17)

hold for every u ∈ H . Then we repeat the calculations leading to (4.11) and (4.12),
except we now take v = A2

αω in equation (4.1) and we multiply by A2
αηε the regularized

version of (4.3). With no substantial changes, and exploiting (4.17), we end up with
(4.16), with {ω, η} replaced by {Aαω,Aαη}. Then, taking the limit as α→ 0, we recover
(4.16) for the original quantities.

To conclude the proof, let M > C6 + 1, and set

Ψ2(t) = ||ω(t)||2H +M ||χ(t)||2H + ||ηt||2M.

Addition of M -times (4.10) and (4.16) entails

Ψ2(t) +
∫ t

τ

||χ(y)||2V dy ≤ C7Ψ2(τ) + C7

∫ t

τ

Ψ2(y) dy + C7||f ||2L1(I,H)
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for every t ∈ I and some C7 = C7(C0, T ) > 0. The Gronwall Lemma in the integral
form yields then

Ψ2(t) ≤ C7

(
Ψ2(τ) + ||f ||2L1(I,H)

)
eC7(T−τ).

Finally, from (2.3) and (H4)-(H5),

1
2
||ϑ||2H − 2Λ2

0||χ||
2
H ≤ ||ω||2H ≤ 1

2
||ϑ||2H + 2Λ2

0||χ||
2
H

and the desired inequality (3.15) follows at once taking M > 2Λ2
0, which we may stip-

ulate. In particular, when the two sets of data coincide, we get ω = χ = η ≡ 0 (and
therefore ϑ1 ≡ ϑ2), and from (4.2) we deduce that ξ ≡ 0.

5. Proof of Theorem 3.3

Thanks to Theorem 3.2, we just need to prove the existence of a solution. We do that
by means of a Faedo-Galerkin approximation scheme. Just for the sake of simplicity, we
suppose ΓD ≡ ∅ so that V0 ≡ V and W0 ≡ W . Also, we let ν0 = 1. However the proof
can be easily adapted to the other cases. Assume for the moment that φ is convex,
non-negative, and continuously differentiable, with φ′ = β Lipschitz continuous.
5.1. Faedo-Galerkin approximation. In order to prove the existence result we
follow a Faedo-Galerkin method (cf. [14]). Let {vj}∞j=1 be a smooth orthonormal basis
of H which is also orthogonal in V . For instance, take a complete set of normalized
eigenfunctions for −∆ in V with Neumann boundary conditions, that is,

−∆vj = αjvj in Ω
∂nvj = 0 on ∂Ω

being αj the eigenvalue corresponding to vj . Next we select an orthonormal basis
{ζj}∞j=1 of M which also belongs to D(IR+,W ). Here we assume for simplicity that ν
and µ are strictly positive. If sν = sup{s : ν(s) > 0} and sµ = sup{s : µ(s) > 0}, we
just replace D(IR+,W ) with D((0, sm) ∪ (sm, sM )),W ), where sm = min{sν , sµ} and
sM = max{sν , sµ}. This position is relevant in Subsection 5.4, where the interested
reader will have no difficulties to realize the minor modification of the argument needed
in that case.

Given an integer n, denote by Pn and Qn the projections on the subspaces

Vn = Span{v1, . . . , vn} ⊂ V and Mn = Span{ζ1, . . . , ζn} ⊂ M

respectively.
We are now ready to introduce the sequence of approximating problems

Problem Pn. Find tn ∈ (τ, T ] and aj , bj , cj ∈W 1,1((τ, tn)), (j = 1, . . . , n), such that,
setting

ϑn(t) =
n∑

j=1

aj(t) vj χn(t) =
n∑

j=1

bj(t) vj ηt
n(s) =

n∑
j=1

cj(t) ζj(s)
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the triplet (ϑn, χn, ηn) satisfies

ϑn ∈W 1,1((τ, tn), V )

χn ∈W 1,1((τ, tn),W )

ηn ∈W 1,1
(
(τ, tn), L2

ν(IR+,W ) ∩ L2
µ(IR+,W )

)
and fulfills the system

〈〈∂t

(
ϑn + λ(χn)

)
, v〉〉V + 〈ϑn, v〉H +

∫ ∞

0

ν(σ)〈ηn(σ), v〉H dσ

+
∫ ∞

0

µ(σ)〈∇ηn(σ),∇v〉H3 dσ = 〈f(t), v〉H

〈〈∂tχn, v〉〉V + 〈∇χn,∇v〉H3 + 〈β(χn)− γ(χn)− λ′(χn)ϑn, v〉H = 0
〈∂tηn, ζ〉M + 〈∂sηn, ζ〉M = 〈ϑn, ζ〉M

for every v ∈ Vn and ζ ∈Mn, and almost everywhere in (τ, tn), with initial conditions

ϑn(τ) = ϑ0n = Pnϑ0

χn(τ) = χ0n = Pnχ0 a.e. in Ω

ητ
n = η0n = Qnη0 a.e. in Ω× IR+.

Owing to standard ODE results, problem Pn admits a unique solution. Moreover, the
a priori estimates proved in the next subsection imply that in fact tn = T .
5.2. A priori estimates. In this subsection c will denote a positive generic constant
independent of n. Consider problem Pn. Take v = ϑn in the equation for ϑn and
v = ∂tχn in the equation for χn. We get, respectively,

1
2
d

dt
||ϑn||2H =− ||ϑn||2H − 〈λ′(χn)∂tχn, ϑn〉H +

∫ ∞

0

µ(σ)〈ηn(σ), ϑn〉H dσ (5.1)

−
∫ ∞

0

ν(σ)〈ηn(σ), ϑn〉H dσ −
∫ ∞

0

µ(σ)〈ηn(σ), ϑn〉V dσ + 〈f, ϑn〉H

and

1
2
d

dt
||∇χn||2H3 =− ||∂tχn||2H − 〈β(χn), ∂tχn〉H + 〈γ(χn), ∂tχn〉H

+ 〈λ′(χn)ϑn, ∂tχn〉H . (5.2)

Take now ζ = ηn in the equation for ηn, obtaining

1
2
d

dt
||ηn||2M

= −〈∂sηn, ηn〉M +
∫ ∞

0

ν(σ)〈ηn(σ), ϑn〉Hdσ +
∫ ∞

0

µ(σ)〈ηn(σ), ϑn〉V dσ. (5.3)
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Adding (5.1)-(5.3), in force of (2.1), (2.3), (H3) and taking (K5) into account, we obtain

1
2
d

dt

(
||ϑn||2H + ||∇χn||2H3 + ||ηn||2M + 2

∫
Ω

φ(χn)
)

= −||ϑn||2H − ||∂tχn||2H + 〈f, ϑn〉H + 〈γ(χn), ∂tχn〉H

+
∫ ∞

0

µ(σ)〈ηn(σ), ϑn〉H dσ − 〈∂sηn, ηn〉M

≤ c
(
1 + ||ϑn||2H + ||χn||2V + ||ηn||2M

)
+ ||f ||H ||ϑn||H − 3

4
||∂tχn||2H . (5.4)

In the last inequality we used (K3) together with an integration by parts to handle the
term 〈∂sηn, ηn〉M. Indeed (see [21] for the details),

〈∂sηn, ηn〉M = −1
2

∫ ∞

0

ν′(σ)||ηn(σ)||2H dσ − 1
2

∫ ∞

0

µ′(σ)||ηn(σ)||2V dσ ≥ 0.

Denote for simplicity

Φ2(t) = 1 + ||ϑn(t)||2H + ||χn(t)||2V + ||ηt
n||

2
M + 2

∫
Ω

φ(χn(t)) +
∫ t

τ

||∂tχn(y)||2H dy.

Adding (5.4) and the straightforward inequality

1
2
d

dt
||χn||2H ≤ 1

4
||∂tχn||2H + c||χn||2H

we find
d

dt
Φ2(t) ≤ cΦ2(t) + 2||f(t)||HΦ(t) for a.e. t ∈ I

and Lemma 2.3 yields

Φ2(t) ≤ 2ec(T−τ)Φ2(τ) + 4e2c(T−τ)

(∫ T

τ

||f(y)||H dy

)2

∀ t ∈ I.

We deduce then the a priori estimates

||ϑn||L∞(I,H) ≤ c (5.5)

||χn||L∞(I,V )∩H1(I,H) ≤ c (5.6)

||ηn||L∞(I,M) ≤ c (5.7)

||φ(χn)||L∞(I,L1(Ω)) ≤ c (5.8)

for some positive constant c independent of n.
Finally, take v = −∆χn in the equation for χn, to get

1
2
d

dt
||∇χn||2H3 = −||∆χn||2H−〈β

′(χn)∇χn,∇χn〉H3−〈γ(χn),∆χn〉H−〈λ′(χn)ϑn,∆χn〉H .
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Using the fact that β′(r) ≥ 0 for any r ∈ IR and repeating the above arguments, we find

||χn||L2(I,W ) ≤ c. (5.9)

5.3. Contracting estimate. Here we prove that, due to (3.15), {(ϑn, χn, ηn)} is a
Cauchy sequence in a suitable Banach space. In fact, owing to (5.5)-(5.6) and (5.9),
this sequence satisfies the bound (3.14). Then, (3.15) entails

||ϑn(t)− ϑm(t)||2H + ||χn(t)− χm(t)||2H +
∫ t

τ

||χn(y)− χm(y)||2V dy + ||ηt
n − ηt

m||
2
M

≤ C
(
||ϑ0n − ϑ0m||2H + ||χ0n − χ0m||2H + ||η0n − η0m||2M

)
(5.10)

for any t ∈ I.
5.4. Passage to limit. On account of the above estimates (5.5)-(5.7), (5.9)-(5.10), we
have that, up to subsequences,

ϑn → ϑ in C0(I,H)
χn → χ weak∗ in L∞(I, V )
χn → χ weak in H1(I,H) ∩ L2(I,W )
ηn → η in C0(I,M).

Using classical compactness arguments or, alternatively, estimate (3.15), we also infer
that

χn → χ in C0(I,H) ∩ L2(I, V ). (5.11)

It is then readily seen (cf. [14]) that equation (3.9) is satisfied by ϑ and χ as well, and
that β(χ) ∈ L2(I,H). Concerning equation (3.10), we need a little bit of extra work.
We assume for simplicity that ν ≡ 0, but the argument is exactly the same in the general
case. Fix an integer m > 0, and t ∈ (τ, T ], and choose ζ ∈ D((τ, t),D(IR+,W )) of the
form

ζt(s) =
m∑

j=1

c̃j(t)ζj(s)

with c̃j ∈ D((τ, t), IR). Then for every n ≥ m we have the equality

〈∂tηn, ζ〉M + 〈∂sηn, ζ〉M = 〈ϑn, ζ〉M for a.e. t ∈ I.

Integrations by parts and the above convergences yield∫ t

τ

〈∂tηn, ζ〉M = −
∫ t

τ

〈ηn, ∂tζ〉M

−→ −
∫ t

τ

〈η, ∂tζ〉M

= −
∫ t

τ

∫ ∞

0

µ〈η, ∂tζ〉H +
∫ t

τ

∫ ∞

0

µ〈η,∆∂tζ〉H (5.12)



22 C.GIORGI, M.GRASSELLI, V.PATA

and ∫ t

τ

〈ϑn, ζ〉M =
∫ t

τ

∫ ∞

0

µ〈ϑn, ζ〉H −
∫ t

τ

∫ ∞

0

µ〈ϑn,∆ζ〉H

−→
∫ t

τ

∫ ∞

0

µ〈ϑ, ζ〉H −
∫ t

τ

∫ ∞

0

µ〈ϑ,∆ζ〉H . (5.13)

Further, notice that for every fixed t0 ∈ [τ, t],

ζt0 ∈ H1
µ(IR+,W ) ∩ L2

(µ′)2/µ(IR+,W ).

Thus, integration by parts and the above convergences entail∫ t

τ

〈∂sηn, ζ〉M

= −
∫ t

τ

∫ ∞

0

µ′〈ηn, ζ〉H + µ〈ηn, ∂sζ〉H +
∫ t

τ

∫ ∞

0

µ′〈ηn,∆ζ〉H + µ〈ηn,∆∂sζ〉H

−→ −
∫ t

τ

∫ ∞

0

µ′〈η, ζ〉H + µ〈η, ∂sζ〉H +
∫ t

τ

∫ ∞

0

µ′〈η,∆ζ〉H + µ〈η,∆∂sζ〉H . (5.14)

Exploiting the distributional equality∫ t

τ

∫ ∞

0

µ〈η,∆∂tζ〉H + µ′〈η,∆ζ〉H + µ〈η,∆∂sζ〉H = −
∫ t

τ

∫ ∞

0

µ〈∂tη + ∂sη,∆ζ〉H

and collecting (5.12)-(5.14) we conclude that

−
∫ t

τ

∫ ∞

0

µ〈∂tη + ∂sη,∆ζ〉H = −
∫ t

τ

∫ ∞

0

µ〈ϑ,∆ζ〉H

and analogously for the other term. From the arbitrariness of t, letting m → ∞, and
using a density argument, we get (3.10). Besides, it is straightforward to derive the
equation

〈〈∂tϑ, v〉〉D(I,V ) +
∫ T

τ

〈λ′(χ)χt + ϑ, v〉H +
∫ T

τ

∫ ∞

0

ν〈η, v〉H

+
∫ T

τ

∫ ∞

0

µ〈η, v〉H +
∫ T

τ

∫ ∞

0

µ〈∇η,∇v〉H3

=
∫ T

τ

〈f, v〉H ∀ v ∈ D(I, V ).

and, by comparison, we deduce that

∂tϑ ∈ L∞(I, V ∗) + L1(I,H).

Therefore the above equation can be set in the form (3.8). Applying Fatou lemma to
(5.8), we get that φ(χ) ∈ L∞(I, L1(Ω)). Of course, properties (3.1)-(3.6) and the initial



PHASE-FIELD MODEL WITH MEMORY 23

conditions (3.11)-(3.13) easily follow from the above convergences. and equations (3.8)-
(3.10). Note that, due to the uniqueness, the whole sequence {(ϑn, χn, ηn)} converges
to the solution we found.
5.5. Approximating β. Assume now that φ and β satisfy (H1)-(H2). Arguing as in
[14], for any ε > 0 we approximate φ and β with φε and βε (cf., e.g., [7], Proposition 2.6
and Proposition 2.11), where βε is the Yosida approximation of β (and therefore Lip-
schitz continuous), and φε is a non-negative, convex, and continuously differentiable
function, such that

βε = φ′ε = ∂φε

and
0 ≤ φε(y) ↑ φ(y) as ε→ 0. (5.15)

We know that for every ε > 0 there is a solution (ϑε, χε, ηε) of problem P according to
Definition 3.1 with βε in place of β. Nonetheless, estimates (5.5)-(5.8) are independent
of ε. Thus, as in the former case, we can take weak and weak∗ limits as ε → 0. The
argument is treated in detail in [14], to which the interested reader is referred. We just
recall that the main point is to recover a uniform bound for βε(χε) in L2(Ω× I). This
can be done via a comparison argument applied to the approximation of (3.9). Besides,
let us mention how to prove that, calling χ the limit of χε, (5.8) holds for χ as well.
Indeed, from (5.11) we get that for every fixed t ∈ I, χε → χ a.e. in Ω (up to a subnet).
Setting ε0 > 0, exploiting the continuity of φε0 , Fatou lemma, and (5.15),∫

Ω

φε0(χ) dx ≤ lim inf
ε→0

∫
Ω

φε0(χε) dx ≤ lim inf
ε→0

∫
Ω

φε(χε) dx ≤ c (5.16)

in force of (5.8). Consequently, an application of the monotone convergence theorem
to (5.16) yields φ(χ) ∈ L∞(I, L1(Ω)). Finally, on account of (3.3)-(3.4) and using
Lemma 3.3 in [7], we can deduce φ(χ) ∈W 1,1(I, L1(Ω)).

6. Proof of Theorem 3.5

According to the hypothesis, set

F = sup
f∈F

||f ||2T (6.1)

and let z0 = (ϑ0, χ0, η0) ∈ Bφ(0, R), for some R > 0.
Let us examine first the case ν0 = 1, corresponding to assumption (1.1). We

perform some a priori estimates, which clearly hold in a Faedo-Galerkin scheme. Thus,
we can proceed formally. Namely, add (5.1)-(5.2), with (ϑ, χ, η) in place of (ϑn, χn, ηn),
to get

1
2
d

dt

(
||ϑ||2H + ||∇χ||2H3 + 2

∫
Ω

φ(χ) dx− 2
∫

Ω

γ̂(χ) dx
)

(6.2)

= −||ϑ||2H − ||∂tχ||2H −
∫ ∞

0

ν(σ)〈η(σ), ϑ〉H dσ −
∫ ∞

0

µ(σ)〈∇η(σ),∇ϑ〉H3 dσ + 〈f, ϑ〉H .
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Then multiply equation (3.9) by κχ, for κ > 0, and integrate over Ω, so obtaining

1
2
d

dt
κ||χ||2H = −κ||∇χ||2H3 − κ〈ξ, χ〉H + κ〈γ(χ), χ〉H + κ〈λ′(χ)ϑ, χ〉H (6.3)

where ξ ∈ β(χ). Besides, define

ρM(η) =
∫ ∞

0

ν(σ)||η(σ)||2H dσ +
∫ ∞

0

µ(σ)||∇η(σ)||2H3 dσ

and consider equation (3.10) in the strong sense, i.e., almost everywhere in I×Ω× IR+.
Multiply that equation by νη, then take the gradient of both sides and multiply by
µ∇η, add the resulting equations and integrate on Ω× IR+. This procedure yields

1
2
d

dt
ρM(η) = −1

2

∫ ∞

0

ν(σ)
d

dσ
||η(σ)||2H dσ − 1

2

∫ ∞

0

µ(σ)
d

dσ
||∇η(σ)||2H3 dσ

+
∫ ∞

0

ν(σ)〈ϑ, η(σ)〉H dσ +
∫ ∞

0

µ(σ)〈∇ϑ,∇η(σ)〉H3 dσ. (6.4)

Using (K4) and performing an integration by parts, we have that∫ ∞

0

ν(σ)
d

dσ
||η(σ)||2H dσ +

∫ ∞

0

µ(σ)
d

dσ
||∇η(σ)||2H3 dσ ≥ δρM(η). (6.5)

From (2.3) and (H4)

κ〈λ′(χ)ϑ, χ〉H ≤ κΛ2
0

2m1
||ϑ||2H +

κm1

2
||χ||2H . (6.6)

Choose then κ = m1/Λ2
0 (if Λ0 = 0 then κ can be chosen equal to 1). Adding (6.2)-(6.4),

and taking (H11) and (6.5)-(6.6) into account, we infer

d

dt

(
||ϑ||2H + κ||χ||2H + ||∇χ||2H3 + ρM(η) + 2

∫
Ω

φ(χ)− 2
∫

Ω

γ̂(χ)
)

≤−
(
||ϑ||2H + κm1||χ||2H + 2κ||∇χ||2H3 + δρM(η) + 2ε̄κ

∫
Ω

φ(χ)− 2ε̄κ
∫

Ω

γ̂(χ)
)

+ 2κ|Ω|m2 + 2||f ||H ||ϑ||H (6.7)

for every ε̄ ≤ ε0. In force of (H12), set, for any t ≥ τ

Φ2(t) =||ϑ(t)||2H + κ||χ(t)||2H + ||∇χ(t)||2H3 + ρM(ηt)

+ 2
∫

Ω

φ(χ(t))− 2
∫

Ω

γ̂(χ(t)) + 2|Ω|L

and let
ε = min{κε0, 1,m1, 2κ, δ}
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and choose
ε̄ =

ε

2κ
.

Denoting L0 = 2ε|Ω|L+ 2κ|Ω|m2, m2 being fixed by the choice of ε̄, we get to

d

dt
Φ2(t) + εΦ2(t) ≤ L0 + 2||f(t)||HΦ(t) (6.8)

for almost any t ≥ τ . Exploiting Lemma 2.4, and recalling (6.1), inequality (6.8) entails

Φ2(t) ≤ 2Φ2(τ) e−ε(t−τ) +K1 (6.9)

for any t ≥ τ , with

K1 =
2L0

ε
+

4eεF

(1− e−ε/2)2
.

Notice that, in view of (3.17), as z0 = (ϑ0, χ0, η0) ∈ Bφ(0, R),

Φ2(τ) ≤ C1(R) = 2R+ max{1, κ, 2Γ}R2 + 2|Ω|L+ |Ω| |γ(0)|
Γ

. (6.10)

Denote

Ψ2(t) =||ϑ(t)||2H + κ||χ(t)||2H + ||∇χ(t)||2H3 + ||ηt||2M

+ 2
∫

Ω

φ(χ(t))− 2
∫

Ω

γ̂(χ(t)) + 2|Ω|L

for any t ≥ τ , and repeat the same arguments leading to (6.8), the only difference being
that we have to take the inner product in M of the strong version of equation (3.10)
with η in place of (6.4) (see also Section 4). The result is the following inequality, similar
to (6.8).

d

dt
Ψ2 + εΨ2 ≤ L0 + 2||f ||HΨ + 2

∫ ∞

0

µ(σ)〈η(σ), ϑ〉H dσ (6.11)

for almost any t ≥ τ . On the other hand, recalling (K5) and (2.3), we have

2
∫ ∞

0

µ(σ)〈η(σ), ϑ〉H dσ ≤ ε

2
||η||2M +

2a0

ε
||ϑ||2H ≤ ε

2
Ψ2 +

2a0

ε
Φ2. (6.12)

Thus (6.9)-(6.12) entail

d

dt
Ψ2(t) +

ε

2
Ψ2(t) ≤ K2 + 2||f(t)||HΨ(t) + C2(R)e−ε(t−τ) (6.13)

for almost any t ≥ τ , where we set

K2 = L0 +
2a0K1

ε
and C2(R) =

4a0C1(R)
ε

.
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Lemma 2.4 applied to (6.13) gives

Ψ2(t) ≤ 2Ψ2(τ) e−(ε/2)(t−τ) +K3 + 2C2(R)
∫ t

τ

e−ε(y−τ)e−(ε/2)(t−y) dy

≤ 2
(

Ψ2(τ) +
2C2(R)

ε

)
e−(ε/2)(t−τ) +K3 (6.14)

for any t ≥ τ , with

K3 =
4K2

ε
+

4e(ε/2)F

(1− e−ε/4)2
.

Notice that (6.10) holds for Ψ as well, hence, setting

C3(R) = 2
(
C1(R) +

2C2(R)
ε

)
and M = max{1, 1/κ}, we rewrite (6.14) as

||Uf (t, τ)z0||2H ≤MΨ2(t) ≤MC3(R) e−(ε/2)(t−τ) +MK3.

Choosing R0 = 2MK3, (3.18) is satisfied for

t∗ = max
{

0,
2
ε

log
C3(R)
K3

}
.

Finally, addition of (6.2) and (6.4), and integration from τ to t, lead to

2
∫ t

τ

||∂tχ(y)||2H dy ≤ Φ2(τ) + 2
∫ t

τ

||f(y)||HΦ(y) dy.

Hence, if F is a bounded subset of L1(IR,H), then (3.19) follows at once from (6.10).
Consider now the case ν0 = −1, corresponding to assumption (1.2), together with

|ΓD| > 0 and (K6). In light of Remark 3.6, we work in M̃ rather than in M. Arguing
as in the former case (cf. (6.2)-(6.6), and notice that we no longer have the cancellation
of the term

∫
ν〈η, ϑ〉H), we get

d

dt

(
||ϑ||2H + κ||χ||2H + ||∇χ||2H3 + ||η||2M̃ + 2

∫
Ω

φ(χ)− 2
∫

Ω

γ̂(χ)
)

≤−
(

(2− `)||ϑ||2H + κm1||χ||2H + 2κ||∇χ||2H3 + δ||η||2M̃ + 2ε̄κ
∫

Ω

φ(χ)− 2ε̄κ
∫

Ω

γ̂(χ)
)

+ 2κ|Ω|m2 + 2||f ||H ||ϑ||H + 2
∫ ∞

0

ν(σ)||η(σ)||H ||ϑ||H dσ. (6.15)

Here we made the finer choice κ = m1(2− `)/Λ2
0 in (6.6), having set

` = 1− 2δ0
δ0 + δ

.
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Observe now that, due to (2.2)-(2.3) and (K6),

2
∫ ∞

0

ν(σ)||η(σ)||H ||ϑ||H dσ ≤ (2− 2`)||ϑ||2H +
a0

2− 2`

∫ ∞

0

ν(σ)||η(σ)||2H dσ

≤ (2− 2`)||ϑ||2H +
δ0

1− `
||η||2M̃

= (2− 2`)||ϑ||2H +
δ + δ0

2
||η||2M̃. (6.16)

Thus, collecting (6.15)-(6.16) we conclude that

d

dt

(
||ϑ||2H + κ||χ||2H + ||∇χ||2H3 + ||η||2M̃ + 2

∫
Ω

φ(χ)− 2
∫

Ω

γ̂(χ)
)

≤−
(
`||ϑ||2H + κm1||χ||2H + 2κ||∇χ||2H3 +

δ − δ0
2

||η||2M̃ + 2ε̄κ
∫

Ω

φ(χ)− 2ε̄κ
∫

Ω

γ̂(χ)
)

+ 2κ|Ω|m2 + 2||f ||H ||ϑ||H + 2
∫ ∞

0

ν(σ)||η(σ)||H ||ϑ||H dσ.

Choosing now ε properly (mimicking the former case), we find a differential inequality
like (6.8), with the difference that in this case Φ is equivalent to the norm of (ϑ, χ, η) in
H. Hence the proof is carried out by Lemma 2.4, and by an estimate similar to (6.10).

7. Proof of Proposition 3.8

Taking the notation of Section 4 into account, let us consider equation (4.2) and multiply
both sides by −∆χ. Integrating the resulting equation over Ω× (τ, t), it follows

1
2
||∇χ(t)||2H3 +

∫ t

τ

||∆χ(y)||2H dy

=
1
2
||∇χ0||2H3 +

∫ t

τ

〈(χ1(y))3 − (χ2(y))3,∆χ(y)〉H dy

−
∫ t

τ

〈γ(χ1(y))− γ(χ2(y)),∆χ(y)〉H dy

−
∫ t

τ

〈λ0ϑ(y),∆χ(y)〉H dy

=
1
2
||∇χ0||2H3 +

3∑
j=1

Ij(t). (7.1)

Recalling (H3), thanks to Lemma 2.1, we easily obtain

I2(t) + I3(t) ≤ c

(∫ t

τ

||χ(y)||2H + ||ϑ(y)||2H dy

)
+

1
4

∫ t

τ

||∆χ(y)||2H dy. (7.2)
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On the other hand, still using Lemma 2.1, we get

I1(t) ≤
∫ t

τ

||(χ1(y))3 − (χ2(y))3||2H dy +
1
4

∫ t

τ

||∆χ(y)||2H dy. (7.3)

Observe now that, owing to Hölder inequality and Lemma 2.2,∫ t

τ

||(χ1(y))3 − (χ2(y))3||2H dy

≤ c

∫ t

τ

∫
Ω

(
|χ1|4 + |χ2|4 + 1

)
|χ|2

≤ c

∫ t

τ

(
||χ1(y)||4L6(Ω) + ||χ2(y)||4L6(Ω) + 1

)
||χ(y)||2L6(Ω) dy

≤ c

∫ t

τ

(
||χ1(y)||4V + ||χ2(y)||4V + 1

)
||χ(y)||2V dy (7.4)

where c indicates a positive constant which may vary from line to line. Then, on account
of bound (3.18), we infer∫ t

τ

||(χ1(y))3 − (χ2(y))3||2H dy ≤ c

∫ t

τ

||χ(y)||2V dy. (7.5)

Combining (7.2)-(7.3), (7.5) with (7.1), we deduce

1
2
||∇χ(t)||2H3 +

1
2

∫ t

τ

||∆χ(y)||2H dy

≤ 1
2
||∇χ0||2H3 + c

∫ t

τ

(
||χ(y)||2V + ||ϑ(y)||2H

)
dy. (7.6)

Finally, thanks to (3.15), from (7.6) we derive (3.21).

8. Proof of Theorem 3.9

Consider again the Faedo-Galerkin approximating scheme used in Section 5 and observe
that a priori estimates (5.5)-(5.8) hold in this case as well. Of course, (H4) and (H16)
do not allow to recover (5.9). Anyway, following the proof of Lemma 3.2 in [11], we can
obtain the bounds

||β(χn)||L2(I,L3/2(Ω)) ≤ c (8.1)

||χn||L2(I,W 2,3/2(Ω)) ≤ c (8.2)

for some c > 0 independent of n. Estimates (5.5)-(5.7), and (8.1)-(8.2) lead to the
convergences

ϑn(t) → ϑ weak∗ in L∞(I,H) (8.3)
χn → χ weak∗ in L∞(I, V ), weak in H1(I,H) ∩ L2(I,W 2,3/2(Ω)) (8.4)
β(χn) → ξ weak in L2(I, L3/2(Ω)) (8.5)
ηn → η weak∗ in L∞(I,M) (8.6)
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and we can still deduce the strong convergence (5.11) which implies ξ = β(χ). In
addition, (H4), (H16), (5.11), and (8.3)-(8.4) entail

λ′(χn)ϑn → λ′(χ)ϑ weak in L2(I, L3/2(Ω)) (8.7)
λ′(χn)∂tχn → λ′(χ)∂tχ weak in L1(I, L3/2(Ω)) (8.8)

and using Fatou lemma and (5.8), we infer (3.27).
Summing up, by (5.8), (5.11), and (8.3)-(8.8), we can easily show that (ϑ, χ, η)

fulfills (3.2), (3.7)-(3.12), and (3.22)-(3.27), whenever β is Lipschitz continuous. If β
satisfies (H1)-(H2) only, then we can argue as in Subsection 5.5, taking into account that
β induces a maximal monotone operator from L2(I, L3(Ω)) to L2(I, L3/2(Ω)) (cf. proof
of Theorem 2.3 in [11]).

Regarding uniqueness, observe that the pair (χ, ξ) solves the Cauchy-Neumann
problem (3.7), (3.9), (3.12), (3.24). If χ0 ∈ L∞(Ω), taking advantage of Lemma 3.1
and Lemma 3.3 in [12], we deduce that (χ, ξ) enjoys (3.4) and (3.28). Then, thanks to
the boundedness of χ, to get uniqueness we can just exploit the same argument used in
Section 4 to deduce (3.15) without using the boundedness of λ′ (cf. (H5)). Also, we can
take advantage of the contracting estimate (5.10) to prove that (3.1), (3.5), and (3.13)
are satisfied.

9. Proof of Theorem 3.10

Also in this proof we suppose ΓD ≡ ∅, just for the sake of simplicity. Theorems 3.2 and
3.3 allow us to construct a family {(ϑε, χε, ξε, ηε)} of solutions to problem P from which
we can extract a subsequence converging to the solution we are looking for. Suppose
for the moment that β is a Lipschitz continuous function and take {χ0ε} such that

χ0ε ∈ V ∀ ε > 0 (9.1)∫
Ω

φ(χ0ε) ≤
∫

Ω

φ(χ0) ∀ ε > 0 (9.2)

χ0ε → χ0 in H. (9.3)

For the existence of a sequence of this sort, the reader is referred to Section 3 of [15].
Thanks to our assumptions and (9.1)-(9.2), Theorem 3.3 applies and we obtain a

unique quadruplet (ϑε, χε, ξε, ηε) which solves P according to Definition 3.1 with χ0

substituted with χ0ε.
Set now ωε = ϑε + λ(χε) and recalling (4.1)-(4.3), observe that

〈〈∂tωε, v〉〉V + 〈ωε, v〉H = −
∫ ∞

0

ν0ν(σ)〈ηε(σ), v〉H dσ

−
∫ ∞

0

µ(σ)〈∇ηε(σ),∇v〉H3 dσ + 〈λ(χε), v〉H + 〈f, v〉H ∀ v ∈ V, a.e. in I (9.4)

∂tχε −∆χε + ξε = γ(χε) + λ′(χε) (ωε − λ(χε)) a.e. in Ω× I (9.5)∫ ∞

0

ν(σ)〈∂tηε(σ) + ∂sηε(σ), ζ(σ)〉H dσ −
∫ ∞

0

µ(σ)〈∂tηε(σ) + ∂sηε(σ),∆ζ(σ)〉H dσ
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=
∫ ∞

0

ν(σ)〈ωε − λ(χε), ζ(σ)〉H dσ −
∫ ∞

0

µ(σ)〈ωε − λ(χε),∆ζ(σ)〉H dσ

∀ ζ ∈ L2
ν(IR+,H) ∩ L2

µ(IR+,W ), a.e. in I. (9.6)

Let us multiply equation (9.5) by χε and integrate over Ω. This yields

1
2
d

dt
||χε||2H =− ||∇χε||2H3 − 〈ξε, χε〉H + 〈γ(χε), χε〉H + 〈λ′(χε)ωε, χε〉H . (9.7)

Using (H2)-(H3) we get at once that

−〈ξε, χε〉H ≤ 0 (9.8)

and
〈γ(χε), χε〉H ≤ c(1 + ||χε||2H) (9.10)

whereas (H4)-(H5) and (2.3) imply

〈λ′(χε)ωε, χε〉H ≤ c
(
||ωε||2H + ||χε||2H

)
. (9.11)

Here and in the sequel of the proof, c stands for a generic positive constant independent
of ε.

Thus, owing to (9.8)-(9.11), equality (9.7) gives

d

dt
||χε||2H + ||∇χε||2H3 ≤ c

(
||ωε||2H + ||χε||2H

)
(9.12)

and integrating (9.12) with respect to time from τ to t ≤ T , we get

||χε(t)||2H +
∫ t

τ

||χε(y)||2V dy ≤ ||χ0ε||2H + c

(∫ t

τ

||ωε(y)||2H dy +
∫ t

τ

||χε(y)||2H dy

)
. (9.13)

Regarding the remaining equations (9.4) and (9.6), we proceed formally along the
lines of Section 4. Of course, the whole procedure can be made rigorous by using a
regularization argument like the one used in Section 4. Taking ωε in (9.4) and arguing
as in Section 4, we obtain (see (4.11))

d

dt
||ωε||2H ≤(k0 + a0 − 1)||ωε||2H + Λ2

0||χε||2H + ||ηε||2M

− 2
∫ ∞

0

µ(σ)〈ηε(σ), ωε〉V dσ + 2||f ||H ||ωε||H . (9.14)

Then, consider equation (9.6) in the stronger form

〈∂tηε + ∂sηε, ζ〉M = 〈ωε − λ(χε), ζ〉M ∀ ζ ∈M, a.e. in I
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and let ζ = ηε. We deduce the identity (cf. (5.3))

1
2
d

dt
||ηε||2M = −〈∂sηε, ηε〉M

+
∫ ∞

0

ν(σ)〈ηε(σ), ωε〉Hdσ +
∫ ∞

0

µ(σ)〈ηε(σ), ωε〉V dσ

−
∫ ∞

0

ν(σ)〈ηε(σ), λ(χε)〉Hdσ −
∫ ∞

0

µ(σ)〈ηε(σ), λ(χε)〉V dσ. (9.15)

Adding (9.14) and (9.15) together, since 〈∂sηε, ηε〉M ≥ 0, we infer the inequality

1
2
d

dt

(
||ωε||2H + ||ηε||2M

)
≤− ||ωε||2H −

∫ ∞

0

ν(σ)〈ηε(σ), ωε〉H dσ

−
∫ ∞

0

µ(σ)〈∇ηε(σ),∇ωε〉H3 dσ − 〈λ(χε), ωε〉H

+
∫ ∞

0

ν(σ)〈ηε(σ), ωε〉H dσ +
∫ ∞

0

µ(σ)〈ηε(σ), ωε〉V dσ

−
∫ ∞

0

ν(σ)〈ηε(σ), λ(χε)〉H dσ −
∫ ∞

0

µ(σ)〈ηε(σ), λ(χε)〉V dσ. (9.16)

Set now, for any t ∈ I,
Ψ2

ε(t) = ||ωε(t)||2H + ||ηt
ε||

2
M

and observe that from inequality (9.16), in force of (H5), we deduce

d

dt
Ψ2

ε(t) ≤ c
(
Ψ2

ε(t) + ||χε(t)||2V
)

for a.e. t ∈ I.

Hence, Lemma 2.3 entails

Ψ2
ε(t) ≤ 2ec(T−τ)

(
||ω0ε||2H + ||η0||2M

)
+ 2cec(t−τ)

∫ t

τ

||χε(y)||2V dy ∀ t ∈ I (9.17)

where ω0ε = ϑ0 + λ(χ0ε). Combining (9.13) with (9.17), recalling (H5) and (9.3), and
using Lemma 2.3, we easily get the bound

||ϑε||L∞(I,H) + ||ηε||L∞(I,M) + ||χε||L∞(I,H)∩L2(I,V ) ≤ c. (9.18)

Thus, thanks to (9.18), there exists a subsequence {εn} converging to 0 such that

ϑεn
→ ϑ weak∗ in L∞(I,H) (9.19)

χεn
→ χ weak∗ in L∞(I,H), weak in L2(I, V ) (9.20)

ηεn
→ η weak∗ in L∞(I,M). (9.21)
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To conclude, we need a uniform bound for ||ξε||L2(I,H) which can be achieved arguing
as in Section 3 of [15]. More precisely, we observe that

∂tχε −∆χε + ξε = γ(χε) + λ′(χε)ϑε a.e. in Ω× I. (9.22)

Then we multiply both members of (9.5) by ξε and we integrate over Ω × [τ, t] with
t ∈ I. Taking advantage of (H1)-(H5), (3.7), and (9.2), we obtain (see inequality (3.10)
in [15])∫

Ω

φ(χε(t)) +
1
2

∫ t

τ

||ξε(y)||2H dy ≤ c
(
||ϑε||2L2(I,H) + ||χε||2L2(I,H)

)
+
∫

Ω

φ(χ0ε) (9.23)

for any t ∈ I. Thus, owing to (9.2) and (9.18), from (9.23) we deduce the bound∫
Ω

φ(χε(t)) +
1
2

∫ t

τ

||ξε(y)||2H dy ≤ c. (9.24)

Consequently, we have, up to a subsequence still named {εn},

ξεn
→ ξ weak in L2(I,H) (9.25)

and χ enjoys (3.27) thanks to Fatou lemma. Also, (3.7) easily follows.
Equation (9.22) implies the variational identity

〈〈∂tχεn
, v〉〉V + 〈∇χεn

,∇v〉H3 + 〈ξεn
, v〉H = 〈γ(χεn

), v〉H + 〈λ′(χεn
)ϑεn

, v〉H (9.26)

for any v ∈ V and almost everywhere in I. Then, by comparison in (9.26), we recover

||∂tχεn
||L2(I,V ∗) ≤ c. (9.27)

Hence, we have
∂tχεn

→ ∂tχ weak in L2(I, V ∗) (9.28)

and, owing to (9.20) and (9.28), a well-known compactness result implies

χεn
→ χ in C0(I,H). (9.29)

We now have all the ingredients, namely (9.19)-(9.21), (9.25), (9.28)-(9.29), to show that
(ϑ, χ, η, ξ) enjoys the properties stated in Theorem 3.10. In particular, to get (3.34) we
simply integrate its approximate version with respect to time over [τ, t], t ∈ (τ, T ]. With
the help of (H4)-(H5), (9.19)-(9.21), we can pass to the limit in the integrated equation.
Property (3.30) can be deduced by comparison in the limit equation, thanks to (H4)-
(H5) and (3.33). Then, the limit equation can be differentiated with respect to time
and this gives (3.34). If β satisfies (H1)-(H2) only, then we can reproduce the argument
sketched in Subsection 5.5.

Whenever λ satisfies (H15), a careful analysis of the proof of (3.15) (see Section 4)
shows that the bound C0 is no longer needed. Hence, as a consequence of (3.15), the
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approximating family {ωε, χε, ηε} satisfies a uniform contraction estimate. This allows
us to conclude that the limit solution enjoys (3.1), (3.5)-(3.6), (3.11) and (3.13).

Appendix

THE MODEL EQUATION

We consider a homogeneous rigid heat conductor belonging to the class of simple
materials which occupies a bounded domain Ω (see, e.g., [18]). As a consequence, at
any point x ∈ Ω, the evolution is described by a causal input-output system whose
input-space is independent of the nature of the material. Because of rigidity, each input
process is given by the pair of functions (∂tθ,∇θ) defined on I = [τ, T ], where θ > 0 is
the absolute temperature. The state-space at each point x of such a system must reflect
the features of the material itself.

Here we consider a rigid heat conductor which undergoes some solid-liquid transi-
tion at low temperature. Thus, we are forced to assume that the internal energy and
heat flux depend on temperature through hereditary constitutive equations, in order to
account for the second-sound effect literature (see, e.g., [26-27] and references therein).
In addition, we assume that the transition process is macroscopically described by a
non-conserved phase variable χ which plays the role of an internal variable for the
material. Accordingly, the state of the system at time t is represented by the vector
(χ(t),∇χ(t), θ(t), θt), where θt is a causal function, called past history of the temperature
up to t, defined by

θt(s) = θ(t− s) s ≥ 0.

Note that, unlike other models considered in literature (see, e.g., [16]), we neglect mem-
ory effects in the phase variable. As we shall see, this choice is compatible with ther-
modynamics.

When a heat source f is given, the evolution of the temperature in a rigid body is
governed by the energy balance equation

∂te+ div q = f

jointly with proper constitutive equations for the internal energy e, which is a state
function, and the heat flux vector q. Here, paralleling the procedure followed in [13], we
assume that the internal energy is the sum of a function of (χ,∇χ) and a function of
(θ, θt), namely,

e(χ,∇χ, θ, θt) = G(χ,∇χ) +G1(θ, θt) (A.1)

where G and G1 are suitable smooth functions. We also assume that the heat flux
vector q is independent of the phase-field.

According to well-established theories of heat flow with memory (see [10,23]), q
depends on the history of the temperature gradient, that is,

q = Q(θ, θt,∇θt). (A.2)

Furthermore, a constitutive equation which describes the phase kinetics is needed. To
take into account phase diffusion and relaxation, the evolution equation is required to
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involve time and space derivatives of χ, as in standard phase-field models. Such models
are mainly due to Cahn and coworkers [2,9], and are physically based on the assumption
that χ = 0 or χ = 1 in most of the conductor, and the two phases are separated by
a thin diffusive interface. In particular, the expressions of the internal and free energy
densities contain a term ε|∇χ|2, ε > 0, representing the interfacial energy contribution.
In view of this consideration, (A.1) reads

e = G0(χ) +G1(θ, θt) + ε|∇χ|2 (A.3)

for some smooth function G0. Following standard variational procedures (see, e.g., [34]),
the following rate type constitutive equation for ∂tχ is obtained

∂tχ = Σ(χ, θ, θt) + ε∆χ (A.4)

where Σ is a function to be chosen properly (see below).
This description differs from the classical Stefan problem with phase relaxation,

where the interfacial energy is neglected, and the indicator function I(χ) is present in
the expression of the free energy, to make χ assume values inside the interval [0, 1] only.

Constitutive functions G0, G1, Q, and Σ cannot be arbitrarily chosen; indeed,
they have to satisfy the Second Principle of Thermodynamics. We recall that, after
introducing the Helmholtz free energy density ψ and the entropy density h, the Second
Principle is stated in a local form by the Clausius-Duhem inequality

∂tψ + h∂tθ +
q · ∇θ
θ

≤ 0 (A.5)

where ψ and h are state functions, related to the internal energy e by the standard
relation

e = ψ + θ h. (A.6)

It is worth noting that deformations are negligible because of rigidity and the power of
internal stresses does not appear into (A.5).

In order to check thermodynamic compatibility, by means of (A.5)-(A.6), we follow
a local procedure. Due to the nonlocal character of the interfacial energy, we are forced
to consider the limit case ε → 0. In particular, we must replace ψ, h, and e by their
limits as ε→ 0, namely, ψ0, h0, and e0. Therefore, from (A.3) we obtain

e0(χ, θ, θt) = G0(χ) +G1(θ, θt). (A.7)

In spite of this, all compatibility results still hold, even if a nonlocal interfacial energy
term is added to e0 a posteriori. Since the free energy ψ0 depends on time through the
state variables χ(t), θ(t) and θt, we get

∂tψ0(t) =
∂ψ0

∂θ
(χ, θ, θt) ∂tθ +

∂ψ0

∂χ
(χ, θ, θt) ∂tχ+ δψ0(χ, θ, θt| ∂tθ

t)

where δψ0(χ, θ, θt| ∂tθ
t) is the Fréchet differential of ψ0 with respect to θt. This approach

is closely related to the one followed in [23], where the functional depends on the summed
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past history rather than temperature, as in the present case. Using this fact, (A.5)
becomes (

∂ψ0

∂θ
+ h0

)
∂tθ +

∂ψ0

∂χ
Σ + δψ0 +

∇θ ·Q
θ

≤ 0. (A.8)

From the arbitrariness of the heat supply f , we can choose the values of the input
process (∂tθ,∇θ) independently of the state variables, so that inequality (A.8) implies
the following relations

h0 = −∂ψ0

∂θ
(A.9)

δψ0 +
∂ψ0

∂χ
Σ ≤ 0 (A.10)

∇θ ·Q
θ

≤ 0 (A.11)

which are thermodynamic restrictions on the constitutive equations (A.2)-(A.4). In
view of (A.6) and (A.7), equality (A.9) can be used to find a general expression of the
free energy ψ0. Indeed, it can be obtained as the solution of the differential equation

ψ0 − θ
∂ψ0

∂θ
= G0(χ) +G1(θ, θt) .

Letting θc denote the critical temperature at which transition occurs, a straightforward
calculation leads to

ψ0(χ, θ, θt) = −θΛ(θ, θt) + θB(χ)− (θ − θc)λ(χ) (A.12)

where Λ, and λ are two suitable smooth functions such that

G0(χ) = θcλ(χ) and G1(θ, θt) = θ2
∂Λ
∂θ

(θ, θt)

and B is an arbitrary function whose properties will be discussed below. In order to
satisfy (A.10), we assume for simplicity

δψ0 ≤ 0 (A.13)
∂ψ0

∂χ
Σ ≤ 0. (A.14)

It is easy to check that the following choice of Σ satisfies (A.14)

Σ(χ, θ, θt) = − 1
mθ

∂ψ0

∂χ
(χ, θ, θt) (A.15)

where m > 0 is the reciprocal of the mobility constant. In connection with (A.12) and
(A.15), relation (A.4) becomes

m∂tχ+B′(χ) =
(

1− θc

θ

)
λ′(χ) +m0∆χ. (A.16)
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with m0 = mε. Such an equation is a thermodynamically compatible constitutive
relation governing the evolution of the phase variable χ, and represents a generalization
to hereditary conductors of a phase-field model proposed in recent years by Penrose and
Fife [31], on the basis of thermodynamical arguments.

Since we are mainly interested in phase transition phenomena involving tempera-
tures close to the critical value θc, we restrict our attention to small variations of the
absolute temperature around θc, and small temperature gradients. As a consequence,
linearizing with respect to the temperature variable, the local state variables of the
material can be represented by (χ, ϑ, ϑt), where

ϑ(x, t) =
θ(x, t)− θc

θc

is the temperature variation field, and ϑt represents its past history up to t. Accordingly,
we can reasonably suppose that the temperature dependent part of the internal energy
G1 and the heat flux Q depend linearly on (ϑ, ϑt) and ∇ϑt, respectively. In particular,
they are assumed here to obey the linear hereditary laws arising from the linearized
theory of Gurtin and Pipkin [23]. Therefore, we have

e(x, t) = ec + cvθcϑ(x, t) +
∫ ∞

0

a(s)ϑt(x, s) ds+ θc λ(χ(x, t)) (A.17)

q(x, t) = −
∫ ∞

0

k(s)∇ϑt(x, s) ds. (A.18)

Usual properties of the internal energy compel the specific heat cv to be positive. More-
over, as shown in [19], thermodynamic restrictions can be expressed in terms of the
Fourier transform of the memory kernels a and k. If they are both assumed to be
summable, as usual, these conditions are satisfied if and only if

kc(ω) > 0 and ωas(ω) > 0 ∀ω 6= 0 (A.19)

where the subscripts c and s stand for the cosine and sine half-range Fourier transforms,
respectively.

In particular, (A.19) is satisfied if a and k are positive and monotone decreasing.
Recalling the Introduction, suppose now that a is positive, bounded and monotonically
increasing. In this case, the same thermodynamic argument yields

kc(ω) > 0 and a(0) + a′c(ω) > 0 ∀ω ∈ IR (A.20)

Indeed, by virtue of well-known results in the theory of Fourier transforms, when a is
summable, as k, then

a(0) + a′c(ω) = ωas(ω).

Now, it is easy to check that conditions (A.20) are satisfied when (K1)-(K3) hold. In
particular, accounting for exponential kernels, namely

k(s) = k0 exp(−δs) and a(s) = a0 + α(1− exp(−δs)) ∀ s ≥ 0
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we have

kc(ω) =
k0δ

ω2 + δ2
and a(0) + a′c(ω) = a0 +

αδ2

ω2 + δ2

and (A.20) follows for all real ω and for arbitrary positive constants k0, a0, α, δ.
Finally, applying the linearization scheme to (A.16), the resulting constitutive equa-

tion for the phase-field kinetics reads

m∂tχ−m0∆χ+B′(χ) = ϑλ′(χ). (A.21)

A similar situation has been investigated by Caginalp [8] within the framework of the
standard phase-field model. It is convenient to assume a quite general expression for B,
namely,

B(χ) = φ(χ)− γ̂(χ)

where φ is a proper convex and lower semicontinuous function with φ(0) = 0 (e.g., the
indicator function of [0, 1]) and γ̂ is a smooth function with quadratic growth at most.

This choice of B may allow, for instance, to avoid that χ takes values outside the
unit interval [0, 1]. Setting γ = γ̂′ and β = ∂φ, equation (A.19) becomes the differential
inclusion

m∂tχ−m0∆χ+ β(χ) 3 γ(χ) + ϑλ′(χ). (A.22)
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[7] H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces

de Hilbert, North-Holland Math. Stud. 5, North-Holland, Amsterdam (1973)

[8] G. Caginalp, An analysis of a phase field model of a free boundary, Arch. Rational Mech.

Anal. 96, 205–245 (1985)

[9] J.W. Cahn, J.E. Hilliard, Free energy of a non uniform system. I. Interfacial free energy, J.

Chem. Phys. 28, 258–267 (1957)

[10] B.D. Coleman, M.E. Gurtin, Equipresence and constitutive equations for rigid heat conduc-

tors, Z. Angew. Math. Phys. 18, 199–208 (1967)

[11] P. Colli, Ph. Laurençot, Existence and stabilization of solutions to the phase-field model with

memory, J. Integral Equations Appl. 10, 169–194 (1998)
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