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Abstract

In this article, we try to realize the best compromise between in-sample goodness of fit and
out-of-sample predictability of sovereign defaults. To do this, we use a new regression-
tree based approach that signals impending sovereign debt crises whenever pre-selected
indicators exceed specific thresholds. Using data from emerging markets and Greece,
Ireland, Portugal and Spain (GIPS) over the period 1975–2010, we show that our model
significantly outperforms existing competing approaches (logit, stepwise logit, noise-
to-signal ratio and regression trees), while balancing in- and out-of-sample performance.
Our results indicate that illiquidity (high short-term debt to reserves) and default history,
together with real GDP growth and US interest rates, are the main determinants of both
emerging market country defaults and the recent European sovereign debt crisis.

I. Introduction

The recent sovereign debt crisis in the Eurozone revived the debate on ‘forecasting vs. policy
dilemma’ introduced in Clements and Hendry (1998) and on the gap between models used
for forecasting and models used for policy-making. Abundant empirical evidence proves
that simple models are usually better than complex models in terms of forecast accuracy, but
the latter provide a better description of past data. How should we combine the in-sample
goodness of fit and out-of-sample predictability in the context of sovereign default? How
should we evaluate model performance when jointly considering in- and out-of sample
accuracy? Our objective is to give an answer to these questions by inspecting the sovereign
defaults in emerging markets occurring between 1975 and 2010, and the recent Eurozone
sovereign debt crisis.

The questions we face in this article have achieved new relevance given the recent
global financial crisis for different decision-maker categories. International investors, who
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are generally more focused on pure forecasting (i.e. expectation of risk/return profile),
are showing different risk tolerance levels (from low to high risk aversion) depending
on the increased sensitivity towards macroeconomic conditions after the Greek crisis.1

Policy makers are concerned with realizing optimal early warning systems (EWSes) to
provide risk signals with a sufficient lead time to implement adequate policy measures. In
this perspective, first, it is preliminarily essential that stylized facts on crisis occurrence
are well established based on past data; second, the EWSes should be conceived with
the main objective of minimizing false alarms (type-II errors) while maintaining a high
predictive ability of impending crises, rather than with the objective of controlling for
missing defaults (type-I errors).The costs associated with false alarms are in fact potentially
huge in terms of negative market sentiment, international reputation, contagion effects and
political interventions, which translates into a great concern towards type-II errors.

The literature on sovereign defaults is extensive in terms of early warning indicators
and model specification. On the selection of best crisis predictors, the empirical evidence
suggests that the probability of a debt crisis is positively correlated with higher levels of
total (McFadden et al., 1985) and short-term debt (Detragiache and Spilimbergo, 2001),
negatively correlated with GDP growth (Sturzenegger, 2004), and the level of international
reserves (Dooley, 2000). Moreover, defaults are also related to more volatile and persistent
output fluctuations (Catão and Sutton, 2002), less trade openness (Cavallo and Frankel,
2008), political conditions (Manasse, Roubini and Schimmelpfennig, 2003), previous his-
tory of defaults (Reinhart, Rogoff and Savastano, 2003) and contagion (Eichengreen, Rose
and Wyplosz, 1996). Taken together, these articles contribute to our understanding of
potential predictors of debt crises, which in turn, can be classified as follows: (i) insol-
vency risk , which includes capital and current account variables (international reserves,
capital flows, short-term capital flows, foreign direct investment, real exchange rate, current
account balance and trade openness) and debt variables (public foreign debt, total foreign
debt, short-term foreign debt and foreign aid); (ii) illiquidity risk , proxied by liquidity
variables (short-term debt to reserves, debt service relative to reserves and/or exports,
M2 to reserves); (iii) macroeconomic risk , measured by macroeconomic variables (real
GDP growth, inflation rate, exchange rate overvaluation, and international interest rates);
(iv) political risk , measured by institutional/structural factors (international capital mar-
ket openness, financial liberalization, degree of political instability, political rights and
default history;2 (v) systemic risk , namely the contagion variable usually proxied by the
number/proportion of other debt crises3 while focusing on the geographical localization
of the countries.4

As for model specification, different approaches have been explored based on the
philosophical assumptions about the nature of sovereign default. One approach is based

1
De Grauwe and Ji (2012) found evidence that a large part of the surge in the government bond spreads of Greece,

Ireland, Portugal and Spain (GIPS) during 2010–11 was a result of negative market sentiments that have become
very strong since the end of 2010.

2
In this perspective, default history assumes a signalling role about the credibility of a sovereign to meet creditor

needs, and this is coherent with the debt intolerance view introduced in Reinhart et al. (2003).
3
This definition is in line with Eichengreen et al. (1996) who define contagion as a case where knowing that

there is a crisis elsewhere increases the probability of a crisis at home, even after taking into account a country’s
fundamentals.

4
The prevalent literature assumes that contagion is regionally-based (Kaminsky and Reinhart, 2000).
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on reduced-form models, in which the default is assumed to be an inaccessible event
whose probability is specified through a stochastic intensity process (Duffie, Pedersen and
Singleton, 2003). Another approach is based on structural models, in which the default
is explicitly modelled as a triggering event based on the balance-sheet notion of solvency
(Gapen et al., 2005). A third, and in some sense parallel, perspective is given by pure statis-
tical approaches whose objective is mainly to predict defaults in a way that is only loosely
connected to the theory. Here, the literature is extensive and focuses on: (i) logit/probit
models; (ii) classification methods, namely cluster and discriminant analysis, and artificial
neural networks; (iii) signal approach, which includes the noise-to-signal ratio approach
and the regression tree analysis.

Many key studies exploring the issue of sovereign default using the three above-
mentioned statistical approaches complement our work in terms of empirical results and
methodological procedures.

With regard to logit/probit models, McFadden et al. (1985) use both specifications
and Oral et al. (1992) introduce a generalized logit model to link country risk rating and
political-economic indicators. Moreover, Ciarlone and Trebeschi (2005) apply a multi-
nomial model to develop an EWS for emerging markets over 1980–2002 predicting crises
76% of the times and raising false alarms 36% of the times. Fuertes and Kalotychou
(2006) prove that out-of-sample, simple pooled logit models outperform complex logit
specifications when using panel data.

With regard to classification methods, Frank and Cline (1971) and Taffler and Abassi
(1984) apply discriminant analysis to predict whether a country will experience debt
servicing difficulties, while Fioramanti (2008) uses artificial neural networks to realize
an EWS for sovereign debt crises.

With regard to the signal approach, Kaminsky, Lizondo and Reinhart (1998) (KLR)
introduce the noise-to-signal ratio approach, also used in Kaminsky (1998), Goldstein,
Kaminsky and Reinhart (2000) and Alessi and Detken (2011). Instead, Manasse et al.
(2003) and Manasse and Roubini (2009) propose regression tree analysis to realize EWSes
for debt crises finding that while on the one hand, regression trees show very strong crisis
prediction ability, on the other, they send out more false alarms relative to the logit model
(Manasse et al., 2003). The authors are also able to identify the following three major types
of risks (Manasse and Roubini, 2009): (i) solvency, characterized by high external debt over
GDP together with monetary or fiscal imbalances, as well as large external financing needs;
(ii) illiquidity, identified by moderate debt levels, but with short-term debt in excess of
130% of reserves coupled with political uncertainty and tight international capital markets;
and (iii) macro-exchange rate risks, which arise from the combination of low growth and
relatively fixed exchange rates. In terms of methodology, empirical analysis, data set and
results, Manasse et al. (2003) and Manasse and Roubini (2009) are the closest articles
to our work. The results obtained in our empirical analysis complement and generalize
their findings, as we offer a better explanation of the sovereign defaults that occurred over
the inspected time period, we better identify the main commonalities and differences in
sovereign debt crises, and better predict out-of-sample defaults.

Such improvements are obtained by using the new regression tree-based algorithm
introduced in Vezzoli and Stone (2007), which allows us to remove some limitations of
traditional regression trees when dealing with panel data. In fact, traditional regression
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trees do not pay attention to autocorrelations among covariates and country-specificities.
In other terms, the classical approach explores the data as if they were a collection of
independent observations in both time and spatial dimensions (e.g. the real GDP growth
measured in 2010 for Greece is completely independent from its past data as well as from
contemporaneous and past observations of the same variable measured for other countries).
The algorithm proposed by Vezzoli and Stone (2007) is instead devised to cope with the
fitting vs. forecasting paradox taking into account country-specificities by preserving the
information structure contained in the panel data.

Computationally, the procedure is in two steps: (1) in the first step, we estimate a number
of regression trees by removing one country at a time from the data set, thereby obtaining
multiple predictions (and taking into account for country-specificities); (2) in the second
step, we fit a single final regression tree (FRT) using the average of the predictions obtained
in the first step in place of the original dependent variable.

We show that our FRT is a parsimonious model, with good predictability (accuracy),
better interpretability and minimal instability. In the first step, the model is constructed
in a forward-looking basis while allowing for forecasting averaging, which is particularly
useful in improving accuracy and reducing the variance of forecasting errors, as discussed
in Fuertes and Kalotychou (2007). In the second step, the replacement of y with ŷ mitigates
the effects of noisy data on the estimation process that affect both the predictors and the
dependent variable itself.As shown in Debashis et al. (2008), this replacement is, in essence,
a sort of de-noising procedure with which the outcome should help reduce the variance in
the model selection process.

The data used in the empirical analysis are from S&P’s, World Bank’s Global Develop-
ment Finance (GDF), IMF, Government Finance Statistics database (GFS) and Freedom
House (2002), and include annual observations over 1975–2010 for 66 emerging economies
together with GIPS, the European countries that experienced an actual crisis episode and/or
exhibited a large surge in government bond spreads driven by market sentiment (De Grauwe
and Ji, 2012). We conduct a horse race of our base model with competing EWSes: (i) logit;
(ii) stepwise logit; (iii) noise-to-signal ratio, introduced in KLR; (iv) regression tree anal-
ysis, used in Manasse and Roubini (2009). The in-sample analysis is performed over the
entire time horizon 1975–2010, with 122 debt crisis episodes, while the out-of-sample anal-
ysis is carried out one-step-ahead from 1991 to 2010, including 49 debt crisis episodes,
and focusing on the models’performance during the ‘big three’crises (Mexican, Asian and
2007–2010 global financial crises).

Our results prove that short-term debt to reserves and default history are the most
significant variables in predicting a debt crisis, which basically identify: (i) episodes with
low illiquidity problems where, (a) the risk of a debt crisis is the lowest for countries with
no bad default history, while (b) the risk is high for countries with bad default history and
strong negative real GDP growth when US interest rates are low (as it is the case for the
Greek and Irish crises of 2010); (ii) episodes with high illiquidity problems and bad default
history, where the probability of default is high.

The several metrics run to assess the model accuracy in-sample show that our model
provides an accurate description of past data, and near to the best model, while out-
of-sample the diagnostics (root mean square error, Brier score, logarithmic probability
score, Diebold and Mariano (1995) test and area under the ROC curve (AUC)-based tests)
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document that our model produces the best forecasts, while also adapting to different risk
aversion targets. Interestingly, in the clinical study of major crises occurring over 1991–
2010, we find that only the so-called ‘algorithmic modelling’ approaches (FRT, regression
tree and KLR) are able to identify the common latent root of the recent global financial
crisis in the Eurozone.

Finally, to compare alternative EWSes considering both in- and out-of-sample accuracy,
we introduce a ‘two-dimensional’ loss function attaching: (a) a cost to missed defaults
(type-I errors) relative to false alarms (type-II errors); (b) a weight to in-sample relative
to out-of-sample type-I and type-II errors. In this way, we evaluate an EWS in relation
to a decision-maker’s objective function defined in the spirit of the forecasting vs. policy
dilemma. Using this new metric, we show that our classifier strongly dominates competing
EWSes while exhibiting stable accuracy. The rest of the article is organized as follows.
Section II discusses the methodology and section III describes the data. Section IV reports
the results and section V concludes.

II. Methodology

In this section, we describe the methodology used in this article, which is based on the
signal approach, first giving some preliminaries and basic notation on regression trees, and
then presenting the algorithm underlying our EWS. Next, we introduce the other competing
approaches used in the empirical analysis: (i) logit; (ii) stepwise logit and (iii) KLR.

The methodological notations we present are based on the issue of sovereign default
prediction, by letting Y be the observed indicator variable that takes the values 1 and
0 for default- and non-default, respectively, and X = (X1, X2,…, XR) be a collection of
r = 1, 2,…, R predictors. The relationship between Y and X is specified as:

yjt = f (xjt−1)+ "jt , (1)

where f (xjt−1) is an unknown functional form of predictors X measured in t −1 and param-
eterized by !: f (xjt−1) = !′xjt−1, where " is the random term for which some distributional
assumption can be specified. The objective is to estimate ! with and without making an
assumption about the random term distribution.

Regression trees

Regression trees are non-parametric (or model free) approaches that look for the best
local prediction of a response variable5 y. The data consists of R inputs and a continuous
response, Y , for each of the N observations. The algorithm needs to decide on the split-
ting variables and split points, and also what topology (shape) the tree should have. The
algorithm recursively partitions the input space S, which is the set of all possible values of
X (X ∈ S), into disjoint regions T̃ k with k = 1, 2, · · · , K . More precisely,

S⊆
K⋃

k=1

T̃ k . (2)

5
We distinguish between regression trees, when the dependent variable is continuous, and classification tree, when

the response variable is categorical.
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A tree T can be formally expressed as T (Y , X,!) with Y the vector of the dependent
variable, X = (X1, X2, · · · , XR) and ! = {T̃ k , gk}K

1 , where gk is a piecewise constant for each
k . The predictive model is given by

f (X)=
K∑

k=1

gkI (X ∈ T̃ k), (3)

where I (X ∈ T̃ k) is an indicator function and gk = average(yjt|X ∈ T̃ k). Hence, Y is pre-
dicted as the average of the dependent variable observations within the corresponding
region (terminal node) of the regression tree.

The partition is realized keeping the objective of obtaining maximum homogeneity
within the regions, which is achieved by minimizing an impurity index measured by the Gini
index for classification trees, or by the sum of squared errors for regression trees.6 Further-
more, regression trees are conceived with the aim of improving out-of-sample predictability,
and hence, they are estimated through a rotational estimation procedure – cross-validation –
with which the sample is partitioned into subsets such that the analysis is initially performed
on a single subset (the training set), while the other subsets are retained for subsequent use
in confirming and validating the initial analysis (the validation or testing sets).

CRAGGING

The classical regression tree algorithm was designed for cross-sectional data, assuming Y
to be i.i.d. within each region and independent across the regions. Unfortunately, neither
the first nor the second assumption applies for panel data.

As discussed in the Introduction, in order to remove these limitations and preserve
the information contained in the data, Vezzoli and Stone (2007) proposed the CRAG-
GING (CRoss-validation AGGregatING) algorithm.7 In a nutshell, the idea underlying the
CRAGGING is to repeatedly rotate the subsets in which the analysis is initially performed
to such an extent as to, first, generate multiple predictors and, second, combine them to
obtain a univariate and stable tree. This is the reason why CRAGGING can be viewed as
a generalization of regression trees.

Let (Y , X) be panel data with N observations and suppose, for simplicity, that each
unit j, with j = 1, · · · , J , has the same number of years t, with t = 1, · · · , Tj (balanced
panel data) and J · Tj = N . Use L = {1, 2, · · · , J } to denote the set of units and xjt−1 =
(x1jt−1, x2jt−1, · · · , xrjt−1, · · · , xRjt−1) to denote the vector of predictors of unit j observed at
time t − 1 where j ∈ L. The procedure is in two steps and runs as follows.

In the first step, by using the V -fold cross-validation, L is randomly partitioned into V
subsets8 denoted by Lv, with v = 1, 2, · · · , V , each containing Jv units and Nv observations.9

6
Due to technical difficulties in solving such a minimization process, many researchers use a greedy algorithm

to grow the tree, by sequentially choosing splitting rules for nodes based upon some maximization criterion, and
then controlling for overfitting by pruning the largest tree according to a specific model choice rule such as cost-
complexity pruning (i.e. cross-validation or multiple tests for the hypothesis that two adjoining regions should merge
into a single one). See Hastie, Tibshirani and Friedman (2009) for technical details.

7
This algorithm is also used in Savona and Vezzoli (2012).

8
In the partition, it is necessary that V < J in order to preserve the structure of the data.

9
The dimension of each V subset is of as equal size as possible.
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We then randomly select one of the Lv sets, reserved for testing, and the corresponding
training set, denoted by Lc

v, is obtained as L − Lv, which contains J c
v units and N c

v obser-
vations. Next, by removing one unit (country) ` from Lc

v, we get a perturbed training set
denoted by Lc

v\`.
A regression tree is now trained on the data set {yjt , xjt−1}j∈Lc

v\`,t =1,2,···,Tj
and pruned with

a cost-complexity parameter ! ! 0. We thus proceed to compute predictions in the test set
as follows:

ŷjt,!` = f̂ !,Lc
v\`

(xjt−1) with j ∈Lv, and t =1, 2, · · · , Tj, (4)

where f̂ !, Lc
v\`

(·) is the prediction function of the single tree.
Once the predictions are obtained, the `th country is reinserted in the training set and

the same procedure is repeated for each ` in Lc
v, thus obtaining J c

v predictions of debt crisis
probabilities for each country-year belonging to the test set.

To improve the accuracy of predictions, these estimated default probabilities are finally
combined through averaging by running the following equation:

ŷjt,! = 1
J c

v

∑

`∈Lc
v

f̂ !,Lc
v\`

(xjt−1) with j ∈Lv and t =1, 2, · · · , Tj, (5)

which is the average10 of the functions (4) fitted over the units contained within the test set
{yjt; xjt−1}j∈Lv ,t =1,2,···,Tj

.
The perturbation procedure just described, through which we remove one unit at a time

within the training set, is the leave-one-unit-out cross-validation introduced in Vezzoli and
Stone (2007) in order to preserve the structure of the data.

Finally, a second cross-validation, the well-known v-fold cross-validation, is carried out
over the test sets with v = 1,…, V . The objective of this second cross-validation is to find
the optimal tuning parameter, !*, namely the cost complexity parameter that minimizes the
prediction errors on all the test sets. In essence, equations (4) and (5) are run by arbitrarily
changing the value for ! and solving the following objective function:

!* = arg min
!

LF(yjt , ŷjt,!) with j ∈L, t =1, 2, · · · ,
J∑

j=1

Tj, (6)

where LF(·) is a generic loss function.
The entire procedure described before is finally run M times so as to minimize the

generalization error, which is the prediction error over an independent test sample, and then
averaging the results in order to get the CRAGGING predictions to be used in the second
step. Using the Strong Law of Large Numbers,11 Breiman (2001) has indeed shown that as
the number of trees increases (M →∞), the generalization error has a limiting value and
the algorithm does not overfit the data.As a result, the CRAGGING predictions are given by

10
The base learners f̂ !,Lc

v\`
(·) are linearly combined so that ŷjt,! will act as a good predictor for future (y|x) in the

test set.
11

The theorem proves that the average computed on a large number of sequences of variates will be much closer
to the expected value if the number of trials carried out is large.
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ỹcrag
jt =M −1

M∑

m=1

ŷjt,!* with j ∈L, t =1, 2, · · · ,
J∑

j=1

Tj. (7)

In the second step, we estimate FRT, namely a regression tree fitted on the CRAGGING
predictions (Ỹ

crag
, X) with cost complexity parameter !** = M −1

∑M
m=1 !*. Here, through

the replacement of Y with CRAGGING predictions, (i) we mitigate the effects of noisy
data on the estimation process that affect both the predictors and the dependent variable
itself;12 (ii) we realize a tree-based model that encompasses the overall forecasting ability
arising from multiple trees, thus obtaining a parsimonious model with good predictability
(accuracy), better interpretability, and minimal instability.

In the context of sovereign default predictability, where the Y s are ‘crisis/non-crisis’
indicators (binary variable), the computational problem for CRAGGING is the same as
that for regression trees. In fact, the main aim is to find ‘criteria’ (expressed as inequalities)
for X such that as many ‘crisis’ as possible fall in one partition, and as many ‘non-crisis’
as possible fall in a different one. To provide an example to illustrate how the results can
be interpreted intuitively, suppose you realize an FRT using lagged data for X to predict
Y up to t. Suppose that the FRT may indicate that a particular combination of individual
characteristics, such as high debt (say, more than 49.7% of GDP) and high inflation (say,
larger than 10.5%) incur the largest risk node with a probability of, say, 66.8%.13 We are
now in t and you make predictions for t + 1. In t, when a country’s debt over GDP and
inflation are both larger than the corresponding thresholds, we get the probability of a crisis
occurring in t + 1 to be 66.8. To better illustrate how CRAGGING is computed in practice,
in Appendix S2, we describe each step to obtain the FRT, considering only 10 countries
for simplicity.

Competing models

Logit and stepwise logit
In the logistic regression technique, the posterior probabilities of observing a default case
are modelled by means of linear functions in X assuming a standard logistic distribution for
the random term " in equation (1). Then the functional approximation, assuming country
and time homogeneity, has the following linear basis expansion

f (xjt−1)=Pr(yjt =1|xjt−1)≡pjt(xjt−1)= 1
1+ exp−("+x′

jt−1")
. (8)

This is the pooled logit model specification with the (1 + R) × 1 parameter set vector
! = (","′)′ estimated by maximum likelihood, using the conditional likelihood of Y given
X.

The second related model we use in the comparative analysis is the backward stepwise
logit. Starting with the full model in equation (8) that includes all candidate variables,
backward elimination tests the deletion of each variable using the Akaike Information

12
As recently proven in Debashis et al. (2008).

13
The example is from Manasse and Roubini (2009), as they realize a tree structure with the highest risk node

(with a probability of 66.8%), when debt over GDP is greater than 49.7% and inflation is higher than 10.5%.
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Criterion (AIC), deleting one variable per time in order to minimize the AIC score and
repeating this process until no further improvement is possible.

Noise-to-signal ratio approach
Discrete choice models (logits) fit a specific stable relation between a set of covariates and
a latent variable that translates to crisis probability. The underlying, rigid assumption is that
such a latent variable is both linearly dependent on the indicators and strictly monotonously
related to crisis probability. Without imposing such rigid assumptions, the KLR approach
aims at sending a warning signal for an impending crisis through a non-parametric thresh-
old approach. The behaviour of single variables is analyzed as sending a warning signal
for an impending crisis if the corresponding value exceeds some threshold to be chosen
to minimize the probability of failing to call crises and the probability of false alarms
simultaneously. The optimal cut-off point is estimated by minimizing the ‘false alarm-
to-good signal ratio’, namely the type-II errors (noise or 1 − specificity) over the 1 minus
type-I errors (good signals or sensitivity). The procedure is repeated for all r predictors
with r = 1,…, R, and then a weighted sum of the 0–1 signals by individual predictors is
computed while excluding those having a noise-to-signal ratio greater than 1 and using the
inverse of the optimal noise-to-signal ratio as weight. Therefore, such a composite index
(CI) gives more weight to better performing (smaller minimum noise-to-signal ratios)
indicators. Formally, let #r = b/ (1 − a) be the noise-to-signal ratio of the rth variable
with a and b denoting the type-I and type-II errors, respectively; let #*

r,cr
=arg min

cr
#r with

#*
r,cr

< 1 be the optimal noise-to-signal ratio of the r-th variable, computed in correspon-
dence of the threshold cr. As a result, the CI for unit j at time t is computed as

CIjt(xjt−1)=
R∑

r=1

1
#*

r,cr

Icr (xr,jt−1) with #*
r,cr

< 1, (9)

where

Icr (xr,jt−1)=
{

1 if |xr,jt−1|> cr

0 if |xr,jt −1|" cr.
(10)

Once the CI has been obtained, the probabilities of observing default-cases,14 that is,
the functional approximation in equation (1), are estimated as the number of times where
CI exceeds a certain threshold C and a crisis occurred, divided by the total number of
observations in which CI > C. Formally,

f (xt−1)=Pr(xt−1)=
∑

t IC(CI|yt =1)∑
t(IC(CI))

with t =1, 2, · · · , T , (11)

where

IC(CI)=
{

1 if CI > C

0 if CI"C,
(12)

14
The probabilities obtained through the KLR procedure are constant in each time t with t = 1, 2, · · · , T , and

across all units j. For this reason, we remove the subscript j in CI.
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with Pr(xt−1) = 0 when yt = 0. To compute the threshold C, we used a similar procedure
as for single predictors, but instead of selecting the threshold that minimizes the noise-
to-signal ratio of CI, we referred to the Youden index (YI), a diagnostic test for accuracy
widely used in clinical applications involving the receiver operating characteristic curve
that we will discuss in the next section. As will be shown,YI is simply the sum of sensitivity
(1 − a) and specificity (1 − b) minus 1 using a specific threshold C, and gives us a summary
measure about the classification ability of a model considering both default and non-default
classifications. Hence, the objective is to find the optimal C so as to maximize YI. As
opposed to the noise-to-signal ratio, YI is quite robust to extreme type-I and type-II errors
giving an optimal trade-off between good signals and false alarms being also directly related
to the area under the curve. On the other hand, as pointed out in Mulder, Perilli and Rocha
(2002), the minimization of the noise-to-signal ratio could lead to extreme thresholds for
which the default is hardly signalled while false signals tend to zero.

Model accuracy

In-sample diagnostics
We use several metrics to assess models’ accuracy to fit the in-sample data based on the
difference between Y and Ŷ (or prediction errors). First, we use the root mean square error
(RMSE) to assess the standard model fitting quality:

RMSE=

√√√√ 1
N

J∑

j=1

Tj∑

t=1

(
ŷjt − yjt

)2
. (13)

Then, we apply the Bayesian information criterion (BIC) that has been shown to be
asymptotically consistent as a model selection criterion as N →∞, and that also gives the
approximate Bayesian posterior probability of the true model among possible alternatives:

BIC=N ln
(

RSS
N

)
+$ ln(N ), (14)

where RSS is the residual sum of square errors
∑J

j=1

∑Tj

t=1(ŷjt − yjt)2 and $ is the number
of parameters of the estimated model with $ ∈ [1, R].

Second, we turn to scoring rules based on probability estimates, namely the Brier score
(BS):

BS= 1
N

J∑

j=1

Tj∑

t=1

2(ŷjt − yjt)2, BS∈ [0, 2], (15)

and the related logarithmic probability score (LPS) that penalizes large errors more than
Brier score:

LPS=− 1
N

J∑

j=1

Tj∑

t=1

yjt ln(ŷjt)+ (1− yjt) ln(1− ŷjt), LPS∈ [0,∞]. (16)

Third, we rely on signal-based diagnostic tests that provide a tool for model selection,
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focusing on the classification ability of default and non-default cases using the receiver
operating characteristic (ROC) curve.

The ROC curve is a monotone increasing function mapping (1 − a) = sensitivity onto
b = 1 − specificity, where sensitivity is computed as the fraction of the default cases
correctly classified over total defaults (true positives), and specificity, as the fraction of
non-defaults correctly classified over total non-defaults. Defaults are classified according
to different cut-off points C ∈ [0, 1], which results in an ROC curve that is a function of
C, namely ROC(C). The diagnostics based on the ROC used in this article are (i) AUC and
pairwise test on AUC differences; (ii) YI; (iii) loss function.

The area under ROC (i.e. AUC) gives a measure of a model’s discrimination power and
can be interpreted as the probability of assigning higher and lower estimates for defaults
and non-defaults, respectively. Formally,

AUC =
∫ 1

0
ROC(C)dC. (17)

In our analysis, we use the trapezoidal rule with which equation (17) is approximated
summing the areas of the trapezoids formed after dividing the area into a number of strips of
equal width.As shown in Bamber (1975), when calculated by the trapezoidal rule,AUC has
been shown to be identical to the Mann–Whitney U -statistic for comparing distributions.
This intuition is formalized in DeLong, DeLong and Clarke-Pearson (1988) who propose
a non-parametric test for the AUC differences we use for ranking models on the basis
of pairwise AUC differences. Letting Û be the vector of AUC estimates, L is a suitable
contrast matrix (i.e. H0 : LU = 0, where 0 is the zero matrix) and S is the covariance matrix
for AUC estimates;15 then, the statistic for a pair of classifiers is

(LÛ)
2

(LSL′)
∼%2

(rank(L)), (18)

which follows a chi-square distribution with rank(L) degrees of freedom.
YI is a diagnostic accuracy measure which has been proven to be effective in finding the

optimal cut-off point in order to maximize the overall classification ability, thus minimizing
both type-I and type-II errors. Mathematically,

YI= arg max
C

[(1−a)+ (1−b)−1] with C∈ [0, 1]. (19)

YI is the point on the ROC curve farthest from chance, that is, the diagonal line of the
ROC space, the so-called line of no-discrimination for which the classification is equivalent
to random guessing. Note also that with two states, as in our study, YI has been shown
to be a linear transformation of AUC with YI = 2 · * − 1 and the approximated AUC
* = [(1−a) + (1−b)]/ 2.16

Using the best cut-off point C*
YI obtained from equation (19), we finally compute the

loss function for each classifier as the weighted sum of the missed default and non-default
probabilities with cost for type-I and type-II errors & and (1 − &), respectively:

15
See DeLong et al. (1988) for further details on the mathematical derivation and parameter computation for the

test.
16

See Hilden and Glasziou (1996).

 2013 The Department of Economics, University of Oxford and John Wiley & Sons Ltd



Fitting and forecasting sovereign defaults 77

LF= [& ·aC*
YI

+ (1− &) ·bC*
YI

], LF∈ [0, 1]. (20)

The cost & reflects the risk-aversion for the decision-makers who presumably can be
more sensitive to missing defaults (which is also coherent with the Neyman–Pearson
decision rule17) thus yielding & > 0.5. Decision-makers could be also less risk-averse,
as is the case for investors looking for high-yield (and high-risk) investments, and this
appears as & < 0.5. To take into account the two perspectives, we computed the loss func-
tion for values of & arbitrarily ranging from 0.1 to 0.9 and ranked the models for each of
these cost values.

Out-of-sample diagnostics
To evaluate forecasting accuracy, we rely on an out-of-sample exercise where the models
were recursively computed using the most recent observations available and were forecast
one year ahead. For each year of the out-of-sample period18 tout , we add one-t-ahead
observations to the previous fit period tin and we use the new fitting period for updating the
model estimates; next, these new estimates are used to make predictions for the following
year. As a result, we provide forecasts dynamically for the holdout sample that can be
evaluated using the same battery of diagnostic tests employed in-sample. We then replicate
the tests equations (13)–(20) only excluding the BIC for computational convenience.19

Furthermore, we include the Diebold–Mariano forecasting test to assess whether our
model is significantly better than competing models controlling for non-normality of fore-
casting errors and serial correlation. As discussed in Diebold and Lopez (1996), the test is
applicable to a wide class of loss functions and can readily accommodate the non-normality
of forecast errors, as well as ordinal and probability forecasts.

Define djtout = [(ŷA
jtout − yjtout )2 − (ŷB

jtout − yjtout )2], the square error difference of mod-
els A and B20 for the observation of unit j at time tout in the holdout sample, and let
d̄ =

∑j
j=1

∑Tj

tout=T in
j +1 djtout / N out , where N out is the number of observations in the out-of-

sample test. The Diebold–Mariano forecasting test is as follows:

DM= d̄√
v̂ar(d̄)

N out

∼N (0, 1), (21)

where v̂ar(d̄) is a consistent estimate of the variance of d̄ (see Diebold and Mariano, 1995).
In our analysis, we use only one-step ahead in computing the Diebold–Mariano test, as it
is common practice to update forecasts on an annual basis, namely when new values for
economic variables are added to past data in order to recalibrate the EWS predictions. Note

17
The Neyman–Pearson decision rule, commonly used in signal processing applications, is to minimize the type-I

error subject to some constant type-II error which implies more sensitivity towards the type-I error.
18

Note that tin = 1, · · · , T in
j and tout = T in

j + 1, · · · , Tj denote the time period for in- and out-of-sample tests,
respectively.

19
As is known [see equation (14)], BIC introduces a penalty term for the number of parameters in the model

[$ in equation (14)], as it is possible to increase the likelihood by adding parameters, thereby yielding the overfitting
problem. In the out-of-sample analysis, the models were recursively computed from 1991 to 2010, and the number
of selected predictors changed in each estimation for all models with the only exception being the logit model. As a
result, the computation of BIC over the holdout sample would be reflected by a change in $ in equation (14).

20
In the empirical analysis, A denotes our model and B the competing model.
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also that in this case, the potential error autocorrelation becomes an issue to deal with, as
pointed out by Fuertes and Kalotychou (2007).

Two-dimensional loss function
The forecasting vs. policy dilemma highly complicates the global evaluation of the models
when jointly considering in- and out-of-sample accuracy. In one extreme, in-sample accu-
racy could be good (bad) while out-of-sample bad (good), thus requiring to trade between
fitting ability and forecasting ability together with missed defaults and false alarms. To put
the discussion into perspective, consider that (i) on the one hand, decision-makers can be
more or less risk-averse, namely more or less sensitive towards type-I errors (i.e. say, the
first dimension of the problem); (ii) on the other hand, decision-makers can be either more
interested in the data generation process (thus showing more sensitivity towards in-sample
errors), or more interested in forecasting activity (the second dimension of the problem).
As a result, we have a two-dimensional problem we propose to handle with a correspond-
ing two-dimensional loss function, the 2DLF , by attaching (i) a cost to missed defaults
(type-I errors) relative to false alarms (type-II errors); (ii) a weight to in-sample relative
to out-of-sample type-I and type-II errors. In this way, we evaluate EWSes in relation to
a decision-maker’s objective function conceived in the spirit of the forecasting vs. policy
dilemma.

Using ' and (1 − ') to denote the weights for in- and out-of-sample errors, respectively,
and referring to the notation in equation (20), our 2DLF becomes

2DLF= & · [' · (aC*in
YI

)in + (1−') · (aC*out
YI

)out]+ (1− &) · [' · (bC*in
YI

)in

+ (1−') · (bC*out
YI

)out], 2DLF∈ [0, 1]
, (22)

where C*in
YI and C*out

YI denote the optimal cut-off points identified by the YI in- and out-of-
sample, while (aC*in

YI
)in and (aC*out

YI
)out denote the type-I errors in- and out-of-sample computed

in correspondence of C*in
YI and C*out

YI , respectively. Analogously, (bC*in
YI

)in and (bC*out
YI

)out denote
the type-II errors in- and out-of-sample computed in correspondence of the two YI-based
cut-off points.

2DLF helps select the best model for given & and ' which also identify the key features
for major classes of decision-makers. In fact, first, investors are generally more focused
on future risk adjusted returns of their investments (low ') while showing different risk
aversion levels based on their utility function: aggressive investors exhibit high-return
targets, while conservative investors show low-risk targets. As a result, on the one hand,
the costs of missed investment opportunities after false warning are on average higher than
losses due to defaults, thus translating into low &. On the other hand, losses from sovereign
debt crises are clearly greater than missed high yield opportunities, which implies high &.

Second, policy-makers and macro-financial supervisors are more focused on detecting
impending risk signals in order to take adequate policy interventions. In doing so, first,
they must explain the reasons for past crises, and second, realize optimal EWSes that have
the objective of minimizing false alarms while maintaining a high predictive ability of
impending crises. Thus, they should realize models to forecast future crises, by calibrating
in- vs. out-of-sample predictability while minimizing false alarms. A collateral issue in our
study concerns the inspection of 2DLF within a more formal framework, in which different
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decision-makers optimize their utility functions based on in- vs. out-of-sample and low vs.
high risk aversion targets. We leave this question for future research.

III. Data

The data set used in this article updates and extends the data used in Manasse and Roubini
(2009), as it includes annual observations for 66 emerging economies over the period 1975–
2010 together with GIPS countries that were more affected by the global financial crisis of
2008–10. Data on predictors are from GDF, IMF, GFS and Freedom House (2002), and are
grouped according to the five categories outlined before by including (i) capital, current
account, and debt variables; (ii) liquidity measures; (iii) macroeconomic factors and (iv)
political risk factors21 also including default history measured as the sum of past debt
crises; (v) systemic risk, namely the contagion variable measured as the number of other
debt crises occurring in the same year, distinguishing between total (the overall number
of debt crises) and regional contagion (the number of debt crises within the same region).
We also included dummies for oil producing nations as defined by WEO where fuel is the
main export (DOIL), access to international capital markets (MAC), IMF lending (IMF)
and EU membership (EU), thereby taking into account the economic and political status of
EU countries. Except for contagion and dummies for oil and international capital markets,
all the predictors are lagged one year, which is in the spirit of any predicting model.22

Sovereign defaults are defined following Manasse et al. (2003) who consider a country
to be experiencing a debt crisis if, (i) it is classified as being in default by S&P’s, that is,
when government fails to meet a principal or interest payment on an external obligation on
the due date (including exchange offers, debt-equity swaps, and buyback for cash); (ii) it
has access to a large non-concessional IMF loan in excess of 100% of quota. As discussed
by the authors, by using such a definition, we capture cases of outright default or semicoer-
cive restructuring together with near-to-defaults avoided through large financial packages
from the IMF. Information was collected by S&P’s and IMF’s Finance Department, which
relates in particular to Stand By Arrangements (SBA) and Extend Fund Facilities (EFF).
Furthermore, we also referred to the countries that had access to the Emergency Financing
Mechanism (EFM) used during the global financial crisis of 2008–10. With the aim of
realizing an EWS to predict a default entry rather than a continuing default, we included
all the default events for each country subject to the fact that the country in t − 1 was
not in default. Otherwise, we excluded the observations for the default indicator as well as
those for predictors.

In Appendix S1, we provide descriptions of debt crises and the 27 predictors used in the
empirical analysis, as well as the missing data imputation technique carried out following
Honaker and King (2010) and King et al. (2001).

21
We used, in particular, the index of political rights compiled by Freedom House (2002) that takes values on a

scale from one (most free) to seven (least free).
22

It is common procedure in the literature to use a proxy for contagion which is contemporaneous to the default
indicator.
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IV. Empirical results

In-sample fitting accuracy

Predictors and risk stratification
We run our procedure, as outlined in section II, over the entire period 1975–2010, obtain-
ing the risk stratification reported in Figure 1, which is the FRT run over the CRAGGING
predictions. Computationally, the panel data containing 70 countries was first randomly
divided into ten sets with each containing seven countries, that is, the 10% of the overall
number of units in the panel data. Hence, the training set contains 63 countries and the
test set contains seven countries. As CRAGGING repeatedly perturbs the training sets by
removing seven units at a time, in correspondence of the optimal cost-complexity param-
eter !*, we obtain 63 probability estimates for each observation. As discussed before, such
a procedure was run M times so as to minimize the generalization error. Computation-
ally, we run M = 50 times with corresponding 50 × 63 = 3, 150 probability estimates,
which allowed us to obtain a generalization error with a limiting value with no overfitting
problems.

By using the 27 potential predictors discussed in section III, only five variables are
selected by FRT: (i) short-term debt to reserves; (ii) default history (number of past
defaults); (iii) US Treasury Bill rates; (iv) real GDP variations; (v) exchange rate over-

Figure 1. Final regression tree (FRT)

Notes. The figure depicts the structure of the FRT estimated over the period 1975–2010. For each split, we
specify the variable and the corresponding threshold. The values within each terminal node are the estimated
probabilities of default (PD).The most risky and the safest nodes are indicated by the grey area also highlighting
the paths towards the higher (bold line) and the lesser (dashed line) PD.
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valuation. Hence, the economic process underlying a sovereign debt crisis can be ex-
plained using a parsimonious number of suitable proxies for illiquidity, macroeconomic
and political risks. From a statistical viewpoint, having only five out of 27 variables, which
reflects the trade-off between complexity and accuracy implied by FRT, is particularly
useful for realizing a model that is as simple as possible while providing a reasonable
explanation for past data. Indeed, if on the one hand, by increasing the complexity of a
model, we provide a better fit to the data, on the other hand, having too many parameters
would reflect a large sensitivity to small changes, which in turn implies that the model will
not distinguish between true dynamics and fluctuations due to measurement error and/or
noise (Orrell and McSharry, 2009).

The EWS we realize partitions the predictor space into nine terminal nodes according
to specific splitting rules, thus obtaining a country risk stratification using multiple risk
signals, while providing probability estimates of debt crises conditional on predictors and
terminal nodes.

Short-term debt to reserves and default history are the most significant variables in
predicting a debt crisis, with values of the corresponding thresholds of 84.8355% and 0.5,
respectively. Together, the two predictors basically split the overall sample into (i) episodes
with low illiquidity problems (smaller or equal than 84.8355%) for which the probability
of default is low for non-serial defaulters, while it is high for countries with bad default
history and negative real GDP growth or high international interest rates (US Treasury Bill
rates); (ii) episodes with high illiquidity problems (greater than 84.8355%) and bad default
history where the probability of default is high. An in-depth analysis of the tree structure
gives interesting insights about the determinants of sovereign debt crises. If indeed we focus
on the main risk clusters of the tree, we can identify the following five major categories:

• Higher risk , in which short-term debt to reserves is high (greater than 84.8355%), the
country experienced at least one default (history greater than 0.5) and strong exchange
rate devaluations (OVER below −99.89) are accompanied by high US Treasury Bill
rates (greater than 9.795%). As we note, along this path, the default probability is the
highest with a value of 79.23;

• Medium-high risk , where US Treasury Bill rates play a key role both when short-term
debt to reserves is low and illiquidity problems are high. In the first scenario (node 4),
serial defaulters (history greater than 0.5) are exposed to risk with high US Treasury
bill rates (UST greater than 9.795%). In the second (node 6), the path is that observed
for higher risk but with low interest rates (UST below 9.795%);

• Medium risk , where short-term debt to reserves is significantly high (greater than
128.257%) (node 9), or notwithstanding low values for short-term debt to reserves,
real GDP growth is strongly negative (RGRWT less than −1.5963%) (node 2);

• Moderate risk , in which short-term debt to reserves is high but not as we have in
the medium risk case (84.8355% " STDR < 128.257%), the country experienced at
least one default and exchange rate is not strongly undervaluated (OVER greater than
−99.8874) (node 8);

• Low risk , for countries that never suffered from sovereign defaults (nodes 1 and 5),
or which exhibit non-negative real GDP growth (RGRWT greater than −1.5963%)
during periods of moderate US interest rate trends (UST less than 9.795%) (node 3).
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The big picture coming from FRT is that debt crises are mainly driven by liquidity
concerns together with the worsening of macroeconomic conditions. Illiquidity problems
are exacerbated by strong exchange rate undervaluation for countries with bad default
history during times of high interest rates. This finding is economically consistent for two
reasons: (i) exchange rate undervaluation usually reflects current account deterioration;
(ii) high interest rates in US, which in turn reflects tight monetary conditions, may suggest
that capital flows to emerging markets are expected to reduce, thus contributing to debt
servicing difficulties (Manasse and Roubini, 2009).23

Focusing on the Greek and Irish crises of 2010, the strong contraction in GDP growth
together with low interest rates and a bad default history have been the major drivers. Both
crises are clustered together with other defaults, such as Turkey 2002, Ukraine 1998 and
Venezuela 1995, proving that the root of the recent Greek and Irish sovereign debt crises has
been the same as that of other emerging market crises that occurred in the past. This point
is of particular interest, as it complements Reinhart and Rogoff (2010), who proved that in
both advanced and emerging countries, high debt/GDP levels are associated with notably
lower growth outcomes. Putting together the two things, we may thus conjecture that the
risk threshold we found for real growth of GDP may encompass excessive indebtedness,
and this was the case for many, but not all, crises clustered within the same node, namely
(in parenthesis the value of public debt over GDP): Jamaica 2010 (145%), Greece 2010
(127%), Hungary 1991 (117%), Jordan 1989 (98%), Turkey 2002 (78%), Venezuela 1995
(72%) and Ireland 2010 (65%). The tree structure of FRT thus realize a risk partition
controlling for different and significant country idiosyncrasies. Indeed, on the one hand,
Greece and Ireland were classified as medium risk, as it shows a probability estimate of
20.21%. On the other hand, Portugal and Spain were clustered within node 1 which is the
lesser risky node, as it shows a probability estimate of 0.527%, thus proving that FRT is
also efficient in detecting which of the four EU countries included in the sample were risky
and which were not.

Estimates of competing models (logit, stepwise logit, KLR and Regression Tree)
together with their different economic explanations of the sovereign default are in
Appendix S1.

In-sample model ranking
Panel (a) of Table 1 reports the battery of statistical tests used to assess how the five
different models describe the data in-sample, where we note that BIC and RMSE rank
regression tree as the best, and KLR as the worst. This is because BIC penalizes heavily
for the number of parameters and because the probability estimates of regression tree are
not as scattered as other models, thus reflecting a minor error dispersion. When using the
scoring rules, the Brier score and the logarithmic probability score, regression tree is again
ranked the best and KLR again the worst. Using these diagnostics, FRT is ranked second,
thus proving the model superiority of the regression tree approach (FRT and regression
tree) relative to logistic regressions and KLR.

23
This is what happened during the crisis of 1980–83, for which serial defaulters experienced debt problems

because of high interest rates notwithstanding low levels of short-term debt to reserves.
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TABLE 1

In-sample model accuracy

Panel (a): Diagnostics

Model BIC RMSE BS LPS YI Cut-off * Sens Spec AUC AUC diff

FRT −6259.493 0.2048 0.0839 0.1528 0.6374 9.90% 0.7869 0.8505 0.8914 —
RT −6726.621 0.1817 0.0661 0.1300 0.5710 14.40% 0.6230 0.9480 0.8855 0.0059 (0.436)
S logit −6083.459 0.2112 0.0892 0.1641 0.5906 8.30% 0.7213 0.8692 0.8729 0.0185 (0.223)
Logit −6011.092 0.2094 0.0877 0.1626 0.6086 8.30% 0.7705 0.8382 0.8725 0.0189 (0.209)
KLR −5369.139 0.2480 0.1230 0.2595 0.3492 12.40% 0.7951 0.5541 0.7345 0.1569 (0.000)

Panel (b): Loss values

Risk aversion parameter

Model 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

FRT 0.1559 0.1622 0.1686 0.1750 0.1813 0.1877 0.1940 0.2004 0.2068
RT 0.0845 0.1170 0.1495 0.1820 0.2145 0.2470 0.2795 0.3120 0.3445
S logit 0.1456 0.1603 0.1751 0.1899 0.2047 0.2195 0.2343 0.2491 0.2639
Logit 0.1686 0.1754 0.1821 0.1889 0.1957 0.2024 0.2092 0.2160 0.2227
KLR 0.4218 0.3977 0.3736 0.3495 0.3254 0.3013 0.2772 0.2531 0.2290

Panel (c): Best vs. worst

Risk aversion parameter

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Min. loss RT RT RT FRT FRT FRT FRT FRT FRT
Max. loss KLR KLR KLR KLR KLR KLR RT RT RT

Notes:The table shows the diagnostics used to assess the models’ accuracy over the entire period 1975–2010.
BIC is the Bayesian information criterion, RMSE is the root mean squared error, BS is the Brier Score, LPS
is the Logarithmic Probability Score, YI is the Youden Index and Cut-off* is the corresponding probability
value used to maximize the YI. Sens and Spec are the sensitivity (1 minus type I error) and the specificity
(1 minus type II error) computed using the Cut-off*. AUC is the area under the ROC curve and the AUC diff are
pairwise differences with corresponding P-values in parentheses computed according to DeLong et al. (1988).
In panel (b) we report the loss values (LF) over the entire period 1975–2010, while panel (c) reports the best
and worst model conditional on specific risk aversion level, that is, the models showing the lesser (best) and
the higher (worst) value of the LF.

Signal-based diagnostic tests computed using the ROC curve provide better informa-
tion about model reliability in classifying default and non-default episodes. The results
are in columns 6–10 of panel (a) of Table 1 and show that, based on AUC values, the
best model is FRT, while the subsequent classifiers are, in order, regression tree, step-
wise logit, logit and KLR. AUC differences from FRT with corresponding P-value com-
puted according to equation (18) (last column of the table) lead us to conclude that only
KLR accuracy appears to be significantly lesser than FRT, while other competing models
(although showing less in-sample accuracy) are not statistically outperformed by our base
model.

To better understand the classification ability of the models implied by AUC, let us
look at sensitivity (Sens) and specificity (Spec) computed using the best cut-off point (C*

YI )
based on maximized YI, that is reported in panel (a) of Table 1. Except for KLR, which
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shows the lowest AUC with a better ability in predicting defaults (sensitivity), all other
models obtain higher specificity than sensitivity by trading off between type-I and type-II
errors, while maintaining good performance in classifying defaults and non-defaults. As
is clear and pointed out in many studies (e.g. Fuertes and Kalotychou, 2007), validating an
EWS strictly depends on the decision-maker’s preferences. To this end, panel (b) of Table
1 reports the loss function values computed for each model using risk-aversion weights
ranging from 0.1 to 0.9. For each value of this weight, panel (c) shows the best and the
worst classifiers based on the min and max loss function values. By assuming a range
of values for risk aversion from 0.4 to 0.9, FRT is the best classifier while having low
risk-aversion, and assuming from 0.1 to 0.3, regression tree is the best model. The worst
classifiers are KLR and regression tree, depending on the risk-aversion level: from low
to average risk-aversion KLR shows a higher loss function, and for high risk-aversion,
regression tree is the worst model. Regression tree thus shows great instability depending
on the type of target error. Further, using signal-based diagnostic FRT appears to be the
best approach although this model is statistically significant only relative to KLR. Indeed,
while showing better performance than regression tree, stepwise logit, logit, and KLR, our
base model is statistically better only when compared to KLR.

Forecasting accuracy

To compare the models on the basis of their ability to forecast out of the estimation sample,
we focused on 1991–2010 while inspecting in more depth how the models performed during
the ‘big three’ crises, namely the Mexican crisis of 1995, the Asian crisis of 1997–98 and
the global financial crisis of 2007–10.

Out-of-sample model ranking
Table 2 presents different metrics computed over the entire holdout sample and a loss
function analysis based on different risk-aversion targets. Using the same tests as those
used to assess the models’ reliability in-sample except for BIC, we computed the Diebold–
Mariano forecast to compare the forecasting errors of FRT with alternative EWSes.

Inspecting RMSE, Brier score, logarithmic probability score and Diebold–Mariano
forecast, we found strong evidence of FRT’s superiority relative to competing models over
the entire holdout sample. Based on these statistics, subsequent classifiers are, in order,
stepwise logit, logit, KLR and regression tree. Logistic regressions perform quite similarly,
while regression tree and KLR seem to be less efficient.

AUC-based tests provide a clear view about FRT reliability in making predictions.
Indeed, in the overall holdout period, FRT shows an area under the ROC curve of 0.8353
against values ranging from 0.6690 (KLR) to 0.7720 (logit). From RMSE, Brier score, loga-
rithmic probability score and Diebold–Mariano forecast, FRT outperforms logit,
regression tree and KLR. Sensitivity and specificity computed using the YI criterion show
that our approach predicts 88% of the default episodes and about 64% of the non-defaults
occurring in 1991–2010. On the other hand, competing classifiers are less efficient, except
for regression tree which shows a very high value for sensitivity near to 0.94 but at the cost
of poor non-default predictability. Sensitivity ranges from 71 (stepwise logit) to 78 (KLR)

 2013 The Department of Economics, University of Oxford and John Wiley & Sons Ltd



Fitting and forecasting sovereign defaults 85

TABLE 2

Out-of-sample model accuracy

Panel (a): Diagnostics

Model RMSE DM BS LPS YI Cut-off * Sens Spec AUC AUC diff.

FRT 0.1920 — 0.0737 0.1467 0.5134 5.50% 0.8776 0.6359 0.8353 —
Logit 0.2140 −2.6503 (0.008) 0.0916 0.2121 0.4731 3.60% 0.7551 0.7179 0.7720 0.0633 (0.146)
S logit 0.2126 −2.5812 (0.010) 0.0904 0.2104 0.4621 3.60% 0.7143 0.7479 0.7661 0.0692 (0.116)
RT 0.2978 −8.3716 (0.000) 0.1774 0.5466 0.3995 5.00% 0.9388 0.4607 0.6768 0.1585 (0.000)
KLR 0.2101 −4.6074 (0.000) 0.0883 0.2262 0.3029 5.88% 0.7755 0.5274 0.6690 0.1663 (0.000)

Panel (b): Loss values

Risk aversion parameter

Model 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

FRT 0.3399 0.3158 0.2916 0.2674 0.2433 0.2191 0.1949 0.1708 0.1466
Logit 0.2783 0.2746 0.2709 0.2672 0.2635 0.2598 0.2560 0.2523 0.2486
S logit 0.2555 0.2589 0.2622 0.2656 0.2689 0.2723 0.2756 0.2790 0.2824
RT 0.4915 0.4437 0.3959 0.3481 0.3003 0.2525 0.2047 0.1568 0.1090
KLR 0.4478 0.4230 0.3982 0.3734 0.3486 0.3238 0.2989 0.2741 0.2493

Panel (c): Best vs. worst

Risk aversion parameter

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Min. loss S logit S logit S logit S logit FRT FRT FRT RT RT
Max. loss RT RT KLR KLR KLR KLR KLR S logit S logit

Notes: The table shows the same diagnostics used in Table 3 to assess the models’ accuracy over the
out-of-sample 1991–2010, also including the Diebold–Mariano test (column DM).

per cent, while specificity varies from 46 (regression tree) to 75 (stepwise logit) per cent
(i.e. higher than FRT).

The difference between the AUC values and the corresponding P-values confirm that
over the period 1991–2010, FRT significantly outperforms competing EWSes. This is
certainly true for regression tree and KLR, for which the AUC differences are strongly
significant, while for logistic regressions, FRT’s superiority is very near to significance
(P-values are 0.146 against logit and 0.116 against stepwise logit).

The loss function analysis extends these results providing some interesting insights on
how accuracy perception changes with decision-makers’targets. Panel (b) ofTable 2 reports
the value for the loss function, assuming the same range for the risk-aversion level as before
(in-sample analysis). When risk aversion is low (& < 0.4), stepwise logit is the best model
while a higher cost is associated with regression tree and KLR. However, as we move from
average to high risk-aversion (0.5 " & " 0.7), FRT dominates the competing EWSes over
the entire holdout period, although for higher risk-aversion (& ! 0.8), regression tree is
the best classifier, as it is obvious given its value for sensitivity. Interestingly, changes in
the decision-makers’ perspective make the performance of stepwise logit and regression
tree significantly unstable, potentially moving from the best to the worst classifier and
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vice versa. Indeed, we observe that these models are alternatively ranked as best/worst
performers depending on the risk-aversion level.

Big crisis prediction
Our out-of-sample analysis also includes a clinical study of major crises that occurred
over the period 1991–2010. We focused on probability estimates of single big sovereign
debt crises realized by the 5 competing models, and then on inspecting their ability in
forecasting the actual defaults based on optimal cut-off points obtained through YI (the
values of the best thresholds are reported in panel (a) of Table 2). Table 3 reports which
models correctly predicted the sovereign debt crises, as grouped in the following three
clusters: (i) Mexican crisis of 1995; (ii) Asian crisis of 1997–1998; (iii) 2007–10 global
financial crisis. Table A5 in Appendix S1 reports in more detail the probability estimates
for all the 49 crises occurring in the period 1991–2010. Looking at major crises, we note
in Table 5 that FRT correctly forecasted all single events thus proving to be the best model
also in this clinical study. The Mexican crisis was predicted by all models excluding KLR,
and the 1995 Venezuela crisis was missed by stepwise logit. For the Asian crisis, all models
were able to predict the single entry crisis except for Indonesia 1997 and Sri Lanka 1997,
which were correctly predicted only by FRT, regression tree and KLR, and Korea 1997
that was missed by stepwise logit. Interestingly, the sovereign defaults that occurred during
the 2007–10 global financial crisis in Europe (Hungary 2008, Latvia 2008, Ukraine 2008,
Greece 2010, Ireland 2010) were all predicted by FRT, regression tree (with the exception
of Latvia 2008) and KLR, while logit regressions correctly forecasted only Latvia 2008.
This point is relevant, as FRT, regression tree and KLR are non-parametric models, and
this signifies that only the approaches pertaining to the so-called ‘algorithmic modelling’
were able to identify the common latent root of the recent global financial crisis in Europe.

As discussed earlier for in-sample model estimates, FRT shows that strong negative
real GDP growth together with low US interest rates were the reason for the Greek and
Irish crises. The unreported tree structure for the last FRT realized in the out-of-sample
analysis (i.e. using data up to 2009 to make a prediction for 2010), confirmed the same
path for both cases with the same splitting values for real GDP growth (−1.5963%) and
US Treasury Bill rates (9.795%).

Fitting vs. forecasting model accuracy

What we found in the empirical analysis is that on the one hand, our FRT appears to
be quite as good a descriptor of past data, although the model’s superiority is statisti-
cally significant only against KLR. On the other hand, when testing the models out-of-
sample, FRT significantly outperforms competing EWSes, which are unstable when moving
from in- to out-of-sample analysis (regression tree) and when risk-aversion targets change
(regression tree and stepwise logit). Such a problem not only reflects on the use of the
models (fitting vs. forecasting model separation), but also on a coherent evaluation pro-
cedure that would take into account both fitting and forecasting ability. By reconciling
the ‘two-sides’ of model reliability, the question is how to provide a general framework
in which in-sample and out-of-sample accuracy are balanced on the basis of the possible
different targets of decision-makers.
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TABLE 3

Big crisis prediction

Debt crisis Correctly predicted defaults–models

Mexican crisis
Mexico 1995 FRT Logit S logit RT
Venezuela 1995 FRT Logit RT

Asian Crisis
Indonesia 1997 FRT RT KLR
Korea, Rep. 1997 FRT Logit RT KLR
Sierra Leone 1997 FRT Logit S logit RT KLR
Sri Lanka 1997 FRT RT KLR
Thailand 1997 FRT Logit S logit RT KLR
Argentina 1998 FRT Logit S logit RT KLR
Brazil 1998 FRT Logit S logit RT KLR
Moldova 1998 FRT Logit S logit RT KLR
Pakistan 1998 FRT Logit S logit RT KLR
Philippines 1998 FRT Logit S logit RT KLR
Ukraine 1998 FRT Logit S logit RT KLR

2007–10 crisis
Ecuador 2008 FRT Logit S logit KLR
Hungary 2008 FRT RT KLR
Latvia 2008 FRT Logit S logit KLR
Pakistan 2008 FRT Logit S logit KLR
Ukraine 2008 FRT RT KLR
Greece 2010 FRT RT KLR
Ireland 2010 FRT RT KLR
Jamaica 2010 FRT Logit S logit RT KLR

Note: The table reports the models that correctly predicted the Mexican,
Asian and 2007–10 crises.

As argued in section II, to do this, we use 2DLF by simply computing a weighted
average of loss function in- and out-of-sample with weights reflecting the decision-makers’
objective function (data generating process vs. forecasting activity).

Table 4 reports the best model [panel (a)] and the worst model [panel (b)] based upon
the values for 2DLF using equation (22), where 0.1 " & " 0.9 and 0.1 " ' " 0.9 with step
0.1. To make the model comparison easier, we also report in Appendix S1, Figure A2, the
bivariate function generated by 2DLF for each model. When moving from modest to high
risk-aversion (0.4 " & " 0.9), FRT appears to be the best model to use when exploring
the data generating process and when making forecasts of future debt crises. Regression
tree is ranked first only when decision-maker’s function is strongly focused on forecasting
targets (0.1 " ' " 0.2) with extreme risk-aversion. When moving from low to modest risk-
aversion (0.1 " & " 0.3), stepwise logit is the finest model for both fitting and forecasting
sovereign defaults (0.1 " ' " 0.8) except for pure fitting targets where regression tree
is the best performer (0.8 " ' " 0.9). On the other hand, excluding higher risk-aversion
(' ! 0.8) in which regression tree and stepwise logit are worst for forecasting debt crises,
KLR shows the highest cost for low and high risk-aversion, thereby yielding a different
trade-off between fitting and forecasting ability.
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TABLE 4

2D Loss Function

Panel (a): Best models

Risk aversion parameter

In- vs. out 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.9 RT RT RT FRT FRT FRT FRT FRT FRT
0.8 RT S logit S logit FRT FRT FRT FRT FRT FRT
0.7 S logit S logit S logit FRT FRT FRT FRT FRT FRT
0.6 S logit S logit S logit FRT FRT FRT FRT FRT FRT
0.5 S logit S logit S logit FRT FRT FRT FRT FRT FRT
0.4 S logit S logit S logit FRT FRT FRT FRT FRT FRT
0.3 S logit S logit S logit FRT FRT FRT FRT FRT FRT
0.2 S logit S logit S logit FRT FRT FRT FRT FRT RT
0.1 S logit S logit S logit S logit FRT FRT FRT RT RT

Panel (b): Worst models

Risk aversion parameter

In- vs. out 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.9 KLR KLR KLR KLR KLR KLR KLR RT RT
0.8 KLR KLR KLR KLR KLR KLR KLR RT RT
0.7 KLR KLR KLR KLR KLR KLR KLR RT RT
0.6 KLR KLR KLR KLR KLR KLR KLR KLR S logit
0.5 KLR KLR KLR KLR KLR KLR KLR S logit S logit
0.4 KLR KLR KLR KLR KLR KLR KLR S logit S logit
0.3 KLR KLR KLR KLR KLR KLR KLR S logit S logit
0.2 KLR KLR KLR KLR KLR KLR KLR S logit S logit
0.1 RT KLR KLR KLR KLR KLR KLR S logit S logit

Notes: In this table, we report the best and the worst model based on minimum and maximum values of the
2DLF computed for different in- vs. out-of-sample weights and risk aversion parameter combinations.

The bivariate distribution depicted by 2D LF is thus particularly useful for comparing
the models based on preferences expressed by the combinations of & and '.24 To put the
issue into perspective, we ordered the values of 2DLF based on the combinations of & and
' for each model, converting to the corresponding rank order the loss values of the models
from 1 (best) to 5 (worst). In this way, we obtained the matrix Q with E rows, which are
the number of & − ' combinations (in our case E = 9 × 9 = 81), and H columns which
are the number of models involved in the analysis (in our case H = 5). Each element of the
matrix Q is denoted by reh with e = 1, · · · , E and h = 1, · · · , H ; reh is the rank for the hth
model based on the eth combination of weights. Hence, for each & and ', the model ranked
as first takes the value 1 and so on to the worst model, which scores 5. To inspect the matrix
Q, we followed the common non-parametric statistics for ranks (Gibbons and Chakraborti,
2003). Specifically, we first computed a synthetic indicator to rank the models, and then

24
In our analysis, & and ' range from 0.1 to 0.9 with step 0.1, thus having 9 × 9 = 81 different combinations of

weights.
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TABLE 5

Rank comparison

Model R-mean ( W -stat.

FRT 1.7037 0.8241 —
Logit 2.3951 0.6512 −4.58***
S logit 2.7531 0.5617 −3.96***
RT 3.4198 0.3951 −7.26***
KLR 4.7284 0.0679 −7.82***

Notes: The table reports the value for the mean rank for each
model (R-mean) and corresponding ( computed according to
(24). W -stat. is thepaired Wilcoxon statistics with ***, **, *
denoting significance at 0.01, 0.05, 0.1 levels.

used the paired Wilcoxon signed-rank test providing statistical significance to the model
ranking obtained through such an indicator. The synthetic indicator for each model is

(h = E ·H −+h

E ·H −E
, (h ∈ [0, 1], (23)

where +h =
∑E

e=1 reh is the sum of the ranks for model h. Dividing equation (23) by E
yields

(h = H −+̄h

H −1
, (h ∈ [0, 1], (24)

where +̄h is the mean rank for model h, and 1 " +̄h " H . If a model was rated the best for
each combination of weights, +̄h would be equal to 1. On the contrary, if a model was the
worst for each combination of & and ', +̄h would be equal to H . In this way, whenever a
model is rated as the best, equation (24) takes value 1 and takes 0 when the model is rated
as the worst.

In Table 5, we report the value for (h with corresponding +̄h together with paired
Wilcoxon statistics. FRT is ranked first, and paired comparison through Wilcoxon statistic
shows strong significance against all competing models. Logit and stepwise logit are ranked
second and third, respectively, while regression tree is ranked fourth. KLR is ranked fifth,
and clearly exhibits the worst performance relative to other classifiers.

The main message coming from the 2DLF analysis is that FRT seems to be the best
model for both fitting and predicting debt crises while exhibiting quite stable performance
by changing possible decision-makers’ targets. On this point, see Appendix S1, Figure A2,
in which we report the box-plots using the values for 2DLF. As we note, the median cost for
FRT is the lowest, and as such, FRT exhibits low dispersion relative to competing models.

As a result, FRT may provide a possible reconciling solution to the fitting vs. forecasting
paradox. Indeed, through the trade-off between fitting ability and forecasting ability implied
in the cross-validation estimation technique, together with the penalization imposed for
model complexity, which in turns reflects a simple model structure and a parsimonious
number of parameters, the FRT: (i) provides an accurate description of past data, and near
to be best description; (ii) produces the best forecasts, while also adapting to different risk
aversion targets.
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Note that this is a ‘global’ and objective evaluation of the model obtained using subjec-
tive preferences. In other words, starting from subjective evaluations about in- and out-of
sample model reliability, we come to select the best model by averaging fitting and fore-
casting ability together with low and high risk-aversion. In this sense, the meaning we
attribute to the term best has to be interpreted as the best average model.

V. Conclusion

In this article, we consider the problem of fitting and predicting sovereign debt crises in
light of the forecasting vs. policy dilemma introduced in Clements and Hendry (1998).
The accepted wisdom is that simple models outperform more complex models in terms
of forecast accuracy although the latter provide a better description of sovereign debt
default data (Fuertes and Kalotychou, 2006). To this end, we introduce a regression tree-
based model using a two-step procedure in which, in the first step, we generate multiple
predictions by cross-validating the model on rotated sub-samples until the average of
the estimates stabilizes and in the second step, we fit a regression tree using such an
average as the dependent variable. This two-step procedure entails a trade-off between
fitting ability and forecasting ability, while imposing penalization for model complexity,
thereby producing a simple model structure with a parametric parsimony that provides an
accurate description of past crises and good forecasts of future defaults.

Using data from emerging markets and GIPS over 1975–2010, we run several statistical
metrics to assess the model reliability in- and out-of-sample relative to the existing state-of-
the-art models (logit, stepwise logit, regression tree, KLR), and show that our methodology
significantly outperforms competing models when in-sample and out-of-sample accuracy
are jointly considered. The trade-off between fitting and forecasting ability translates into
a compromise that favours forecasting ability while maintaining a good description of the
data generating process.

The investigation of the economic side of our results supports three main findings. First,
we found that illiquidity (short-term debt to reserves), macroeconomic (US Treasury Bill
rate, real GDP growth, and exchange rate undervaluation) and political (default history)
risks are the main determinants and predictors of past and future debt crises. Second, we
proved that the root of the recent Greek and Irish sovereign debt crises has been the same
as that of other emerging market crises that occurred in the past (such as Turkey in 2002,
Ukraine in 1998 and Venezuela in 1995), namely the strong contraction in GDP growth
together with low interest rates and a bad default history. Third, the European sovereign
defaults of the 2007–2010 global financial crisis were predicted only by non-parametric
approaches, while traditional logit regressions failed to signal the deterioration of economic
conditions in those regions which then went into default.

Last, we comment on the contagion variable used in our empirical analysis, as we
used a proxy which was contemporaneous to the default indicator, according to prevalent
literature. To be more realistic and to provide a pure forecasting model, we should use
an expectation of contagion for period t observed in t − 1. Hence, a contagion should be
explored, first, as a dependent variable, and second, as a potential predictor. This is left our
future research.
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A.I. Data Description 

 

In Table A1 we reports the 122 crisis episodes used in the empirical analysis, of which 49 are 

used in the out-of-sample analysis over the sub-period 1991–2010.  

Columns 6–8 of Table A2 report the sample mean for non-crisis and crisis states and their t – 

and z –statistic1 in order to get preliminary results on the discriminatory power of each 

predictor, and the last column reports the variance inflation factor (VIF) to check for 

multicollinearity. Heuristically, it is common practice in the statistical community to consider 

VIFs greater than 5 or 10 as an indicator of multicollinearity problems. Based on these values, 

we note that TEDY suffers from multicollinearity, thus reflecting a potential 

misinterpretation about the impact such a variable exerts on the dependent variable while 

controlling for the others. Except for FDI inflow variations (FDIG) and exchange rate 

overvaluation (OVER), the mean differential is statistically significant for all predictors, thus 

providing strong ‘univariate’ ability in signalling sovereign defaults. 

The original dataset had a number of missing values for many of the independent variables 

used in the analysis. To control for such a problem, we used the multiple imputation technique 

proposed in Honaker and King (2010) which updated the original approach introduced in King 

et al. (2001). The procedure (Amelia II) uses the expectation-maximization (EM) algorithm on 

multiple bootstrapped samples of the original incomplete data to draw values of the complete-

data parameters. Once all relevant information from observed data is extracted, the algorithm 

draws imputed values from each set of bootstrapped parameters, replacing the missing values 

for each one missing, ranging from 5 to 10, then averaging them to obtain the point estimates 

to fill in the missing cell2. 

Computationally, we carried out a multiple imputation technique controlling for time series 

cross sectionally, while imposing empirical beliefs so as to shrink the posterior of the point 

estimate of each missing cell and the point estimate for each country within the specific 

historical range (for technical details, see Honaker and King (2010) and King et al. (2001)). 

Summary statistics of missing values too are given in Table A2. Columns 3–5 report for each 

predictor, the missing values’ proportions, the mean of the observed values P , and the mean 

of the missing value estimates ( )E P . Note that the percentage of missing values never 

exceeds 0.13 over the 1988 observations and that the means of missing estimates are quite 

similar to those of the observed values for all predictors.  

                                                            
1The z –test was performed for dummy variables, namely for MAC, DOIL, and IMF. 

2The routine is written in R code and is available at http://gking.harvard.edu/amelia/. 
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TABLE A1 
Debt Crisis 

Year # of Crises Countries 

1975 2 Kenya, Zimbabwe,  

1976 1 Peru 

1977 2 Jamaica, Mexico 

1978 4 Egypt, Peru, Turkey, Zambia 

1979 5 Honduras, Kenya, Malawi, Mauritius, Nicaragua 

1980 8 Bangladesh, Bolivia, Costa Rica, Korea, Madagascar, Morocco, Pakistan, Philippines 

1981 10 
Dominican Republic, El Salvador, Ethiopia, Honduras, India, Jamaica, Poland, Romania, 
Thailand, Zambia 

1982 10 Argentina, Ecuador, Haiti, Hungary, Kenya, Malawi, Mexico, Nigeria, Peru, Turkey 

1983 12 
Brazil, Burkina Faso, Chile, Korea, Mauritius, Niger, Philippines, Sierra Leone, Uruguay, 
Venezuela, Zambia, Zimbabwe 

1984 1 Egypt 

1985 3 Cameroon, South Africa, Thailand 

1986 7 Bolivia, Gabon, Madagascar, Morocco, Paraguay, Romania, Sierra Leone 

1987 2 Jamaica, Uruguay 

1988 3 Malawi, Trinidad and Tobago, Tunisia 

1989 2 Jordan, South Africa 

1990 1 Uruguay 

1991 3 Algeria, Ethiopia, Hungary 

1992 1 Zimbabwe 

1993 1 South Africa 

1994 4 Kenya, Lithuania, Philippines, Turkey 

1995 2 Mexico, Venezuela 

1996 3 Jordan, Kazakhstan, Moldova 

1997 5 Indonesia, Korea, Sierra Leone, Sri Lanka, Thailand 

1998 6 Argentina, Brazil, Moldova, Pakistan, Philippines, Ukraine 

1999 4 Ecuador, Gabon, Mexico, Turkey 

2000 3 Argentina, Uruguay, Zimbabwe 

2001 1 Brazil 

2002 6 Gabon, Indonesia, Moldova, Paraguay, Turkey, Uruguay 

2004 1 Cameroon 

2005 1 Venezuela 

2008 5 Ecuador, Hungary, Latvia, Pakistan, Ukraine 

2010 3 Greece, Ireland, Jamaica 

1975–2010 122  

1991–2010 49  

Notes: The table reports the sovereign defaults analysed over the period 1975–2010 while specifying for 
each year, the number of debt crises as well as the countries classified as defaulters. 
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TABLE A2 
Predictors 

Variable Definition Missing Value Statistics Mean t/z-test VIF 

Missing P� E(P) Non-Crisis Crisis 

Insolvency Risk Factors               

MAC Market access dummy - 0.702 - 0.697 0.779 1.251 - 

IMF IMF lending dummy - 0.009 - 0.009 0.000 -11.401*** - 

CAY Current account (% of GDP) 0.122 -2.853 -3.054 -2.738 -5.018 -8.658*** 1.280 

ResG Reserves % change 0.040 21.949 29.944 23.579 1.832 -12.702*** 1.029 

XG Exports % change 0.108 5.852 5.441 6.005 2.790 -8.226*** 1.214 

WX Exports in USD billions 0.109 23.831 15.172 23.285 16.770 -6.864*** 1.268 

TEDX Total debt to exports (%) 0.102 170.849 205.454 171.539 217.877 9.970*** 2.619 

MG Imports % change 0.095 6.383 5.764 6.465 4.179 -4.715*** 1.384 

FDIY FDI inflows to GDP (%) 0.078 2.391 2.864 2.461 1.670 -3.929*** 1.369 

FDIG FDI inflows % change 0.090 43.182 154.852 54.743 46.415 -0.935 1.027 

TEDY Total ext. debt to GDP (%) 0.029 39.708 33.103 38.901 48.966 10.876*** 5.054 

SEDY Short term debt to GDP (%) 0.039 4.687 4.984 4.489 7.912 11.891*** 1.748 

PEDY Public debt to GDP (%) 0.058 52.697 40.153 51.722 55.790 4.082*** 2.470 

OPEN Exports + imports to GDP (%) 0.041 71.792 66.078 72.288 60.402 -13.345*** 1.616 

Illiquidity Risk Factors               

STDR Short term debt to reserves (%) 0.018 72.746 82.569 64.352 203.954 14.002*** 2.666 

M2R M2 to reserves 0.035 37.428 35.194 34.438 81.890 3.100*** 1.019 

DSER Debt service on L-T debt to reserves 0.025 0.598 0.664 0.535 1.586 8.155*** 2.591 

Macroeconomic Risk Factors               

DOil Oil producing dummy - 0.092 - 0.093 0.074 -2.264** - 

INF Inflation (%) 0.118 41.823 38.379 36.228 120.753 3.435*** 1.016 

RGRWT Real GDP % change - 3.866 - 3.990 1.971 -8.193*** 1.401 

OVER Exch. rate residual over linear trend - -21.888 - -22.067 -19.148 0.367 1.010 

UST US Treasury Bill - 5.359 - 5.228 7.362 12.193*** 2.093 

EU EU dummy  - - - - - - - 

Political Risk Factors               

PR Index of political rights 0.034 3.616 3.743 3.602 3.910 2.329** 1.267 

History # of past defaults - 0.999 - 0.946 1.820 8.770*** 1.365 

Systemic Risk Factors               

Cont_tot Contagion - 3.219 - 3.102 5.016 11.238*** 2.147 

Cont_area Regional contagion - 0.724 - 0.689 1.262 5.819*** 1.640 

Notes: This table reports summary statistics of the potential predictors of debt crises. Missing denotes 
the percentage of missing values over the total number of observations (1988), P is the mean of each 
predictor computed using the observed data, and E(P) is the mean computed using the point estimates 
obtained through the multiple imputation technique. Mean is the average conditional upon the default 
state (Non-crisis and Crisis) and t/z-statistic is computed on the mean difference between Crisis and 
Non-crisis: the z test is for dummy variables (CAY, IMF, DOIL). ***, **, * denote significance at the 
0.001, 0.05, and 0.1 levels. VIF is the variance inflation factor obtained as 1/(1−R2), where R2 is obtained 
by regressing each predictor one at a time using the remaining ones as explanatory variables. VIF 
values exceeding 5 or 10 indicate a multicollinearity problem. 
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A.II. Additional Results 

 

A.II.1. Alternative Models and Different Explanations 

Here we report in-sample estimates of logit, stepwise logit, KLR, and Regression Tree also 

discussing the different economic explanations of the sovereign default underlying each model.    

 

Logit and Stepwise Logit 

 

Columns 2-3 of Table A3 report logit and stepwise logit model estimates. To make the results 

obtained through logistic regression more informative, we also run a variable selection process 

so as to better explain the economic message of the models. Specifically, we used the bootstrap 

method introduced in Austin and Tu (2004), taking 3,000 randomly selected sub-samples with 

each constituting 90  per cent of the total observations, running the stepwise logit on each 

bootstrap sample including all the 27 candidate variables; then, the predictors are ordered 

according to their importance, where the variable chosen most frequently is ranked first and 

so on. Arbitrarily putting the cut-off point at 90  per cent to select the most important 

predictors, 12 variables appear as the most relevant. Insolvency risk proxies are the major 

factors, all exhibiting statistical significance except for IMF lending. These are (with 

corresponding estimated signs): market access � �� , current account � �� , IMF lending � �� , 

short-term debt to GDP � �� , total ext. debt to GDP � �� , FDI inflows to GDP � �� , and exports 

� �� . Furthermore, other proxies for illiquidity, macroeconomic, and political risk factors are 

also important, namely, debt service on long-term debt to reserves � �� , U.S. Treasury Bill 

rates � �� , real GDP growth � �� , and finally, default history � ��  with index of political rights 

� �� . In general, logistic regression results are quite consistent with FRT, especially for the 

most important variables selected by the Austin-Tu procedure. Total ext. debt to GDP shows 

an anomalous negative sign, maybe due to the positive correlation with short-term debt to 

GDP, which instead shows a positive coefficient and is ranked as the best explanatory variable 

together with default history, current account to GDP, IMF lending, and U.S. Treasury Bill 

rates, all being selected in each of the 3,000 stepwise logit estimations. 
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KLR 

 

In Table A4, we report the noise-to-signal ratio for each predictor according to the KLR 

methodology, also showing 1 minus type-I errors (sensitivity) and 1 minus type-II errors 

(specificity). As discussed in Section 2.3.2, the inverse of the optimal noise-to-signal ratio is 

the weight to be used in calculating the CI index. Then, such a weight gives us the variable 

importance of each predictor attributed by KLR. The methodology did not exclude any non-

dummy variables3: all show 1�Z , which is the constraint used for dropping noisy predictors. 

According to KLR, the risk signals implied in the debt service on long-term debt to reserves 

are the most informative as documented by the relative weight that accounts for nearly 27  

per cent with respect to the remaining predictors. Short-term debt to reserves is also 

important (accounting for 13  per cent), and next we have short-term debt to GDP, inflation, 

M2 to reserves, and FDI inflows to GDP (all showing the same variable importance weight). 

Together with contagion, which accounts for about 3  per cent, all these 7 variables account for 

nearly 80  per cent when computing the CI index. 

While it is difficult to compare KLR with FRT since the former uses the predictors one at a 

time sans their interactions, the economic explanation implied in the noise-to-signal ratio 

ranking variables depicts a picture which is in part similar to that with FRT. Indeed, the KLR 

results suggest that illiquidity factors are the most informative risk signals followed by 

insolvency risk proxies, and that contagion plays a key role along with inflation, thus 

indicating that systemic and macroeconomic risk factors also matter. 

 

Regression Tree 

 

Figure A1 reports the tree structure obtained using the regression tree approach outlined in 

Section 2.1. As in FRT, we realize a risk stratification using multiple risk signals while 

providing probability estimates of a debt crisis conditional on predictors and terminal nodes. 

Specifically, the regression tree selected 7 out of 27 variables: (1) default history; (2) U.S. 

Treasury Bill rates; (3) reserve growth; (4) contagion; (5) exchange rate overvaluation; (6) 

short-term debt to reserves; (7) current account over GDP. Default history is the variable that 

stays on the top of the tree and first splits between no-serial defaulters (which have very low 

probability of default, 0.22  per cent) and countries with bad default history with at least 1 

past default. For serial defaulters, the risk stratification is quite complex and shows two main 

                                                            
3KLR requires that the variables should be quantitative. 



 

7 
 

regimes based on U.S. interest rates. The first regime is with low rates. Here, illiquidity 

problems (short-term debt over GDP approximately between 131 and 139  per cent) together 

with negative current account over GDP leads to maximum risk (probability of default is 100  

per cent); however, without having strong deficits in current account, illiquidity problems do 

not matter at all, since the probability of default is set at the null. Within the same low 

interest rates regime, other two economic situations show high risk, namely when reserve 

growth is negative ( 69.23  per cent) and when exchange rate devaluations are strong ( 58.33  

per cent). The second regime is with high U.S. interest rates and shows some seemingly 

nonsensical results. Here, we observe that whenever we have less than 9 other countries in 

defaults, the probability is 84.85  per cent, but having systemic risk situations, namely when 

contagion is greater than 9, the risk partition is quite anomalous due to the masking variable 

effect. According to this effect, regional contagion is, indeed, blind and nonlinearly related 

with overall contagion. This is the reason why we have cases with no risk (probability of 

default set at the null) and maximum risk (probability of 100  per cent). In more depth, 

regression tree perfectly splits cases for contagion with value equal to 10 (node 9), 11 (node 

10), and 12 (node 11), in which the maximum risk was associated with high regional contagion 

(on average, the corresponding value was 3.5) and no risk with low regional contagion (on 

average, the values for regional contagion were 1.9  for node 9 and 1.7  for node 11). Unlike 

with FRT, the economic explanation of debt crises implied in regression tree emphasizes the 

role played by U.S. interest rates, and conditional on specific interest rate regimes: (i) 

illiquidity, insolvency, and macroeconomic risks, when interest rates are low; (ii) systemic 

risk, when interest rates are high. Compared to FRT, the risk stratification of regression tree 

appears more complex and sometimes potentially erratic with large shifts in probability 

estimates due to minor changes in the splitting rules. 
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TABLE A3 
Logit and Stepwise Logit Estimates: 1975–2010 

Variable Logit Stepwise logit Austin-Tu Ranking 

Intercept -7.2180 (0.000) -7.2862 (0.000) 
History 1.1020 (0.000) 1.1123 (0.000) 1) History (1.000) 
CAY -0.0870 (0.001) -0.0872 (0.000) 2) CAY (1.000) 
IMF -16.0500 (0.975) -16.1161 (0.975) 3) IMF (1.000) 
UST 0.2759 (0.000) 0.3191 (0.000) 4) UST (1.000) 
SEDY 0.0766 (0.001) 0.0680 (0.000) 5) SEDY (1.000) 
DSER 0.2063 (0.009) 0.2090 (0.000) 6) DSER (0.999) 
RGRWT -0.0531 (0.016) -0.0528 (0.008) 7) RGRWT (0.998) 
TEDY -0.0167 (0.025) -0.0106 (0.014) 8) TEDY (0.998) 
MAC 0.8171 (0.015) 0.7586 (0.015) 9) MAC (0.995) 
WX -0.0063 (0.087) -0.0061 (0.093) 10) WX (0.976) 
PR 0.1267 (0.071) 0.1291 (0.048) 11) PR (0.932) 
FDIY -0.0806 (0.163) -0.0912 (0.085) 12) FDIY (0.927) 
XG -0.0097 (0.381) -0.0147 (0.157) 13) XG (0.592) 
OPEN -0.0026 (0.613) - 14) OPEN (0.306) 
ResG -0.0021 (0.456) - 15) ResG (0.211) 
Cont_tot 0.0407 (0.427) - 16) Cont_tot (0.167) 
PEDY 0.0052 (0.290) - 17) PEDY (0.156) 
INF 4.224E-05 (0.642) - 18) INF (0.114) 
TEDX 0.0003 (0.635) - 19) TEDX (0.076) 
Cont_area 0.0351 (0.738) - 20) Cont_area (0.063) 
EU -0.3713 (0.657) - 21) EU (0.040) 
OVER 0.0002 (0.533) - 22) OVER (0.025) 
MG -0.0006 (0.952) - 23) MG (0.002) 
STDR -7.31E-06 (0.989) - 24) STDR (0.002) 
DOil 0.2979 (0.541) - 25) DOil (0.001) 
M2R 0.0002 (0.374) - 26) M2R (0.001) 
FDIG -1.63E-05 (0.758) - 27) FDIG (0.001) 

Notes: The table reports logit and stepwise logit estimates with p-values in parentheses. In the last 
column we report the Austin and Tu (2004) bootstrap method to assess the variable importance. 
Specifically, we randomly selected 3,000 subsamples each one constituted by 90 per cent of the total 
observations, running the stepwise logit on each bootstrap sample including all 27 candidate variables. 
The predictors are ordered according to the frequency (reported in parenthesis) with which the variable 
is chosen over the 3,000 regressions.  
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TABLE A4 
KLR Ranking: 1975–2010 

Variable Sens Spec w 1/w Relative weights 

DSER 0.0246 0.9995 0.0218 45.8852 0.2652 
STDR 0.0246 0.9989 0.0436 22.9426 0.1326 
SEDY 0.0082 0.9995 0.0654 15.2951 0.0884 
INF  0.0082 0.9995 0.0654 15.2951 0.0884 
M2R 0.0082 0.9995 0.0654 15.2951 0.0884 
FDIY 0.0082 0.9995 0.0654 15.2951 0.0884 
Cont_tot 0.0984 0.9834 0.1689 5.9207 0.0342 
MG 0.0082 0.9984 0.1961 5.0984 0.0295 
Cont_area 0.0492 0.9898 0.2070 4.8300 0.0279 
UST 0.2623 0.9373 0.2390 4.1833 0.0242 
OVER 0.0164 0.9952 0.2942 3.3989 0.0196 
ResG 0.0164 0.9946 0.3269 3.0590 0.0177 
History 0.0574 0.9780 0.3829 2.6114 0.0151 
PEDY 0.0984 0.9502 0.5067 1.9736 0.0114 
TEDY 0.0738 0.9598 0.5448 1.8354 0.0106 
TEDX 0.5656 0.6688 0.5856 1.7077 0.0099 
CAY 0.1639 0.8885 0.6800 1.4707 0.0085 
FDIG 0.3033 0.7706 0.7563 1.3222 0.0076 
OPEN  0.0246 0.9807 0.7846 1.2746 0.0074 
PR 0.7459 0.3762 0.8363 1.1957 0.0069 
XG 0.0082 0.9925 0.9153 1.0925 0.0063 
RGRWT 0.8934 0.1324 0.9711 1.0297 0.0060 
WX 0.8852 0.1168 0.9977 1.0023 0.0058 

Notes: The table reports the results from the KLR procedure. Sens and Spec are the sensitivity (1 
minus type I error) and the specificity (1 minus type II error) for each predictor obtained by minimizing 
the NSR (column w). We report also the inverse of the optimal NSR (column 1/w) which is the weight to 
be used in calculating the CI index. The last column is the weight of each predictor in computing the CI 
index expressed in relative terms, i.e., ݓ௥ିଵ/∑ ௥ିଵ௥ݓ .  
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Figure A1: RT 
 
 

 
 
 
 

Notes: The figure depicts the RT estimated over the period 1975–2010. For each split we specify the 
variable and the corresponding threshold also indicating the paths towards the terminal nodes. The 
values reported within each terminal node are the estimated probabilities of default.  
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A.II.2. Out-Of-Sample PD and 2D Loss Function 

 

TABLE A5 
Out-Of-Sample PD 

Crisis Episodes FRT Logit S_Logit RT KLR 

Algeria 1991 0.070 0.014 0.022 0.144 0.000 
Ethiopia 1991 0.266 0.121 0.200 0.167 0.000 
Hungary 1991 0.070 0.685 0.581 1.000 0.000 
Zimbabwe 1992 0.427 0.340 0.393 0.063 0.100 
South Africa 1993 0.058 0.604 0.710 0.060 0.100 
Kenya 1994 0.269 0.002 0.002 0.057 0.250 
Lithuania 1994 0.303 0.012 0.005 0.057 0.250 
Philippines 1994 0.064 0.332 0.375 0.057 0.250 
Turkey 1994 0.269 0.490 0.519 0.057 0.250 
Mexico 1995 0.206 0.288 0.291 0.066 0.050 
Venezuela 1995 0.059 0.042 0.028 0.066 0.050 
Jordan 1996 0.056 0.131 0.103 0.076 0.000 
Kazakhstan 1996 0.248 0.015 0.013 0.076 0.000 
Moldova 1996 0.056 0.040 0.044 0.076 0.000 
Indonesia 1997 0.196 0.008 0.007 0.076 0.188 
Korea, Rep. 1997 0.059 0.036 0.016 0.076 0.188 
Sierra Leone 1997 0.059 0.707 0.511 0.076 0.188 
Sri Lanka 1997 0.059 0.010 0.012 0.076 0.188 
Thailand 1997 0.059 0.532 0.341 0.076 0.188 
Argentina 1998 0.256 0.042 0.047 0.082 0.059 
Brazil 1998 0.056 0.081 0.096 0.082 0.059 
Moldova 1998 0.056 0.203 0.176 0.082 0.059 
Pakistan 1998 0.256 0.178 0.163 0.082 0.059 
Philippines 1998 0.256 0.850 0.847 0.082 0.059 
Ukraine 1998 0.286 0.046 0.041 0.082 0.059 
Ecuador 1999 0.164 0.096 0.086 0.088 0.130 
Gabon 1999 0.427 0.758 0.778 0.778 0.130 
Mexico 1999 0.053 0.602 0.628 0.088 0.130 
Turkey 1999 0.053 0.726 0.725 0.088 0.130 
Argentina 2000 0.060 0.064 0.067 0.092 0.063 
Uruguay 2000 0.060 0.775 0.766 0.092 0.063 
Zimbabwe 2000 0.231 0.416 0.421 0.092 0.063 
Brazil 2001 0.057 0.194 0.212 1.000 0.000 
Gabon 2002 0.590 0.960 0.914 1.000 0.286 
Indonesia 2002 0.054 0.043 0.046 0.086 0.286 
Moldova 2002 0.175 0.137 0.118 0.086 0.286 
Paraguay 2002 0.054 0.130 0.096 0.086 0.286 
Turkey 2002 0.249 0.787 0.732 0.086 0.286 
Uruguay 2002 0.249 0.891 0.847 0.086 0.286 
Cameroon 2004 0.053 0.007 0.009 0.065 0.000 
Venezuela 2005 0.054 0.007 0.006 0.084 0.042 
Ecuador 2008 0.059 0.137 0.154 0.035 0.167 
Hungary 2008 0.059 0.000 0.000 0.106 0.167 
Latvia 2008 0.213 0.112 0.158 0.035 0.167 
Pakistan 2008 0.059 0.155 0.125 0.035 0.167 
Ukraine 2008 0.059 0.009 0.011 0.106 0.167 
Greece 2010 0.199 0.000 0.000 0.051 0.200 
Ireland 2010 0.199 0.000 0.000 0.051 0.200 
Jamaica 2010 0.199 0.212 0.173 0.051 0.200 

Notes: The table reports for each model, the estimated probability of default computed for all the 49 
crises occurring over 1991–2010. Values in bold font and gray contour denote correctly predicted crises. 
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Figure A2: 2D Loss Function 

 
Notes: In this figure we graphically report the 2DLF bivariate distribution for each model. The loss 
values are plotted over the risk aversion level (x axis) and in-sample preference level (y axis) space. The 
color scale is reported on the right. 
 

Figure A3: Box Plots 

 
Notes: The figure shows the box plots for the models using the 2DLF values, depicting: (1) the sample 
minimum; (2) the lower quartile (Q1); (3) the median (Q2) which is the bold line within each box; (4) the 
upper quartile (Q3), and (5) the sample maximum. 
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CRAGGING and Final Regression Tree 
 

To better illustrate how CRAGGING works in practice, we now provide an illustration of the 

methodology supposing a panel data with 10,,1� j  units (Algeria, Brazil, Egypt, Greece, 

Jamaica, Korea, Turkey, Uruguay, Venezuela, Zimbabwe) over 1975–2010 as follows: 
  

 
 

In the first step, the units are randomly divided in V = 5 subsets consisting of 2  VJJv  

units each. 

 
 

 
 

We then select the first test set ( 1 v : Greece-Korea) that is taken out of the observations used 

for estimation and reserved for testing. Hence, the corresponding training (estimation) set 

contains 8 units (Brazil, Turkey, Zimbabwe, Jamaica, Algeria, Egypt, Venezuela, Uruguay).   
The training set is now perturbed by removing one unit at a time from Brazil to Uruguay, and 

then estimating a regression tree1 on the resulting training set consisting of 7 countries. Each 
regression tree is tested on the same test set (Greece-Korea), resulting in ݕොଵǡ ොଶǡݕ ǥ ǡ  �ො଼ݕ

estimates that are then used to compute  ݕത ൌ ∑ ௬ො೔ఴ
೔సభ
଼

, which is a single predicted probability of 

crisis obtained for each country-year of the test set.  

 
 

 
 

 

             
   

                                                            
1 The regression tree is estimated in correspondence to the D�tuning parameter that modulates the 

trade-off between the complexity and interpretability of the results. 
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This perturbation is repeated for the remaining 4 test sets, thus obtaining ݕത estimates for the 

entire panel data, which are used to compute the final regression tree (FRT). Indeed, we 

replace the original binary (0, 1) definition of a crisis by the probabilities generated in the first 
step and run the regression tree analysis as usual, obtaining the best predictors, thresholds, 

and interactions. 
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