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Abstract—In this paper we propose a revisitation of the topic the average number of bits per symbol used by fixed length
of unique decodability and of some of the related fundamenta codes can be made as close as desired to the entropy rate of
g‘fa?re[“i: It 'T "(‘]’l'de'% b&“f"beld tli‘at'(;or art‘.yf.d'screte soure X, the source while maintaining the probability of error as kma

y “uniquely decodable” block code salisiies as desirable. If variable length codes are allowed, funtioee,
El(X1, X2, , Xp)] 2 H(X1, X2, ..., X0), he showed that the probability of error can be reduced to zero
where X1, Xs,..., X, are the first n symbols of the source, without increasing the asymptotically achievable average.
E[l(X1,Xa,---,X,)] is the expected length of the code for those Shannon also proved the converse theorem for the case of fixed
symbols andH (X1, X», ..., X,) is their joint entropy. We show length codes, but he did not explicitly consider the corwers
that, for certain sources with memory, the above inequalityonly  theorem for variable length codes (see [1, Sec. II.C]).
holds if a limiting definition of “ uniquely decodable code'’is An important contribution in this direction came from

considered. In particular, the above inequality is usuallyassumed . L M
to hold for any “practical code” due to a debatable application McMillan [3], who showed that everfuniquely decodable

of McMillan’s theorem to sources with memory. We thus propog code using aD-ary alphabet must satisfy Kraft's inequality,

a clarification of the topic, also providing extended versias of Y~ D~% < 1, [; being the codeword lengths [4]. Based on

McMillan’s theorem and of the Sardinas Patterson test to be thjs result, he was able to prove that the expected length of

;Jsed for Markovian sources. This work terminates also with he 5 niqely decodable code for a random varialileis not

ollowing interesting remark: both McMillan’s original th eorem - .

and ours are equivalent to Shannon’s theorem on the capacity smaller than its entropy[I(X)] < H(X). This represents a

of noiseless channels. strong converse result in coding theory. However, while the

initial work by Shannon was explicitly referring to finiteasé

Markov sources, McMillan’s results basically considerediyo

the encoding of a random variable. This leads to immediate
The problem of lossless encoding of information sources hesnclusions on the problem of encoding memoryless sources,

been intensively studied over the years (see [1, Sec. lIhfobut an ad hoc study is necessary for the case of sources with

detailed historical overview of the key developments irs thimemory. The application of McMillan’s theorem to these type

field). Shannon initiated the mathematical formulationé t of sources can be found in [5, Sec. 5.4] and [6, Sec. 3.5]. In

problem in his major work [2] and provided the first resultthese two well-known references, McMillan’s result is usetl

on the average number of bits per source symbol that mustly to derive a converse theorem on the asymptotic average

be usedasymptoticallyin order to represent an informationnumber of bits per symbol needed to represent an information

source. source, but also to deduce a hon-asymptotic strong conterse
For a random variableél with alphabet¥ and probability the coding theorem. In particular, the famous result oletin

mass functionpx (-), he defined theentropy of X as the (see [6, Th. 3.5.2], [5, Th. 5.4.2], [7, Sec. ll, p. 2047]) i,

I. INTRODUCTION

quantity ) for every source with memory, any uniguely decodable code
H(X) = Z px(z)log T satisfies
x
veX P E[Z(leXQa"' 7X’ﬂ)] ZH(X1;X27"'7XTL)5 (1)
On another hand, Shannon focused his attention on finite stal )
Markov sourcesY — { X1, Xs,...}, for which he defined the WﬁwereXl,Xg, o, Xn are the firstn symbols of the source,
entropyas E[l(X1,Xs,--+,X,,)] is the expected length of the code for
) those symbols and (X1, X», ..., X,,) represents their joint
H(X) = lim —H(X1,Xs,...,X,), entropy. _ o
n—oon In this paper we want to clarify that the above equation is

a quantity that is now usually calleshtropy rateof the source. only valid if a limiting definition of “uniquely decodable de”
Based on these definitions, he derived the fundamentaltsesig assumed. In particular, we show that there are informatio
for fixed length and variable length codes. In particular, heources for which a reversible encoding operation exisis th
showed that, by encoding sufficiently large blocks of symbolproduces a code for which equation (1) does not hold any



longer for everyn. This is demonstrated through a simple V2 A B BZ
example in Section Il. In Section Il we revisit the topic of °
unique decodability, consequently providing an extengibn

McMillan’s theorem and of the Sardinas-Patterson test ¢8] f .

the case of first order Markov sources. Finally, in Section 1V 12
some interesting findings are reported regarding McMiflan’
original theorem and on the proposed one, demonstrating C D
their mathematical equivalence to Shannon’s theorem on the o= e
capacity of constrained noiseless channels [2, Th. 1]. —_—
II. AMEANINGFUL EXAMPLE Fig. 1. Graph, with transition probabilities, for the Mavksource use in
the example.

Let X = {X1, X,...} be a first order Markov source with
alphabetY = {A, B,C, D} and with transition probabilities

shown by the graph of Fig. 1. Its transition probability matr corresponds to the uncertainty. Indeed, the average lesfgth

the code for the firsh symbols is given by

is thus

12 0 1/2 0 n

p_| 0 12 0 1/2 El(X1, Xs,..., Xn)] = BU(X)]+ ) El(X))]
=14 1/4 1/4 1/4 | i=
3

1/4 1/4 1/4 1/4 = 2+5(n-1).
where rows and columns are associated to the natural alpg: the expected number of bits used for the firsymbols is
betical order of the symbol values, B, C' and D. exactly the same as their entropy, which would let us declare

It is not difficult to verify that the stationary distributio that this encoding technique is optimal.
associated with this transition probability matrix is thréfarm
distribution. LetX; be uniformly distributed, so that the sourceéflternative code
X is stationary and, in addition, ergodic. Let us consider a different code, obtained by applying the
Let us now examine possible binary encoding techniqu¥lowing fixed mapping from symbols to bitst — 0, B — 1,
for this source and possibly find an optimal one. In order fg — 01, D — 10. It will be easy to see that this code maps
evaluate the performance of different codes we determiae @ifferent sequences of symbols into the same codeword. For
entropy of the sequences of symbols that can be produced®¥mple, the sequences3 andC' are both coded t01. This
this source. By stationarity of the source, one easily mwovis usually expressed, see for example [5], by saying that the

that code is notuniquely decodablean expression which suggests
. the idea that the code cannot be inverted, different segsenc
H(X1,Xo,...,X,) = H(X)) +ZH(Xi|Xi—1) being associated to the same code. It is however easy to

notice that, for the source considered in this example, the
code does not introduce any ambiguity. Different sequences
= 2+ 5(”* 1), that are producible by the source are in fact mapped into
different codes. Thus it is possible to “decode” any segaenc
where H(X;|X;_1) is the conditional entropy ofX; given of bits without ambiguity. For example the codecan only be
Xi-1, that is produced by the single symb6! and not by the sequences,
since our source cannot produce such sequence (the toansiti
from A to B being impossible). It is not difficult to verify
that it is indeed possible to decode any sequence of bits by

=2

H(Xi|Xi1) = Y pxixi i (#,y)log

z,yeXx pXi‘Xi—l(:r|y).

Let us now consider the following binary codes to represent

sequences produced by this source. A = 0
) Encoding g : (1)1
Classic code D — 10
We call this first code “classic” as it is the most natural

way to encode the source given its particular structureceSin more bits left one bit left
the first symbol is uniformly distributed between four chesic .

. . . R . Decoding 00... — A+40... 0 — A
2 bits are used to uniquely identify it, in an obvious way. ol o .. 1 — B
For the next symbols we note that we always have dyadic 10... — D...
conditional probabilities. So, we apply a state-dependedeé. ... —» B+1..

For encoding the:-th symbol we use, again in an obvious
way, 1 bit if symbolk — 1 was anA or a B, and we use 2 TABLE |

) y!_ y - ! TABLE OF ENCODING AND DECODING OPERATIONS OF THE PROPOSED
bits if symbolk — 1 was aC or a D. This code seems to ALTERNATIVE CODE FOR THEM ARKOV SOURCE OFFIGURE 1.
perfectly fulfill the source as the number of used bits always



operating in the following way. Consider first the case wherodes, it is assumed that only one symbol, or a given known
there are still two or more bits to decode. In such a casanount of symbols, must be coded, and codes are studied
for the first pair of encountered bits, if @ (respectively a as maps from symbols to binary strings without considering
11) is observed then clearly this corresponds to4asymbol the decodability of concatenation of codewords. Underehos
followed by a code starting with a O (respectivelyBasymbol hypotheses, Wyner [10] first pointed out that the average
followed by a code starting with a 1). If, instead,0&4 pair codeword length can always be made lower than the entropy,
is observed (respectively &) then aC must be decoded and different authors have studied bounds on the expected
(respectively aD). Finally, if there is only one bit left to code length over the years [11], [12]. Here, instead, we have
decode, say a 0 or a 1, the decoded symbol is respectively anonsidered a fixed-to-variable length code used to compress
or a B. Such coding and decoding operations are summarizeehjuences of symbols of whatever length, concatenating the
in Table 1. code for the symbols one by one, as in the most classic
Now, what is the performance of this code? The expectedenario.
number of bits in coding the first symbols is given by:
I1l. UNIQUE DECODABILITY FOR CONSTRAINED SOURCES

Ell(X1, X5, X3, , Xn)] = > E[l(X))] In this section we briefly survey the literature on unique
i=1 decodability and we then propose an adequate treatment of
_ §n the particular case afonstrained sourcedefined as follows.
2 Definition 1: A sourceX = {X1, X, ...} with symbols in

Unexpectedly, the average number of bits used by the caaléliscrete alphabet is aconstrained sourcé there exists a
is strictly smaller than the entropy of the symbols. So, th@ite sequence of symbols frodi that cannot be obtained as
performance of this code is better than what would have beeutput of the sourceX.

traditionally considered the “optimal” code, that is thasdical

code. Let us mention that this code is not only more efficiep{ Classic definitions and revisitation

on average, bu_t itis at least as _eff|C|ent as the CIa_SS'C C(_)d(?t is interesting to consider how the topic of unique decod-
for every possible sequence which remains compliant W'Hb

) . ility has been historically dealt with in the literaturada
the source characteristics. For each source sequencedl,ndﬁow the results on unique decodability are used to deduce
the number of decoded symbols after reading the firdtits

results on the expected length of codes. Taking [6] and [5] as

of the alternative code is alwqys Iargg ' than or equal tF’ tr|](§presentative references for what can be viewed as th&clas
number of symbols decoded with the firatbits of the classic roach to lossless source coding, we note some common

. . C.a
code. Hence, the proposed alternative code is more emc'%ﬁﬁctures between them in the development of the theoty, bu

than the classic code in all respects. The obtained gam also some interesting differences. The most importanttfact

symbolobviously goes to zero asymptotically, as imposed brye noticed is the use, in both references with only marginal

the Asymptotic Equipartition Property. However, in praati di?erences, of the following chain of deductions:

cases we are usually interested in coding a finite number o McMillan's th s that all uniauelv decodabl
symbols. Thus, this simple example reveals that the probfem a) McMi ans eoren’w asserts that afl uniquely decodable
codes satisfy Kraft’s inequality;

finding an optimal code is not yet well understood for the case . e .
of sources with memory. The obtained results may thus havéb) .If a co.de for a random vana.blé{ safisfies Kraft's
interesting consequences not only from a theoretical pafint inequality, th.enE[l(X)] > H(X); :
view, but even for practical purposes in the case of source&c) Thus any uniquely decodable code for a random variable

exibiting constraints imposing high order dependencies. X satisfiesE[I(X)] > H(X);

Commenting on the “alternative code”, one may object that(d) For ZOlIJrceS with merr;)orly, by(;:ogsmetrrl]n% sequences IOf
it is not fair to use the knowledge on impossible transitions SymDbo's asuper-symboiswe deduce that any uniquely

order to design the code. But probably nobody would object ?f(;?dit()le cog(e satisfiess[l(X, Xz,..., Xn)] 2
to the design of what we called the “classic code”. Even in (X1, Xo, . X)), . i o
that case, however, the knowledge that some transitions ar&" the above flow of deductions there is an implicit as-

impossible was used, in order to construct a state-depend@#TPtion which is not obvious and, in a certain way, not
“optimal” code. clearly supported. It is implicitly assumed that the deiimitof

uniquely decodable codesed in McMillan’s theorem is also

It is important to point out that we have just shown appropriate for sources with memory. Of course, by definitio
fixed to variable length code for a stationary ergodic sourcé “definition”, one can freely choose to define “uniquely
that maps sequences of symbols into strings of bits that decodable code” in any preferred way. However, as shown
can be decoded and such thihe average code length is by the code of Table | in the previous section, the definition
smaller than the entropy of thosen symbols Furthermore, of uniquely decodable codgsed in McMillan’s theorem does
this holds for everyn, and not for ana priori fixed n. In not coincide with the intuitive idea of “decodable” for can
a sense we could say that the given code has a negatieerces with memory. To our knowledge, this ambiguity
redundancy Note that there is a huge difference between theas never been reported previously in the literature, and fo
considered setting and that of the so calted-to-one codes this reason it has been erroneously believed that the result
(see for example [9] for details). In the case of one-to-ong[l(X1, Xs,...,X,)] > H(X;1,Xos,...,X,) holds for every



“practically usable” code. As shown by the Markov sourcbe used for constrained sources, as McMillan’s theorem uses
example presented, this interpretation is incorrect. Definition 2 of unique decodability.
In order to better understand the confusion associated toThe alternative code of Table | thus immediately gives:
the meaning of “uniquely decodable code”, it is interesting Lemma 1:There exists at least one sout€eand a uniquely
to focus on a small difference between the formal definitiomiecodable code foX such that, for every: > 1,
given by the authors in [5] and in [6]. We start by rephrasing
for notational convenience the definition given by Cover and Ell(Xy, Xo,., X)) < H (X1, Xz, Xo).
Thomas in [5].

Definition 2: [5, Sec. 5.1, pp. 79-80] A code is B. Extension of McMillan's theorem to Markov sources

said to be uniquely decodable if no finite sequence In Section II, the proposed alternative code demonstrates
of code symbols can be obtained in two or more that McMillan’s theorem does not apply in general to uniguel
different ways as a concatenation of codewords. decodable codes for a constrained soufteas defined in

‘Qefinition 4. In this section a modified version of Kraft's
equality is proposed which represents a necessary éomdit
r the unique decodability of a code for a first order Markov

Note that this definition is the same used in McMillan’s pap

[3], and it considers a property of the codebook without an

reference to sources. It is however difficult to find a cledP

motivation for such a source independent definition. Afler aSouree. )

a code is always designed for a given source, not for a giv?nl‘et X be a Marlf(.)v source. .W'th a!phabef( i

alphabet. Indeed, right after giving the formal definitiptise 1,2,...,m} and transition probability matri. Let W' =
{w1,ws,...,wy,} be a set ofD-ary codewords for the al-

auth?rs comment L . phabetX and let,l; = I(w;) be the length of codeword;.
In other words, any encoded 5”'”9 in a unlquely McMillan’s original theorem can be stated in the following
decodable code has only one possibteirce string way:
producing it Theorem 1 (McMillan, [3]): If the set of codeword$V is
So, a reference to sources is introduced. What is not noiscediniquely decodable (in the sense of Definition 2) then
that the condition given in the formal definition coincideishw m
the phrased one only if the source at hand can produce any ZD—li <1
possible combination of symbols as output. Conversely, the =
two definitions are not equivalent, the first one being stesng Commentit is interesting to consider the proof given by

the ;econd one being msteaq _more Intuitive”. . Karush [13] of this theorem. Karush notices that for every
With respect to formal definitions, Gallager proceeds in R~ 0, in order for the code to be uniquely decodable, the

different way with the following: following inequality must be satisfied
Definition 3: [6, Sec. 3.2, pg. 45]A code is

. : . X
u.n_lquely decodable if for each source sequence of ZD_li <kl @
finite length, the sequence of code letters corre- — — v imax
sponding to that source sequence is different from . =t .
the sequence of code letters corresponding to any Wherelma is the largest of the;, i = 1,...,m. Indeed,
other source sequence” the term on the left hand side of (2) can be expanded as

the sum of m* terms each of them being a product of

Note that this is a formal definition of unique decodab|I|t¥ L . L .
. . actorsD~" in a different combination. The way the possible
of a code with respect to a given source. Gallager states |, =~ . .
: L S . combinations of products are constructed is exactly theesam
this definition while discussing memoryless soutceés that

AT . o as the way the symbols of the source are concatenated in all
case, the definition is clearly equivalent to Definition 2,bu . Y :
e L . possible combinations to obtain sequence# asfymbols. For
unfortunately, Gallager implicitly uses Definition 2 inateof . f .
- . . : example, a sequence starting with3,2..." translates into
Definition 3 when dealing with sources with memdry. v la . . .
. . oo DD~ D72 ... in the expansion of the left hand side of
In order to avoid the above discussed ambiguity, we propo .
. L o (3(3 In order to have only one sequence assigned to every
to adopt the following explicit definition. : . e
Definition 4: A code ' is said to beuniauely decodable code the above inequality must be satisfied for everput
: quely the right hand side of (2) grows linearly with while the left
$hand side grows exponentially with it if the Kraft inequglit
is not satisfied. Thus, when (1) does not hold, (2) cannot be
satisfied for everyt, and the code is not uniquely decodable.
As we said, the expansion of the left hand side of (2)
contains terms associated with every possible combimation
1see [6, pg. 45]/We also assume, initially, [...] that successive letters a of SymbOIS of the Sou_rce alphabet, and is thus a_pproprlate_ fo
independent” the case of unconstrained sources. If the source is comstrai
2In fact, in [6], the proof of Theorem 3.5.2, on page 58, is dase however, only some combinations of symbols should be con-
Theorem 3.3.1, 0n page 50 the proof of which statedo/lows from Kralts  sidered. For example, consider again the Markov chain used
inequality, [...] which is valid for any uniquely decodaktede”. But Krafts in the Section II, with1, [, I3 andl,4 the lengths of codewords

inequality is valid for uniquely decodable codes defined m®eéfinition 2 ) ' :
and not Definition 3. assigned respectively to symbols B, C' and D. In this case,

symbols producible byX have the same code.
With this definition, not alluniquely decodable codes for

a given sourcesatisfy Kraft's inequality. So, the chain of

deductions (a)-(d) listed at the beginning of this sectiannot



the terms in the expansion on the left hand side of (2) thabde of length-. This implies that, for every > 0, we must
contain- -- D~ D~%2 ... should be discarded, siné&cannot have

follow A for any source compliant sequence. Consider thus the Kelmax
vectorL = [D~1, D=2, D=3 D~l4]" and the matrix L'QF11m < Z D'D7" = k(lmax— Imin+ 1) (9)
D—h 0 D—ls 0 r=Fklmin
Q(D) = 0 D= 0 D 3) Now, note that the irreducible matriQ is also nonnegative.
“ | D D7l p-is p-la |- Thus, by the Perron-Frobenius theorem (see [14] for dgtails
D~ D=tz p-is ph its spectral radiup(Q) is also an eigenvaldewith algebraic

multiplicity 1 and with positive associated left eigenwact et
w be such eigenvector; then, &sis positive, there exists a
positive constanty such thatz = L — aw is a nonnegative
L'Q(D)* 14 < klmax (4) vector. Thus, settind, = aw + z, we can write the left hand
side of (9) as
wherel, = [1,1,1,1]. It is possible to show that a necessary b1 b1 b1
condition for this inequality to be satisfied for eveéeyis that LQ" 1, = aw Q7 1, +2Q" 1y
the matrixQ(D) has spectral radidsat most equal to 1. We ap(Q)F w1, +2QF 11,
will state and prove this fact in the general case, hereafter = Bp(Q)F 144
Let X, P andW be as specified before.
Theorem 2:If the set of codeword$V” is uniquely decod- Where 3 = aw’l,, is positive andy is nonnegative. So,

able for the Markov sourcé&’, then the matrixQ(D) defined if p(Q) > 1, the term on the left hand side of eq. (9)
by asymptotically grows at least agQ)*~!. On the contrary,

the right hand side term only grows linearly withand for

It is not difficult to verify that a correct reformulation ofje
(2) for our source should be written, fér> 0, as

0 if P;=0 . -
Q;;(D) = { T I large enougtt equation (9) could not be verified. We conclude
D=5 it Py >0 that p(Q) < 1. n
has spectral radius at most 1. Note that if theP matrix has all strictly positive entries,

Proof: We follow Karush’s proof of McMillan theorem. the matrixQ(D) is positive with all equal rows. It is known
SetQ = Q(D) for simplicity. Let X*) be the set of all (see again [14]) that the spectral radius of such a matrix is

sequences of symbols that can be produced by the sourddven by the sum of the elements in a row, which in this case
and letL = [D~, D~ D=In]’, is >, D7, Thus, for non-constrained sequences, we obtain

We now define, for > 0, the row vector classic Kraft's inequality.
Furthermore, the case wheriQ(D)) = 1 corresponds to
vVE = L/QF . (5) a limit situation in terms ofP andli,...,l,,. This is due
o ] ) to the fact that the spectral radius of a nonnegative pesitiv
Thgn.'t is easy to see by induction that thth component of 41y increases if any of the elements increases. So, if for
V®) is written as a given matrixP there is a decodable code with codeword
vk — Z Dy~ =, ©6) lengthsi;,i =1, .. m such that_p(Q(D)) =1, then ther(_e is
' no decodable code with lengtifsif I < I; for all ¢ with strict
inequality for some. Also, for the same codeword lengths, it
where the sum runs over all sequences of indic@snot possible to remove constraints from the Markov chain
(h1,ha, ..., hy) in X®) with varying hy, ho, ... he—1 and while keeping unique decodability property, since one & th
hy = i. So, if we callly, the lengthm vector composed of elements of the matrixQ(D) would increase from zero to a

hi,ha,.. b

m 1’s, we have positive value.
_ B R The above presented discussion is focusing on the case
ryk—1 _ lhy —ln ln
LQ™ 1, = Z D ) of constrained sources that are modeled with Markov chains

*) N , -
(h1sha,....he)€X in the Moore form”, as considered for example in [5].

Reindexing the sum with respect to the total length I;,, + In other words, we have modeled information sources as
ln, + -+ + 1y, and callingN (r) the number of sequences ofMarkov chains by assigning an output source symbol to every
X™*) to which a code of length is assigned, we have state. This way we have considered only sources that have
a memory of one symbol, because transitions in the Markov

klmax . . .
r~k—1q . chains are always considered to be independent. In order to
LQ ™ 1m = Zkl N(r)D (8) deal with more general sources we can consider the Markov
T=Rlmin

source model with output symbols associated to transitions
where Imin and Imax are respectively the minimum and thebetween states rather than to states (which corresponds to
maximum of the value$;,i = 1,2,...,m. Since the code the Markov source model used by Shannon in [2] or, for
is uniquely decodable, there are at moEt sequences with a example, by Gallager in [6]). We may say that this Markov

3Recall that the spectral radius of a matrix is defined as thatgst modulus ~ “Note that in general the spectral radius is not an eigenastieis defined
of its eigenvalues. as the maximum of)\| over all eigenvalues.



chain representation is in the “Mealy form”. Theorem 2 can A 1’2<7 &1

be easily extended to Theorem 3 below to deal with this more

o p
° °

general type of sources, as it will now be shown. It may be A 1/4
of interest to consider that, for this type of sources, thtgin B, 1/4
state has to be known or encoded. However, by considering
the asymptotic reasoning used in the proof of Theorem 3, it is c v D, 112
easy to realize that it does not make any difference to censid
whether the initial state is known or not, since it is possibl i

s

to embed the encoding of the initial state with a prefix free
code, without substantially changing the proof of the teear Cu4~ ~y D4
Theorem 3:Let X be a finite state source, with possible

statesSi, Sa, . .., S and with output symbols in the alphabefig. 2. Markov chain, in the Mealy form, associated to thersewf figure 1.
_ _ Here every arc is labeled with the associated output symizbttze probability

X ={1,2,...,m}. Let W = {zgl, L wp} be a set of S F o8 o

codewords for the symbols i&” with lengthsliy, s, ..., 1.

Let O; ; be the subsets ot of possible symbols output by
the source when transiting from steigto stateS;, O;; being defined in Theorem 3 is in this caselax 1 matrix, i.e. a

the empty set if transition fron$; to S; is impossible. If the scalar value, which equaIEiD*li. So again one has the
code is uniquely decodable for the sour¥e then the matrix classic Kraft inequality.

Q(D) defined by It is worth noticing that, with the considered Mealy form
Qii(D) = Z D-ln representation, one can consider coding techniques tbat as

t W5 ciate different codewords to the same symbol depending on

> the state of the source. This is precisely the way symbols

has spectral radius at most 1. X, X3, ... have been encoded in the “classic code” used in

Proof: The proof is not substantially different from theSection II. It is possible to adapt Theorem 3 to this type of
proof of Theorem 2. In this case, set ag&h= Q(D), we encoding techniques by constructing an adequate m@{ix)
need to defindL so thatL; = >, D~'» whereh runs over in an obvious way, by considering in the generic element
all the elements of the set.O,;. Defining again, fork > 0, Q,;(D), for the different output symbols, the lengths of the
V) = L/Q*-1, one can verify that codewords used when transiting from st&teto stateS;. For

k [ T T example, the matrix associated with the “classic code” used
VE )= hhh;' . D e (10) in Section Il is easily seen to be
where the sum now runs over all sequences of indices 27 (_)1 2:
(h1,ha,...,ht) such that there exists a path in the graph Q(2) = 92 272 722 P (12)
of the Markov chain ending in statg; which produces the 2 2 277 +2
sequence of symbolg, ho, . .., hi) € X®). The proof then which has spectral radius equal to 1.
follows as in Theorem 2. B |tis important at this point to note that Theorems 2 and 3

As an example, consider again the source used in thgly provide a necessary condition for the unique decoipbil
preview example. We can represent the same source using &flya given code, while the classic Kraft inequality is a
three states with a Mealy representation as indicated iar€ig necessary and sufficient condition for a set of integers to be
2. The source is in state if the last output symbol is ad, it codeword lengths of some uniquely decodable code in the
is in stateg if the last output symbol is &, and it is in state classic sense. It is possible to find examples that show that
v if the last output symbol is &' or a D. Then, symbols are the conditions given in Theorems 2 and 3 are only necessary
output at the transition from one state to the other as itelita and not sufficient. It seems to be difficult to find a necessary
on the edges in Figure 2. Using this representation, theixnatsnd sufficient “closed formula” condition for a set of intege

Q(D) defined in Theorem 3 is th&x 3 matrix given by to be codeword lengths of a uniquely decodable code for a
D—h 0 D-ls constrained source. It is possible, however, to test thqueni
Q(D) = 0 Dl D-la NGED decodabilit_y of a given set of codewords for a given source,
D-h D-lz p-ls 4 p—l as shown in the next section.

Coherently, this matrix has the same spectral radius as the )

matrix defined in equation (3), which for this example i& EXtended Sardinas-Patterson test

exactly 1, whenD = 2, if (I1,l2,13,14) = (1,1,2,2) as in It is well known that the unique decodability, in the classic

the “alternative code”. sense, of a set of codewords can be tested using the Sardinas-
As a further remark, we note that from a combinatoridtatterson algorithm [8]. In this section we aim at showing ho

point of view, i.e. distinguishing only between possibledanthe original algorithm can be easily adapted to the case of

impossible source sequences, unconstrained sources cartdrestrained sources. The generalization is straightfiatwso

modeled with only one stat&, every symbol being a possiblethat it is not necessary to give a formal proof of the corressn

output when moving form staté to itself. The matrixQ(D) we refer to [15, th. 2.2.1] for the proof in the classic case.



For simplicitly, we consider here only the case of Markov O A B D A B D
sources modeled in the Moore form. o ° g °

Let the source alphabet b¥ = {x;,z3,...,2,,} and let
W = {w; }i=1,....m the set of codewords, whetg is the code
for z;. Fori = 1,2,...,m we call F; = {w;|P;; > 0} the

subset ofi containing all codewords that can follow; in a & o 0 N o e B
source sequence. We construct a sequence ofl5els, . .. Q \_/D Q \/O

in the following way. To formU; we consider all pairs of @ )

codewords ofW; if a codewordw; is a prefix of another

codewordwj, ie. w; = w; A we put the suffix4A into U;. Fig. 3. Two examples of transition graphs with codewordg)eiased to

In order to consider only the possible sequences, we haveS¥fiPols- In both cases(Q) = 1; for source 3(a) the obtained code is
niquely decodable with finite delay, while for source 3y bbtained code

keep trace of the codewords that have generated every suffiXiniquely decodable but with infinite delay.

thus, let us say that we mark the obtained suffixwith the

two labels: and j, and we thus write it as4;. We do this

operation for every pair of words); and w; from W, i.e. IV. ON MCMILLAN -LIKE THEOREMS AND A PROOF BY

fori,7 = 1,...,m, so obtainingU;. Then, fork > 1, Uy is SHANNON
constructed by comparing elements(®f_, and elements of |n this section we want to provide an analysis of McMillan's
W. For a generic element3; of Uy, we consider the subsettheorem from a historical point of view, comparing differen
F; of W proofs and in particular by showing that both the original
proof by McMillan [3] and Karush’s one [13] are essentially
a) If ;B; is equal to a codeword ifi;, the algorithm stops mathematically equivalent to a proof used by Shannon [2]

and the code is not decodable; for the evaluation of the capacity of certain channels. In a
b) if ;B; is a prefix of a codeword, in F;, sayw, = ;B,;C, sense, we can say that McMillan theorem was “almost” already
we put the labelledC,. suffix into Uy; proved in Shannon’s paper. Even more interestingly, also ou
c¢) ifinstead a codeword, in F; is prefix of, B;, say;B; = extension of McMillan’s theorem was almost already present
w,D, we place the labelled suffixD; into Uy. in Shannon’s original paper, hidden in the evaluation of the

capacity of finite state channels such as the telegraph [2].
The code is uniquely decodable if and only if item a) is never Consider first the original proof bY McMillan of his own
reached. theorem [3]. Letin.x be the maximum of the lengths

_ - li,la, ..., 1, and letw(r) the number of words of length;
Note that the algorithm can be stopped after a finite numh@g Kraft inequality can thus be written as

of steps; there are in fact only a finite number of possible
different setsU; and so the sequencE;,: = 1,2,... is
either finite (i.e., thdJ; are empty sets from sufficiently high
i) or periodic. We note that the code is uniquely decodable -
with finite delayif the sequencgU;} is finite and uniquely Let thenQ(x) be the polynomial defined by

decodable withinfinite delay if the sequence is periodic. Lnax

In this case the code is still decodable, since finite strings Q(x) = Zw(r)y. (14)
of code symbols can always be uniquely decoded, but the —1

required delay is not bounded. This means that, for Ay o vroof is based on the stud 0}( ) as a function of
positiven, there are at least two source sequences that produce P y Qe

. . a complex variabler and leads to a stronger result than the
codes that require more thansymbols delay in order to be . ! ~
. . Kraft inequality, namely to the result th&(z) — 1 has no
disambiguated.

zeros in the circldzD| < 1 of the complex plane. A§)(z)

As an example of SP test for constrained sequences iseontinue and monotone for real> 0, the Kraft inequality
consider the transition graphs shown in Fig. 3. For botmssily follows.
cases we use codewords 0, 1, 01 and 10 Aor B, C By removing from the original proof the parts that are not
and D respectively. For the graph of fig. 3(a) we obtaistrictly important for the proof of the simple Kraft ineqitgl
Ui = {ale,B0p}, Us = (. Thus the code is finite delaywe obtain approximately the following flow. LeW (k) be
uniquely decodable and we can indeed verify that we netfte number of sequences of source symbols whose code has
to wait at most two bits for decoding a symbol (this codwotal length k. Since the code is uniquely decodable, there
is indeed the code used for the example of Section 1). Fare at mostD* such sequences, i.eN(k) < DF. It is thus
the graph of fig. 3(b), instead, we hat®d = {41¢,50p}, clear that the series + N(1)x + N(2)2? + --- converges
Uy = {c0p, plc} and thenU; = S, for every otheri > 3. for values ofr < D!; let F(z) be the value of this series.
So, the code is still uniquely decodable but with infinitdNow, the fundamental step in the proof is to consider how the
delay; in fact it is not possible to distinguish the sequenceossibleN (k) sequences of letters are obtained. McMillan
ADDD--- andCCC --- until they are finished, so that theuses the following reasoning. For every< i,.x, let C,. be
delay may be as long as we want. the set of sequences of lengthwith a first word of length

Imax

> w(r)DT <1 (13)

r=1



r. The obtainedC, sets are disjoint because of the unique Accordingto a well known result in finite differences,

decodability. For the first letters of C,. there are exactly N(t) is then asymptotic for large to X} where
w(r) different possibilities, the number of words ofletters, X is the largest real solution of the characteristic
while for the remaining: —r letters there are exactly (k—r) equation:

different combinations. So, we have Xt Xt g Xt — 1 (18)

N(k) =w()N(k - 1) + w(2)N(k —2) + -~ and therefore

+ W(lmax)N(k — lmax)  (15) C =log Xy". (19)
The above equation holds for evekyf one definesV(r) =0 It is not difficult to note that the result obtained by Shannon
for negativer. if reinterpreted in a source coding setting, is essentially
Now, takez < 1/D, multiply the above equation by* and equivalent to McMillan theorem. Indeed, suppose the device
sum fork from one to infinity. We have considered by Shannon is a discrete time device, emitting a
~ symbol from aD-ary alphabet at every time instant, so that
F(z) — 1 = F(2)Q(). (1e) Y y ap y

the symbolsSy, So, ..., S, are justD-ary words. First note

But as F'(z) is positive,@(x) must be smaller than one. Bythat Shannon’s tacit assumption is that the device produces
continuity one clearly sees thé}(1/D) is at most 1, which messages that can be decoded at the receiving point. We can
is Kraft's inequaliy. thus rewrite this implicit assumption by saying that synsbol

It is interesting to focus the attention on the key point a$;, .S, ..., S, form a uniquely decipherable code. Let us now
this proof, which is essentially the combination of eq. (1pcus on the capacity of the considered device. As the device
with the requirement thafV(k) < D*. In particular it is sends one symbol from R-ary alphabet at every instant, it is
implicitly established that the value a(1/D) determines clear, and it was surely obvious for Shannon, that the cHanne
how fastN (k) would need to grow in order to have a losslessapacity is in this case at mogig D. This means that the
code. So, by imposingV (k) < D¥, a constraint orQ(1/D) obtained value ofX,, above satisfiest, < D. But X, is a
is obtained as a consequence. solution to (18), and the left hand side of (18) is nonincirezas

This basic idea is also used in the proof given by Karush, bint X'. So, settingX = D in (18), the Kraft inequality is easily
in an easier way. Instead of considering the set of codegstrirdeduced.
of length k, Karush considers the sequenceskotymbols In other words, McMillan’s theorem was already “proved”
of the source as explained in the previous section. After &mthe Shannon paper, but it was not explicitly stated in the
accurate analysis it is not difficult to realize that the grogsource coding formulation. It is clear that the formulation
given by Karush “only” has the advantage of relating ththe source coding setting, rather than in the channel coding
asymptotic behaviSrof the suml + N (1)D~'+N(2)D~2+ one, is of great importance by its own from an information
. N (klimax) D~ *mex to the value ofQ(1/D) in a more direct theoretic point of view. From the mathematical point of view
way. Thus, the two proofs both use the convergence, or tingtead, it is very interesting to note that MacMillan praef
order of magnitude, of the suin+ N(1)D~'+N(2)D~2+---  only a more rigorous and detailed description of the cogntin
in order to study the asymptotic behavior §fk). We could argument used by Shannon. Mathematically speaking, we can
then say that both proofs are based on a combinatiaiting say that not only Shannon had already proved McMillan result
method for the evaluation of N(k) and by imposing the but that he had proved it in few lines, in a simple and elegant
constraint thatV (k) < DF way, using exactly the same technique used by McMillan.

It is interesting to find that the very same technique had Now, note that Shannon did not state the above result as a
already been used by Shannon in Part |, Section 1 of [fleorem. In fact, he considered the result only as a paaticul
while computing the capacity of discrete noiseless channatase, used as an example. He indeed started the discussion
Shannon considers a device which is used to communicalith the clarification“Suppose all sequences of the symbols
symbols over a channel and wants to study the number &f, ..., S, are allowed”, because his main interest was in the
messages that can be communicated per unit of time. He saysneral case where the sequences of symbols are produced

“Suppose all sequences of the symils..., S, with some given constraints, as for example in the case of the
are allowed and these symbols have durations detailed study of the telegraph in Section 1.1 of his papke T
t1,...,t,. What is the channel capacity? I¥(¢) model used by Shannon for constraints is the following.
represents the number of sequences of duratioe “We imagine a number of possible states
have ai,as,...,a,. FOr each state only certain symbols

from the setS;, So, ..., S, can be transmitted [...].

N(t) = N{t—t)+ N(t=ta)+- -+ N{t—tn). (17) When one of1 thzese has been transmitted th[e ]state
The total number is the sum of the numbers of changes to a new state depending both on the old
sequences ending ify,Ss,..., S, and these are state and the particular symbol transmitted”

N(t —t1), Nt — t2),...,N(t — t,,), respectively. Note that this is exactly the type of constraint that we have

5\ selv. in th ion of (2) th ficient F" is. i indicated as a Markov model in the Mealy form, earlier in this
ore precisely, in the expansion e coefficien is, in .

general, smaller thaiV () for values ofr larger thanr /Iy, but this does chapter. Th? gengral result Ob_tamed by Shannon and stsited a
not affect the asymptotic behavior of the sum for latge Theorem 1 in [2] is the following:



Theorem 4 (Shannon):et bz(.j) be the duration of the™ More in detail, we have shown that, contrarily to what has
symbol which is allowable in stateand leads to statg Then been so far accepted, the firgt symbols of a source can
the channel capacit¢’ is equal tolog W, whereW, is the be encoded with a lossless variable length code that uses an
largest real root of the determinant equation: average number of bits strictly smaller than the entropy of

such source symbols.
wabf-j) — 8| =0. (20) Based on this observation, we have revisited the topic of
B unigue decodability by providing an extension of McMil-

This theorem is well known in the field of coding forlan’s thgorem and of th_e Sard_inas—Patterson test to dehl wit
constrained systems (see for example [16], [17]) and can (b%nsFram,ed SOUTces. Finally, it has been Cla”f'e.d thah bot
considered as the channel coding precursor of the Mead!gQM'"ans_ original _theorem and our own extension can be
form of Theorem 3 exactly in the same way as the res athem_a'qcally derived from the .results pbtamed by Shanno
obtained by egs. (18) and (19) is the precursor of McMillaly his _or|g|nal 1948 paper [2]. An mtelrestmg.cpncern remsal
theorem. We now prove that Theorem 4 can indeed be ué%at is the lower bound for encoding a finite sequence of
to mathematically deduce Theorem 3. We prove this faﬁ¥mbOIS?
using Theorem 4 to show that, if the mat@(D) defined
in Theorem 3 has spectral radius larger than 1, then the REFERENCES
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V. CONCLUSIONS

In this paper we have proposed a revisitation of the founda-
tions of noiseless source coding. In particular, a revisite
of the topic of unique decodability has been provided by
properly treating the particular case of constrained smirc
For this type of sources, it has been shown that the classic
approach to unique decodabiliy leads to misleading resuits
the average length of codes for finite sequences of symbols.



