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Abstract—In this paper we propose a revisitation of the topic
of unique decodability and of some of the related fundamental
theorems. It is widely believed that, for any discrete source X,
every “uniquely decodable” block code satisfies

E[l(X1, X2, · · · , Xn)] ≥ H(X1, X2, . . . , Xn),

where X1, X2, . . . , Xn are the first n symbols of the source,
E[l(X1, X2, · · · , Xn)] is the expected length of the code for those
symbols andH(X1, X2, . . . , Xn) is their joint entropy. We show
that, for certain sources with memory, the above inequalityonly
holds if a limiting definition of “ uniquely decodable code”is
considered. In particular, the above inequality is usuallyassumed
to hold for any “practical code” due to a debatable application
of McMillan’s theorem to sources with memory. We thus propose
a clarification of the topic, also providing extended versions of
McMillan’s theorem and of the Sardinas Patterson test to be
used for Markovian sources. This work terminates also with the
following interesting remark: both McMillan’s original th eorem
and ours are equivalent to Shannon’s theorem on the capacity
of noiseless channels.

I. I NTRODUCTION

The problem of lossless encoding of information sources has
been intensively studied over the years (see [1, Sec. II] fora
detailed historical overview of the key developments in this
field). Shannon initiated the mathematical formulation of the
problem in his major work [2] and provided the first results
on the average number of bits per source symbol that must
be usedasymptoticallyin order to represent an information
source.

For a random variableX with alphabetX and probability
mass functionpX(·), he defined theentropy of X as the
quantity

H(X) =
∑

x∈X

pX(x) log
1

pX(x)

On another hand, Shannon focused his attention on finite state
Markov sourcesX = {X1, X2, . . .}, for which he defined the
entropyas

H(X) = lim
n→∞

1

n
H(X1, X2, . . . , Xn),

a quantity that is now usually calledentropy rateof the source.
Based on these definitions, he derived the fundamental results
for fixed length and variable length codes. In particular, he
showed that, by encoding sufficiently large blocks of symbols,

the average number of bits per symbol used by fixed length
codes can be made as close as desired to the entropy rate of
the source while maintaining the probability of error as small
as desirable. If variable length codes are allowed, furthermore,
he showed that the probability of error can be reduced to zero
without increasing the asymptotically achievable averagerate.
Shannon also proved the converse theorem for the case of fixed
length codes, but he did not explicitly consider the converse
theorem for variable length codes (see [1, Sec. II.C]).

An important contribution in this direction came from
McMillan [3], who showed that every“uniquely decodable”
code using aD-ary alphabet must satisfy Kraft’s inequality,
∑

i D−li ≤ 1, li being the codeword lengths [4]. Based on
this result, he was able to prove that the expected length of
a uniquely decodable code for a random variableX is not
smaller than its entropy,E[l(X)] ≤ H(X). This represents a
strong converse result in coding theory. However, while the
initial work by Shannon was explicitly referring to finite state
Markov sources, McMillan’s results basically considered only
the encoding of a random variable. This leads to immediate
conclusions on the problem of encoding memoryless sources,
but an ad hoc study is necessary for the case of sources with
memory. The application of McMillan’s theorem to these type
of sources can be found in [5, Sec. 5.4] and [6, Sec. 3.5]. In
these two well-known references, McMillan’s result is usednot
only to derive a converse theorem on the asymptotic average
number of bits per symbol needed to represent an information
source, but also to deduce a non-asymptotic strong converseto
the coding theorem. In particular, the famous result obtained
(see [6, Th. 3.5.2], [5, Th. 5.4.2], [7, Sec. II, p. 2047]) is that,
for every source with memory, any uniquely decodable code
satisfies

E[l(X1, X2, · · · , Xn)] ≥ H(X1, X2, . . . , Xn), (1)

whereX1, X2, . . . , Xn are the firstn symbols of the source,
E[l(X1, X2, · · · , Xn)] is the expected length of the code for
those symbols andH(X1, X2, . . . , Xn) represents their joint
entropy.

In this paper we want to clarify that the above equation is
only valid if a limiting definition of “uniquely decodable code”
is assumed. In particular, we show that there are information
sources for which a reversible encoding operation exists that
produces a code for which equation (1) does not hold any



2

longer for everyn. This is demonstrated through a simple
example in Section II. In Section III we revisit the topic of
unique decodability, consequently providing an extensionof
McMillan’s theorem and of the Sardinas-Patterson test [8] for
the case of first order Markov sources. Finally, in Section IV,
some interesting findings are reported regarding McMillan’s
original theorem and on the proposed one, demonstrating
their mathematical equivalence to Shannon’s theorem on the
capacity of constrained noiseless channels [2, Th. 1].

II. A M EANINGFUL EXAMPLE

Let X = {X1, X2, . . .} be a first order Markov source with
alphabetX = {A, B, C, D} and with transition probabilities
shown by the graph of Fig. 1. Its transition probability matrix
is thus

P =









1/2 0 1/2 0
0 1/2 0 1/2

1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4









,

where rows and columns are associated to the natural alpha-
betical order of the symbol valuesA, B, C andD.

It is not difficult to verify that the stationary distribution
associated with this transition probability matrix is the uniform
distribution. LetX1 be uniformly distributed, so that the source
X is stationary and, in addition, ergodic.

Let us now examine possible binary encoding techniques
for this source and possibly find an optimal one. In order to
evaluate the performance of different codes we determine the
entropy of the sequences of symbols that can be produced by
this source. By stationarity of the source, one easily proves
that

H(X1, X2, . . . , Xn) = H(X1) +

n
∑

i=2

H(Xi|Xi−1)

= 2 +
3

2
(n − 1),

where H(Xi|Xi−1) is the conditional entropy ofXi given
Xi−1, that is

H(Xi|Xi−1) =
∑

x,y∈X

pXiXi−1(x, y) log
1

pXi|Xi−1
(x|y)

.

Let us now consider the following binary codes to represent
sequences produced by this source.

Classic code
We call this first code “classic” as it is the most natural

way to encode the source given its particular structure. Since
the first symbol is uniformly distributed between four choices,
2 bits are used to uniquely identify it, in an obvious way.
For the next symbols we note that we always have dyadic
conditional probabilities. So, we apply a state-dependentcode.
For encoding thek-th symbol we use, again in an obvious
way, 1 bit if symbolk − 1 was anA or a B, and we use 2
bits if symbol k − 1 was aC or a D. This code seems to
perfectly fulfill the source as the number of used bits always

1/4
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Fig. 1. Graph, with transition probabilities, for the Markov source use in
the example.

corresponds to the uncertainty. Indeed, the average lengthof
the code for the firstn symbols is given by

E[l(X1, X2, . . . , Xn)] = E[l(X1)] +

n
∑

i=2

E[l(Xi)]

= 2 +
3

2
(n − 1).

So, the expected number of bits used for the firstn symbols is
exactly the same as their entropy, which would let us declare
that this encoding technique is optimal.

Alternative code
Let us consider a different code, obtained by applying the

following fixed mapping from symbols to bits:A → 0, B → 1,
C → 01, D → 10. It will be easy to see that this code maps
different sequences of symbols into the same codeword. For
example, the sequencesAB andC are both coded to01. This
is usually expressed, see for example [5], by saying that the
code is notuniquely decodable, an expression which suggests
the idea that the code cannot be inverted, different sequences
being associated to the same code. It is however easy to
notice that, for the source considered in this example, the
code does not introduce any ambiguity. Different sequences
that are producible by the source are in fact mapped into
different codes. Thus it is possible to “decode” any sequence
of bits without ambiguity. For example the code01 can only be
produced by the single symbolC and not by the sequenceAB,
since our source cannot produce such sequence (the transition
from A to B being impossible). It is not difficult to verify
that it is indeed possible to decode any sequence of bits by

Encoding

A → 0
B → 1
C → 01
D → 10

Decoding

more bits left one bit left

00 . . . → A + 0 . . .
01 . . . → C . . .
10 . . . → D . . .
11 . . . → B + 1 . . .

0 → A
1 → B

TABLE I
TABLE OF ENCODING AND DECODING OPERATIONS OF THE PROPOSED

ALTERNATIVE CODE FOR THEMARKOV SOURCE OFFIGURE 1.
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operating in the following way. Consider first the case when
there are still two or more bits to decode. In such a case,
for the first pair of encountered bits, if a00 (respectively a
11) is observed then clearly this corresponds to anA symbol
followed by a code starting with a 0 (respectively aB symbol
followed by a code starting with a 1). If, instead, a01 pair
is observed (respectively a10) then a C must be decoded
(respectively aD). Finally, if there is only one bit left to
decode, say a 0 or a 1, the decoded symbol is respectively anA
or aB. Such coding and decoding operations are summarized
in Table I.

Now, what is the performance of this code? The expected
number of bits in coding the firstn symbols is given by:

E[l(X1, X2, X3, · · · , Xn)] =
n
∑

i=1

E[l(Xi)]

=
3

2
n

Unexpectedly, the average number of bits used by the code
is strictly smaller than the entropy of the symbols. So, the
performance of this code is better than what would have been
traditionally considered the “optimal” code, that is the classical
code. Let us mention that this code is not only more efficient
on average, but it is at least as efficient as the classic code
for every possible sequence which remains compliant with
the source characteristics. For each source sequence, indeed,
the number of decoded symbols after reading the firstm bits
of the alternative code is always larger than or equal to the
number of symbols decoded with the firstm bits of the classic
code. Hence, the proposed alternative code is more efficient
than the classic code in all respects. The obtained gainper
symbolobviously goes to zero asymptotically, as imposed by
the Asymptotic Equipartition Property. However, in practical
cases we are usually interested in coding a finite number of
symbols. Thus, this simple example reveals that the problemof
finding an optimal code is not yet well understood for the case
of sources with memory. The obtained results may thus have
interesting consequences not only from a theoretical pointof
view, but even for practical purposes in the case of sources
exibiting constraints imposing high order dependencies.

Commenting on the “alternative code”, one may object that
it is not fair to use the knowledge on impossible transitionsin
order to design the code. But probably nobody would object
to the design of what we called the “classic code”. Even in
that case, however, the knowledge that some transitions are
impossible was used, in order to construct a state-dependent
“optimal” code.

It is important to point out that we have just shown a
fixed to variable length code for a stationary ergodic source
that maps sequences ofn symbols into strings of bits that
can be decoded and such thatthe average code length is
smaller than the entropy of thosen symbols. Furthermore,
this holds for everyn, and not for ana priori fixed n. In
a sense we could say that the given code has a negative
redundancy. Note that there is a huge difference between the
considered setting and that of the so calledone-to-one codes
(see for example [9] for details). In the case of one-to-one

codes, it is assumed that only one symbol, or a given known
amount of symbols, must be coded, and codes are studied
as maps from symbols to binary strings without considering
the decodability of concatenation of codewords. Under those
hypotheses, Wyner [10] first pointed out that the average
codeword length can always be made lower than the entropy,
and different authors have studied bounds on the expected
code length over the years [11], [12]. Here, instead, we have
considered a fixed-to-variable length code used to compress
sequences of symbols of whatever length, concatenating the
code for the symbols one by one, as in the most classic
scenario.

III. U NIQUE DECODABILITY FOR CONSTRAINED SOURCES

In this section we briefly survey the literature on unique
decodability and we then propose an adequate treatment of
the particular case ofconstrained sourcesdefined as follows.

Definition 1: A sourceX = {X1, X2, . . .} with symbols in
a discrete alphabetX is a constrained sourceif there exists a
finite sequence of symbols fromX that cannot be obtained as
output of the sourceX .

A. Classic definitions and revisitation

It is interesting to consider how the topic of unique decod-
ability has been historically dealt with in the literature and
how the results on unique decodability are used to deduce
results on the expected length of codes. Taking [6] and [5] as
representative references for what can be viewed as the classic
approach to lossless source coding, we note some common
structures between them in the development of the theory, but
also some interesting differences. The most important factto
be noticed is the use, in both references with only marginal
differences, of the following chain of deductions:

(a) McMillan’s theorem asserts that all uniquely decodable
codes satisfy Kraft’s inequality;

(b) If a code for a random variableX satisfies Kraft’s
inequality, thenE[l(X)] ≥ H(X);

(c) Thus any uniquely decodable code for a random variable
X satisfiesE[l(X)] ≥ H(X);

(d) For sources with memory, by considering sequences ofn
symbols assuper-symbols, we deduce that any uniquely
decodable code satisfiesE[l(X1, X2, . . . , Xn)] ≥
H(X1, X2, . . . , Xn).

In the above flow of deductions there is an implicit as-
sumption which is not obvious and, in a certain way, not
clearly supported. It is implicitly assumed that the definition of
uniquely decodable codeused in McMillan’s theorem is also
appropriate for sources with memory. Of course, by definition
of “definition”, one can freely choose to define “uniquely
decodable code” in any preferred way. However, as shown
by the code of Table I in the previous section, the definition
of uniquely decodable codeused in McMillan’s theorem does
not coincide with the intuitive idea of “decodable” for certain
sources with memory. To our knowledge, this ambiguity
has never been reported previously in the literature, and for
this reason it has been erroneously believed that the result
E[l(X1, X2, . . . , Xn)] ≥ H(X1, X2, . . . , Xn) holds for every
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“practically usable” code. As shown by the Markov source
example presented, this interpretation is incorrect.

In order to better understand the confusion associated to
the meaning of “uniquely decodable code”, it is interesting
to focus on a small difference between the formal definitions
given by the authors in [5] and in [6]. We start by rephrasing
for notational convenience the definition given by Cover and
Thomas in [5].

Definition 2: [5, Sec. 5.1, pp. 79-80] A code is
said to be uniquely decodable if no finite sequence
of code symbols can be obtained in two or more
different ways as a concatenation of codewords.

Note that this definition is the same used in McMillan’s paper
[3], and it considers a property of the codebook without any
reference to sources. It is however difficult to find a clear
motivation for such a source independent definition. After all,
a code is always designed for a given source, not for a given
alphabet. Indeed, right after giving the formal definitions, the
authors comment

“In other words, any encoded string in a uniquely
decodable code has only one possiblesource string
producing it.”

So, a reference to sources is introduced. What is not noticedis
that the condition given in the formal definition coincides with
the phrased one only if the source at hand can produce any
possible combination of symbols as output. Conversely, the
two definitions are not equivalent, the first one being stronger,
the second one being instead “more intuitive”.

With respect to formal definitions, Gallager proceeds in a
different way with the following:

Definition 3: [6, Sec. 3.2, pg. 45]“A code is
uniquely decodable if for each source sequence of
finite length, the sequence of code letters corre-
sponding to that source sequence is different from
the sequence of code letters corresponding to any
other source sequence.”

Note that this is a formal definition of unique decodability
of a code with respect to a given source. Gallager states
this definition while discussing memoryless sources1. In that
case, the definition is clearly equivalent to Definition 2 but,
unfortunately, Gallager implicitly uses Definition 2 instead of
Definition 3 when dealing with sources with memory.2

In order to avoid the above discussed ambiguity, we propose
to adopt the following explicit definition.

Definition 4: A code C is said to beuniquely decodable
for the sourceX if no two different finite sequences of source
symbols producible byX have the same code.

With this definition, not alluniquely decodable codes for
a given sourcesatisfy Kraft’s inequality. So, the chain of
deductions (a)-(d) listed at the beginning of this section cannot

1See [6, pg. 45]“We also assume, initially, [...] that successive letters are
independent”

2In fact, in [6], the proof of Theorem 3.5.2, on page 58, is based on
Theorem 3.3.1, on page 50, the proof of which states:“...follows from Kraft’s
inequality, [...] which is valid for any uniquely decodablecode”. But Kraft’s
inequality is valid for uniquely decodable codes defined as in Definition 2
and not Definition 3.

be used for constrained sources, as McMillan’s theorem uses
Definition 2 of unique decodability.

The alternative code of Table I thus immediately gives:
Lemma 1:There exists at least one sourceX and a uniquely

decodable code forX such that, for everyn ≥ 1,

E[l(X1, X2, . . . , Xn)] < H(X1, X2, . . . , Xn).

B. Extension of McMillan’s theorem to Markov sources

In Section II, the proposed alternative code demonstrates
that McMillan’s theorem does not apply in general to uniquely
decodable codes for a constrained sourceX as defined in
Definition 4. In this section a modified version of Kraft’s
inequality is proposed which represents a necessary condition
for the unique decodability of a code for a first order Markov
source.

Let X be a Markov source with alphabetX =
{1, 2, . . . , m} and transition probability matrixP. Let W =
{w1, w2, . . . , wm} be a set ofD-ary codewords for the al-
phabetX and let, li = l(wi) be the length of codewordwi.
McMillan’s original theorem can be stated in the following
way:

Theorem 1 (McMillan, [3]): If the set of codewordsW is
uniquely decodable (in the sense of Definition 2) then

m
∑

i=1

D−li ≤ 1.

Comment:It is interesting to consider the proof given by
Karush [13] of this theorem. Karush notices that for every
k > 0, in order for the code to be uniquely decodable, the
following inequality must be satisfied

(

m
∑

i=1

D−li

)k

≤ k lmax (2)

where lmax is the largest of theli, i = 1, . . . , m. Indeed,
the term on the left hand side of (2) can be expanded as
the sum of mk terms each of them being a product of
factorsD−li in a different combination. The way the possible
combinations of products are constructed is exactly the same
as the way the symbols of the source are concatenated in all
possible combinations to obtain sequences ofk symbols. For
example, a sequence starting with‘1, 3, 2 . . .′ translates into
D−l1D−l3D−l2 · · · in the expansion of the left hand side of
(2). In order to have only one sequence assigned to every
code the above inequality must be satisfied for everyk. But
the right hand side of (2) grows linearly withk, while the left
hand side grows exponentially with it if the Kraft inequality
is not satisfied. Thus, when (1) does not hold, (2) cannot be
satisfied for everyk, and the code is not uniquely decodable.

As we said, the expansion of the left hand side of (2)
contains terms associated with every possible combinations
of symbols of the source alphabet, and is thus appropriate for
the case of unconstrained sources. If the source is constrained,
however, only some combinations of symbols should be con-
sidered. For example, consider again the Markov chain used
in the Section II, withl1, l2, l3 andl4 the lengths of codewords
assigned respectively to symbolsA, B, C andD. In this case,
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the terms in the expansion on the left hand side of (2) that
contain· · ·D−l1D−l2 · · · should be discarded, sinceB cannot
follow A for any source compliant sequence. Consider thus the
vectorL = [D−l1 , D−l2 , D−l3 , D−l4 ]′ and the matrix

Q(D) =









D−l1 0 D−l3 0
0 D−l2 0 D−l4

D−l1 D−l2 D−l3 D−l4

D−l1 D−l2 D−l3 D−l4









. (3)

It is not difficult to verify that a correct reformulation of eq.
(2) for our source should be written, fork > 0, as

L′Q(D)
k−1

14 ≤ k lmax, (4)

where14 = [1, 1, 1, 1]. It is possible to show that a necessary
condition for this inequality to be satisfied for everyk is that
the matrixQ(D) has spectral radius3 at most equal to 1. We
will state and prove this fact in the general case, hereafter.

Let X , P andW be as specified before.
Theorem 2:If the set of codewordsW is uniquely decod-

able for the Markov sourceX , then the matrixQ(D) defined
by

Qij(D) =

{

0 if Pij = 0

D−lj if Pij > 0

has spectral radius at most 1.
Proof: We follow Karush’s proof of McMillan theorem.

Set Q = Q(D) for simplicity. Let X (k) be the set of all
sequences ofk symbols that can be produced by the source
and letL = [D−l1 , D−l2 , . . . , D−lm ]′.

We now define, fork > 0, the row vector

V(k) = L′Qk−1. (5)

Then it is easy to see by induction that thei-th component of
V(k) is written as

V
(k)
i =

∑

h1,h2,...,hk

D−lh1
−lh2

···−lhk (6)

where the sum runs over all sequences of indices
(h1, h2, . . . , hk) in X (k) with varying h1, h2, . . . , hk−1 and
hk = i. So, if we call1m the lengthm vector composed of
m 1’s, we have

L′Qk−11m =
∑

(h1,h2,...,hk)∈X (k)

D−lh1
−lh2

···−lhk . (7)

Reindexing the sum with respect to the total lengthr = lh1 +
lh2 + · · · + lhk

and callingN(r) the number of sequences of
X (k) to which a code of lengthr is assigned, we have

L′Qk−11m =

klmax
∑

r=klmin

N(r)D−r (8)

where lmin and lmax are respectively the minimum and the
maximum of the valuesli, i = 1, 2, . . . , m. Since the code
is uniquely decodable, there are at mostDr sequences with a

3Recall that the spectral radius of a matrix is defined as the greatest modulus
of its eigenvalues.

code of lengthr. This implies that, for everyk > 0, we must
have

L′Qk−11m ≤
klmax
∑

r=klmin

DrD−r = k(lmax− lmin + 1) (9)

Now, note that the irreducible matrixQ is also nonnegative.
Thus, by the Perron-Frobenius theorem (see [14] for details),
its spectral radiusρ(Q) is also an eigenvalue4, with algebraic
multiplicity 1 and with positive associated left eigenvector. Let
w be such eigenvector; then, asL is positive, there exists a
positive constantα such thatz = L − αw is a nonnegative
vector. Thus, settingL = αw + z, we can write the left hand
side of (9) as

L′Qk−11m = αw′Qk−11m + z′Qk−11m

= αρ(Q)k−1w′1m + z′Qk−11m

= βρ(Q)k−1 + γ

where β = αw′1m is positive andγ is nonnegative. So,
if ρ(Q) > 1, the term on the left hand side of eq. (9)
asymptotically grows at least asρ(Q)k−1. On the contrary,
the right hand side term only grows linearly withk and for
large enoughk equation (9) could not be verified. We conclude
that ρ(Q) ≤ 1.

Note that if theP matrix has all strictly positive entries,
the matrixQ(D) is positive with all equal rows. It is known
(see again [14]) that the spectral radius of such a matrix is
given by the sum of the elements in a row, which in this case
is
∑

i D−li . Thus, for non-constrained sequences, we obtain
classic Kraft’s inequality.

Furthermore, the case whenρ(Q(D)) = 1 corresponds to
a limit situation in terms ofP and l1, . . . , lm. This is due
to the fact that the spectral radius of a nonnegative positive
matrix increases if any of the elements increases. So, if for
a given matrixP there is a decodable code with codeword
lengthsli, i = 1, . . . , m such thatρ(Q(D)) = 1, then there is
no decodable code with lengthsl′i if l′i ≤ li for all i with strict
inequality for somei. Also, for the same codeword lengths, it
is not possible to remove constraints from the Markov chain
while keeping unique decodability property, since one of the
elements of the matrixQ(D) would increase from zero to a
positive value.

The above presented discussion is focusing on the case
of constrained sources that are modeled with Markov chains
“in the Moore form”, as considered for example in [5].
In other words, we have modeled information sources as
Markov chains by assigning an output source symbol to every
state. This way we have considered only sources that have
a memory of one symbol, because transitions in the Markov
chains are always considered to be independent. In order to
deal with more general sources we can consider the Markov
source model with output symbols associated to transitions
between states rather than to states (which corresponds to
the Markov source model used by Shannon in [2] or, for
example, by Gallager in [6]). We may say that this Markov

4Note that in general the spectral radius is not an eigenvalueas it is defined
as the maximum of|λ| over all eigenvaluesλ.
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chain representation is in the “Mealy form”. Theorem 2 can
be easily extended to Theorem 3 below to deal with this more
general type of sources, as it will now be shown. It may be
of interest to consider that, for this type of sources, the initial
state has to be known or encoded. However, by considering
the asymptotic reasoning used in the proof of Theorem 3, it is
easy to realize that it does not make any difference to consider
whether the initial state is known or not, since it is possible
to embed the encoding of the initial state with a prefix free
code, without substantially changing the proof of the theorem.

Theorem 3:Let X be a finite state source, with possible
statesS1, S2, . . . , Sq and with output symbols in the alphabet
X = {1, 2, . . . , m}. Let W = {w1, . . . , wm} be a set of
codewords for the symbols inX with lengthsl1, l2, . . . , lm.
Let Oi,j be the subsets ofX of possible symbols output by
the source when transiting from stateSi to stateSj , Oij being
the empty set if transition fromSi to Sj is impossible. If the
code is uniquely decodable for the sourceX , then the matrix
Q(D) defined by

Qij(D) =
∑

h∈Oi,j

D−lh

has spectral radius at most 1.
Proof: The proof is not substantially different from the

proof of Theorem 2. In this case, set againQ = Q(D), we
need to defineL so thatLi =

∑

h D−lh whereh runs over
all the elements of the set∪rOri. Defining again, fork > 0,
V(k) = L′Qk−1, one can verify that

V
(k)
i =

∑

h1,h2,...,hk

D−lh1
−lh2

···−lhk (10)

where the sum now runs over all sequences of indices
(h1, h2, . . . , hk) such that there exists a path in the graph
of the Markov chain ending in stateSi which produces the
sequence of symbols(h1, h2, . . . , hk) ∈ X (k). The proof then
follows as in Theorem 2.

As an example, consider again the source used in the
preview example. We can represent the same source using only
three states with a Mealy representation as indicated in Figure
2. The source is in stateα if the last output symbol is anA, it
is in stateβ if the last output symbol is aB, and it is in state
γ if the last output symbol is aC or a D. Then, symbols are
output at the transition from one state to the other as indicated
on the edges in Figure 2. Using this representation, the matrix
Q(D) defined in Theorem 3 is the3 × 3 matrix given by

Q(D) =





D−l1 0 D−l3

0 D−l2 D−l4

D−l1 D−l2 D−l3 + D−l4



 . (11)

Coherently, this matrix has the same spectral radius as the
matrix defined in equation (3), which for this example is
exactly 1, whenD = 2, if (l1, l2, l3, l4) = (1, 1, 2, 2) as in
the “alternative code”.

As a further remark, we note that from a combinatorial
point of view, i.e. distinguishing only between possible and
impossible source sequences, unconstrained sources can be
modeled with only one stateS, every symbol being a possible
output when moving form stateS to itself. The matrixQ(D)

B, 1/2A, 1/2

A, 1/4

C, 1/2

C, 1/4 D, 1/4

B, 1/4

D, 1/2

α β

γ

Fig. 2. Markov chain, in the Mealy form, associated to the source of figure 1.
Here every arc is labeled with the associated output symbol and the probability
of the transition.

defined in Theorem 3 is in this case a1 × 1 matrix, i.e. a
scalar value, which equals

∑

i D−li . So again one has the
classic Kraft inequality.

It is worth noticing that, with the considered Mealy form
representation, one can consider coding techniques that asso-
ciate different codewords to the same symbol depending on
the state of the source. This is precisely the way symbols
X2, X3, . . . have been encoded in the “classic code” used in
Section II. It is possible to adapt Theorem 3 to this type of
encoding techniques by constructing an adequate matrixQ(D)
in an obvious way, by considering in the generic element
Qij(D), for the different output symbols, the lengths of the
codewords used when transiting from stateSi to stateSj . For
example, the matrix associated with the “classic code” used
in Section II is easily seen to be

Q(2) =





2−1 0 2−1

0 2−1 2−1

2−2 2−2 2−2 + 2−2



 . (12)

which has spectral radius equal to 1.
It is important at this point to note that Theorems 2 and 3

only provide a necessary condition for the unique decodability
of a given code, while the classic Kraft inequality is a
necessary and sufficient condition for a set of integers to be
codeword lengths of some uniquely decodable code in the
classic sense. It is possible to find examples that show that
the conditions given in Theorems 2 and 3 are only necessary
and not sufficient. It seems to be difficult to find a necessary
and sufficient “closed formula” condition for a set of integers
to be codeword lengths of a uniquely decodable code for a
constrained source. It is possible, however, to test the unique
decodability of a given set of codewords for a given source,
as shown in the next section.

C. Extended Sardinas-Patterson test

It is well known that the unique decodability, in the classic
sense, of a set of codewords can be tested using the Sardinas-
Patterson algorithm [8]. In this section we aim at showing how
the original algorithm can be easily adapted to the case of
constrained sources. The generalization is straightforward, so
that it is not necessary to give a formal proof of the correctness,
we refer to [15, th. 2.2.1] for the proof in the classic case.
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For simplicitly, we consider here only the case of Markov
sources modeled in the Moore form.

Let the source alphabet beX = {x1, x2, . . . , xm} and let
W = {wi}i=1,...,m the set of codewords, wherewi is the code
for xi. For i = 1, 2, . . . , m we call Fi = {wj |Pij > 0} the
subset ofW containing all codewords that can followwi in a
source sequence. We construct a sequence of setsU1, U2, . . .
in the following way. To formU1 we consider all pairs of
codewords ofW ; if a codewordwi is a prefix of another
codewordwj , i.e. wj = wiA we put the suffixA into U1.
In order to consider only the possible sequences, we have to
keep trace of the codewords that have generated every suffix;
thus, let us say that we mark the obtained suffixA with the
two labelsi and j, and we thus write it asiAj . We do this
operation for every pair of wordswi and wj from W , i.e.
for i, j = 1, . . . , m, so obtainingU1. Then, fork > 1, Uk is
constructed by comparing elements ofUk−1 and elements of
W . For a generic elementiBj of Uk−1 we consider the subset
Fi of W :

a) If iBj is equal to a codeword inFi, the algorithm stops
and the code is not decodable;

b) if iBj is a prefix of a codewordwr in Fi, saywr = iBjC,
we put the labelledjCr suffix into Uk;

c) if instead a codewordwr in Fi is prefix ofiBj, sayiBj =
wrD, we place the labelled suffixrDj into Uk.

The code is uniquely decodable if and only if item a) is never
reached.

Note that the algorithm can be stopped after a finite number
of steps; there are in fact only a finite number of possible
different setsUi and so the sequenceUi, i = 1, 2, . . . is
either finite (i.e., theUi are empty sets from sufficiently high
i) or periodic. We note that the code is uniquely decodable
with finite delayif the sequence{Ui} is finite and uniquely
decodable withinfinite delay if the sequence is periodic.
In this case the code is still decodable, since finite strings
of code symbols can always be uniquely decoded, but the
required delay is not bounded. This means that, for any
positiven, there are at least two source sequences that produce
codes that require more thann symbols delay in order to be
disambiguated.

As an example of SP test for constrained sequences we
consider the transition graphs shown in Fig. 3. For both
cases we use codewords 0, 1, 01 and 10 forA, B, C
and D respectively. For the graph of fig. 3(a) we obtain
U1 = {A1C , B0D}, U2 = ∅. Thus the code is finite delay
uniquely decodable and we can indeed verify that we need
to wait at most two bits for decoding a symbol (this code
is indeed the code used for the example of Section 1). For
the graph of fig. 3(b), instead, we haveU1 = {A1C , B0D},
U2 = {C0D, D1C} and thenUi = S2 for every otheri ≥ 3.
So, the code is still uniquely decodable but with infinite
delay; in fact it is not possible to distinguish the sequences
ADDD · · · andCCC · · · until they are finished, so that the
delay may be as long as we want.

10

BA

DC

0 1

01

(a)

10

A B

C D

0 1

01

(b)

Fig. 3. Two examples of transition graphs with codewords associated to
symbols. In both casesρ(Q) = 1; for source 3(a) the obtained code is
uniquely decodable with finite delay, while for source 3(b) the obtained code
is uniquely decodable but with infinite delay.

IV. ON MCM ILLAN -LIKE THEOREMS AND A PROOF BY

SHANNON

In this section we want to provide an analysis of McMillan’s
theorem from a historical point of view, comparing different
proofs and in particular by showing that both the original
proof by McMillan [3] and Karush’s one [13] are essentially
mathematically equivalent to a proof used by Shannon [2]
for the evaluation of the capacity of certain channels. In a
sense, we can say that McMillan theorem was “almost” already
proved in Shannon’s paper. Even more interestingly, also our
extension of McMillan’s theorem was almost already present
in Shannon’s original paper, hidden in the evaluation of the
capacity of finite state channels such as the telegraph [2].

Consider first the original proof by McMillan of his own
theorem [3]. Let lmax be the maximum of the lengths
l1, l2, . . . , lm and letw(r) the number of words of lengthr;
the Kraft inequality can thus be written as

lmax
∑

r=1

w(r)D−r ≤ 1. (13)

Let thenQ̃(x) be the polynomial defined by

Q̃(x) =

lmax
∑

r=1

w(r)xr . (14)

The proof is based on the study of̃Q(x) as a function of
a complex variablex and leads to a stronger result than the
Kraft inequality, namely to the result that̃Q(x) − 1 has no
zeros in the circle|xD| < 1 of the complex plane. As̃Q(x)
is continue and monotone for realx ≥ 0, the Kraft inequality
easily follows.

By removing from the original proof the parts that are not
strictly important for the proof of the simple Kraft inequality,
we obtain approximately the following flow. LetN(k) be
the number of sequences of source symbols whose code has
total lengthk. Since the code is uniquely decodable, there
are at mostDk such sequences, i.e.,N(k) ≤ Dk. It is thus
clear that the series1 + N(1)x + N(2)x2 + · · · converges
for values ofx < D−1; let F (x) be the value of this series.
Now, the fundamental step in the proof is to consider how the
possibleN(k) sequences ofk letters are obtained. McMillan
uses the following reasoning. For everyr ≤ lmax, let Cr be
the set of sequences of lengthk with a first word of length
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r. The obtainedCr sets are disjoint because of the unique
decodability. For the firstr letters of Cr there are exactly
w(r) different possibilities, the number of words ofr letters,
while for the remainingk−r letters there are exactlyN(k−r)
different combinations. So, we have

N(k) = w(1)N(k − 1) + w(2)N(k − 2) + · · ·

+ w(lmax)N(k − lmax) (15)

The above equation holds for everyk if one definesN(r) = 0
for negativer.

Now, takex < 1/D, multiply the above equation byxk and
sum fork from one to infinity. We have

F (x) − 1 = F (x)Q̃(x). (16)

But asF (x) is positive,Q̃(x) must be smaller than one. By
continuity one clearly sees that̃Q(1/D) is at most 1, which
is Kraft’s inequaliy.

It is interesting to focus the attention on the key point of
this proof, which is essentially the combination of eq. (15)
with the requirement thatN(k) ≤ Dk. In particular it is
implicitly established that the value of̃Q(1/D) determines
how fastN(k) would need to grow in order to have a lossless
code. So, by imposingN(k) ≤ Dk, a constraint onQ̃(1/D)
is obtained as a consequence.

This basic idea is also used in the proof given by Karush, but
in an easier way. Instead of considering the set of code strings
of length k, Karush considers the sequences ofk symbols
of the source as explained in the previous section. After an
accurate analysis it is not difficult to realize that the proof
given by Karush “only” has the advantage of relating the
asymptotic behavior5 of the sum1+N(1)D−1 +N(2)D−2 +
..N(klmax)D

−klmax to the value ofQ̃(1/D) in a more direct
way. Thus, the two proofs both use the convergence, or the
order of magnitude, of the sum1+N(1)D−1+N(2)D−2+· · ·
in order to study the asymptotic behavior ofN(k). We could
then say that both proofs are based on a combinatorialcounting
method for the evaluation ofN(k) and by imposing the
constraint thatN(k) ≤ Dk

It is interesting to find that the very same technique had
already been used by Shannon in Part I, Section 1 of [2]
while computing the capacity of discrete noiseless channels.
Shannon considers a device which is used to communicate
symbols over a channel and wants to study the number of
messages that can be communicated per unit of time. He says:

“Suppose all sequences of the symbolsS1, . . . , Sn

are allowed and these symbols have durations
t1, . . . , tn. What is the channel capacity? IfN(t)
represents the number of sequences of durationt we
have

N(t) = N(t−t1)+N(t−t2)+· · ·+N(t−tn). (17)

The total number is the sum of the numbers of
sequences ending inS1, S2, . . . , Sn and these are
N(t − t1), N(t − t2), . . . , N(t − tn), respectively.

5More precisely, in the expansion of (2) the coefficient ofD−r is, in
general, smaller thanN(r) for values ofr larger thanr/lmin, but this does
not affect the asymptotic behavior of the sum for largek.

According to a well known result in finite differences,
N(t) is then asymptotic for larget to Xt

0 where
X0 is the largest real solution of the characteristic
equation:

X−t1 + X−t2 + · · · + X−tn = 1 (18)

and therefore
C = log X0”. (19)

It is not difficult to note that the result obtained by Shannon,
if reinterpreted in a source coding setting, is essentially
equivalent to McMillan theorem. Indeed, suppose the device
considered by Shannon is a discrete time device, emitting a
symbol from aD-ary alphabet at every time instant, so that
the symbolsS1, S2, . . . , Sn are justD-ary words. First note
that Shannon’s tacit assumption is that the device produces
messages that can be decoded at the receiving point. We can
thus rewrite this implicit assumption by saying that symbols
S1, S2, . . . , Sn form a uniquely decipherable code. Let us now
focus on the capacity of the considered device. As the device
sends one symbol from aD-ary alphabet at every instant, it is
clear, and it was surely obvious for Shannon, that the channel
capacity is in this case at mostlog D. This means that the
obtained value ofX0 above satisfiesX0 ≤ D. But X0 is a
solution to (18), and the left hand side of (18) is nonincreasing
in X . So, settingX = D in (18), the Kraft inequality is easily
deduced.

In other words, McMillan’s theorem was already “proved”
in the Shannon paper, but it was not explicitly stated in the
source coding formulation. It is clear that the formulationin
the source coding setting, rather than in the channel coding
one, is of great importance by its own from an information
theoretic point of view. From the mathematical point of view,
instead, it is very interesting to note that MacMillan proofis
only a more rigorous and detailed description of the counting
argument used by Shannon. Mathematically speaking, we can
say that not only Shannon had already proved McMillan result,
but that he had proved it in few lines, in a simple and elegant
way, using exactly the same technique used by McMillan.

Now, note that Shannon did not state the above result as a
theorem. In fact, he considered the result only as a particular
case, used as an example. He indeed started the discussion
with the clarification“Suppose all sequences of the symbols
S1, . . . , Sn are allowed”, because his main interest was in the
general case where the sequences of symbols are produced
with some given constraints, as for example in the case of the
detailed study of the telegraph in Section I.1 of his paper. The
model used by Shannon for constraints is the following.

“We imagine a number of possible states
a1, a2, . . . , am. For each state only certain symbols
from the setS1, S2, . . . , Sn can be transmitted [...].
When one of these has been transmitted the state
changes to a new state depending both on the old
state and the particular symbol transmitted”.

Note that this is exactly the type of constraint that we have
indicated as a Markov model in the Mealy form, earlier in this
chapter. The general result obtained by Shannon and stated as
Theorem 1 in [2] is the following:



9

Theorem 4 (Shannon):Let b
(s)
ij be the duration of thesth

symbol which is allowable in statei and leads to statej. Then
the channel capacityC is equal tolog W0 whereW0 is the
largest real root of the determinant equation:

∣

∣

∣

∣

∣

∑

s

W−b
(s)
ij − δij

∣

∣

∣

∣

∣

= 0. (20)

This theorem is well known in the field of coding for
constrained systems (see for example [16], [17]) and can be
considered as the channel coding precursor of the Mealy-
form of Theorem 3 exactly in the same way as the result
obtained by eqs. (18) and (19) is the precursor of McMillan
theorem. We now prove that Theorem 4 can indeed be used
to mathematically deduce Theorem 3. We prove this fact
using Theorem 4 to show that, if the matrixQ(D) defined
in Theorem 3 has spectral radius larger than 1, then the
associated code cannot be uniquely decodable. In order to
do that, we show that if such a code was decodable, then
we could construct a channel using aD-ary alphabet with a
capacity larger thanlog D, which is clearly impossible.

Coherently with the notation of Theorem 3, letQ(W ) =
∑

s W−b
(s)

ij be the matrix considered in the determinant equa-
tion (20). Suppose now that there exists a uniquely decodable
code for a constrained source such that the spectral radius
of the matrixQ(D) in Theorem 3 is larger than 1. Then, as
the code is uniquely decodable, we can construct a discrete-
time D-ary channel with channel symbols exactly equal to
the codewords of the given code. Then for this channel, with
the above definitions, we haveρ(Q(D)) > 1. Consider now
the capacity of such a channel. The largest solutionW0 of
the determinant equation (20) can also be considered as the
largest positive value ofW such thatQ(W ) has an eigenvalue
equal to 1. Consider thus the largest eigenvalue ofQ(W ),
i.e. the spectral radiusρ(Q(W )). As the spectral radius of
a nonnegative matrix decreases if any of the elements of the
matrix decreases,ρ(Q(W )) is a decreasing function ofW .
Furthermore, it is clear thatρ(Q(W )) → 0 when W → ∞.
Then clearly, sinceρ(Q(D)) > 1, there exists aW > D such
that ρ(Q(W )) = 1. But this means that we have constructed
a D-ary channel with capacity larger thanlog D, which is
clearly impossible. So, the initial hypothesis was wrong, and
thus any decodable code for a constrained source is such that
the spectral radius of the matrixQ(D) in Theorem 3 is not
larger than 1.

This shows that the results obtained by Shannon for the
channel capacity evaluation in his paper [2], actually corre-
spond to very interesting results in the source coding setting,
which hide a generalized form of Kraft-McMillan theorem.

V. CONCLUSIONS

In this paper we have proposed a revisitation of the founda-
tions of noiseless source coding. In particular, a revisitation
of the topic of unique decodability has been provided by
properly treating the particular case of constrained sources.
For this type of sources, it has been shown that the classic
approach to unique decodabiliy leads to misleading resultson
the average length of codes for finite sequences of symbols.

More in detail, we have shown that, contrarily to what has
been so far accepted, the firstn symbols of a source can
be encoded with a lossless variable length code that uses an
average number of bits strictly smaller than the entropy of
such source symbols.

Based on this observation, we have revisited the topic of
unique decodability by providing an extension of McMil-
lan’s theorem and of the Sardinas-Patterson test to deal with
constrained sources. Finally, it has been clarified that both
McMillan’s original theorem and our own extension can be
mathematically derived from the results obtained by Shannon
in his original 1948 paper [2]. An interesting concern remains:
what is the lower bound for encoding a finite sequence of
symbols?
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